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ABSTRACT

Guided diffusion is a technique for conditioning the output of a diffusion model
at sampling time without retraining the network for each specific task. However,
one drawback of diffusion models, whether they are guided or unguided, is their
slow sampling process. Recent techniques can accelerate unguided sampling by
applying high-order numerical methods to the sampling process when viewed as
differential equations. On the contrary, we discover that the same techniques do
not work for guided sampling, and little has been explored about its accelera-
tion. This paper explores the culprit of this problem and provides a solution based
on operator splitting methods, motivated by our key finding that classical high-
order numerical methods are unsuitable for the conditional function. Our pro-
posed method can re-utilize the high-order methods for guided sampling and can
generate images with the same quality as a 250-step DDIM baseline using 32-58%
less sampling time on ImageNet256. We also demonstrate usage on a wide vari-
ety of conditional generation tasks, such as text-to-image generation, colorization,
inpainting, and super-resolution.

1 INTRODUCTION

A family of generative models known as diffusion models has recently gained a lot of attention
with state-of-the-art image generation quality (Dhariwal & Nichol, 2021). Guided diffusion is an
approach for controlling the output of a trained diffusion model for conditional generation tasks
without retraining its network. By engineering a task-specific conditional function and modifying
only the sampling procedure, guided diffusion models can be used in a variety of applications, such
as class-conditional image generation (Dhariwal & Nichol, 2021; Kawar et al., 2022), text-to-image
generation (Nichol et al., 2022), image-to-image translation (Zhao et al., 2022), inpainting (Chung
et al., 2022a), colorization (Song et al., 2020b), image composition (Sasaki et al., 2021), adversarial
purification (Wang et al., 2022; Wu et al., 2022) and super-resolution (Choi et al., 2021).

One common drawback of both guided and regular “unguided” diffusion models is their slow sam-
pling processes, usually requiring hundreds of iterations to produce a single image. Recent speed-
up attempts include improving the noise schedule (Nichol & Dhariwal, 2021; Watson et al., 2021),
redefining the diffusion process to be non-Markovian, thereby allowing a deterministic sampling
process Song et al. (2020a), network distillation that teaches a student model to simulate multiple
sampling steps of a teacher model Salimans & Ho (2022); Luhman & Luhman (2021), among oth-
ers. Song et al. (2020a) show how each sampling step can be expressed as a first-order numerical
step of an ordinary differential equation (ODE). Similarly, Song et al. (2020b) express the sam-
pling of a score-based model as solving a stochastic differential equation (SDE). By regarding the
sampling process as an ODE/SDE, many high-order numerical methods have been suggested, such
as Liu et al. (2022), Zhang & Chen (2022), and Zhang et al. (2022) with impressive results on un-
guided diffusion models. However, when applied to guided diffusion models, these methods produce
surprisingly poor results (see Figure 1)—given a few number of steps, those high-order numerical
methods actually perform worse than low-order methods.

Guided sampling differs from the unguided one by the addition of the gradients of the conditional
function to its sampling equation. The observed performance decline thus suggests that classical
high-order methods may not be suitable for the conditional function and, consequently, the guided
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Figure 1: Generated samples of a classifier-guided diffusion model trained on ImageNet256 using
8-256 sampling steps from different sampling methods. Our technique, STSP4, produces high-
quality results in a fewer number of steps.

sampling equation as a whole. Our paper tests this hypothesis and presents an approach to acceler-
ating guided diffusion sampling. The key idea is to use an operator splitting method to split the less
well-behaved conditional function term from the standard diffusion term and solve them separately.
This approach not only allows re-utilizing the successful high-order methods on the diffusion term
but also provides us with options to combine different specialized methods for each term to maxi-
mize performance. Note that splitting methods have also been explored by Dockhorn et al. (2022)
to solve unguided diffusion SDEs, but our work focuses on accelerating guided diffusion ODEs.

Our design process includes comparing different splitting methods and numerical methods for each
split term. When tested on ImageNet, our approach achieves the same level of image quality as a
DDIM baseline while reducing the sampling time by approximately 32-58%. Compared with other
sampling methods using the same sampling time, our approach provides better image quality as
measured by LPIPS, FID, and Perception/Recall. With only minimal modifications to the sampling
equation, we also show successful acceleration on various conditional generation tasks.

2 BACKGROUND

This section provides a high-level summary of the theoretical foundation of diffusion models as well
as numerical methods that have been used for diffusion models. Here we briefly explain a few that
contribute to our method.

2.1 DIFFUSION MODELS

Assuming that x0 is a random variable from the data distribution we wish to reproduce, diffusion
models define a sequence of Gaussian noise degradation of x0 as random variables x1, x2, ..., xT ,
where xt ∼ N (

√
1− βtxt−1, βtI) and βt ∈ [0, 1] are parameters that control the noise levels.

With a property of Gaussian distribution, we can express xt directly as a function of x0 and noise
ϵ ∼ N (0, I) by xt =

√
ᾱtx0+

√
1− ᾱtϵ, where ᾱt =

∏t
i=1(1−βi). By picking a sufficiently large

T (e.g., 1,000) and an appropriate set of βt, we can assume xT is a standard Gaussian distribution.
The main idea of diffusion model generation is to sample a Gaussian noise xT and use it to reversely
sample xT−1, xT−2, ... until we obtain x0, which belongs to our data distribution.

Ho et al. (2020) propose Denoising Diffusion Probabilistic Model (DDPM) and explain how to
employ a neural network ϵθ(xt, t) to predict the noise ϵ that is used to compute xt. To train the
network, we sample a training image x0, t, and ϵ to compute xt using the above relationship. Then,
we optimize our network ϵθ to minimize the difference between the predicted and real noise, i.e.,
∥ϵ− ϵθ(xt, t)∥2.
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Song et al. (2020a) introduce Denoising Diffusion Implicit Model (DDIM), which uses the network
ϵθ to deterministically obtain xt−1 given xt. The DDIM generative process can be written as

xt−1 =

√
ᾱt−1

ᾱt

(
xt −

√
1− ᾱtϵθ(xt, t)

)
+
√

1− ᾱt−1ϵθ(xt, t). (1)

This formulation could be used to skip many sampling steps and boost sampling speed. To turn this
into an ODE, we rewrite Equation 1 as:

xt−∆t√
ᾱt−∆t

=
xt√
ᾱt

+

(√
1− ᾱt−∆t

ᾱt−∆t
−
√

1− ᾱt

ᾱt

)
ϵθ(xt, t), (2)

which is now equivalent to a numerical step in solving an ODE. To derive the corresponding ODE,
we can re-parameterize σt =

√
1− ᾱt/

√
ᾱt, x̄(t) = xt/

√
ᾱt and ϵ̄σ(x̄) = ϵθ(xt, t), yielding

x̄(t−∆t)− x̄(t) = (σt−∆t − σt)ϵ̄σ(x̄). By letting (σt−∆t − σt) → 0, the ODE becomes:

dx̄

dσ
= ϵ̄σ(x̄). (3)

Note that this change of variables is equivalent to an exponential integrator technique described in
both Zhang & Chen (2022) and Lu et al. (2022). Since xt and x̄(t) have the same value at t = 0,
our work can focus on solving x̄(t) rather than xt. Many numerical methods can be applied to the
ODE Equation 3 to accelerate diffusion sampling. We next discuss some of them that are relevant.

2.2 NUMERICAL METHODS

Euler’s Method is the most basic numerical method. A forward Euler step is given by x̄n+1 =
x̄n + ∆σϵ̄σ(x̄n). When the forward Euler step is applied to the ODE Equation 3, we obtain the
DDIM formulation (Song et al., 2020a).

Heun’s Method, also known as the trapezoid rule or improved Euler, is given by: x̄n+1 = x̄n +
∆σ
2 (e1+ e2), where e1 = ϵ̄σ(x̄n) and e2 = ϵ̄σ(x̄n+∆σe1). This method splits Euler’s method into

two steps to improve accuracy. Many papers have used this method on diffusion models, including
Algorithm 1 in Karras et al. (2022) and DPM-Solver-2 in Lu et al. (2022). This method is also the
simplest case of Predictor-Corrector methods used in Song et al. (2020b).

Runge-Kutta Methods represent a class of numerical methods that integrate information from mul-
tiple hidden steps and provide high accuracy results. Heun’s method also belongs to a family of
2nd-order Runge-Kutta methods (RK2). The most well-known variant is the 4th-order Runge-Kutta
method (RK4), which is written as follows:

e1 = ϵ̄σ(x̄n), e2 = ϵ̄σ

(
x̄n +

∆σ

2
e1

)
, e3 = ϵ̄σ

(
x̄n +

∆σ

2
e2

)
, e4 = ϵ̄σ (x̄n +∆σe3) ,

x̄n+1 = x̄n +
∆σ

6
(e1 + 2e2 + 2e3 + e4). (4)

This method has been tested on diffusion models in Liu et al. (2022) and Salimans & Ho (2022), but
it has not been used as the main proposed method in any paper.

Linear Multi-Step Method, similar to the Runge-Kutta methods, aims to combine information from
several steps. However, rather than evaluating new hidden steps, this method uses the previous steps
to estimate the new step. The 1st-order formulation is the same as Euler’s method. The 2nd-order
formulation is given by

x̄n+1 = x̄n +
∆σ

2
(3e0 − e1) , (5)

while the 4th-order formulation is given by

x̄n+1 = x̄n +
∆σ

24
(55e0 − 59e1 + 37e2 − 9e3), (6)

where ek = ϵ̄σ(x̄n−k). These formulations are designed for a constant ∆σ in each step. However,
our experiments and previous work that uses this method (e.g., Liu et al. (2022); Zhang & Chen
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(2022)) still show good results when this assumption is not strictly satisfied, i.e., when ∆σ is not
constant. We will refer to these formulations as PLMS (Pseudo Linear Multi-Step) for the rest of
the paper, like in Liu et al. (2022). A similar linear multi-step method for non-constant ∆σ can also
be derived using a technique used in Zhang & Chen (2022), which we detail in Appendix B. This
non-constant version can improve upon PLMS slightly, but it is not as flexible because we have to
re-derive the update rule every time the σ schedule changes.

3 SPLITTING METHODS FOR GUIDED DIFFUSION MODELS

This section introduces our technique that uses splitting numerical methods to accelerate guided
diffusion sampling. We first focus our investigation on classifier-guided diffusion models for class-
conditional generation and later demonstrate how this technique can be used for other conditional
generation tasks in Section 4.3. Like any guided diffusion models, classifier-guided models (Dhari-
wal & Nichol, 2021) share the same training objective with regular unguided models with no mod-
ifications to the training procedure; but the sampling process is guided by an additional gradient
signal from an external classifier to generate class-specific output images. Specifically, the sampling
process is given by

ϵ̂ = ϵθ(xt)−
√
1− ᾱt∇x log pϕ(c|xt), xt−1 =

√
ᾱt−1

(
xt −

√
1− ᾱtϵ̂√
ᾱt

)
+
√
1− ᾱt−1ϵ̂, (7)

where pϕ(c|xt) is a classifier model trained to output the probability of xt belonging to class c. As
discussed in the previous section, we can rewrite this formulation as a “guided ODE”:

dx̄

dσ
= ϵ̄σ(x̄)−∇fσ(x̄), (8)

where fσ(x̄) = σ√
σ2+1

log pϕ(c|xt). We refer to fσ as the conditional function, which can be
substituted with other functions for different tasks. After obtaining the ODE form, any numerical
solver mentioned earlier can be readily applied to accelerate the sampling process. However, we
observe that classical high-order numerical methods (e.g., PLMS4, RK4) fail to accelerate this task
(see Figure 1) and even perform worse than the baseline DDIM.

We hypothesize that the two terms in the guided ODE may have different numerical behaviors
with the conditional term being less suitable to classical high-order methods. We speculate that the
difference could be partly attributed to how they are computed: ∇fσ(x̄) is computed through back-
propagation, whereas ϵ̄σ(x̄) is computed directly by evaluating a network. One possible solution to
handle terms with different behaviors is the so-called operator splitting method, which divides the
problem into two subproblems:

dy

dσ
= ϵ̄σ(y),

dz

dσ
= −∇fσ(z). (9)

We call these the diffusion and condition subproblems, respectively. This method allows separating
the hard-to-approximate ∇fσ(z) from ϵ̄σ(y) and solving them separately in each time step. Impor-
tantly, this helps reintroduce the effective use of high-order methods on the diffusion subproblem as
well as provides us with options to combine different specialized methods to maximize performance.
We explore two most famous first- and second-order splitting techniques for our task:

3.1 LIE-TROTTER SPLITTING (LTSP)

Our first example is the simple first-order Lie-Trotter splitting method (Trotter, 1959), which ex-
presses the splitting as

dy

dσ
= ϵ̄σ(y), y(σn) = x̄n, σ ∈ [σn+1, σn] (10)

dz

dσ
= −∇fσ(z), z(σn) = y(σn+1), σ ∈ [σn+1, σn] (11)

with the solution of this step being x̄n+1 = z(σn+1). Note that σn is a decreasing sequence. Here
Equation 10 is the same as Equation 3, which can be solved using any high-order numerical method,
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Algorithm 1: Lie-Trotter Splitting (LTSP)

sample x̄0 ∼ N (0, σ2
maxI) ;

for n ∈ {0, ..., N − 1} do
yn+1 = PLMS(x̄n, σn, σn+1, ϵ̄σ);
x̄n+1 = yn+1− (σn+1−σn)∇f(yn+1) ;

end
Result: x̄N

Algorithm 2: Strang Splitting (STSP)

sample x̄0 ∼ N (0, σ2
maxI) ;

for n ∈ {0, ..., N − 1} do
zn+1 = x̄n − (σn+1−σn)

2 ∇f(x̄n) ;
yn+1 = PLMS(zn+1, σn, σn+1, ϵ̄σ);
x̄n+1 = yn+1 − (σn+1−σn)

2 ∇f(yn+1) ;
end
Result: x̄N

e.g., PLMS. For Equation 11, we can use a forward Euler step:
zn+1 = zn −∆σ∇fσ(zn). (12)

This is equivalent to a single iteration of standard gradient descent with a learning rate ∆σ. This
splitting scheme is summarized by Algorithm 1. We investigate different numerical methods for
each subproblem in Section 4.1.

3.2 STRANG SPLITTING (STSP)

Strang splitting (or Strang-Marchuk) (Strang, 1968) is one of the most famous and widely used
operator splitting methods. This second-order splitting works as follows:

dz

dσ
= −∇fσ(z), z(σn) = x̄n, σ ∈

[
1

2
(σn + σn+1), σn

]
(13)

dy

dσ
= ϵ̄σ(y), y(σn) = z

(
1

2
(σn + σn+1)

)
, σ ∈ [σn+1, σn] (14)

dz̃

dσ
= −∇fσ(z̃), z̃

(
1

2
(σn + σn+1)

)
= y(σn+1), σ ∈

[
σn+1,

1

2
(σn + σn+1)

]
(15)

Instead of solving each subproblem for a full step length, we solve the condition subproblem for
half a step before and after solving the diffusion subproblem for a full step. In theory, we can swap
the order of operations without affecting convergence, but it is practically cheaper to compute the
condition term twice rather than the diffusion term twice because fσ is typically a smaller network
compared to ϵ̄σ . The Strange splitting algorithm is shown in Algorithm 2. This method can be
shown to have better accuracy than the Lie-Trotter method, as proven in Appendix N. Although it
requires evaluating the condition term twice per step in exchange for improved image quality. We
assess this trade-off in the experiment section.

4 EXPERIMENTS

Extending on our observation that classical high-order methods failed on guided sampling, we con-
ducted a series of experiments to investigate this problem and evaluate our solution. Section 4.1
uses a simple splitting method (first-order LTSP) to study the effects that high-order methods have
on each subproblem, leading to our key finding that only the conditional subproblem is less suited to
classical high-order methods. This section also determines the best combination of numerical meth-
ods for the two subproblems under LTSP splitting. Section 4.2 explores improvements from using a
higher-order splitting method and compares our best scheme to previous work. Finally, Section 4.3
applies our approach to a variety of conditional generation tasks with minimal changes.

For our comparison, we use pre-trained state-of-the-art diffusion models and classifiers from Dhari-
wal & Nichol (2021), which were trained on the ImageNet dataset (Russakovsky et al., 2015) with
1,000 total sampling steps. We treat full-path samples from a classifier-guided DDIM at 1,000
steps as reference solutions. Then, the performance of each configuration is measured by the image
similarity between its generated samples using fewer steps and the reference DDIM samples, both
starting from the same initial noise map. Given the same sampling time, we expect configurations
with better performance to better match the full DDIM. We measure image similarity using Learned
Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) (lower is better) and measure sam-
pling time on a single NVIDIA RTX 3090 and a 24-core AMD Threadripper 3960x.
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(a) Varying the method for the diffusion subproblem
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IP
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3 × 10 2
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Euler (DDIM)
[PLMS1, PLMS1]
[PLMS1, PLMS2]
[PLMS1, PLMS4]
[PLMS1, RK2]
[PLMS1, RK4]

(b) Varying the method for the condition subproblem

Figure 2: Comparison of different combinations of numerical methods under LTSP splitting for
guided diffusion sampling. We plot LPIPS against the sampling time. [A, B] denotes the use of
method A in the diffusion subproblem and method B in the condition subproblem. The red dotted
lines indicate a reference DDIM score obtained from 250 sampling steps, which produce images
visually close to those from 1,000 steps.

4.1 FINDING A SUITABLE NUMERICAL METHOD FOR EACH SUBPROBLEM

To study the effects of different numerical methods on each subproblem of the guided ODE (Equa-
tion 8), we use the simplest Lie-Trotter splitting, which itself requires no additional network evalu-
ations. This controlled experiment has two setups: a) we fix the numerical method for the condition
subproblem (Equation 11) to first-order PLMS1 (Euler’s method) and vary the numerical method
for the diffusion subproblem (Equation 10), and conversely b) we fix the method for the diffusion
subproblem and vary the method for the condition subproblem. The numerical method options
are Euler’s method (PLMS1), Heun’s method (RK2), 4th order Runge-Kutta’s method (RK4), and
2nd/4th order pseudo linear multi-step (PLMS2/PLMS4). We report LPIPS vs. sampling time of
various numerical combinations on a diffusion model trained on ImageNet 256×256 in Figure 2.
The red dotted lines indicate a reference DDIM score obtained from 250 sampling steps, a common
choice that produces good samples that are perceptually close to those from a full 1,000-step DDIM
(Dhariwal & Nichol, 2021; Nichol & Dhariwal, 2021).

Given a long sampling time, non-split PLMS4 performs better than the DDIM baseline. However,
when the sampling time is reduced, the image quality of PLMS4 rapidly decreases and becomes
much worse than that of DDIM, especially under 15 seconds in Figure 2. When we split the ODE
and solve both subproblems using first-order PLMS1 (Euler), the performance is close to that of
DDIM, which is also considered first-order but without any splitting. This helps verify that merely
splitting the ODE does not significantly alter the sampling speed.

In the setup a), when RK2 and RK4 are used for the diffusion subproblem, they also perform worse
than the DDIM baseline. This slowdown is caused by the additional evaluations of the network by
these methods, which outweigh the improvement gained in each longer diffusion step. Note that if
we instead measure the image quality with respect to the number of diffusion steps, RK2 and RK4
can outperform other methods (Appendix E); however, this is not our metric of interest. On the
other hand, PLMS2 and PLMS4, which require no additional network evaluations, are about 8-10%
faster than DDIM and can achieve the same LPIPS score as the DDIM that uses 250 sampling steps
in 20-26 fewer steps. Importantly, when the sampling time is reduced, their performance does not
degrade rapidly like the non-split PLMS4 and remains at the same level as DDIM.

In the setup b) where we vary the numerical method for the condition subproblem, the result re-
veals an interesting contrast—none of the methods beats DDIM and some even make the sampling
diverged [PLMS1, RK4]. These findings suggest that the gradients of conditional functions are less
“compatible” with classical high-order methods, especially when used with a small number of steps.
This phenomenon may be related to the “stiffness” condition of ODEs, which we discuss further in
Section 5. For the remainder of our experiments, we will use the combination [PLMS4, PLMS1] for
the diffusion and condition subproblems, respectively.
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STSP4 [PLMS4,PLMS1]

Figure 3: Comparison of different numerical
methods for guided diffusion sampling.

Sampling time within
5 sec. 10 sec. 15 sec. 20 sec.

DDIM 0.116 0.062 0.043 0.033
PLMS4 0.278 0.141 0.057 0.026
RK2 0.193 0.059 0.036 0.028
RK4 0.216 0.054 0.039 0.028
LTSP4 0.121 0.058 0.037 0.028
STSP4 0.079 0.035 0.022 0.013

Table 1: Average LPIPS when the sampling time is
limited to be under 5 - 20 seconds.

4.2 IMPROVED SPLITTING METHOD

This experiment investigates improvements from using a high-order splitting method, specifically
the Strang splitting method, with the numerical combination [PLMS4, PLMS1] and compares our
methods to previous work. Note that besides DDIM Dhariwal & Nichol (2021), no previous work
is specifically designed for accelerating guided sampling, thus the baselines in this comparison are
only adaptations of the core numerical methods used in those papers. And to our knowledge, no prior
guided-diffusion work uses splitting numerical methods. Non-split numerical method baselines are
PLMS4, which is used in Liu et al. (2022), RK2, which is used in Karras et al. (2022); Lu et al.
(2022), and higher-order RK4. We report the LPIPS scores of these methods with respect to the
sampling time in Figure 3 and Table 1.

Without any splitting, PLMS4, RK2 and RK4 show significantly poorer image quality when used
with short sampling times < 10 seconds. The best performer is our Strang splitting (STSP4), which
can reach the same quality as 250-step DDIM while using 32-58% less sampling time. STSP4 also
obtains the highest LPIPS scores for sample times of 5, 10, 15, and 20 seconds. More statistical
details and comparison with other split combinations are in Appendix F, G.

In addition, we perform a quantitative evaluation for class-conditional generation by sampling
50,000 images based on uniformly chosen class conditions with a small number of sampling steps
and evaluating the Fenchel Inception Distance (FID) Heusel et al. (2017) (lower is better) and the
improved precision/recall Kynkäänniemi et al. (2019) (higher is better) against the ImageNet test set
at 128, 256, and 512 resolutions. Following (Dhariwal & Nichol, 2021), we use a 25-step DDIM as a
baseline, which already produces visually reasonable results. As PLMS and LTSP require the same
number of network evaluations as the DDIM, they are used also with 25 steps. For STSP with a
slower evaluation time, it is only allowed 20 steps, which is the highest number of steps such that its
sampling time is within that of the baseline 25-step DDIM. Here LTSP2 and STSP2 are Lie-Trotter
and Strang splitting methods with the combination [PLMS2, PLMS1]. In Table 2, we report the
results for three different ImageNet resolutions and the average sampling time per image in seconds.

Our STSP4 performs best on all measurements except Recall on ImageNet512. On ImageNet512,
PLMS4 has the highest Recall score but a poor FID of 16, indicating that the generated images have
good distribution coverage but may poorly represent the real distribution. On ImageNet256, STSP4
can yield 4.49 FID in 20 steps, compared to 4.59 FID in 250 steps originally reported in the paper
(Dhariwal & Nichol, 2021). Our STSP4 is about 9.4× faster when tested on the same machine.

4.3 SPLITTING METHODS IN OTHER TASKS

Besides class-conditional generation, our approach can also accelerate any conditional image gen-
eration as long as the gradient of the conditional function can be defined. We test our approach on
four tasks: text-to-image generation, image inpainting, colorization, and super-resolution.

Text-to-image generation: We use a pre-trained text-to-image Disco-Diffusion (Letts et al., 2021)
based on Crowson (2021), which substitutes the classifier output with the dot product of the image
and caption encodings from CLIP (Radford et al., 2021). For more related experiments on Stable-
Diffusion (Rombach et al., 2022), please refer to Appendix L, M.
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Method Steps Time FID Prec Rec

ImageNet128
DDIM 25 0.55 6.69 0.78 0.49
PLMS2 25 0.57 5.71 0.80 0.51
PLMS4 25 0.57 4.97 0.80 0.53
LTSP2 25 0.55 5.14 0.81 0.51
LTSP4 25 0.55 3.85 0.81 0.54
STSP2 20 0.54 5.33 0.80 0.52
STSP4 20 0.54 3.78 0.81 0.54
ADM-G 250 5.59* 2.97 0.78 0.59

Method Steps Time FID Prec Rec

ImageNet256
DDIM 25 1.99 5.47 0.80 0.47
PLMS4 25 2.05 4.71 0.82 0.49
STSP4 20 1.95 4.49 0.83 0.50
ADM-G 250 20.9* 4.59 0.82 0.50

ImageNet512
DDIM 25 5.56 9.07 0.81 0.42
PLMS4 25 5.78 16.00 0.75 0.51
STSP4 20 5.13 8.24 0.83 0.45
ADM-G 250 56.2* 7.72 0.87 0.42

Table 2: Comparison of different numerical methods using a few steps on guided diffusion sampling.
Our methods and the best scores are highlighted in bold. We provide the reported scores from
Dhariwal & Nichol (2021) using 250 sampling steps, referred to as ADM-G in their paper. *ADM-
G’s sampling times are measured using our machine.

“A beautiful painting of a singular
lighthouse, shining its light across

a tumultuous sea of blood,
trending on artstation.”

“A beautiful painting of a starry
night, over a sunflower sea,

trending on artstation.”

Full DDIM DDIM PLMS4 LTSP4 STSP4
(1,000 steps) (45 steps) (45 steps) (45 steps) (30 steps)

(approximately using the same sampling time)

Figure 4: Text-to-image generation using different sampling methods.

Image inpainting & colorization: For these two tasks, we follow the techniques proposed in Song
et al. (2020b) and Chung et al. (2022a), which improves the conditional functions of both tasks
with “manifold constraints.” We use the same diffusion model Dhariwal & Nichol (2021) trained on
ImageNet as our earlier Experiments 4.1, 4.2.

Super-resolution: We follow the formulation from ILVR (Choi et al., 2021) combined with the
manifold contraints Chung et al. (2022a), and also use our earlier ImageNet diffusion model.

Figure 4 compares our techniques, LTSP4 and STSP4, with the DDIM baseline and PLMS4 on
text-to-image generation. Each result is produced using a fixed sampling time of about 26 seconds.
STSP4, which uses 30 diffusion steps compared to 45 in the other methods, produces more realistic
results with color contrast that is more similar to the full DDIM references’. Figure 5 shows that
our STSP4 produces more convincing results than the DDIM baseline with fewer artifacts on the
other three tasks while using the same 5 second sampling time. Implementation details, quantitative
evaluations, and more results are in Appendix J, K.

5 DISCUSSION

Our findings show that when the sampling ODE consists of multiple terms from different networks,
their numerical behaviors can be different and treating them separately can be more optimal. Another
promising direction is to improve the behavior of the gradient of the conditional function / classifier
itself and study whether related properties such as adversarial robustness or gradient smoothness can
induce the desirable temporal smoothness in the sampling ODE. However, it is not yet clear what
specific characteristics of the behavior play an important role. This challenge may be related to a
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Figure 5: Guided-diffusion results of our STSP4 and DDIM on inpainting, colorization, and super-
resolution. Both methods were limited to use approximately the same sampling time.

condition called “stiffness” in solving ODEs Ernst & Gerhard (2010), which lacks a clear definition
but describes the situation where explicit numerical methods, such as RK or PLMS, require a very
small step size even in regions with smooth curvature.

As an alternative to the classifier-guided model, Ho & Salimans (2021) propose a classifier-free
model that can perform conditional generation without a classifier while remaining a generative
model. This model can utilize high-order methods as no classifier is involved, but it requires evalu-
ating the classifier-free network twice per step, which is typically more expensive than evaluating a
normal diffusion model and a classifier. It is important to note that our accelerating technique and
classifier-free models are not mutually exclusive, and one can still apply a conditional function and
our splitting technique to guide a classifier-free model in a direction it has not been trained for.

While our paper only focuses on ODEs derived from the deterministic sampling of DDIM, one can
convert SDE-based diffusion models to ODEs (Karras et al., 2022) and still use our technique. More
broadly, we can accelerate any diffusion model that can be expressed as a differential equation with
a summation of two terms. When these terms behave differently, the benefit from splitting can be
substantial. Nevertheless, our findings are based on common, existing models and σ schedule from
Dhariwal & Nichol (2021). Further investigation into the impact of the σ schedule or different types
and architectures of diffusion models is still required.

6 CONCLUSION

In this paper, we investigate the failure to accelerate guided diffusion sampling of classical high-
order numerical methods and propose a solution based on splitting numerical methods. We found
that the gradients of conditional functions are less suitable to classical high-order numerical meth-
ods and design a technique based on Strang splitting and a combination of forth- and first-order
numerical methods. Our method achieves better LPIPS and FID scores than previous work given
the same sampling time and is 32-58% faster than a 250-step DDIM baseline. Our technique can
successfully accelerate a variety of tasks, such as text-to-image generation, inpainting, colorization,
and super-resolution.
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