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Abstract

A central challenge in machine learning is to understand how noise or measure-
ment errors affect low-rank approximations—particularly in the spectral norm.
This question is especially important in differentially private low-rank approxima-
tion, where one aims to preserve the top-p structure of a data-derived matrix while
ensuring privacy. Prior work often analyzes Frobenius norm error or changes in
reconstruction quality, but these metrics can over- or under-estimate true subspace
distortion. The spectral norm, by contrast, captures worst-case directional error
and provides the strongest utility guarantees. We establish new high-probability
spectral-norm perturbation bounds for symmetric matrices that refine the classical
Eckart–Young–Mirsky theorem and explicitly capture interactions between a ma-
trix A ∈ Rn×n and an arbitrary symmetric perturbation E. Under mild eigengap
and norm conditions, our bounds yield sharp estimates for ∥(A + E)p − Ap∥,
where Ap is the best rank-p approximation of A, with improvements of up to a
factor of

√
n. As an application, we derive improved utility guarantees for dif-

ferentially private PCA, resolving an open problem in the literature. Our analysis
relies on a novel contour bootstrapping method from complex analysis and ex-
tends it to a broad class of spectral functionals, including polynomials and matrix
exponentials. Empirical results on real-world datasets confirm that our bounds
closely track the actual spectral error under diverse perturbation regimes.

1 Introduction

Low-rank approximation is a foundational technique in machine learning, data science, and nu-
merical linear algebra, with applications ranging from dimensionality reduction and clustering to
recommendation systems and privacy-preserving data analysis [1, 4, 5, 14, 21, 23, 24, 42, 45].
A common setting involves a real symmetric matrix A ∈ Rn×n, such as a sample covariance
matrix derived from high-dimensional data. Let λ1 ≥ · · · ≥ λn denote the eigenvalues of
A, with corresponding orthonormal eigenvectors u1, . . . , un. The best rank-p approximation of
A is denoted by Ap :=

∑p
i=1 λiuiu

⊤
i . This approximation solves the optimization problem

Ap = argminrank(B)≤p ∥A − B∥, where the norm can be any unitarily invariant norm [7, 10]. In
particular, Ap minimizes both the spectral norm ∥ · ∥, measuring worst-case error, and the Frobenius
norm ∥ · ∥F , measuring average deviation.

In many applications, the matrix A is not directly available—it may be corrupted by noise, com-
pressed for efficiency, or randomized to preserve privacy. A standard model introduces a symmetric
perturbation E, yielding the observed matrix Ã := A+ E. The approximation Ãp, computed from
Ã, is often used in downstream learning and inference. This leads to a central question: How does
the perturbation E affect the top-p approximation Ap? Understanding the deviation ∥Ãp − Ap∥ is
critical for ensuring the reliability and robustness of low-rank methods under noise.
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Motivating application: differential privacy. The stability under perturbations is especially im-
portant when the matrix A encodes sensitive information, such as user behavior or medical data. In
such settings, even low-rank approximations of A can inadvertently leak private information [6]. To
address this risk, differential privacy (DP) [14] has become the standard framework for designing
privacy-preserving algorithms. Several mechanisms have been developed to release private low-rank
approximations while satisfying DP guarantees [8, 9, 15, 25, 29, 31, 34, 39]. A canonical method,
introduced in [15], adds a symmetric noise matrix E with i.i.d. Gaussian entries to the input matrix
A, yielding the perturbed matrix Ã = A+E. The algorithm then releases Ãp as the privatized out-
put. The utility of such mechanisms is typically assessed by comparing Ãp to the ideal (non-private)
approximation Ap. Two standard metrics are: (1) the Frobenius norm error ∥Ãp − Ap∥F , and (2)
the change in reconstruction error |∥A−Ap∥⋆−∥A−Ãp∥⋆|, which measures how much the quality
of low-rank approximation degrades due to noise, for a norm ∥ · ∥⋆ [3, 11, 15, 29]. These metrics
offer insight into the effect of noise on overall variance or total reconstruction error. However, as we
explain next, they may fail to capture worst-case directional misalignment, which is often critical
for downstream tasks and algorithmic guarantees.

Limitations of existing utility metrics. The Frobenius norm error and reconstruction error may not
be appropriate in applications that rely on the geometry of the top-p eigenspace. In particular, the
Frobenius norm may overestimate the impact of noise by up to a factor of

√
p when the perturba-

tion E lies largely in directions orthogonal to the top-p subspace. The reconstruction error metric
can underestimate subspace deviation—sometimes dramatically. In some cases, it remains small
(or even zero) despite substantial rotation in the top-p eigenspace. (See Sections B for concrete
illustrations.) These limitations motivate the use of the spectral norm ∥Ãp − Ap∥, which captures
the worst-case directional deviation between the two low-rank approximations. The spectral norm
also governs algorithmic robustness in many downstream applications, such as PCA-based learning,
private clustering, and subspace tracking.

A classical spectral norm bound, derived from the Eckart–Young–Mirsky theorem [7, 16], states
that ∥Ãp − Ap∥ ≤ 2(λp+1 + ∥E∥), which holds for arbitrary matrices and noise. However, such
bounds are often pessimistic and fail to exploit the structure of A and E. More refined bounds exist
in the Frobenius norm setting. For example, recent work [29, 30] shows that when A is positive
semidefinite and has a nontrivial eigengap δp := λp − λp+1 ≥ 4∥E∥, and when E is drawn from a
complex Gaussian ensemble, one obtains: E∥Ãp −Ap∥F = Õ(

√
p · ∥E∥ · λp

δp
), which improves on

the earlier reconstruction-error-based bounds of [15] by a factor of
√
p. However, these bounds have

important limitations: They hold only in expectation and do not yield high-probability guarantees;
They often assume Gaussian noise distributions; They are not spectral norm bounds and therefore
do not directly quantify the worst-case impact on the eigenspace. These limitations prompt the
following open question, raised in [29, Remark 5.3]: Can one obtain high-probability spectral norm
bounds for ∥Ãp −Ap∥ under natural structural assumptions on A and realistic noise models?

Our contributions. We resolve the open question posed in [29, Remark 5.3], proving new high-
probability spectral norm bounds for low-rank approximation under symmetric perturbations. Our
results rely on natural structural assumptions on A and E and yield the first such guarantees for
differentially private PCA (DP-PCA).

• Two high-probability spectral norm bounds. Under the same eigengap condition as [29], δp :=

λp−λp+1 ≥ 4∥E∥, we prove ∥Ãp−Ap∥ = O
(
∥E∥ · λp

δp

)
and ∥Ãp−Ap∥ = Õ

(
∥E∥+ r2x · λp

δp

)
,

where r is the halving distance (a measure of spectral decay) and x := maxi,j≤r |u⊤
i Euj | quan-

tifies noise–eigenspace alignment (Theorems 2.1–2.2). In addition, our contour-based framework
extends to a broader class of spectral functionals f(A) (beyond f(A) = A), encompassing matrix
powers, exponentials, and trigonometric transforms; see Theorem 2.3.

• Spectral utility bounds for DP-PCA. Our first bound yields a high-probability spectral norm
utility guarantee for differentially private PCA under sub-Gaussian noise, improving existing
Frobenius-norm bounds by up to a factor of

√
p (Corollary 2.4). While prior work has achieved

spectral norm guarantees in iterative or multi-pass settings [17, 18], our contribution concerns
the direct noise-addition model, where this appears to be the first such result. For matrices with
low stable rank and weak eigenspace–noise interaction, our second bound further improves by up
to

√
n.
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• Novel analytical technique: contour bootstrapping. Our proof relies on a contour bootstrap-
ping argument (Lemma 3.1), which provides a new way to analyze the contour representation
of perturbations [19, 26, 35], enabling analysis of a broader class of spectral functionals (The-
orem 2.3). The bootstrapping argument here is a generalization of the argument used to handle
eigenspaces perturbation introduced in [38].

• Empirical validation. We benchmark our bounds on real covariance matrices under both Gaus-
sian and Rademacher noise. Across datasets and noise regimes, the predicted error closely matches
empirical behavior and consistently surpasses classical baselines, confirming the sharpness and
robustness of our theoretical results (Section 4).

2 Main results

Main spectral norm bound. For clarity, we state our main bounds assuming A ∈ Rn×n is positive
semi-definite (PSD); extensions to symmetric matrices appear in Section D. Let λ1 ≥ · · · ≥ λn ≥ 0
be the eigenvalues of A, with corresponding orthonormal eigenvectors u1, . . . , un, and define the
eigengap δk := λk − λk+1. Given a real symmetric perturbation matrix E, we let Ã := A+E, and
define Ap and Ãp as the best rank-p approximations of A and Ã, respectively. Our goal is to bound
the spectral error ∥Ãp −Ap∥.

Theorem 2.1 (Main spectral bound – PSD). If 4∥E∥ ≤ δp, then: ∥Ãp −Ap∥ ≤ O(∥E∥ · λp

δp
).

The O(·) notation here hides a small universal constant (less than 7), which we have not opti-
mized; see Section D.1 for the proof of the generalization to the symmetric setting, of which this
theorem is a special case. For Wigner noise—i.e., a symmetric matrix E with i.i.d. sub-Gaussian
entries of mean 0 and variance 1—we have ∥E∥ = (2 + o(1))

√
n with high probability [41, 43],

so Theorem 2.1 reduces to ∥Ãp − Ap∥ = O
(√

n
λp

δp

)
. The right-hand side is explicitly noise-

dependent, addressing a key limitation of the classical Eckart–Young–Mirsky bound. Moreover, in
many widely studied structured models (e.g., spiked covariance, stochastic block, and graph Lapla-
cian models), one typically has λp = O(δp), yielding the clean bound O(∥E∥). This rate is theoret-
ically tight: for instance, when A is a PSD diagonal matrix and E = µIn for some µ > 0, we have
∥Ãp −Ap∥ = µ = ∥E∥.

Gap condition. Our assumption 4∥E∥ < δp aligns with standard conditions in prior work, in-
cluding [29, 30], and is satisfied in many well-studied matrix models—such as spiked covariance
(Wishart) models, deformed Wigner ensembles, stochastic block models, and kernel matrices for
clustering. It also arises naturally in classical perturbation theory [12, 26, 28]. Empirical analy-
ses [29, Section B] further show that this condition holds for real-world datasets commonly used
in private matrix approximation (e.g., the 1990 U.S. Census and the UCI Adult dataset [3, 11]).
Hence, Theorem 2.1 operates under a mild and broadly applicable assumption, satisfied across both
theoretical models and practical benchmarks.

Comparison to the Eckart–Young–Mirsky bound. Using λp = δp + λp+1, Theorem 2.1 rewrites
as ∥Ãp − Ap∥ = O(∥E∥ + λp+1 · ∥E∥

δp
). This improves on the E-Y-M bound O(∥E∥ + λp+1)

when λp+1 ≫ ∥E∥, by a factor of min{λp+1

∥E∥ ,
δp
∥E∥}. For example, consider a matrix with spectrum

{10n, 9n, . . . , n, n/2, 1, . . . , 1} and p = 10. For Gaussian noise with ∥E∥ = O(
√
n), E-Y-M yields

O(n) error, while our bound gives O(
√
n), a

√
n-factor gain.

Comparison to Mangoubi-Vishnoi bounds [29, 30]. Our bound also improves upon the Frobe-
nius norm bounds of [29, 30], which under the same gap assumption yield: E∥Ãp − Ap∥F =

Õ(
√
p∥E∥ · λp

δp
). We eliminate the

√
p factor, upgrade from expectation to high probability, and

support real-valued, non-Gaussian noise models. A more detailed comparison appears later in this
section (Corollary 2.4), where we analyze implications for differentially private PCA.

Proof technique: contour bootstrapping. Unlike prior analyses [29, 30], which rely on Dyson
Brownian motion and tools from random matrix theory (see Section A, our proof of Theorem 2.1
uses a contour-integral representation of the rank-p projector. This approach, which we call contour
bootstrapping, isolates the top-p eigenspace via complex-analytic techniques and avoids power-
series or Davis–Kahan-type expansions. It enables tighter, structure-aware spectral bounds and ex-
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tends naturally to refined perturbation results (Theorem 2.2) and general spectral functionals (Theo-
rem 2.3). Full details appear in Section 3.

Refined bound via eigenspace interaction. To sharpen our analysis, we incorporate fine-grained
structure of the eigenspace and its interaction with the noise. Inspired by the recent works [33, 37],
we start with the observation that the rank-p perturbation is primarily influenced by the cluster of
eigenvalues near λp, and the interaction between E and the corresponding eigenvectors. To control
these factors, we define the halving distance r (w.r.t the index p) as the smallest integer such that
λr+1 ≤ λp/2, and interaction term x := max1≤i,j≤r |u⊤

i Euj |, measuring the alignment between
the noise E and the top-r eigenvectors of A. This yields a refined spectral norm bound:

Theorem 2.2 (Interaction-aware bound). If 4∥E∥ ≤ δp, then ∥Ãp −Ap∥ ≤ Õ(∥E∥+ r2x · λp

δp
).

See Section D.2 for the proof and its generalization to the symmetric setting. This bound improves
upon the basic eigengap bound O

(
∥E∥ · λp

δp

)
when the interaction term r2x is small. This oc-

curs, for instance, when (i) A has low stable rank or clustered eigenvalues (e.g., spiked models,
multi-cluster Laplacians), (ii) the noise E is random and approximately orthogonal to the leading
eigenspace, or (iii) λp/δp is large but x = Õ(1) and r = Õ(1). In such regimes, the bound simplifies

to Õ
(
∥E∥+ λp

δp

)
, yielding up to a

√
n-factor improvement over Theorem 2.1. This highlights the

benefit of explicitly incorporating spectral decay and noise–eigenspace alignment when analyzing
noise-robust low-rank approximations.

In practice, many public DP datasets (e.g., Census, Adult, KDD) have small dimensions and modest
eigenspace decay, the simple bound is more effective. However, the refined bound becomes espe-
cially informative in large-scale or synthetically structured settings. Thus, the two bounds are best
viewed as complementary: the first is robust and broadly applicable, while the second highlights
structural regimes where stronger stability is provable.

Extension to spectral functionals. Beyond approximating A itself, many applications involve low-
rank approximations of spectral functions f(A), such as Ak, exp(A), or cos(A); see [7, 44]. Our
contour-based analysis extends naturally to this broader setting. Let fp(A) :=

∑p
i=1 f(λi)uiu

⊤
i

denote the best rank-p approximation of f(A). We obtain the following general perturbation bound.
Theorem 2.3 (Perturbation bounds for general functions). If 4∥E∥ ≤ δp, then

∥fp(Ã)− fp(A)∥ ≤ O
(
maxz∈Γ1 ∥f(z)∥ ·

∥E∥
δp

)
,

where Γ1 is the rectangle with vertices (x0, T ), (x1, T ), (x1,−T ), (x0,−T ) with

x0 := λp − δp
2 , x1 := 2λ1, T := 2λ1.

The O(·) notation hides a small universal constant (less than 4), which we have not attempted to
optimize; see Section F for details. For example, let f(z) = z3, so that fp(Ã) and fp(A) correspond
to the best rank-p approximations of Ã3 and A3, respectively. Since maxz∈Γ1 ∥f(z)∥ ≤ 64∥A∥3,
Theorem 2.3 yields ∥Ã3

p − A3
p∥ = O

(
∥A∥3 · ∥E∥/δp

)
. This result applies to many important

classes of functions—e.g., polynomials, exponentials, and trigonometric functions—and hence we
expect it to be broadly useful. However, Theorem 2.3 does not apply to non-entire functions such
as f(z) = zc for non-integer c, where singularities obstruct the contour representation (1). In
particular, when c < 0, the expression fp(A) is no longer the best rank-p approximation to f(A), so
the conclusion of Theorem 2.3 is not meaningful in that setting. We note that in a related work [36],
the first two authors present an extension of the setting f(z) = z−1.

Application: differentially private low-rank approximation. We now apply our spectral norm
bound to analyze a standard differentially private (DP) mechanism for releasing a low-rank approx-
imation of a sensitive matrix A, commonly assumed to be a sample covariance matrix and hence
PSD. Under (ε, δ)-DP [14], the Gaussian mechanism releases Ã := A+E, where E is a symmetric
matrix with i.i.d. Gaussian entries scaled to sensitivity ∆ = O(

√
log(1/δ)/ε). A common post-

processing step is to compute Ãp, the best rank-p approximation of Ã. Prior analyses [3, 15, 30]
focused primarily on Frobenius norm or reconstruction error. For instance, [30] showed that under
complex Wigner noise and a moderate eigengap, E∥Ãp −Ap∥F ≤

√
pnλp

δp
up to lower-order terms.
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Since ∥Ãp − Ap∥ ≤ ∥Ãp − Ap∥F , the above inequality implies an expected spectral norm error of

Õ
(√

pn
λp

δp

)
. In contrast, our bound yields the following high-probability spectral norm guarantee:

Corollary 2.4 (Application to differential privacy). Let A be PSD and E be a real or complex
Wigner matrix. If δp ≥ 8.01

√
n, then with probability 1− o(1), ∥Ãp −Ap∥ ≤ O(

√
n · λp

δp
).

This follows directly from Theorem 2.1, using the fact that ∥E∥ = O(
√
n) with high probability

for Wigner matrices [40, 43]. Compared to [30], this result provides a spectral norm (rather than
Frobenius) guarantee, holds with high probability instead of in expectation, applies to both real and
complex Wigner noise, removes the loglog logn n factor, and eliminates restrictive assumptions such
as λ1 ≤ n50. It also improves the dependence on p by a factor of

√
p, thereby resolving the open

question posed in [30, Remark 5.3].

The spectral norm better captures subspace distortion, which is critical in applications like private
PCA. Unlike Frobenius or reconstruction error—both of which may remain small even when Ãp de-
viates significantly from the true top-p eigenspace—the spectral norm reflects worst-case directional
error and is thus a more reliable utility metric. This distinction is empirically validated in Figure 3.
Moreover, Corollary 2.4 further yields high-probability Frobenius norm and reconstruction error
bounds on the perturbation of low-rank approximations:

∥Ãp −Ap∥F ≤ O
(√

pn · λp

δp

)
, and |∥Ãp −A∥ − ∥Ap −A∥| ≤ O

(√
n · λp

δp

)
.

Finally, while Corollary 2.4 is stated for sub-Gaussian noise, Theorem 2.1 extends to any symmetric
perturbation satisfying the norm and gap conditions, including subsampled or quantized Gaussians
and Laplace noise. We leave the detailed analysis of these settings to future work.

Table 1: Summary table of perturbation bounds on Ãp −Ap for noise E.
Bound type Norm Noise model Assumption Extra factor vs ∥E∥

EYM bound High-probability Spectral Real and Complex None O
(
1 +

λp+1
∥E∥

)
M-V bound [29] Expectation Frobenius GOE (real) δi > 4∥E∥ ∀ 1 ≤ i ≤ p O

(√
pλp
δp

)
M-V bound [30] Expectation Frobenius GUE (complex) δp > 2∥E∥, λ1 < n50 Õ

(√
pλp
δp

)
Thm. 2.1 High-probability Spectral Real and Complex δp > 4∥E∥ O

(
λp
δp

)
Thm. 2.2 High-probability Spectral sub-Gaussian δp > 4∥E∥, rankA = Õ(1) Õ

(
1 +

λp
δp∥E∥

)
“EYM” and “M–V” denote the Eckart–Young–Mirsky and [29, 30] bounds, respectively.

Alternative methods for approximating Ap. Hardt and Price [17, 18] proposed a random iterative
method which, under the condition δp ≫

√
n log n, produces a rank-k approximation A′ of Ap with

k = p + O(1), satisfying the trade-off bound ∥A′ − Ap∥ = Õ
(√

n λ1

δp
max1≤i≤n ∥ui∥∞

)
, where

ui denotes the eigenvectors of A.

If at least one eigenvector ui is localized (i.e., max1≤i≤n ∥ui∥∞ = 1/Õ(1)), this simplifies to

Õ
(√

n λ1

δp

)
. In this regime, Theorem 2.1 achieves a smaller bound by a factor of Õ(λ1/λp)—up

to
√
n when λ1 = Θ(n) and λp = Θ(

√
n). Furthermore, Theorem 2.2 provides an additional

improvement by a factor of O
(
min

{√
n

r2 , λ1

δp

})
, which can reach

√
n when r = Õ(1) and δp =

Θ(
√
n)—a common regime in high-dimensional data.

If all eigenvectors ui are delocalized (i.e., max1≤i≤n ∥ui∥∞ = Õ(1)/
√
n), the Hardt–Price bound

reduces to Õ(λ1/δp). Theorem 2.1 achieves a comparable rate when σ1 = Θ(n) and λp = c δp =

Θ(
√
n), while Theorem 2.2 yields an improvement by a factor of λ1/λp whenever r = Õ(1), i.e.,

when A is approximately low-rank.
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3 Proof outline

In the preceding section, we stated our main results—Theorems 2.1, 2.2, and 2.3. Here, we first
sketch the key ideas behind the proof of Theorem 2.1, then adapt the same framework, with minor
refinements, to derive Theorems 2.2 and 2.3.

The proof of Theorem 2.1 proceeds in three main steps. First, using the contour method, we obtain
the contour-based bound of our perturbation ∥Ãp −Ap∥ ≤ F (z) := 1

2πi∥
∫
Γ
z[(zI − Ã)−1 − (zI −

A)−1]∥dz. Here Γ is a contour on the complex plane, isolating the p-leading eigenvalues of A and
Ã. This contour step captures the A–E interaction that the Eckart–Young–Mirsky bound omits (see
Appendix A). Secondly, we develop the contour bootstrapping technique (Lemma 3.1), which under
the gap assumption 4∥E∥ ≤ δp, yields F (z) ≤ 2F1(z) with F1(z) :=

∫
Γ
∥z(zI − A)−1E(zI −

A)−1∥|dz|. This technique (valid for any entire function f ) replaces the traditional series expansions
and the heavy analysis of the matrix-derivative operator (the limitation of the Mangoubi-Vishnoi
approach [29, 30], Appendix A) with a computable quantity. Third, we construct a bespoke contour
Γ— one specifically tailored so that the top-p eigenvalues of A and Ã lie at prescribed distances from
its sides. This precise alignment makes the integral defining F1(z) both tractable and essentially
optimal, yielding a tight perturbation bound.

Step 1: Representing ∥fp(Ã) − fp(A)∥ via the classical contour method. Let λ1 ≥ · · · ≥
λn be the eigenvalues of A with the corresponding eigenvectors {ui}ni=1. We now present the
contour method to bound matrix perturbations in the spectral norm. Let Γ be a contour in C that
encloses λ1, λ2, . . . , λp and excludes λp+1, λp+2, . . . , λn. Let f be any entire function and recall
fp(A) =

∑p
i=1 f(λp)uiu

⊤
i . Since f is analytic on the whole plane C, the well-known contour

integral representation [19, 26, 35] gives us:
1

2πi

∫
Γ
f(z)(zI −A)−1dz =

∑p
i=1 f(λi)uiu

⊤
i = fp(A).

Let λ̃1 ≥ · · · ≥ λ̃n denote the eigenvalue of Ã with the corresponding eigenvectors ũ1, ũ2, . . . , ũn.
The construction of Γ (presented later) and the gap assumption 4∥E∥ < δp ensure that the eigenval-
ues λ̃i for 1 ≤ i ≤ p lie inside Γ, while all λ̃j for j > p remain outside. Then, similarly, we have
1

2πi

∫
Γ
f(z)(zI − Ã)−1dz =

∑p
i=1 f(λ̃i)ũiũ

⊤
i := fp(Ã). Thus, we obtain the following contour

identity for the perturbation:

fp(Ã)− fp(A) = 1
2πi

∫
Γ
f(z)[(zI − Ã)−1 − (zI −A)−1] |dz|. (1)

Now we bound the perturbation by the corresponding integral

∥fp(Ã)− fp(A)∥ ≤ 1
2π

∫
Γ
∥f(z)[(zI − Ã)−1 − (zI −A)−1]∥dz =: F (f). (2)

This inequality makes the interaction of A and E explicit and is widely used in functional perturba-
tion analysis, e.g., [19, 26, 28, 32, 33, 38]. However, obtaining a sharp bound on its right-hand side
remains a formidable analytical challenge.

Step 2: Bounding F ≤ 2F1 via the contour bootstrapping method. Attempts to control F (f),
the right-hand side of (2), often use series expansion and analytical tools. By repeatedly applying
the resolvent formula, one can expand f(z)[(zI − Ã)−1 − (zI − A)−1] into

∑∞
s=1 f(z)(zI −

A)−1[E(zI −A)−1]s. This yields the bound:

F (f) ≤
∑∞

s=1 Fs(f), where Fs(f) =
1
2π

∫
Γ

∥∥f(z)(zI −A)−1[E(zI −A)−1]s
∥∥ |dz|.

One needs to estimate Fs(f) for each s. For example, when f(z) = 1, [26, Part 2] bounds Fs(1)

by O
(
∥E∥s

∫
Γ

|dz|
mini∈[n] |z−λi|s+1

)
= O [(||E||/δp)s], where Γ is a union of vertical lines isolating

{λi, i ∈ p}, yielding the Davis-Kahan bound O (∥E∥/δp). However, for f(z) = z (relevant for
low-rank perturbations), this approach fails as |z| → ∞. These estimates are highly nontrivial and
rely on deep analytical techniques, making generalization to arbitrary f challenging.

Moreover, for f(z) = 1, under certain conditions, the dominant term is F1(f), i.e., F (f) =
O(F1(f)); see, e.g., [22, 27, 32, 33, 38]. In particular, using contour-bootstrapping technique,
the authors in [38] proved F (f(z) = 1) ≤ 2F1(f(z) = 1). Inspired by this technique, we prove
that F (f) ≤ 2F1(f) for any entire function f .
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Lemma 3.1 (Contour bootstrapping for entire function f ). If δp ≥ 4∥E∥, then

F (f) ≤ 2F1(f), where F1(f) :=
1
2π

∫
Γ

∥∥f(z)(zI −A)−1E(zI −A)−1
∥∥ |dz|.

Our contour bootstrapping argument is designed to prove Lemma 3.1. Our argument is concise and
novel, avoiding the need for series expansion and convergence analysis. In the context of standard
low-rank approximations, where f(z) ≡ z and fp(A) = Ap, we write F (z) and F1(z) instead of
F (f) and F1(f) respectively.

Step 3: Construction of Γ, F1(z)-estimation, and proof completion of Thm. 2.1. Given Lemma
3.1, we now need to carefully choose the contour Γ and estimate F1(f). Constructing Γ (so that the
perturbation analysis via contour integration provides a sharp bound) is delicate; for example, the
classical pick of two vertically parallel lines and any Γ placed too near any λi can blow up F1(z)
to infinity. Indeed, we tailor Γ w.r.t F1(z) as follows. First, we choose Γ to be rectangular as this
simplifies integration. To control the factor (zI − A)−1 in the expression of F1(f), we need to
ensure that the distance |z − λi| for any z ∈ Γ and i ∈ [n] are relatively large. Since Γ separates
λp and λp+1, this minimal distance minz∈Γ,i∈[n] |z − λi| cannot exceed Θ(δp). Thus, we simply
construct Γ through the midpoint x0 =

λp+λp+1

2 . Finally, by setting the contour sufficiently high
in the complex plane (while avoiding excessive height to prevent |f(z)| from diverging), we ensure
that the primary contribution to the integral is from the vertical segments of Γ. This is because the
distance |z − λi| is minimized on these segments. Note that, under the assumption 4∥E∥ < δp, this
construction ensures that the p-leading eigenvalues of A and Ã are well aligned inside the contour.

Now, in particular, to prove Theorem 2.1, we will estimate

2πF1(z) =
∫
Γ
∥z(zI −A)−1E(zI −A)−1∥ |dz|,

in which the contour Γ is set to be a rectangle with vertices
(x0, T ), (x1, T ), (x1,−T ), (x0,−T ), where x0 := λp − δp/2, x1 := 2λ1, T := 2λ1. Then,
we split Γ into four segments: Γ1 := {(x0, t)| − T ≤ t ≤ T}; Γ2 := {(x, T )|x0 ≤ x ≤ x1};
Γ3 := {(x1, t)|T ≥ t ≥ −T}; Γ4 := {(x,−T )|x1 ≥ x ≥ x0}.

λp+1 λp λ1

Γ3Γ1

Γ2

Γ4

Given the construction of Γ, we have 2πF1 =
∑4

k=1 Mk, where

Mk :=
∫
Γk

∥∥z(zI −A)−1E(zI −A)−1
∥∥ |dz|.

Intuitively, we set T, x1 large (= 2∥A∥) so that the main term is the integral along Γ1, i.e., M1.

Indeed, factoring our E and using the fact that |z − λi| ≥ |z − λp| =
√
δ2p + t2 for all 1 ≤ i ≤ n

and z ∈ Γ1 := {(x0, t)| − T ≤ t ≤ T}, we have M1 ≤
∫
Γ1

∥E∥ · |z|
mini∈[n] |z−λi|2 |dz| ≤ ∥E∥ ·∫ T

−T

√
x2
0+t2

(δp/2)2+t2 dt. Directly compute the integral
∫ T

−T

√
x2
0+t2

(δp/2)2+t2 dt (see Section E.3), we obtain:

M1 ≤ ∥E∥ ·O (x0/δp) = O (∥E∥λp/δp) .

By a similar manner, replace Γ1 by Γ3 := {(x1, t)| − T ≤ t ≤ T}, we have

M3 ≤ ∥E∥ ·
∫
Γ3

|z|
mini∈[n] |z−λi|2 |dz| ≤ ∥E∥ ·

∫
Γ3

√
x2
1+t2

λ2
1+t2

dt,

where the last inequality follows the fact that mini∈[n] |z − λi| = |z − λ1| =
√

(x1 − λ1)2 + t2 =√
λ2
1 + t2. Directly compute the integral

∫ T

−T

√
x2
1+t2

λ2
1+t2

dt (see Section E.3), we obtain:

M3 ≤ ∥E∥ ·O (x1/λ1) = O (∥E∥) .

Similarly, M2,M4 = O(∥E∥) ( Section E.2). These estimates on M1,M2,M3,M4 imply F1(z) =

O
(
∥E∥ · λp

δp

)
, which together with Lemma 3.1 proves Theorem 2.1.
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Proving the contour bootstrapping lemma (Lemma 3.1). The first observation is that using the
Sherman-Morrison-Woodbury formula M−1− (M+N)−1 = (M+N)−1NM−1 [20] and the fact
that Ã = A+ E, we obtain

(zI −A)−1 − (zI − Ã)−1 = (zI −A)−1E(zI − Ã)−1.

Using this, we can rewrite

F (f) = 1
2π

∫
Γ
∥f(z)(zI −A)−1E(zI − Ã)−1∥ |dz| as

1
2π

∫
Γ
∥f(z)(zI −A)−1E(zI −A)−1 − f(z)(zI −A)−1E[(zI −A)−1 − (zI − Ã)−1]∥ |dz|.

Using triangle inequality, we first see that F (f) is at most∫
Γ
∥f(z)(zI−A)−1E(zI−A)−1∥|dz|

2π +
∫
Γ
∥f(z)(zI−A)−1E[(zI−A)−1−(zI−Ã)−1]∥|dz|

2π︸ ︷︷ ︸ .
Next is the key observation that the second term in the equation above can be rearranged and upper-
bounded as follows so that the original perturbation appears again:

maxz∈Γ∥(zI−A)−1E∥
2π

∫
Γ
∥f(z)[(zI −A)−1 − (zI − Ã)−1]∥ |dz|.

Thus, we have
F (f) ≤ F1(f) + maxz∈Γ

∥∥(zI −A)−1E
∥∥ · F (f). (3)

Now we need our gap assumption that 4∥E∥ < δp and the construction of Γ, which imply
minz∈Γ,i∈[n] |z − λi| ≥ δp/2 ≥ 2∥E∥. Therefore, we have

maxz∈Γ

∥∥(zI −A)−1E
∥∥ ≤ maxz∈Γ ∥(zI −A)−1∥ · ∥E∥ = ∥E∥

minz∈Γ,i∈[n] |z−λi| ≤
∥E∥
2∥E∥ = 1

2 .

Together with (3), it follows that F (f) ≤ F1(f) +
1
2F (f). Therefore, 1

2F (f, S) ≤ F1(f, S). This
proves Lemma 3.1.2

Remark 3.2. Using a similar strategy, one can prove that

F1(f) ≤ maxz∈Γ ∥f(z)∥ · 1
2π

∫
Γ
∥(zI −A)−1E(zI −A)−1∥|dz| ≤ maxz∈Γ ∥f(z)∥ · 2∥E∥

δp
;

see Appendix F. Together, this estimate and Lemma 3.1 prove Theorem 2.3.

Second upper bound of M1 and proof of Theorem 2.2. The key idea of the second bound
is to replace (zI − A)−1 by its spectral expansion

∑n
i=1

uiu
⊤
i

z−λi
. Hence, M1 is rewritten as∫

Γ1
∥
∑

1≤i,j≤n
z

(z−λi)(z−λj)
uiu

⊤
i Euju

⊤
j ∥dz.

There are n2 terms in the expression, and the direct use of the triangle inequality cannot provide a
good estimate. The next key trick is grouping up the r-top eigenvectors {ui}ri=1. Formally, M1 is at
most∫

Γ1
∥
∑

1≤i,j≤r
z

(z−λi)(z−λj)
uiu

⊤
i Euju

⊤
j ∥|dz|+

∫
Γ1

∥
∑

n≥i,j>r
z

(z−λi)(z−λj)
uiu

⊤
i Euju

⊤
j ∥|dz|

+
∫
Γ1

∥
∑

i≤r<j
i>r≥j

z
(z−λi)(z−λj)

uiu
⊤
i Euju

⊤
j ∥|dz|.

To estimate the first term, we apply the triangle inequality. For each term, we factor out components
independent of z and carefully evaluate the integral. Specifically, by the triangle inequality, the first
term is at most∑

1≤i,j≤r

∫
Γ1

∥ z
(z−λi)(z−λj)

uiu
⊤
i Euju

⊤
j ∥|dz| =

∑
1≤i,j≤r

∫
Γ1

|u⊤
i Euj |·∥uiu

⊤
j ∥·|z|

|(z−λi)(z−λj)| |dz|.

Since max1≤i,j≤r |u⊤
i Euj | ≤ x, ∥uiu

⊤
j ∥ = 1, and Γ1 := {z | z = x0 + it,−T ≤ t ≤ T}, the r.h.s.

is at most∑
i,j≤r x

∫ T

−T

√
x2
0+t2√

((x0−λi)2+t2)((x0−λj)2+t2)
dt ≤

∑
i,j≤r x

∫ T

−T
|x0|+|t|√

((x0−λi)2+t2)((x0−λj)2+t2)
dt.

2The gap assumption 4∥E∥ < δp and Weyl’s inequality ensure that λ̃i is inside the contour Γ if and only if
1 ≤ i ≤ p.
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By the construction of Γ1, we have |x0 − λi| ≥ δp
2 for all i ∈ [n]. Thus, the r.h.s. is bounded by

r2x
∫ T

−T
|x0|+|t|

t2+(δp/2)2
dt, which by direct computation (see Appendix E.1 for full details) is less than

or equals

r2x
(

2πx0

δp
+ 2 log

(
3T
δp

))
= Õ

(
r2x

λp

δp

)
.

To estimate the second term, we apply matrix-norm inequalities to factor out E from
the integral:

∫
Γ1

∥
∑n

i,j=r
z

(z−λi)(z−λj)
uiu

⊤
i Euju

⊤
j ∥|dz| ≤

∫
Γ1

|z| · ∥
∑

n≥i>r
uiu

⊤
i

z−λi
∥ ·

∥E∥ · ∥
∑

n≥i>r
uiu

⊤
i

z−λi
∥|dz|, which is at most ∥E∥

∫
Γ1

|z|
minn≥i>r |z−λi|2 |dz| =

∥E∥
∫ T

−T

√
x2
0+t2

minn≥i>r[(x0−λi)2+t2]dt. Moreover, by the construction of Γ1 and the definition of

r, |x0 − λi| = |(λp + λp+1)/2− λi| ≥ |(λp + λp+1)/2− λr+1| ≥ λp−λr+1

2 ≥ λp

4 , where the first
inequality follows the fact i > r. Thus, the second term is at most

∥E∥
∫ T

−T

√
x2
0+t2

t2+(λp/4)2
dt ≤ Õ(∥E∥);

see Section E.1 for the detailed estimation.

Similar to estimating the second term, the last term is also Õ(∥E∥). Combining the estimates on
three parts of M1, we obtain M1 ≤ Õ

(
r2x

λp

δp
+ ∥E∥

)
. Consequently, by Lemma 3.1, we finally

have
F (z) ≤ 2F1(z) = O(M1) = Õ

(
∥E∥+ r2x

λp

δp

)
as desired.

4 Empirical results

In this section, we empirically evaluate the sharpness of our spectral-gap bound (Theorem 2.1)
in real-world settings central to privacy-preserving low-rank approximation. We compare: (1)
the actual spectral error ∥Ãp − Ap∥, (2) our theoretical bound3 7∥E∥ · λp

δp
, (3) and the classical

Eckart–Young–Mirsky (EYM) bound 2(∥E∥ + λp+1). Each quantity is computed over 100 trials
and 20 noise levels. Because prior bounds [15, 29, 30] apply only to Gaussian noise and involve
unspecified constants, we exclude them from this evaluation.

Setting. We study three covariance matrices A from the UCI Machine Learning Repository [13]:
the 1990 US Census (n = 69), the 1998 KDD-Cup network-intrusion data (n = 416), and the Adult
dataset (n = 6). These matrices—henceforth Census, KDD, and Adult—are standard benchmarks
in DP PCA [3, 11, 29]. The low-rank parameter p is chosen so that the Frobenius norm of Ap

contains > 99% of the Frobenius norm of A, giving p = 10 for A = Census, p = 2 for A = KDD,
and p = 4 for A = Adult [29, Section B].

Each matrix is perturbed with either GOE noise E1 or Rademacher noise E2, scaled by twenty
evenly spaced factors ranging from 0 to 1. Note that with high probability [41, 43], ∥E1∥ = ∥E2∥ =
(2 + o(1))

√
n, so the gap condition 4∥Ek∥ < δp simplifies to 8

√
n < δp . For Census (n =

69, p = 10), we have δp ≈ 1433.99 > 8
√
69 ≈ 66.45. For KDD (n = 416, p = 2), we get

δp ≈ 351.3 > 8
√
416 ≈ 163.2. For Adult (n = 6, p = 4), we find δp ≈ 37.02 > 8

√
6 ≈ 19.6.

Hence 4∥Ek∥ < δp holds in all tested configurations.

Evaluation. Each data matrix is preprocessed as follows: non-numeric entries are replaced with 0;
rows shorter than the maximum length are padded with zeros; each row is scaled to unit Euclidean
norm; and each column is centered to have zero mean. We compute the covariance matrix A :=
M⊤M , where M is the processed data matrix. For each configuration (A,Ek, p), we run 100
independent trials. In each trial, we perturb A with noise Ek ∈ {E1, E2} to form Ã = A + Ek,
compute its best rank-p approximation Ãp, and measure the spectral error ∥Ãp −Ap∥. We compare
this with our bound 7∥Ek∥ · λp/δp and the classical EYM bound 2(∥Ek∥ + λp+1). Following
standard practice, all reported values are averaged over 100 trials, with error bars shown for Actual
Error and Our Bound (cap width = 3pt).

3The O(·) in Theorem 2.1 hides a small universal constant factor (< 7); see Section D.1 for details.
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Result and conclusion. Across all experiments—the 69 × 69 US Census, the 416 × 416 KDD-
Cup, and the 6× 6 Adult matrix—our bound closely matches the empirical error for both Gaussian
and Rademacher noise (Figs. 1–2), consistently outperforming the classical EYM estimate. (Note:
the error bars for Census and KDD are too small to see.) Over all three benchmark datasets, two
distinct noise models, and twenty escalation levels per model, our spectral-gap estimate never de-
viates from the observed error by more than a single order of magnitude. This uniform tightness,
achieved without any dataset-specific tuning, demonstrates that the bound of Theorem 2.1 is not
merely sufficient but practically sharp across matrix sizes spanning two orders of magnitude and
privacy-motivated perturbations spanning the entire operational range. Consequently, the bound can
serve as a reliable, application-agnostic error certificate for low-rank covariance approximation in
both differential-privacy pipelines and more general noisy-matrix workflows.

Figure 1: From Left to Right: perturbation of the Census,KDD and Adult covariance matrices
by Gaussian noise. Each panel plots the actual error, our bound, and the EYM bound; error bars
indicate standard deviation over 100 trials.

Figure 2: Low-rank approximation errors under Rademacher perturbations. From left to right: the
Census,KDD and Adult covariance matrices.

5 Conclusion and future work

We established new spectral norm perturbation bounds for low-rank approximations that explic-
itly account for the interaction between a matrix A and its perturbation E. Our results extend the
Eckart—Young–Mirsky theorem, improving upon prior Frobenius-norm-based analyses. A key con-
tribution is a novel application of the contour bootstrapping technique, which simplifies spectral
perturbation arguments and enables refined estimates. Our bounds provide sharper guarantees for
differentially private low-rank approximations with high probability spectral norm bounds that im-
prove upon prior results. We also extended our approach to general spectral functionals, broadening
its applicability.

Several limitations and open questions remain. While spectral norm error bounds are standard and
widely used in both theoretical and applied settings, can we extend our analysis to other structured
metrics such as Schatten-p norm, the Ky Fan norm, or subspace affinity norm? Can our bounds be
further refined for matrices with specific spectral structures, such as polynomial or exponential de-
cay? What can be the threshold for the gap assumption so that one still obtains a meaningful bound
beyond the Eckart–Young–Mirsky theorem?4 Additionally, real-world noise often exhibits struc-
tured dependencies—can our techniques be adapted to handle sparse or correlated perturbations?

4For an empirical comparison between our new bound and the Eckart–Young–Mirsky bound beyond the
gap condition 4∥E∥ < δp, see Section C.
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A Limitations of prior approaches

This section explains why existing perturbation methods fail to yield spectral norm bounds of the
form ∥Ãp −Ap∥ that incorporate interaction between A and the perturbation E.

Eckart–Young–Mirsky: lack of interaction sensitivity. Let σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 denote
the singular values of A. The Eckart–Young–Mirsky theorem gives ∥A − Ap∥ = σp+1, and by the
triangle inequality:

∥Ãp −Ap∥ ≤ ∥A−Ap∥+ ∥Ã−A∥+ ∥Ã− Ãp∥ ≤ σp+1 + ∥E∥+ σ̃p+1 ≤ 2(σp+1 + ∥E∥),

where the final step uses Weyl’s inequality [46]. While this bound is assumption-free, it is uninfor-
mative in regimes where σp+1 ≫ ∥E∥, which are common in practice. The key limitation is that the
triangle inequality treats A and E independently, failing to capture how structure or spectral gaps in
A might mitigate the effect of E.

Mangoubi–Vishnoi: Frobenius only, spectral norm intractable. The strategy of [29, 30] mod-
els noise as a continuous-time matrix-valued Brownian motion:

A(t) := A+ tE = A+B(t),

with eigen-decomposition

A(t) = U(t)Diag[λ1(t), . . . , λn(t)]U(t)⊤,

where U(t) = [ui(t)] and λ1(t) ≥ · · · ≥ λn(t). The rank-p approximation at time t is

Ap(t) = U(t)Diag[λ1(t), . . . , λp(t), 0, . . . , 0]U(t)⊤.

The total perturbation is then expressed as an integral:

Ãp −Ap =

∫ 1

0

dAp(t).

Using properties of Dyson Brownian motion and Itô calculus, they derive a Frobenius-norm identity:

E
∥∥∥∥∫ 1

0

dAp(t)

∥∥∥∥2
F

=

n∑
i=1

∫ 1

0

E

∑
j ̸=i

(λi − λj)
2

(λi(t)− λj(t))2

+

∑
j ̸=i

λi − λj

(λi(t)− λj(t))2

2
 dt.

Bounding these expressions depends on repulsion properties of the eigenvalues; for GOE matrices,
Weyl’s inequality suffices, while for GUE matrices, stronger gap estimates are used.

Although this method captures the spectral structure of A and interaction with E, it only yields
Frobenius-norm bounds. Extending it to the spectral norm would require controlling

∥Ãp −Ap∥ =

∥∥∥∥∫ 1

0

dAp(t)

∥∥∥∥ ,
which entails bounding the operator norm of the full stochastic process. This requires detailed
control over the dynamics of U(t) and λ(t), including their correlations—none of which are tractable
with current techniques.

Moreover, for generalized functionals such as ∥fp(Ã)− fp(A)∥, the problem becomes even harder:
one must analyze

∫ 1

0
dfp(A(t)), which involves matrix-valued analytic functions under random per-

turbation, a setting far beyond existing random matrix tools.

In contrast, our approach bypasses these limitations by using a complex-analytic representation of
spectral projectors that directly captures interaction between A and E, yielding sharp spectral norm
bounds under broad assumptions.
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Figure 3: Comparison of error metrics under Gaussian perturbation. Left: Synthetic PSD
matrix with exponentially decaying spectrum (n = 50, p = 5); Center: 1990 US Census covariance
matrix (n = 69, p = 5); Right: 1998 KDD-Cup covariance matrix (n = 416, p = 5). Each plot
reports the spectral norm error ∥Ãp − Ap∥, Frobenius norm error ∥Ãp − Ap∥F , and change-in-

error
∣∣∣∥A−Ap∥ − ∥A− Ãp∥

∣∣∣, as functions of Gaussian noise level σ. Error bars reflect standard
deviation over 20 trials.

B Comparison of error metrics

This section studies three common metrics for low-rank approximation under perturbation—namely:
- the spectral-norm error ∥Ãp − Ap∥, - the Frobenius-norm error ∥Ãp − Ap∥F , and - the “change-

in-error”
∣∣∣∥A−Ap∥ − ∥A− Ãp∥

∣∣∣.
We compare these metrics both empirically (through Monte Carlo simulations) and theoretically.
Empirically, we examine how the metrics behave under Gaussian noise applied to both synthetic and
real-world matrices (Figure 3). Theoretically, we analyze their interpretability and limitations, high-
lighting that while Frobenius norms capture aggregate error and change-in-error quantifies residual
shifts, only the spectral norm controls worst-case subspace distortion.

A simple 2 × 2 example (Example B.1) further illustrates how residual-based measures can com-
pletely mask subspace drift, underscoring the robustness and interpretability of the spectral norm for
tasks such as private low-rank approximation.

Empirical comparison of utility metrics. We perform three Monte Carlo experiments under ad-
ditive Gaussian perturbations. The first uses a synthetic PSD matrix A ∈ R50×50 with exponentially
decaying eigenvalues λi = 0.8i, and sets p = 5. The second and third use real-world covari-
ance matrices derived from: - the 1990 US Census dataset (n = 69), - the 1998 KDD-Cup dataset
(n = 416).

All datasets are drawn from the UCI Machine Learning Repository [13] and have been widely used
in private matrix approximation and PCA [30, 29, 11].

In each setting, we compute the best rank-p approximation Ap, perturb A with symmetric Gaussian
noise of varying standard deviation σ, and measure:

1. Spectral norm deviation: ∥Ãp −Ap∥,

2. Frobenius norm deviation: ∥Ãp −Ap∥F ,

3. Change-in-error:
∣∣∣∥A−Ap∥ − ∥A− Ãp∥

∣∣∣.
As shown in Figure 3, the Frobenius norm error grows fastest, reflecting total energy deviation. The
change-in-error metric remains much smaller and, in the real-world cases, nearly flat, suggesting
it may fail to capture meaningful distortion. Notably, in the synthetic case (left), the spectral norm
error closely tracks the change-in-error—despite their differing intent—which may result from near-
alignment of the top subspaces. However, such behavior is not guaranteed in general.

Theoretical distinction between utility metrics. Frobenius norm bounds of the form ∥Ãp −
Ap∥F ≤ εF aggregate squared deviations across all directions, but may hide large errors in in-
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dividual components. Spectral norm bounds ∥Ãp − Ap∥ ≤ ε directly constrain the worst-case
deviation and are thus more reliable in sensitive applications such as differentially private PCA.

In contrast, residual-error metrics such as ∥A − Ap∥ − ∥A − Ãp∥ are commonly used for their
analytical convenience. However, they reflect only changes in residual energy and are insensitive to
subspace movement. In particular, this metric can be nearly zero even when the top-p eigenspaces
have shifted significantly.

Given the spectral decompositions
Ap = Up Diag(λ1, . . . , λp, 0, . . . , 0)U

⊤
p , Ãp = Ũp Diag(λ̃1, . . . , λ̃p, 0, . . . , 0) Ũ

⊤
p ,

the change-in-error vanishes whenever UpU
⊤
p ≈ ŨpŨ

⊤
p and λp+1 is large. Such conditions are

typical when noise E is small and p ≤ sr(A) :=
∑n

i=1 λi/λ1. Moreover, standard perturbation
results imply

∥UpU
⊤
p − ŨpŨ

⊤
p ∥ = Õ

(
∥E∥
λp

+
1

δp

)
[33, 37].

Example B.1 (Rank-1 rotation in R2). Let

A =

(
1 0
0 0

)
, p = 1,

so that Ap = A. Define the rotated matrix

Ã = RθAR⊤
θ , where Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

Then Ãp = Ã, and although the top eigenspace has rotated by θ, the change-in-error is zero:

∥A−Ap∥ = ∥A− Ãp∥ = 0.

Yet the true subspace drift is visible in:
∥Ãp −Ap∥ = | sin θ|, ∥Ãp −Ap∥F =

√
2| sin θ|.

This example highlights the limitations of residual-based utility metrics and illustrates why spectral
norm deviation provides a more reliable and interpretable signal of approximation quality under
perturbation.

In summary, both our analysis and experiments support the use of the spectral norm as the most
informative and robust error metric for evaluating private low-rank approximations. Unlike Frobe-
nius and residual metrics, it captures the worst-case directional distortion and provides a tighter
connection to subspace stability.

C Empirical evaluation beyond gap assumption

In this section, we empirically compare (1) the actual spectral error ∥Ãp − Ap∥, (2) our theoretical
bound 7∥E∥ · λp

δp
, (3) and the classical Eckart–Young–Mirsky (EYM) bound 2(∥E∥+ λp+1) in the

setting beyond the gap assumption that 4∥E∥ < δp.

Setup. We conducted a simulation on a covariance matrix A with n = 2000, derived from the
Alon colon-cancer microarray dataset [2]. The low-rank parameter p is chosen so that the Frobenius
norm of Ap contains > 95% of the Frobenius norm of A, giving p = 9 with λp ≈ 46.29. We first
computed δp. Gaussian noise was then added in the form E = α · N (0, In), with α chosen over 11
evenly spaced values such that

∥E∥
δp

∈ {0.05, 0.10, . . . , 0.50}.

For each α, we computed the following quantities:

• the true error: ∥Ãp −Ap∥,
• the classical EYM bound: 2(∥E∥+ σp+1),

• our bound: 7∥E∥ · λp

δp
,

• the ratios our bound
true error and our bound

classical bound .
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Results. Table 2 summarizes the results. The ratio our bound
true error remains remarkably stable even beyond

the regime 4∥E∥ < δp (i.e., ∥E∥
δp

< .25), and our bound outperforms the classical bound precisely

when 4∥E∥ < δp (i.e., ∥E∥
δp

< .25).

Table 2: Comparison of bounds under increasing noise levels.
∥E∥/δp 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
our bound
true error 90.17 88.27 87.02 89.83 89.44 87.81 88.39 89.29 87.08 87.26

our bound
classical bound 0.20 0.40 0.60 0.79 0.98 1.17 1.36 1.53 1.70 1.88

D Extensions of Theorem 2.1 and Theorem 2.2 to the symmetric matrices

In this section, we extend Theorem 2.1 and Theorem 2.2 to the setting where A is a symmetric
matrix. These extensions are naturally important since the data in real-world applications is often
arbitrary, making it natural for the eigenvalues of A to span both signs. While singular value de-
composition (SVD) could be used to apply Theorem 2.1 or Theorem 2.2, singular value gaps are
typically small. By working directly with eigenvalues, we exploit the fact that the eigenvalue gap
δk = λk − λk+1 is significantly large when λk · λk+1 < 0.

D.1 Extension of Theorem 2.1 to the symmetric matrices

To simplify the presentation, we assume that the eigenvalues (singular values) are different, so the
eigenvectors (singular vectors) are well-defined (up to signs). However, our results hold for matrices
with multiple eigenvalues. Let A,E be n × n real symmetric matrices, and let 1 ≤ p ≤ n denote
the rank of approximation. Let λk be the kth largest eigenvalue of A and uk be the corresponding
orthonormal eigenvector. Let Ã := A + E. Let Ap, Ãp denote the best rank-p approximations of
A and Ã respectively. Define 1 ≤ k ≤ p such that the set of the top p singular values corresponds
to {λπ(1), . . . , λπ(p)} = {λ1, . . . , λk > 0 ≥ λn−(p−k)+1, . . . , λn}. In other words, the pth singular
value of A is either λk or |λn−(p−k)+1|. Let δi := λi − λi+1, for i ∈ [n − 1]. Theorem 2.1 is
extended to the following result.
Theorem D.1 (Extension of Theorem 2.1 to the symmetric matrices). If 4∥E∥ ≤
min{δk, δn−(p−k)}, and 2∥E∥ < σp − σp+1, then∥∥∥Ãp −Ap

∥∥∥ ≤ 6∥E∥
(
log

(
6σ1

δk

)
+ λk

δk
+ log

∣∣∣ 6σ1

δn−(p−k)

∣∣∣+ |λn−(p−k)+1|
δn−(p−k)

)
.

Note that when A is not PSD, {|λ̃1|, . . . , |λ̃k|, |λ̃n−(p−k)+1|, . . . , |λ̃n|} may not correspond to the p

leading singular values of Ã. This issue is resolved by enforcing the singular-value gap condition
σp − σp+1 > 2∥E∥. Indeed, by Weyl’s inequality, given σp − σp+1 > 2∥E∥, we have

λ̃k ≥ λk − ∥E∥ ≥ σp − ∥E∥ = σp+1 + δ − ∥E∥
≥ |λn−(p−k)|+ δ − ∥E∥ ≥ |λ̃n−(p−k)|+ δ − 2∥E∥ > |λ̃n−(p−k)|,

here δ = σp − σp+1. By a similar argument, we also have |λ̃n−(p−k)+1| > λ̃k+1. Therefore,

{λ̃π(1), λ̃π(2), . . . , λ̃π(p)} = {λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃k > 0 ≥ λ̃n−(p−k)+1 ≥ λ̃n−(p−k)+2 ≥ . . . ≥ λ̃n},

as we want. Note that the gap condition of eigenvalues cannot guarantee this fact. For example,
consider the following matrices

A =

(
30
√
n 0

0 −28
√
n

)
, E =

(
−2

√
n 0

0 −2
√
n

)
, then Ã =

(
28

√
n 0

0 −30
√
n

)
.

Here, clearly, S = {1}, S̃ = {1} and |λ1| is the largest singular value of A, but |λ̃1| is not the largest
singular value of Ã (λ̃1 is still the largest eigenvalue).
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Proof of Theorem D.1 Let 1 ≤ k ≤ p be a natural number such that

{λπ(1), λπ(2), . . . , λπ(p)} = {λ1, λ2, . . . , λk > 0 ≥ λn−(p−k)+1, λn−(p−k)+2, . . . , λn}.

Thus, we can split Ap as Ak +Bp−k, in which

Bp−k =
∑

n≥i≥n−(p−k)+1 λiuiu
⊤
i .

Similarly, Ãp = Ãk + B̃p−k. Therefore,∥∥∥Ãp −Ap

∥∥∥ =
∥∥∥Ãk + B̃p−k −Ak −Bp−k

∥∥∥ ≤
∥∥∥Ãk −Ak

∥∥∥+
∥∥∥B̃p−k −Bp−k

∥∥∥ .
Applying the contour bootstrapping argument on

∥∥∥Ãk −Ak

∥∥∥ with contour Γ[1] and on∥∥∥B̃p−k −Bp−k

∥∥∥ with another contour Γ[2] (we define these contours later), we obtain

∥Ãk−Ak∥
2 ≤ F

[1]
1 := 1

2π

∫
Γ[1]

∥∥z(zI −A)−1E(zI −A)−1
∥∥ |dz|,

∥B̃p−k−Bp−k∥
2 ≤ F

[2]
1 := 1

2π

∫
Γ[2]

∥∥z(zI −A)−1E(zI −A)−1
∥∥ |dz|,

and hence,∥∥∥Ãp −Ap

∥∥∥ ≤ 2
(
F

[1]
1 + F

[2]
1

)
.

(4)

We set Γ[1] and Γ[2] to be rectangles, whose vertices are

Γ[1] : (a0, T ), (a1, T ), (a1,−T ), (a0,−T ) with a0 := λk − δk/2, a1 := 2σ1, T := 2σ1;

and

Γ[2] : (b0, T ), (b1, T ), (b1,−T ), (b0,−T )with b0 := λn−(p−k)+1+δn−(p−k)/2, b1 := −2σ1, T := 2σ1.

Now, we are going to bound F
[1]
1 . First, we split Γ[1] into four segments:

• Γ1 := {(a0, t)| − T ≤ t ≤ T}.

• Γ2 := {(x, T )|a0 ≤ x ≤ a1}.

• Γ3 := {(a1, t)|T ≥ t ≥ −T}.

• Γ4 := {(x,−T )|a1 ≥ x ≥ a0}.

λk+1 λk λ1

Γ3Γ1

Γ2

Γ4

Re (z) = 0

Therefore,
F

[1]
1 =

∑4
l=1

∫
Γl

∥∥z(zI −A)−1E(zI −A)−1
∥∥ |dz|.

Notice that ∥∥z(zI −A)−1E(zI −A)−1
∥∥ ≤ ∥E∥ |z|

mini∈[n] |z−λi|2 ,

we further obtain
2πF

[1]
1 ≤ ∥E∥

(∑4
l=1 Nl

)
,

in which
Nl :=

∫
Γl

|z|
mini |z−λi|2 |dz| for l = 1, 2, 3, 4.

We use the following lemmas, whose proofs are delayed to the next section.
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Lemma D.2. Under the assumption of Theorem D.1,

N1 ≤ 2πa0

δk
+ 4 log

∣∣∣ 3Tδk ∣∣∣ .
Lemma D.3. Under the assumption of Theorem D.1,

N3 ≤ πa1

|a1−λ1| + 4 log
∣∣∣ 3T
a1−λ1

∣∣∣ .
Lemma D.4. Under the assumption of Theorem D.1,

N2, N4 ≤
√
2(a1−a0)

T ,

Since p < n, then k + 1 > n − (p − k) + 1 and hence k + 1 /∈ {π(1), . . . , π(p)}. It means
|λk+1| ≤ λk. Thus 0 ≤ a0 ≤ λk, and hence

N1 ≤ 2πλk

δk
+ 4 log

∣∣∣ 6σ1

δk

∣∣∣ .
By the setting that a1 = T = 2σ1,

N2, N4 ≤
√
2a1

T =
√
2,

N3 ≤ 2πσ1

2σ1−λ1
+ 4 log

∣∣∣ 3T
a1−λ1

∣∣∣ ≤ 2πσ1

σ1
+ 4 log

∣∣∣ 6σ1

σ1

∣∣∣ = 2π + 4 log 6.

Thus, using above estimates, we obtain

F
[1]
1 ≤ ∥E∥

2π

(
2π + 4 log 6 + 2

√
2 + 2πλk

δk
+ 4 log

∣∣∣ 6σ1

δk

∣∣∣)
≤ ∥E∥

2π

(
15 log

∣∣∣ 6σ1

δk

∣∣∣+ 2πλk

δk

)
≤ 3∥E∥

(
log

∣∣∣ 6σ1

δk

∣∣∣+ λk

δk

)
.

(5)

Applying a similar argument on contour Γ[2], we obtain

F
[2]
1 ≤ 3∥E∥

(
log

∣∣∣ 6σ1

δn−(p−k)

∣∣∣+ |λn−(p−k)+1|
δn−(p−k)

)
. (6)

Combining (4), (5) and (6), we complete our proof.

D.2 Extension of Theorem 2.2 to the symmetric matrices

Let A be a symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, in which λn is not nec-
essarily positive. Recall the setting from the previous section that 1 ≤ k ≤ p is the positive
integer such that the set of the top p singular values is {λπ(1), . . . , λπ(p)} = {λ1, . . . , λk >
0 ≥ λn−(p−k)+1, . . . , λn}. To extend Theorem 2.2, we first generalize the definition of the halv-
ing distance r and interaction term x as follows. Let r1, r2 respectively be the smallest pos-
itive integer satisfying λk

2 ≤ λk − λr1+1, and |λn−(p−k)+1|
2 ≤ λn−r2+1 − λn−(p−k)+1. De-

fine the “halving distance” r := max{r1, r2}. Next, let x1 := max1≤i,j≤r1 |u⊤
i Euj | and

x2 := max1≤i,j≤r2 |u⊤
n−i+1Eun−j+1|. Define the interaction parameter x̄ := max{x1, x2}.

Theorem D.5 (Extension of Theorem 2.2 to the symmetric matrices). Assume that 4∥E∥ ≤
min{δk, δn−(p−k)} and 2∥E∥ < σp − σp+1, then∥∥∥Ãp −Ap

∥∥∥ ≤ 12
(
∥E∥+ r2x̄

) (
log

(
6σ1

δk

)
+ log

(
6σ1

δn−(p−k)

))
+ 30r2x̄

(
λk

δk
+

|λn−(p−k)+1|
δn−(p−k)

)
.

Proof of Theorem D.5 First, we still split (Ãp, Ap) into (Ak, Bp−k, Ãk, B̃p−k) and apply the

contour bootstrapping argument on
∥∥∥Ãk −Ak

∥∥∥ ,∥∥∥B̃p−k −Bp−k

∥∥∥. We also obtain∥∥∥Ãp −Ap

∥∥∥ ≤ 2
(
F

[1]
1 + F

[2]
1

)
.
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However, we will treat F [1]
1 , F

[2]
1 a bit differently. Indeed,

2πF
[1]
1 ≤ M1 + ∥E∥ (N2 +N3 +N4) ,

in which

M1 :=
∫
Γ1

∥∥z(zI −A)−1E(zI −A)−1
∥∥ |dz| = ∫

Γ1

∥∥∥∑1≤i,j≤n
z

(z−λi)(z−λj)
uiuiEuju

⊤
j

∥∥∥ |dz|,
and

Nl :=
∫
Γl

|z|
mini∈[n] |z−λi|2 |dz| for l ∈ {2, 3, 4}.

We additionally use the following lemma (its proof will be delayed in the next section).
Lemma D.6. Under the assumption of Theorem D.5,

M1 ≤ r2x̄
(

2πa0

δk
+ 2 log

(
6σ1

δk

))
+ (20 + 4π/ log(10)∥E∥ log

(
10σ1

δk

)
.

Together with the estimates for N2, N3, N4 from the previous section, we obtain

2πF
[1]
1 ≤ r2x̄

(
2πλk

δk
+ 2 log

(
3T
δk

))
+ (20 + 4π

log 10 )∥E∥ log
(

5T
δk

)
+ ∥E∥

(
2
√
2 + 2π + 4 log 6

)
≤ r2x̄

(
2πλk

δk
+ 2 log

(
6σ1

δk

))
+ (20 + 4π

log 10 )∥E∥ log
(

10σ1

δk

)
+ 2

√
2+2π+4 log 6

log 10 ∥E∥ log
(

10σ1

δk

)
.

Thus,
F

[1]
1 ≤ 6

(
∥E∥ log

(
10σ1

δk

)
+ r2x̄λk

δk
+ r2x̄ log

(
10σ1

δk

))
. (7)

Similarly,

F
[2]
1 ≤ 6

(
∥E∥ log

(
10σ1

δn−(p−k)

)
+ r2x̄

|λn−(p−k)+1|
δn−(p−k)

+ r2x̄ log
(

10σ1

δn−(p−k)

))
. (8)

Therefore, combining (4), (7), and (8), we finally obtain∥∥∥Ãp −Ap

∥∥∥ ≤ 12

(
∥E∥ log

(
36σ2

1

δkδn−(p−k)

)
+ r2x̄λk

δk
+ r2x̄

|λn−(p−k)+1|
δn−(p−k)

+ r2x̄ log
(

36σ2
1

δkδn−(p−k)

))
.

E Estimating integrals over segments

In this section, we present in detail the integral estimations mentioned in the previous section:
Lemma D.2, Lemma D.3, Lemma D.6 (integration over vertical segments); and Lemma D.4 (in-
tegration over horizontal segments) . We first present a technical lemma, which is used several times
in the upcoming sections.
Lemma E.1. Let a, T be positive numbers such that a ≤ T . Then,∫ T

−T
1

t2+a2 dt ≤ π
a .

Proof of Lemma E.1 We have ∫ T

−T
1

t2+a2 dt = 2
∫ T

0
1

t2+a2

= 2
aarctan(T/a)

≤ 2
a · π

2 = π
a .

E.1 Estimating integrals over vertical segments for interaction-dependent bound

In this Section, we now estimate M1 - integral over the left vertical segment (prove Lemma D.6)
and estimate N3- the integral over the right vertical segment (prove Lemma D.3). First, we estimate
M1 as follows.

Using the spectral decomposition (zI −A)−1 =
∑n

i=1
uiu

⊤
i

(z−λi)
, we can rewrite M1 as

M1 =
∫
Γ1

∥∥∥∑n≥i,j≥1
z

(z−λi)(z−λj)
uiu

⊤
i Euju

⊤
j

∥∥∥ |dz|.
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Define x1 := max1≤i,j≤r1

∣∣u⊤
i Euj

∣∣. By the triangle inequality, M1 is at most∫
Γ1

∥∥∥∑1≤i,j≤r1
z

(z−λi)(z−λj)
uiu

⊤
i Euju

⊤
j

∥∥∥ |dz|+ ∫
Γ1

∥∥∥∑n≥i,j>r1
z

(z−λi)(z−λj)
uiu

⊤
i Euju

⊤
j

∥∥∥ |dz|
+
∫
Γ1

∥∥∥∥∑i≤r1<j
i>r1≥j

z
(z−λi)(z−λj)

uiu
⊤
i Euju

⊤
j

∥∥∥∥ |dz|.
Consider the first term, by the triangle inequality, we have∫
Γ1

∥∥∥∑1≤i,j≤r1
z

(z−λi)(z−λj)
uiu

⊤
i Euju

⊤
j

∥∥∥ |dz| ≤ ∑
1≤i,j≤r1

∫
Γ1

∥∥∥ z
(z−λi)(z−λj)

uiu
⊤
i Euju

⊤
j

∥∥∥ |dz|
=

∑
1≤i,j≤r1

∫
Γ1

|u⊤
i Euj |·∥uiu

⊤
j ∥·|z|

|(z−λi)(z−λj)| |dz|

≤
∑

i,j≤r1
x1

∫ T

−T

√
a2
0+t2√

((a0−λi)2+t2)((a0−λj)2+t2)
dt

(since max1≤i,j≤r1 |u⊤
i Euj | ≤ x1, ∥uiu

⊤
j ∥ = 1,

and Γ1 := {z | z = a0 + it,−T ≤ t ≤ T})

≤
∑

i,j≤r1
x1

∫ T

−T
|a0|+|t|√

((a0−λi)2+t2)((a0−λj)2+t2)
dt.

By the construction of Γ1, we have

|a0 − λi| ≥
δk
2

for all 1 ≤ i ≤ n. (9)

Thus, the r.h.s. is at most

r21x1

∫ T

−T
|a0|+|t|

t2+(δk/2)2
dt = r21x1

(∫ T

−T
|a0|

t2+(δk/2)2
dt+

∫ T

0
2t

t2+(δk/2)2
dt
)
. (10)

By Lemma E.1, we have∫ T

−T
|a0|

t2+(δk/2)2
dt ≤ 2π|a0|

δk
= 2πa0

δk
(since a0 ≥ 0).

The second integral is estimated by what follows.∫ T

0
2t

t2+(δk/2)2
dt =

∫ T 2+(δk/2)
2

(δk/2)2
1
udu (u = t2 + (δk/2)

2)

= log
(

T 2+(δk/2)
2

(δk/2)2

)
= log

(
4T 2+δ2k

δ2k

)
≤ 2 log

(
3T
δk

)
.

(11)

Therefore,∫
Γ1

∥∥∥∑1≤i,j≤r1
z

(z−λi)(z−λj)
uiu

⊤
i Euju

⊤
j

∥∥∥ |dz| ≤ r21x1

(
2πa0

δk
+ 2 log

(
3T
δk

))
. (12)

Next, we bound the second term as follows∫
Γ1

∥∥∥∑n≥i,j>r1
z

(z−λi)(z−λj)
uiu

⊤
i Euju

⊤
j

∥∥∥ |dz|
=

∫
Γ1

∥∥∥z (∑n≥i>r1

uiu
⊤
i

z−λi

)
E
(∑

n≥i>r1

uiu
⊤
i

z−λi

)∥∥∥ |dz|
≤

∫
Γ1

|z| ·
∥∥∥∑n≥i>r

uiu
⊤
i

z−λi

∥∥∥× ∥E∥ ×
∥∥∥∑n≥i>r

uiu
⊤
i

z−λi

∥∥∥ |dz|
≤ ∥E∥

∫
Γ1

|z|
minn≥i>r1

|z−λi|2 |dz|

= ∥E∥
∫ T

−T

√
a2
0+t2

minn≥i>r1
[(a0−λi)2+t2]dt.

Moreover, by the construction of Γ1 and the definition of r1,

|a0 − λi| =
∣∣∣λk+λk+1

2 − λi

∣∣∣ ≥ ∣∣∣λk+λk+1−2λr+1

2

∣∣∣ ≥ λk−λr+1

2 ≥ λk

4 , (13)
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where the second inequality follows the fact i > r1. Thus, the r.h.s. is at most

∥E∥
∫ T

−T

√
a2
0+t2

t2+(λk/4)2
dt ≤ ∥E∥

∫ T

−T
a0+|t|

t2+(λk/4)2
dt.

Similar to (10) and (11), we also have∫ T

−T
a0+|t|

t2+(λk/4)2
dt ≤ 4πa0

λk
+ log

(
T 2+(λk/4)

2

(λk/4)2

)
≤ 4πa0

λk
+ log

(
2T 2

δ2k

)
≤ 4π + 2 log

(
2T
δk

)
(since a0 ≤ λk).

(14)

It follows that∫
Γ1

∥∥∥∑n≥i,j>r1
z

(z−λi)(z−λj)
uiu

⊤
i Euju

⊤
j

∥∥∥ |dz| ≤ ∥E∥
(
4π + 2 log

(
2T
δk

))
. (15)

Now we consider the last term:

∫
Γ1

∥∥∥∥∑i≤r1<j
i>r1≥j

z
(z−λi)(z−λj)

uiu
⊤
i Euju

⊤
j

∥∥∥∥ |dz| ≤ 2∥E∥
∫
Γ1

|z|
mini≤r1<j |(z−λi)(z−λj)| |dz|.

By (13) and (9), the r.h.s. is at most

2∥E∥
∫ T

−T
|z|√

(t2+(δk/2)2)(t2+(a0−λr+1)2)
dt = 4∥E∥

∫ T

0

√
a2
0+t2√

(t2+(δk/2)2)(t2+(a0−λr+1)2)
dt

≤ 4∥E∥
∫ T

0
a0+t√

(t2+(δk/2)2)(t2+(a0−λr+1)2)
dt.

(16)

Moreover,
∫ T

0
a0+t√

(t2+(δk/2)2)(t2+(a0−λr+1)2)
dt equals

∫ T

0
a0dt√

(t2+(δk/2)2)(t2+(a0−λr+1)2)
+

∫ T

0
tdt√

(t2+(δk/2)2)(t2+(a0−λr+1)2)
dt

=
∫ T

0
a0dt√

(t2+(δk/2)2)(t2+(a0−λr+1)2)
+ 1

2 log
(

(T 2+(δk/2)
2)(a0−λr+1)

2

(T 2+(a0−λr+1)2)δk/2

)
≤ a0

max{δk/2,a0−λr+1} × log

(
T+

√
T 2+min{δk/2,a0−λr+1}2

min{δk/2,a0−λr+1}

)
+ 1

2 log
(

(T 2+(δk/2)
2)(a0−λr+1)

(T 2+(a0−λr+1)2)δk/2

)
.

Note that a0 − λr+1 ≥ δk/2 and a0 − λr+1 + δk/2 = λk − λr+1 ≥ λk

2 . Therefore, a0 − λr+1 =

max{δk/2, a0 − λr+1} ≥ λk

4 . We further obtain that
∫ T

0
a0+t√

(t2+(δk/2)2)(t2+(a0−λr+1)2)
dt is at most

a0

λk/4
· log

(
5T
δk

)
+ 1

2 log
(

2T
δk

)
≤ 4.5 log

(
5T
δk

)
. (17)

The estimates (16) and (17) together imply that the last term is at most

18∥E∥
(

5T
δk

)
. (18)

Combining (12), (15) and (18), we finally obtain that M1 is at most

r21x1

(
2πa0

δk
+ 2 log

(
3T
δk

))
+ ∥E∥

(
4π + 2 log

(
2T
δk

))
+ 18∥E∥ log

(
5T
δk

)
≤ r21x1

(
2πa0

δk
+ 2 log

(
6σ1

δk

))
+ (20 + 4π/ log(10)∥E∥ log

(
10σ1

δk

)
(since log

(
10σ1

δk

)
≥ log 10)

≤ r2x̄
(

2πa0

δk
+ 2 log

(
6σ1

δk

))
+ (20 + 4π/ log(10)∥E∥ log

(
10σ1

δk

)
.

(19)
This proves Lemma D.6.
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Next, we estimate N3. Notice that

N3 =
∫
Γ3

|z|
mini |z−λi|2 |dz|

=
∫ T

−T

√
a2
1+t2

mini∈[n][(a1−λi)2+t2]dt (since Γ3 := {z | z = a1 + it,−T ≤ t ≤ T})

≤
∫ T

−T

√
a2
1+t2

t2+(a1−λ1)2
dt

≤
∫ T

−T
|a1|

t2+(a1−λ1)2
dt+

∫ T

−T
|t|

t2+(a1−λ1)2
dt

≤
∣∣∣ πa1

a1−λ1

∣∣∣+ 2 log

(∣∣∣ T
a1−λ1

∣∣∣2 + 1

)
(by Lemma E.1)

≤ πa1

a1−λ1
+ 4 log

∣∣∣ 3T
a1−λ1

∣∣∣ .
This proves Lemma D.3.

E.2 Estimating integrals over horizontal segments

We are going to bound N2, N4 - integral over top horizontal segment (prove Lemma D.4). We have

N2 =
∫
Γ2

|z|
mini∈[n] |z−λi|2 |dz|

=
∫ a1

a0

√
x2+T 2

mini∈[n]((x−λi)2+T 2)dx (since Γ2 := {z | z = x+ iT, a0 ≤ x ≤ a1})

≤
∫ a1

a0

√
2T
T 2 dx (since x ≤ a1 ≤ T )

=
√
2|a1−a0|

T .

By similar arguments, we also obtain

N4 ≤
√
2|a1−a0|

T .

These estimates on N2, N4 prove Lemma D.4.

E.3 Estimating integrals over vertical segments for non-interaction bound

In this Section, we estimate N1, proving Lemma D.2. The estimation of N3 follows the case of the
interaction-dependent bound at the end of Section E.1.

N1 =
∫
Γ1

|z|
mini |z−λi|2 |dz|

=
∫ T

−T

√
a2
0+t2

mini∈[n][(a0−λi)2+t2]dt (since Γ1 := {z | z = a0 + it,−T ≤ t ≤ T})

≤
∫ T

−T

√
a2
0+t2

t2+(δk/2)2
dt (by (9))

≤
∫ T

−T
|a0|

t2+(δk/2)2
dt+

∫ T

−T
|t|

t2+(δk/2)2
dt

≤
∣∣∣ 2πa0

δk

∣∣∣+ 2 log

(∣∣∣ 2Tδk ∣∣∣2 + 1

)
(by Lemma E.1)

≤
∣∣∣ 2πa0

δk

∣∣∣+ 4 log
∣∣∣ 3Tδk ∣∣∣ .

This proves Lemma D.2.

F Perturbation of matrix functionals - Theorem 2.3

In this section, we complete the delayed proof of Theorem 2.3. By Remark 3.2, to prove Theorem
2.3, we need to show that

2πF1(1) :=

∫
Γ

∥(zI −A)−1E(zI −A)−1∥|dz| = 4π
∥E∥
δp

,
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in which the contour Γ is set to be a rectangle with vertices

(x0, T ), (x1, T ), (x1,−T ), (x0,−T ), where x0 := λp − δp/2, x1 := 2λ1, T := 2λ1.

We split Γ into four segments:

Γ1 := {(x0, t)| − T ≤ t ≤ T}; Γ2 := {(x, T )|x0 ≤ x ≤ x1};

Γ3 := {(x1, t)|T ≥ t ≥ −T}; Γ4 := {(x,−T )|x1 ≥ x ≥ x0}.
Therefore, ∫

Γ

∥(zI −A)−1E(zI −A)−1∥|dz| =
4∑

i=1

Mk, (20)

in which
Mi :=

∫
Γi

∥(zI −A)−1E(zI −A)−1∥|dz| for i ∈ {1, 2, 3, 4}.

By a similar strategy from previous section, we bound M1 as follows. Notice that∥∥(z −A)−1E(z −A)−1
∥∥ ≤ ∥E∥

mini∈[n] |z−λi|2 .

Therefore, M1 is at most

∥E∥ ·
∫
Γ1

1

mini∈[n] |z − λi|2
|dz|

≤ ∥E∥ ·
∫
Γ1

1

|z − λp|2
|dz| (since λp is closest to Γ1 among all eigenvalues of A)

= ∥E∥ ·
∫ T

−T

1

(δp/2)2 + t2
dt (by definition Γ1 := {(x0, t)| − T ≤ t ≤ T} and |x0 − λp| = δp/2)

≤ 2π∥E∥
δp

(by Lemma E.1).

Next, we bound M3 as what follows.

M3 ≤ ∥E∥
∫
Γ3

1
mini∈[n] |z−λi|2 |dz|

= ∥E∥
∫ T

−T
1

mini∈[n]((x1−λi)2+t2)dt ( since Γ3 := {z | z = x1 + it,−T ≤ t ≤ T )

= ∥E∥
∫ T

−T
1

t2+(x1−λ1)2
dt

≤ π∥E∥
|x1−λ1| (by Lemma E.1)

=
π∥E∥
λ1

(since x1 = 2λ1).

Next, we estimate M2 as

M2 ≤
∫
Γ2

1
mini∈[n] |z−λi|2 ∥E∥|dz| = ∥E∥

∫
Γ2

1
mini∈[n] |z−λi|2 |dz|.

Moreover, since Γ2 := {z | z = x+ iT, x0 ≤ x ≤ x1},∫
Γ2

1
mini∈[n] |z−λi|2 |dz| =

∫ x1

x0

1
mini∈[n]((x−λi)2+T 2)dx ≤

∫ x1

x0

1
T 2 dx = |x1−x0|

T 2 .

Therefore, M2 ≤ ∥E∥·|x1−x0|
T 2 ≤ ∥E∥λ1

4λ2
1

= ∥E∥
4λ1

. Similarly, we also obtain that M4 = ∥E∥
4λ1

. These
estimates on M1,M2,M3,M4 and Equation 20 imply∫

Γ

∥(zI −A)−1E(zI −A)−1∥|dz| = 2π∥E∥
δp

+ (π +
1

4
+

1

4
)
∥E∥
λ1

≤ 4π
∥E∥
δp

.

The last inequality follows the trivial fact that λ1 > δp for any PSD matrix A. We complete the
proof.
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G Some classical perturbation bounds

This section recalls standard results referenced in Section 2, Section 3, and Section A.
Theorem G.1 (Eckart–Young–Mirsky bound [16]). Let A, Ã ∈ Rn×n, and let Ap, Ãp denote
their respective best rank-p approximations. Set E := Ã−A. Then,

∥Ãp −Ap∥ ≤ 2 (σp+1 + ∥E∥) ,

where σp+1 is the (p+ 1)st singular value of A.

Theorem G.2 (Weyl’s inequality [46]). Let A,E ∈ Rn×n be symmetric, and define Ã := A+ E.
Then, for any 1 ≤ i ≤ n,

|λ̃i − λi| ≤ ∥E∥ and |σ̃i − σi| ≤ ∥E∥,

where λi, λ̃i are the ith eigenvalues of A and Ã, and σi, σ̃i are the corresponding singular values.

H Notation

This section summarizes the key notations used throughout the paper. Let A,E be symmetric n×n
matrices, and define the perturbed matrix Ã := A+ E. Let f be an entire function, and let s ∈ N.

Table 3: Summary of notation
Symbol Definition

n Dimension of A, Ã
p Target rank parameter
Ap Best rank-p approximation of A

Ãp Best rank-p approximation of Ã
λ1 ≥ · · · ≥ λn Eigenvalues of A in descending order

λ̃1 ≥ · · · ≥ λ̃n Eigenvalues of Ã in descending order
σ1 ≥ · · · ≥ σn Singular values of A in descending order
δi for i ∈ [n − 1] ith eigengap: δi := λi − λi+1

ui for i ∈ [n] Eigenvector of A corresponding to λi

ũi for i ∈ [n] Eigenvector of Ã corresponding to λ̃i

sr(A) Stable rank: sr(A) := ∥A∥2
F /∥A∥2 (p. 22)

Halving distance r Smallest integer such that λp/2 ≥ λr+1 (p. 3, Thm. 2.2)

Interaction term x x := max1≤i,j≤r |u⊤
i Euj | (p. 3, Thm. 2.2)

fp(A) fp(A) :=

p∑
i=1

f(λi)uiu
⊤
i (p. 4, Thm. 2.3)

fp(Ã) fp(Ã) :=

p∑
i=1

f(λ̃i)ũiũ
⊤
i (p. 4, Thm. 2.3)

Γ Contour enclosing {λ1, . . . , λp} (p. 5)

F (f)
1

2π

∫
Γ

∥f(z)[(zI − Ã)
−1 − (zI − A)

−1
]∥ |dz| (p. 5, Eq. (2))

Fs(f)
1

2π

∫
Γ

∥f(z)(zI − A)
−1

[E(zI − A)
−1

]
s∥ |dz| (p. 6)

F1(f)
1

2π

∫
Γ

∥f(z)(zI − A)
−1

E(zI − A)
−1∥ |dz| (p. 6, Lem. 3.1)

F (z)
1

2π

∫
Γ

∥z[(zI − Ã)
−1 − (zI − A)

−1
]∥ |dz| (p. 6)

F1(z)
1

2π

∫
Γ

∥z(zI − A)
−1

E(zI − A)
−1∥ |dz| (p. 6)

∥ · ∥ Spectral norm
∥ · ∥F Frobenius norm
EYM bound Eckart–Young–Mirsky bound
M–V bound Mangoubi–Vishnoi bound
PSD Positive semi-definite
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tions, resolving key limitations of classical worst-case bounds and prior DP utility analyses,
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2–4).
Guidelines:
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made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
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proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
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whether the code and data are provided or not.
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taken to make their results reproducible or verifiable.
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fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
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proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Section 4 and Section B report error bars across 100 trials as mean ± standard
deviation, with clear plots and captions.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The experiments are lightweight and run on standard CPU machines; resource
requirements are described in the supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research is theoretical and empirical, uses only publicly available
datasets, and conforms to ethical standards.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
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Justification: This is a theoretical paper on spectral norm perturbation bounds with no direct
societal or ethical impact pathways.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release models or datasets with any risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets (e.g., Census, 1998 KDD-Cup, Adult) are properly cited (e.g.,
[29], [11], [3]) and are in the public domain or released under open academic licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: The paper does not introduce new datasets, models, or other assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve any human subjects or crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The research does not involve human subjects and thus does not require IRB
approval.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The research does not use LLMs for any component of the core methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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