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ABSTRACT

Aligning egocentric and exocentric videos facilitates the learning of view-
invariant features, which significantly contributes to video understanding. While
previous approaches have primarily focused on aligning individual ego-exo video
pairs, our method extends this concept by aligning groups of synchronized ego-
centric and exocentric videos. This strategy enables the model to capture more
comprehensive cross-view relationships across densely captured viewpoints, en-
hancing its capacity for robust multi-view understanding. Therefore, we develop
a pipeline based on contrastive learning for Egocentric-exocentric Video Groups
Alignment Pre-training (EVGAP). Our method introduces several key innova-
tions: 1) a novel video pre-training paradigm that extends alignment from ego-exo
video pairs to ego-exo video group alignments; 2) an innovative two-step training
process that leverages the abundant ego-exo video pair data to support the learning
of ego-exo video group alignments, transitioning from sparse to dense viewpoints;
and 3) the application of auxiliary losses to progressively align videos from differ-
ent perspectives. Extensive ablations illustrate the effectiveness of our approach
in single-view and multi-view downstream tasks. We also find that our approach
facilitates the tasks inluding novel views. The codes will be available upon accep-
tance.

1 INTRODUCTION

Since the majority of available video data is exocentric, models designed for exocentric video under-
standing benefit from extensive large-scale datasets. Moreover, research has shown that exocentric
video learning can also facilitate egocentric video understanding (Li et al., 2021b). Consequently, a
significant research focus on learning view-invariant video features to align egocentric and exocen-
tric videos, thereby enhancing the understanding of both perspectives. Among them, they aligning
ego-eX(ﬂvideo pairs that share the same or similar semantics, depending on paired (Sigurdsson et al.,
2018a; Ardeshir & Borji, [2018}Sermanet et al., 2018;|Yu et al.,2019;2020) or unpaired views (Xue
& Grauman), [2023; Wang et al} 2023)). Based on egocentric and exocentric video data (Sigurdsson
et al., [2018b; [Sener et al., [2022} (Grauman et al., [2024), the resulting joint feature space facilitates
a range of tasks, such action recognition (Kazakos et al.,|2019; Yonetani et al., 2016), action antic-
ipation (Furnari & Farinella, [2020; |Abu Farha et al.| 2018)), video summarization (Lee & Grauman,
20155 Del Molino et al., [2016])), robot learning (Bharadhwaj et al., 2023)) and so on.

The existing methods predominantly focus on one-to-one pairing to learn view-invariant features,
where each egocentric video is aligned with a single exocentric video, as illustrated in Figure[T] (a).
On the other hand, videos can also be grouped based on unpaired video grouping via language (Wang
et al., |2023) or paired video grouping via dense synchronized views (Sener et all [2022). Thus
inspired, we apply such grouping for both ego and exo to form ego video groups and exo video
groups, as illustrated in the top and bottom of Figure (1| (b), respectively. Under this setting, we
empirically find that the model potentially has suboptimal performance when we simplify the video
group alignment by using the one-to-one pairwise alignment.

Specifically, we propose a novel alignment between ego video groups and exo video groups.
To our best knowledge, this is the first attempt to conduct grouped video pre-training for ego-exo

"For simplicity, the terms ‘ego’ and ‘exo’ are used for ‘egocentric’ and ‘exocentric’, respectively.
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(a) Align ego and exo videos (b) Align ego and exo video groups

Figure 1: Alignment between (a) ego-exo video pairs and (b) ego-exo video groups. The subscript
represents the scene index, and all videos from either the egocentric or exocentric perspectives within
the same scene are synchronized. In ego-exo video group alignment, each ego or exo video group
within a scene includes multiple viewpoints. Unlike aligning individual ego-exo pairs in method (a),
method (b) aligns ego-exo video groups.

alignment. In particular, we work on paired video groups where we have denseE] synchronized views.
This new problem raises the following questions: (1) How can we optimally leverage ego-exo video
groups to improve multi-view video representation learning? As outlined above, the ego-exo groups
can also be considered as a collection of individual ego-exo pairs. (2) Compared with aligning
several ego-exo video pairs, is aligning ego-exo video groups more effective? Furthermore, ego-exo
video group data with dense viewpoints is relatively scarce (Sener et al., [2022), while a significant
portion of existing ego-exo datasets comprises one-to-one video pairs. (3) How can we leverage
these ego-exo pairs data in our model to facilitate the alignment of ego-exo video groups?

To answer question (1), all exo and ego video groups are processed through a shared video encoder
to establish a similarity metric between the ego and exo perspectives based on the feature outputs,
with a contrastive loss (Radford et al.,[2021)) applied to this metric. The answer to question (3) arises
from our proposed two-step pretraining strategy, aimed at learning a view-invariant representation
of multi-view ego and exo videos. In the first training step, video data is assigned to ego-exo pairs.
This facilitates training on large-scale data with sparse viewpoints and limited-scale data with dense
viewpoints. In the second step, the model weights learned from the first step are used for initializa-
tion, and only ego-exo video groups are adopted. In this step, we apply dense contrastive learning
to handle alignment of video groups efficiently. Furthermore, unlike multi-modal contrastive learn-
ing (Radford et al., 2021} [Caron et al., [2021} Jia et al.| |2021)), where the contrastive loss is typically
applied at the final output of the encoders, in the visual domain we introduce an auxiliary loss.
Specifically, we obtain contrastive losses after each layer of our model in both steps. This approach
facilitates more efficient convergence.

To answer the question (2), we finetune our pre-training model on Assembly101 for fine-grained
video understanding tasks, e.g. action segmentation and action anticipation. We conducted exten-
sive ablations which have verified the effectiveness of the proposed two-step pretraining strategy.
Our approach improves both action segmentation and anticipation by 0.9%, and 1.9% on average.
Interestingly, our method outperforms the baseline by almost 2.3% and 2.5%in the novel view setting
of TAS and action anticipation, which shows the potential for learning comprehensive view-invariant
representation.

2 RELATED WORK

2.1 EGO-EXOCENTRIC VIDEO ALIGNMENT

Aligning egocentric and exocentric views for feature learning is a challenging task that has been ap-
proached from various perspectives. One line of work focuses on joint attention mechanisms to co-
analyze spatial-temporal relationships across both views, improving feature alignment for tasks like
action recognition and object interaction (Yu et al., [2019; [Sigurdsson et al., 2018a; |Yu et al., |2020).
By minimizing the distance between corresponding frames and maximizing the distance between

’Dense view means there are multiple cameras for both egocentric and exocentric views.



Under review as a conference paper at ICLR 2025

non-corresponding ones, recent works have shown significant improvements in view-invariant rep-
resentation learning via contrastive learning (Xue & Grauman, 2023; Qian et al.,2021). The studies
in (Sudhakaran et al.,|2019; | Yu et al., 2019; Ji et al., 2021) adapt attention mechanisms, to selectively
focus on important features in both views, further refine the alignment of spatial-temporal informa-
tion. Recent works have explored cross-view image synthesis and bridging the domain gap between
different perspectives using generative adversarial networks (GANSs) (Elfeki et al., 2018; |Regmi &
Borji, 2018} Regmi & Shah| 2019} [Liu et al.l 2020} 2021)) or diffusion model (Luo et al.| [2024).
Lastly, multimodal fusion techniques and multi-view learning methods have also been applied to
this problem. For example, cross-view fusion models improve recognition tasks by integrating pose
and action data from both perspectives (Iskakov et al.|[2019).

2.2 CONTRASTIVE LEARNING

Contrastive learning (Radford et al.,[2021};|Chen et al.| [2020; |He et al., |2020; [Caron et al., 2020) has
emerged as a powerful paradigm in self-supervised representation learning, particularly in tasks
involving cross-modal alignment and multi-view learning. A prominent example in contrastive
learning is CLIP (Radford et al., |2021) which aligns images with their corresponding text descrip-
tions using contrastive loss, leveraging large-scale natural language supervision to enable zero-shot
learning across diverse visual tasks. BiLIP (L1 et al.,|2022)) further refines contrastive learning by
integrating bidirectional modeling. Moreover, ALIGN (Jia et al.l 2021) scales multimodal repre-
sentation learning using noisy text descriptions in a contrastive framework. FLAVA (Singh et al.
2022) and UniCL (Yang et al.| 2022) further unify vision and language modalities, enhancing per-
formance in tasks like image retrieval and captioning. ALBEF (Li et al.||2021a) extends this further
by proposing a method that aligns image and text representations before fusing them, achieving
strong results across various vision-language benchmarks. PixPro (Xie et al.l [2021) focuses on
fine-grained, pixel-level representations for dense prediction tasks using a local contrastive learning
approach. Additionally, ReLICv2 (Tomasev et al., [2022) extends contrastive learning by incorpo-
rating relational inductive biases, improving contextual understanding in relational reasoning and
object detection tasks. Other notable methods include SimCLR (Chen et al.,|2020) and MoCo (He
et al.,|2020), which focus on learning visual representations from images by contrasting positive and
negative pairs.

3 METHOD

In this section, we present the Ego-Exo Video Group Alignment Pretraining (EVGAP) and start
with the encoder structure in Sec[3.1] Then, for detailed training procedure, the first step for exo-

ego perspective pairs and the second step for ego-exo video group pairs are introduced respectively
in Sec[3.2]and Sec[3.3] followed by the auxiliary loss in Sec[3.4]

3.1 EGO-EXO VIDEO GROUP ALIGNMENT PRETRAINING

Building on the success of contrastive learning on multi-task generalization and zero-shot capabili-
ties via aligning data from multi-modality, we adopt a contrastive pre-training framework within the
visual domain using multi-view video data. We propose Ego-Exo Video Group Alignment Pretrain-
ing (EVGAP), designed to learn a shared feature space for video frames from multiple perspectives,
to enhance performance of downstream video analysis tasks and explore the zero-shot capacity of
novel views.

Ego-Exo Video Groups Alignment. EVGAP is designed to learn joint representations from video
group data captured across multiple synchronized viewpoints. This process involves aligning video
clips between egocentric (ego) and exocentric (exo) perspectives, enabling multi-view videos with
dense perspectives to be projected into a shared feature space. The input for alignment consists of
sets of video sequences, combining both egocentric and exocentric video groups. Specifically, given
S scenes, for the s scene, we capture M egocentric (first-person) perspectives to form the ego
video group V& = {]gig M, and N exocentric (third-person) perspectives to form the exo video
group V& = {v*~ }V_, | all synchronized. Here, s denotes the scene index, while m and n represent
the indices of the ego and exo perspectives, respectively. The ultimate goal of EVGAP is to align
and pair the ego-exo video groups (V2 V&) across all scenes. To account for the dense prediction



Under review as a conference paper at ICLR 2025

77777777777777777777777777777777777777777777777777 " m—rie b pie M—rie i R »

! €81 €81 €81 €81 €81 €81
| the time dimension M2 the stride size ego; : the source video from jego perspective | €801 ﬂ i | % | 3] u Vs Vs Ve l
B L XSS S U DUG YRR SUG N DSOS ego, [[ =] [w= | [w™] e | [ue | %> | ]
eg g g eg eg eg i Lo Lo ] ] ] ] ] ] ]
o [t | [t | [ur [ [of] [ [ [wf]] SO NS S S
: — ! eoy [ [ [or [ [w [ [ [ [w& | [wr]]
SO o 0 3 Y i i s s T e
Time—————— ) ) Time > ) ) |
T T T
Set of ego—e>’<o video pair Set of ego-exo video pair Set of ego-exo video group pair Set of ego-exo video group pair
(a) Samples in the first step training (b) Samples in the second step training

Figure 2: Strategies to build the batch data in training for two steps. In (a), the example given a
source ego and a source exo video, video clips are sample by given window size and stride. The
video clips in video clip set will appear in the same batch. In (b), the example involves two egocentric
and two exocentric source videos, from which video clips are sampled similarly to (a), resulting in
a video group composed of synchronized video clips.

of downstream tasks , we sample multiple consecutive frames from videos, to construct clip-based
g eXp,
vs ™ and v,

Data Batch. As outlined in Sections and the pretraining process consists of two distinct
steps, each utilizing different input data pairs. Furthermore, the model relies on batch-based con-
trastive learning, making the selection of negative samples and the balance between positive and
negative sample ratios crucial for effective training in both steps.

In the first step, the model is fed with ego-exo video pairs for alignment. In the second step, however,
ego-exo video group pairs are used for alignment. In both steps, video clips are sampled from the
source videos to construct the pairs. The key difference is that in the second step, clips are sampled
from ego-exo video groups, such as ({eg;,eg,}, {ex1,exa)}, representing two synchronized view-
points for both egocentric and exocentric perspectives, as illustrated in Fig [2(b). We sample video
clips from each source video using a window size of w; and a stride of w,. Due to synchronization,
video clips sampled from the same timestamps represent the same scene, thereby sharing the same
semantic content, denoted by the subscript. For the i*"* clip, we obtain ego-exo video pair (v;%, v¥¥)
in the first step, and ego-exo video group pair ({v;™, v;*2}, {vS**, v$**}) in the second step. Since

we sample multiple clips for a video, here we replace s by i*".

Since contrastive learning relies on the distance between paired samples within a batch, selecting
appropriate batch samples is crucial. When the samples in a batch are distinct, it becomes easier for
the model to pair the synchronized pairs, which we refer to as the easy case. In this case, the model
may exhibit a form of lazy learning, failing to capture the alignment we want between the views.
Conversely, when the samples in a batch are highly similar, the task of pairing becomes significantly
more challenging, referred to as the difficult case. An example of this occurs when more temporally
adjacent clips from the same video are selected, resulting in highly similar features. In such cases,
the model struggles to differentiate between the pairs, leading to poor convergence and limiting its
ability to learn meaningful alignments. In the first step, we include “sets of ego-exo video pairs” in
each batch, whereas in the second step, “sets of ego-exo video group pairs” are used in each batch.

Visual Encoder. For the visual encoder H(-), we construct the architecture by stacking L Trans-
former encoder layers, applying layer normalization after each layer. All videos share the same
encoder to extract output features, with the class token serving as the feature representation for each
video clip. Unlike the VLP paradigm, where distinct encoders are used for images and text, we
employ a unified encoder in EVGAP for all videos from both egocentric and exocentric views, as
they represent similar visual signals. The class tokens are then fed into the loss functions to facilitate
different stages of pretraining.

3.2 FIRST STEP FOR EGO-EXO VIDEO PAIR ALIGNMENT

Comparing the relation matrices of ego-exo video alignment and ego-exo video group alignment, the
latter aims to capture additional group-level information beyond what is represented in the former.
Moreover, the number of ego-exo video pairs is significantly bigger than that of ego-exo video group
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(a) Relation matrix in the first step (b) Relation matrix in the second step

Figure 3: (a) and (b) represent the relation matrices for the first and second steps of training, respec-
tively, for a given batch of data. The first row of (a) and the second row of (b) represent the ego
videos, whereas the first column of (a) and the second column of (b) represent the exo videos. The
first row and column of (b) indicate the groups including ego or exo videos with the same semantic
content. A value of 1 in the matrix indicates that the ego and exo videos share the same scene. In
(a), the alignment represents ego-exo video pairs, resulting in a diagonal entirely composed of ones.
In (b), the alignment involves ego-exo video group pairs, where multiple ego and exo videos within
a group share the same scene. Consequently, the diagonal contains several blocks with all ones,
reflecting these group-wise associations.

pairs. Therefore, we leverage the ego-exo video pair alignment to pre-train model weights, which
are then used as the initialization for group alignment learning in the second step.

Specifically, in the first step, we aggregate a large number of ego-exo video pairs to train a general
model for ego-exo video alignment. Given a batch of paired video features comprising B scenes:
{(v5%, v) 5 |, the relation matrix for the batch, as illustrated in Fig. a), assigns a value of ‘1’
to indicate that the corresponding ego and exo videos originate from the same scene and should be
aligned. This implies that (v;®, v$*) are positive pairs, whereas (v;®, v*), where i # j, are not. Based
eg\ B

i
on the ego and exo perspectives, the batch can also be divided into an ego video set V& = {v;*};
and an exo video set V™ = {v¢*}B | . All videos, including both ego and exo perspectives, are fed
through the visual encoder H (*) to produce the output feature embeddings H (V°¢) = {H (v;*)}2
and H(V®) = {H(v®*)}£ ,. To extend the contrastive loss from CLIP to ego-exo alignment, the

loss function is formulated as follows:

B ot HWE) TH@S) et HWEH) T H ()

log + log

. eg ex\ _ _
cp'dll’(v 9 V ) QB — ZB . €t~H(’U:g)TH(’U;x) ZB ) et-H(’Ujg)TH(’UgX) (l)
1= ]= J=

where ¢ is the temperature parameter.

This formulation encourages the model to maximize the similarity between matched video features

(H(v3®), H(v$)) across views while minimizing the similarity between mismatched ones.

3.3 SECOND STEP FOR EGO-EX0O VIDEO GROUP ALIGNMENT

This section focuses on aligning ego-exo video groups to capture additional relationships within
the egocentric perspectives and within the exocentric perspectives. To achieve robust performance
given the limited training data, we utilize the learned weights from the first step to initialize the
model for this stage. It is assumed that the first step has effectively captured pairwise ego-exo video
alignment, and these pre-trained weights will enable the model to refine its understanding further by
concentrating on group-level alignment.

In the second step, for batch data, the inputs are B ego-exo video group pairs, denoted as

{(VE, V) }B | Asillustrated in Fig. b), we have an egocentric video from the i*" scene, v;*™,

its positive samples include all exocentric videos from the same scene, denoted as V™ = {v*" }2_ .
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Negative samples are exocentric videos from different scenes, V™, where ¢ # j. Given that there are

€8m \ M

M viewpoints for egocentric videos, all videos within the egocentric video group V¢ = {v;*™ }M_|

must align with each exocentric video from the same scene.

As we need to supervise M x N positive samples in a video, we adopt the sigmoid loss used in
SigLIP (Zhai et al.,|2023). And inorder to keep balance rate between positive and negative samples,
we ignore the device communication to not to gather features from cross-devices.

In this context, the modified SigL.IP loss (Zhai et al., 2023)) for ego-exo group alignment is formu-
lated as follows:

1 B B M N 1
LEVGAP(VCg, Vex) = _BQ x M x N ZZ Z Z IOg (1 4 ezij(t'H(’Ung)'H(U;Xn)> ) (2)

i=1 j=1 m=1n=1

where z;; represents the label for a given pair consisting of an egocentric video and an exocentric
video. Specifically, z;; = 1if ¢ = j, indicating a positive match; otherwise z;; = —1if i # j,
indicating a negative match.

3.4 AUXILIARY LoOSS

The image-text pre-training aligns features in the last decoder layer, we assume that different modal-
ities need deep neural networks for representation before alignment. Unlike image-text pairs, the
dual views expected to be aligned are both visual signals. Thus, we explore the potential of middle
supervision, i.e. appending auxiliary losses on the output of each visual encoder layer. In order to
represent outputs from different layers, we represent the sub-visual encoder ;(-) as the model with
the previous [ layers in the visual encoder H (), where l = 1,2,.., L — 1.

The auxiliary losses is the sum of the loss of output from L — 1 layers. For the I* layer, the loss
Lgept, and Lyepo, for the two steps can be derived by replacing H (+) with k(%) in Ly and Lgvcap.
resulting in Laux_pair and Laux BvGap, Tespectively. Consequently, the auxiliary loss and total loss for
the first and second steps can be formulated as follows:

L—-1
['Aux,pair = § (al : »Cstepl z) »CTotaLpair = »Cpair + EAux,pair 3)
=1
L-1
ACAux,group = E (ﬁl : Estepzl) LT()taLgroup = L:EVGAP + ['Aux,group (4)

=1

where L is the number of visual encoder layers, «; and f3; is the loss weight for the I*” outputs.

4 EXPERIMENT

4.1 DATASET

We employ two datasets: Assemblyl01 and Charades-Ego for the first step, while utilizing the
multi-view Assembly101 dataset for egocentric and exocentric perspectives in the second step. As-
sembly101 (Sener et al.| [2022)) is a large-scale, multi-view video dataset tailored for action under-
standing in complex assembly and disassembly tasks. It contains over 1,000 videos captured from a
total of 12 different camera angles for each video, including 4 egocentric (first-person) views and 8
exocentric (third-person) views. The dataset features a diverse set of assembly activities performed
by different individuals, providing more than 500 hours of footage. We utilize video features ex-
tracted from the TSM (Lin et al.||2019) model pretrained on the Assembly101 dataset, similar to the
approach in (Sener et al., 2022)). Charades-Ego (Sigurdsson et al., [2018b) is an extension of the
Charades dataset (Sigurdsson et al.,2016), focusing on everyday activities captured simultaneously
from paired egocentric and exocentric perspectives. It includes approximately 7,860 videos recorded
in natural home environments. Each video features a set of predefined activities, with detailed anno-
tations for actions, temporal boundaries, and object categories. To obtain features similar to those in
the Assembly101 dataset, we apply a window size of 8 frames and process them through the TSM
model, using weights pretrained on the Assembly101 dataset.
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Input | Sing-view | Two-view
Method | F1@{10,25,50} Edit Acc. Avg. | F1@{10,25,50} Edit Acc. Avg.
Base \ 33.0 287 206 315 377 303 \ 31,5 274 200 307 390 297
(a) Base + random 329 289 21.0 314 378 304 | 328 283 198 31.0 384 30.1
A(4)—Base -0.1 402 +04 -0.1 +0.1 +0.1 | +1.2 +09 -02 +03 +0.6 +04
(b) Base + stepl 33.0 289 21.7 321 378 30.6 | 331 28.6 200 309 393 306
A(b)—Base +0.0 +02 +I1.1 +0.6 +0.1 +0.3 | +1.6 +1.2 +0.0 +0.2 +03 +0.9
(c) Base + step2 333 295 216 326 38.0 31.0 | 333 293 215 319 400 312
A(c)—Base +0.3 +0.8 +1.0 +1.1 +03 +0.7 | +1.8 +1.9 +1.5 +1.2 +1.0 +1.5
(d) Base + stepl +step2 | 33.4 29.6 22.1 325 385 312 | 337 299 21.7 322 404 316
A(d)—Base +04 +09 +0.5 +1.0 +08 +0.9 | +22 +2.5 +1.7 +1.5 +14 +1.9

Table 1: Ablation study on single-view and two-view temporal action segmentation tasks on the
Assembly101 dataset. ‘Base’ represents the C2F-TCN model. In (a), the pretraining model are
stacked with C2F-TCN for end-to-end training from scratch. In (b) and (c), the model utilizes
weights from pretraining conducted in only the first or second step, respectively. (d) represents the
model trained using weights obtained from both pretraining steps.

4.2 PRE-TRAINING DETAILS

Batch data building. In the first training step, we set the window size to 20 frames and apply
augmentation by scaling the window size within a range of 0.5 ~ 2.0. The stride between windows
is set to 100 frames. Each batch contains a set of 10 video clips from a same source video. In the
second training step, we maintain the same configuration from the first step to extract clips from the
source videos. Additionally, video clips corresponding to the same timestamps are collected into a
video group. A video group consists of eight exocentric videos and four egocentric videos.

Encoder. The video features, initially of dimension 2048, are extracted from the TSMLin et al.
(2019) model, excluding the last linear layer, with fixed weights pretrained on the Assembly101
dataset. These features are then projected onto a feature embedding space of dimension 512. The
resulting embeddings are subsequently fed into an encoder comprising six layers of Vision Trans-
former (ViT (Dosovitskiy et al.,[2021))) encoder blocks. Each encoder block utilizes eight attention
heads, a feedforward dimension of 2048, and ReLU activation applied following layer normaliza-
tion.

Training settings in the first and second step. In the first training step, the batch size is set to
200, with a learning rate of 5 x 10~%, using the Adam (Kingmal, 2015)) optimizer. In the second step,
the batch size is reduced to 64, with a learning rate of 1 x 10—%, and the AdamW (Loshchilov,2019)
optimizer is employed. When computing the loss, the logits scale for the first and second steps are
initialized to 1 and log;((1/0.7), respectively. Additionally, the loss weight for the auxiliary loss is
set to 0.2 in both steps.

4.3 ABLATION STUDY

In this section, we present ablation studies to empirically validate the different components of our
pipeline. All evaluation are conducted on validation split of Assembly101 dataset, and the improve-
ment are showed by A. Specifically, we employ the downstream task of temporal action segmen-
tation (TAS) to demonstrate the results. We present the F1 scores at overlaps of 10%, 25%, and
50%, along with the edit score, accuracy, and the average of all metric values. For TAS, we select
C2F-TCN (Singhania et al., [2021) as the base model. To leverage the alignment model, we inte-
grate the pre-trained encoder with the C2F-TCN model. Additionally, to evaluate the alignment’s
effectiveness in multi-view input settings, we extend the TAS task from single-view to two-view,
providing ablation results for both. In the two-view temporal action segmentation, the input consists
of video features from two different viewpoints.

First, we train the end-to-end model from scratch using random weights, as illustrated in Table [I]s
method (a). The results indicate that, on average, performance improves by 0.1% and 0.4% for
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| Temporal Action Segmentation | | Action Anticipation
Method | F1@{10,25,50} Edit Acc. Avg. View | Method | verb object action Avg.
ASFormer | 33.1 284 205 312 374 301 TempAgg | 51.7 215 5.3 26.2
+EVGAP* | 334 289 210 317 378 305 Eeo +EVGAP* | 525 221 6.0 26.9
+EVGAP 336 292 216 320 384 309 & +EVGAP 533 22.9 6.2 27.5
A +0.5 +0.8 +1.1 +0.8 +1.0 +0.8 A +1.6 +1.4 +0.9 +1.3
C2F-TCN 33.0 287 206 315 377 30.3 TempAgg 56.8 332 10.2 334
+EVGAP* | 332 292 209 309 380 3044 Exo +EVGAP* | 57.6  33.8 109 341
+EVPG 334 296 221 325 385 312 +EVGAP | 592 349 1.5 352
A +04 +09 +15 +1.0 +0.8 +0.9 A +24  +1.7 +1.3  +1.8
LTContext | 33.6 284 205 322 384 306 TempAgg | 55.1 269 8.9 30.3
+EVGAP* | 338 29.1 212 324 392 31.14 Eoo+E, +EVGAP* | 56.7 27.6 9.5 31.3
+EVGAP | 342 296 222 328 397 317 EOHEXO | LEVGAP | 574 281 103 319
A +0.6 +1.2 +1.7 +0.6 +1.3 +1.1 A +23  +1.2 +14  +1.6

Table 2: Performance on the temporal action seg- Table 3: Performance on the action anticipa-
mentation (TAS) task using EVGAP with AS- tion task for egocentric-only, exocentric-only, and
Former, C2F-TCN, and LTContext. combined egocentric and exocentric views.

single-view and two-view TAS, respectively, although some metrics decrease. This demonstrates
that the visual encoder has a positive impact and can effectively integrate with the downstream
model, validating the suitability of the pretrained model. Next, we apply weights from the first step
of training using ego-exo video pairs and fine-tune the pretrained model with C2F-TCN, The results
are in Table [I] (b), which results in improvements across all performance metrics for both single-
view and two-view TAS. This aligns with prior research, which has demonstrated that alignment
contributes to more effective feature learning. Furthermore, the performance is also enhanced when
only the second pretraining step is applied, shown in Table [I[s method (c). We hypothesize that
aligning ego and exo videos from multiple viewpoints in the second step not only captures ego-exo
relationships but also learns relations in same perspectives (i.e., ego-ego and exo-exo), thereby help-
ing the model learn more comprehensive and dense viewpoint features. When weights from the first
step are used to initialize the second step, shown in Table[I[s method (d), and the model is pre-trained
and subsequently fine-tuned, the performance improves by 0.2% and 0.4%, on average, for single-
view and two-view TAS compared to using only the second step. Furthermore, the performance
shows an average improvement of 0.9% over the base model for single-view TAS and 1.9% for
two-view TAS. These results indicate that the two-step pretraining process effectively enhances the
model’s ability to capture superior features for both egocentric and exocentric videos. Furthermore,
the improvement is greater for two-view TAS compared to single-view TAS, indicating that having
a unified feature space for the two-view setting is particularly important for enhancing performance.

4.4 STATE-OF-THE-ART PERFORMANCE

To show the effectiveness of the alignment pre-taining, we evaluate with two downstream tasks
on Assembly101 to achieve the state-of-the-art performance, i.e., temporal action segmentaion and
action anticipation. We apply EVGAP features with fixed or finetuned pre-trained model weight,
denoted as ‘+EVGAP*’ and ‘+EVGAP’ in Table[2land [3

4.4.1 TEMPORAL ACTION SEGMENTATION

For temporal action segmentation (TAS), we choose three models: ASFormer (Yi et al.,[2021)), C2F-
TCN (Singhania et al., 2021), and LTContext (Bahrami et al., 2023). The results demonstrate that
using either the fixed weights from EVGAP or finetuned weights for TAS, all metrics are improved,
with average increases of 0.8%, and 1.1% for ASFormer, and LTContext, respectively. The fixed
EVGAP features directly enhance the performance when training only the downstream model, in-
dicating that our ego-exo video group alignment significantly benefits tasks involving multi-view
inputs from both egocentric and exocentric perspectives. Furthermore, fine-tuning the EVGAP fea-
tures provides greater adaptation to the TAS task, leading to additional performance gains.
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Temporal Action Segmentation
View | Method | F1@{10,25,50} Edit Acc. Avg. | View | Method | F1@{10,25,50} Edit Acc. Avg.

Base 21.0 167 106 234 237 19.1 Base 347 301 21.8 323 394 316

eg1 +EVGAP | 233 189 13.0 242 251 209 | exy +EVGAP | 369 328 233 334 40.6 334
A +23 +22 +24 +08 +14 +1.8 A +22  +2.7 415 +1.1  +1.2  +1.8

Base 207 166 101 22.1 228 185 328 29.0 205 322 380 305

ego +EVGAP | 234 185 124 236 248 20.6 | exs2 +EVGAP | 357 314 227 337 403 328
A +2.7 +19 +23 +15 +20 +2.1 A +29 +24 422 +15 +1.7 +23

Table 4: Novel view evaluation of the temporal action segmentation task on Assembly101 dataset.

Action Anticipation

View | Method | verb object action Avg. | View | Method | verb object action Avg.

Base 50.9 20.3 5.1 25.4 Base 57.4 32.8 11.3 338

eg1 +EVGAP | 53.8 22.8 7.1 27.9 exi +EVGAP | 60.0 35.2 13.2 36.1
A +2.9 +2.6 +2.0 425 A +2.6 +2.4 +1.9 +2.3

Base 51.2 21.8 5.9 26.3 Base 56.1 32.6 11.7 335

eg +EVGAP | 53.5 23.6 7.5 282 | ex2 +EVGAP | 58.8 34.9 13.0 35.6
A +2.3 +1.8 +1.6 +1.9 A +2.7 +2.3 +1.3 +2.1

Table 5: Novel view evaluation of the action anticipation task on Assembly101 dataset.

4.4.2 ACTION ANTICIPATION

For the action anticipation task, we employ TempAgg (Sener et al.l 2020) as the downstream model
and report the performance on the Ego, Exo, and Ego+Exo splits to evaluate the effect of alignment
features across different perspectives. We present the Top-5 recall scores for verb, object, and action
anticipation. Additionally, we evaluate using both fixed EVGAP features and fine-tuned EVGAP
features, denoted as ‘+EVGAP*’ and ‘+EVGAP’, respectively. The results indicate that the mixed
ego-exo data improves by an average of 1.6%, and EVGAP features consistently enhance the per-
formance for both individual ego and exo inputs. This highlights the effectiveness of video group
alignment pretraining. Furthermore, the improvement for the exocentric view is 0.5% higher than
that for the egocentric view. We hypothesize that it may be due to the imbalance in the pretrain-
ing dataset, where the amount of egocentric data is half that of exocentric data, thereby leading the
model to preferentially learn more about exocentric videos.

4.5 NOVEL VIEW

Following the alignment of the ego-exo video groups, the feature spaces for egocentric and exocen-
tric videos are unified into a common feature space. Consequently, the model is capable of achieving
novel view predictions by training on certain viewpoints and testing on others. For temporal action
segmentation (TAS) and action anticipation, the results are presented in Tables ] and [5] The base
models for TAS and action anticipation are C2F-TCN and TempAgg, respectively. We select ‘eg;’,
‘egs’, ‘ex1’, and ‘exe’ (1 and 2 mean the first two cameras.) as the novel views in each training
setting. Specifically, during model training, one of the views is excluded, and performance is sub-
sequently evaluated specifically on the view. The figures indicate that all metrics improve with the
proposed alignment. This demonstrates that mapping both egocentric and exocentric videos to a
common feature space shows potential for learning comprehensive view-invariant representation.

5 CONCLUSION

In this paper, we propose a new approach for view-invariant representation via video group align-
ment pre-training. The group video alignment conducts dense contrastive losses over each visual
encoder layer. To accommodate more general multi-view data, we perform sparse contrastive learn-
ing via egocentric and exocentric video pairs. The two-step pre-training pipeline enables us to realize
better performance on various tasks such as temporal action segmentation and action anticipation.
In addition, we investigate the zero-shot capacity of the view-invariant model for novel views, where
the promising results indicate the potential of learning comprehensive view-invariant representation.
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