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Abstract

Efficiently reconstructing 3D scenes from monocular
video remains a core challenge in computer vision, vital
for applications in virtual reality, robotics, and scene under-
standing. Recently, frame-by-frame progressive reconstruc-
tion without camera poses is commonly adopted, incurring
high computational overhead and compounding errors when
scaling to longer videos. To overcome these issues, we in-
troduce VideoLifter, a novel video-to-3D pipeline that
leverages a local-to-global strategy on a fragment basis,
achieving both extreme efficiency and SOTA quality. Locally,
VideoLifter leverages learnable 3D priors to register
fragments, extracting essential information for subsequent
3D Gaussian initialization with enforced inter-fragment con-
sistency and optimized efficiency. Globally, it employs a
tree-based hierarchical merging method with key frame guid-
ance for inter-fragment alignment, pairwise merging with
Gaussian point pruning, and subsequent joint optimization
to ensure global consistency while efficiently mitigating cu-
mulative errors. This approach significantly accelerates the
reconstruction process, reducing training time by over 82%
while achieving better visual quality than SOTA methods.

1. Introduction

Reconstructing 3D scenes from image observations is a
longstanding problem in computer vision, with applications
spanning AR/VR, video processing, and autonomous driv-
ing. Recently, reconstructing 3D scenes from a single video
(video-to-3D) has gained significant traction. This trend is
driven by two factors: the increasing accessibility of hand-
held capture devices, making video capture more practical
for non-professional users, and recent advancements in high-
fidelity 3D reconstruction methods such as Neural Radiance
Fields (NeRF) [23] and 3D Gaussian Splatting (3D-GS) [14].

Most video-to-3D reconstruction methods heavily depend
on Structure-from-Motion (SfM) [28] to generate initial
sparse reconstructions, providing essential components like
camera poses, intrinsics, and the initial point cloud to build

dense 3D models using NeRF or 3DGS. However, when ap-
plied to video data, SfM is often unreliable or even infeasible
(Issue @), because it relies on photometric assumptions that
frequently break down in low-texture or challenging lighting
conditions [21, 24, 28], though some works have improved
SfM under certain conditions [18]. In response, recent meth-
ods [3, 7, 17, 37] have shifted toward jointly optimizing
camera poses and scene representations rather than relying
solely on SfM-based initializations. However, these methods
still depend on accurate camera intrinsics from SfM, limiting
their applicability in in-the-wild video scenarios.

More importantly, those SfM-free video-to-3D methods
typically reconstruct scenes incrementally from a canoni-
cal view, leading to two critical issues. First, they are slow
and inefficient (Issue @) due to an iterative, frame-by-frame
approach that re-optimizes the entire sequence with each
new frame, thereby prolonging training times (> 2 hours)
and complicating the handling of complex trajectories, espe-
cially in a video setting (as opposed to just a few images).
Naively applying the non-incremental InstantSplat [5] to
video data leads to out-of-memory (OOM) issues, prevent-
ing it from scaling to many frames (see Tab. 2). Second,
they are susceptible to incremental errors (Issue ©), as the
frame-by-frame approach tends to accumulate errors over
long video sequences.

To address these issues, we propose VideoLifter, a
novel video-to-3D reconstruction pipeline that achieves a
5x speed-up and enhanced novel view-synthesis quality
compared to state-of-the-art methods, as demonstrated in
Fig. 1. We effectively adopt the local-to-global approach to
handle long-sequence videos on a fragment basis and then
subsequently merge fragments into a final, globally consis-
tent 3D scene. Our pipeline is driven by two key innovations
that make the local-to-global concept workable with sig-
nificantly boosted efficiency (Issue @) and much-reduced
incremental errors (Issue ©) on video-to-3D. First, in the
Fragment Registration with Learned 3D Priors (Local)
stage, we extract essential information from each fragment
(e.g., pointmaps and local camera poses for 3D Gaussian
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Figure 1. Novel View Synthesis and Training Time Comparisons on Tanks and Temples dataset. VideoLifter does not require
precomputed camera parameters (i.e., camera intrinsics K from COLMAP), reduces the training time required by the most relevant baseline

CF-3DGS [7] by 82% while improving image quality (SSIM).

initialization) by leveraging pretrained prior models such
as MASt3R [16] to address Issue @. Rather than naively
using 3D priors to initialize 3D Gaussians, like InstantSplat
(MASt3R + 3D-GS) [5], we improve efficiency by (1) en-
forcing inter-fragment consistency via solely considering
the key frames, solved on an efficient subgraph instead of
a complete graph, and (2) extracting only the essential pa-
rameters (6-dimensional quaternion pose and 1-dimensional
scale) for each view within each fragment, thereby avoiding
costly global optimization of full point maps. Second, in
the Hierarchical Gaussian Alignment (Global) stage, we
merge fragments through a tree-based hierarchical frame-
work that employs key frame guidance for inter-fragment
alignment, pairwise merging with Gaussian point pruning,
and subsequent joint optimization to ensure global consis-
tency and mitigate cumulative errors efficiently. Overall, our
main contributions are as follows:

* We introduce VideoLifter, an efficient, high-quality,
and robust video-to-3D reconstruction framework with a
local-to-global strategy.

* Our fragment registration with learned 3D priors effi-
ciently extracts essential representations for subsequent
dense 3D-GS with several key efficiency-driven optimiza-
tions along with learned 3D priors to remove reliance on
traditional module SfM.

* Our hierarchical 3D Gaussian alignment minimizes
incremental errors through three well-designed iterative
stages, ensuring both accuracy and efficiency.

» Extensive experiments on the Tanks and Temples and
CO3D-V2 datasets demonstrate that VideoLifter sig-
nificantly enhances training efficiency, achieves over a
5% speed-up and improves rendering quality compared to
state-of-the-art methods.

2. Related Works

3D Representations for Novel View Synthesis. 3D re-
construction for high-quality novel view synthesis generates
unseen views of a scene or object from a set of images [1, 22].
After the seminal NeRF work [23], a wave of unstructured
radiance field methods has emerged [14, 39], each adopt-

ing different scene-representation primitives. Among these,
3D-GS [14] stands out with impressive performance in effi-
ciently reconstructing complex, real-world scenes with high
fidelity. Both NeRFs and 3DGS rely on carefully captured
sequential video or multi-view images to ensure sufficient
scene coverage, utilizing preprocessing tools like SfM (e.g.,
COLMAP [28]) to compute camera parameters and provide
a sparse SfM point cloud as additional input.

Traditional Structure-from-Motion (SfM). Estimating
3D structure and camera motion is a well-explored chal-
lenge [8, 25, 38]. SfM has seen significant advancements
across various dimensions. Methods like [10, 19] focus on
enhancing feature detection, [30] introduces innovative opti-
mization methods, [9, 28] explore improved data represen-
tations and more robust structural solutions. Despite these
advances, traditional SfM techniques remain vulnerable to is-
sues such as low-texture regions, occlusions, moving objects,
and lighting variations, limiting their overall robustness and
performance.

Radiance Field without SfM. Inaccuracies from SfM can
propagate through subsequent radiance field reconstruction,
reducing overall quality. Various approaches have been pro-
posed to eliminate the reliance on SfM by jointly optimiz-
ing camera parameters and scene representation, such as
NeRFmm [37] and BARF [17]. GAREF [12] further simpli-
fies the joint optimization and improves both efficiency and
accuracy by using Gaussian-MLP models. SPARF [33] and
TrackNeRF [20] introduce a method to simulate pose noise
by injecting Gaussian noise into the camera parameters. Re-
cently, depth priors from a monocular depth estimator have
been used to guide radiance field optimization [3, 4, 7, 21].
More recent work, such as [13] and InstantSplat [5], ei-
ther supplement depth priors with other priors (e.g., image
matching network), or integrate end-to-end stereo models
like DUST3R/MASt3R to reduce the dependency on camera
pose information. While these methods show promise in
removing the SfM reliance, scaling them to a large number
of views remains a challenge, such as the OOM issue (e.g.,
InstantSplat), drifting error (e.g., CF-3DGS), and unsatisfac-
tory quality (e.g., InstantSplat).
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Figure 2. CF-3DGS’s frame-by-frame pipeline accumulates errors
with long-term drift, while our method compresses drift error along
# frames. Results are tested on 247_26441_50907 from CO3D-V2.

Comparison with Simultaneous Localization and Map-
ping (SLAM) Although both SLAM and video-to-3D re-
construction process multiple views, their input conditions
and end goals differ fundamentally. First, SLAM operates on-
line, processing frames sequentially as they arrive, whereas
video-to-3D has access to the entire sequence upfront. This
offline setting enables pipelines to consider all frames to-
gether rather than a purely sequential approach. Second,
our primary objective is novel view synthesis, generating
photorealistic views from unseen viewpoints. SLAM meth-
ods are not designed to support novel view synthesis; they
only re-render the training frames [27] Hence, SLAM-based
techniques are not directly applicable to the video-to-3D
reconstruction problem.

3. videoLifter: An Efficient and Effective
Video-to-3D Framework

3.1. Video-to-3D: Challenges and Our Design

We first define the video-to-3D reconstruction problem and
outline current issues in delivering an efficient and high-
quality reconstruction pipeline. We then present our high-
level design philosophy that tackles these challenges.

Video-to-3D Reconstruction Given a sequence of N un-
posed and uncalibrated images from a monocular video, de-
noted as Z = {I; € RIDW>3I N 'videoLifter aims
to reconstruct the scene using 3D Gaussians G along with
estimated camera intrinsics K and extrinsics T = {T; €
R3*4}N | . We assume that all frames share a common in-
trinsic matrix, as they are from a single monocular video.

Key Challenges While NeRF and 3D-GS have advanced
3D reconstruction, their variants remain suboptimal for
video-to-3D reconstruction in terms of speed and quality.
Existing methods often adopt a frame-by-frame progres-
sive reconstruction method, making them inherently slow
and prone to cumulative errors (See long-term performance

drift in Fig. 2) when processing videos. Furthermore, they
typically rely on SfM to estimate camera intrinsic, which is
unreliable or even infeasible for in-the-wild video sequences.

Our High-level Framework To meet the critical need for
efficiency and quality in long-sequence video to 3D recon-
struction, we depart from conventional frame-by-frame or
holistic optimization methods by embracing a hierarchical
local-to-global design philosophy. Specifically, we process
long video sequences on a fragment basis and subsequently
merge these fragments into a single, consistent 3D scene.
Although the local-to-global concept is not new, adapting it
to a video-to-3D reconstruction pipeline with 3DGS is new,
with two key unanswered challenges:

How can we extract 3D reconstruction information effi-

ciently and reliably from monocular video?

How can we merge fragments into a high-quality and con-

sistent 3D scene without alignment issues?

In response, we propose VideoLifter, an efficient
and high-quality video-to-3D reconstruction pipeline, as
illustrated in Fig. 3. Our method achieves SOTA perfor-
mance in both speed and quality (see Fig. 1) through two-
level innovations: Local: Fragment Registration with
Learned 3D Priors with efficiency-driven designs (Sec. 3.2)
and Global: Hierarchical Gaussian Alignment to mini-
mize alignment error (Sec. 3.3).

3.2. Fragment Registration with Learned 3D Priors

First, we describe our method to efficiently and reliably ex-
tract essential 3D reconstruction information on a fragment
basis and how we enforce cross-fragment consistency.
Process Description: We partition the input video sequence
into m disjoint windows of length k, which we refer to
as fragments. For example, the ¢’th fragment is given by
I/ = [T vykrns Ia1ykros - - - Lix), where i € [1,m]. Our
objective is twofold: first, to extract essential information
for subsequent intra-fragment 3D reconstruction (e.g., point
cloud for Gaussian initialization, along with coarse local
camera extrinsics and intrinsics); and second, to obtain inter-
fragment information necessary for future local-to-global
merging.

Fragmentation Method Choice: In this work, we use a
straightforward fragmentation strategy by uniformly divid-
ing the frames into disjoint windows. Although simple, this
approach has proven effective on benchmarks. More sophis-
ticated methods, such as using frame-to-frame similarity to
guide fragmentation, could further enhance VideoLifter
(e.g., in videos with abrupt view changes during capture),
but this is orthogonal to our core contributions.
Fragment-level Challenges: Naively applying existing
methods for the fragment level (e.g., those in LocalRF [21]
or CF-3DGS [7]) is neither efficient enough nor does it ad-
equately prepare for future merging. Challenge @: SfM is
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Figure 3. Network Architecture. Given uncalibrated images, VideoLifter first employs learned priors for efficient fragment registration.
The independently optimized 3D Gaussians from fragment are then hierarchically aligned into a globally coherent 3D representation.

Matching Geometric SSIM PSNR LPIPS ATE
LoFTR [32] | Metric3Dv2 [11] | 0.9238 31.30 0.0757 0.005
MASER MASt3R 0.9347 3159 0.0730 0.004

Table 1. Comparison of prior models on Tanks and Temples.

heavily relied on for NeRF/3D-GS, while it is not always
available or reliable—especially in our video-to-3D recon-
struction with varying conditions. Challenge @: A critical
issue in the local-to-global paradigm is ensuring that frag-
ments can be merged without incurring significant alignment
errors. Challenge ®: Beyond the inherent efficiency ben-
efits of a local-to-global design, further enhancements in
efficiency are necessary for the video scenario.

Learned 3D priors (Challenge ®): 3D-GS needs point cloud
for initialization and camera pose for optimization. However,
in long-sequence video settings, traditional SfM methods
(e.g., COLMAP) are often unavailable or unreliable. While
CF-3DGS employs monocular depth estimation (a geometric
prior) on each view to obtain a point cloud, it introduces scale
issues that necessitate additional optimization during 3D-GS
training.

Inspired by recent work on replacing SIFT with NN-
based method (e.g., LOFTR [32]/GIM [29]), we eliminate
dependence on SfM and instead leverage learned 3D priors
from large-scale pretrained foundation models. In this work,
we use MASt3R [16] as our prior model since it seamlessly
integrates both geometric and matching cues. We emphasize
that our video-to-3D pipeline is not exclusively tailored to
MASt3R; rather, our VideoLifter is flexible and can
incorporate any model that provides robust geometric and
matching priors. For example, in Tab. 1, we demonstrate
that VideoLifter performs well with both MASt3R and
alternative approaches (e.g. using LoFTR [32] for matching
cues + Metric3Dv2 [11] for geometric cues). We choose
MASTt3R for its simplicity and efficiency.

Key Frames as Anchor (Challenge @, ®): In a fragment-
based approach, ensuring inter-fragment consistency is criti-
cal for high-quality 3D reconstruction. To address this, we
propose to “anchor” each fragment with a key frame (the

first frame, I(;_1)x41) and enforce consistency only among
these key frames. This strategy simplifies the consistency
problem by limiting the problem scale to % key frames in-
stead of considering whole N frames, thereby improving
efficiency and reducing complexity.

Key frame consistency is enforced at the point-cloud
level by generating a globally optimized dense point map,
along with transformation matrices across adjacent frag-
ments {17/ . L1377 To achieve this, we follow a procedure
similar to that in MASt3R [16], optimizing:

HW
(P, T7) = arg min >33 O

T ecf vee i=1

» X i
P’u - UeTer,e

(H
where for each image pair e = (v,u) € &, o, is scale
factor, P, . and O, . is the pointmap and confidence map
of v, respectively. However, MASt3R builds a complete
graph for this optimization, resulting in a complexity of
(’)((%)2) which becomes prohibitively inefficient for long
video sequences.

To enhance efficiency, rather than naively using a

MASt3R-like method, we build a more efficient sub-graph
that connects each key frame only to its four closest neigh-
boring frames. This design is motivated by the observation
that neighboring segments share greater co-visibility; hence,
edges between key frames with distant neighbors can be
safely pruned. This sub-graph greatly reduces optimization
complexity to 0(4%) (scaling linearly with the number of
frames V), yet still achieves high end-to-end reconstruction
quality.
Efficient intra-Fragment Feature Registration (Challenge
®): Finally, we aim to obtain an initial estimate of the local
camera poses and pointmaps with depth scale factors within
each non-overlapping fragment, which can accelerate and
boost the quality of the subsequent 3D Gaussian construction.
A naive solution is to follow InstantSplat [5] to use MASt3R
for full intra-fragment problem, but it requires optimizing
millions of points and camera poses, making it inefficient.

To enhance efficiency, we use the pre-obtained key frame




information and obtain the needed information by consider-
ing only the pairwise relationships between the key frame
and all subsequent frames in the same fragment. In this
way, we only need to solve for 6-dimensional camera poses
(in quaternion format) and a 1-dimensional scale factor for
each view. We found it sufficient to maintain end-to-end
reconstruction quality with high efficiency. Moreover, this
simplified, non-sequential matching approach can reduce
the incremental errors that are commonly encountered in
sequential matching (see Fi%. 2).
Take the first fragment Z{ = {Iy, ..., I} as an example:
Camera pose: We refine the relative camera poses within
the fragment using initial pairwise estimates. First, we iden-
tify the intersection of 2D correspondences between the key
frame I and each subsequent frame from index 2 to k. This
process yields a consistent set of correspondences across
all frames in the fragment. Using these intersected 2D cor-
respondences, we retrieve the corresponding 3D positions
from the key frame, which were previously optimized dur-
ing key frame processing. These 3D-2D correspondences
are then input to PnP-RANSAC [6], refining the camera
poses to ensure alignment with consistent 3D points across
views within the fragment. Only a 6-dim quaternion pose is
optimized instead of directly optimizing pointmaps.
Scale factor: Scale variations may persist within the point
clouds of the fragment due to independent inference. To
address this, intersected 3D points from the key frame are
utilized for scale estimation across all image pairs. Specifi-
cally, for each image pair between I; and {I;}%_,, the cor-
responding 3D point positions (with a total of P points) are
retrieved. A one-degree-of-freedom (1-DoF) scale factor is
computed between the intersected 3D points in the current
pair and those from the key frame:

. P
s = median({[p" /1011 ). @

which can be solved analytically (i.e., by taking the median)
with no optimization required. This scale factor is applied to
the dense pointmaps of I; in the subsequent stage, ensuring
that the point clouds within the fragment are locally aligned
and maintain a consistent scale relative to the key frame.
By solving a simplified optimization problem rather than
naively employing MASt3R global optimization as in In-
stantSplat, our method achieves a processing time of 2.97
seconds compared to 10.33 seconds—a 3% reduction in com-
putational time within fragment k=4.
Overall Efficiency/Quality Improvement with Our Novel
Fragment Registration: In contrast, to naively applying
MASt3R’s global optimization as InstantSplat [5] to com-
pute point clouds and camera poses for all images, our
method significantly enhances efficiency. As in Tab. 2, their
global optimization approach runs out of memory beyond
64 views and incurs up to an 18x longer inference time.
Moreover, Tab. 5 demonstrates that replacing our fragment

MASt3R (Global Optimization) VideoLifter (Sec. 3.2)

# Views

Time Peak GPU Time Peak GPU
(min) Mem (GB) (min) Mem (GB)
32 11 4.75 1.7 4.45
48 33 8.86 2.6 5.43
64 63 14.44 35 6.38
128 OOM OOM 7.9 16.9

Table 2. Time and peak GPU memory usage on an A6000 for
varying view counts: direct using MASt3R global optimization vs.
our Sec. 3.2.

registration with MASt3R initialization yields lower-quality
results. This is primarily because it tries to solve a more
complex global problem with less accurate pointmaps/poses
outputs, whereas our approach eases optimization complex-
ity by providing a more robust initialization for subsequent
3D-GS, delivering better quality (PSNR 27.91—30.02).

3.3. Hierarchical Gaussian Alignment

In this stage, we perform dense 3D scene reconstruction
using Gaussian Splatting. First, we construct local 3D Gaus-
sians within each fragment, and then merge these local mod-
els via hierarchical Gaussian alignment. The key design
question is how to construct a globally coherent 3D scene
while preserving local scene details without incurring signif-
icant alignment errors.

Local 3D Gaussian Construction: We initialize a set of
Gaussians, denoted as G/ = {G/}™ |, where GY is inde-
pendent initialized and optimize from fragment Iif .
Guassian initialization: In the local fragment registration
step, we obtain the key frame’s dense point cloud, along
with the relative poses and scale factors for the other frames,
which can be used to obtain entire point map within fragment.
To initialize G{ , we then assign a Gaussian to each point
in the pixel-wise point cloud, setting its attributes as: color
based on the corresponding pixel, center at the 3D point
location, opacity adhering to the 3D-GS protocol [14], and
scaling such that it projects as a one-pixel radius in the 2D
image (by dividing the depth by the focal length). We set
Gaussians as isotropic to reduce the degrees of freedom in
Gaussian training.

Further refinement: The initial camera poses and point cloud
positions may contain minor inaccuracies, we further refine
them through joint optimization of camera poses and Gaus-
sian parameters. Specifically, for each local Gaussian in Gf ,
we randomly sample frames within the fragment, render the
current Gaussians into sampled frame, and backpropagate
gradient updates to the Gaussian positions, colors, scales,
opacities, and camera poses.

Hierarchical Gaussian Alignment: Next, we merge the
local fragment-level 3D Gaussian sets G/ = {Gfc }m, tothe
final consistent 3D scene. Naive pairwise progressive merg-
ing poses Challenge @: an excessive number of Gaussians
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Figure 4. Hierarchical Gaussian Alignment. The process itera-
tively performs three stages: 1) joint optimization of camera poses
and local Gaussians (pink), 2) cross-fragment alignment for new
local Gaussian (purple), and 3) visibility masking and pairwise
merging of local Gaussians (yellow), until a globally consistent
scene reconstruction is achieved.

for optimization and @: inconsistencies among various local
Gaussian sets. To avoid these issues, we propose a tree-based
hierarchical pipeline (Fig. 4) that iteratively performs three
key processes.

1) Inter-Fragment Alignment with Key Frame Guidance
(Fig. 4 purple): To merge two independently optimized frag-
ments (e.g., G{ and Gg ), we first perform cross-fragment
alignment to ensure a faithful merging by using G{ as the
reference coordinate system. In each fragment, the key
frame, i.e., the first frame, is assigned an identity pose, and
the remaining frames are defined by their relative poses
to this key frame. In Section 3.2, we enforce consistency
between key frames and obtain the initial transformation
Tlf _,o- We then use this information as a guide to compute
the camera poses for the novel frames covered by Gg . By
enforcing photometric loss on the next novel view while
freezing all parameters in G{ , we further optimize Tlf 2
into Tlf * 5. Then, we align the Gaussians in Gg with the co-
ordinate system of G{ by using Tlf_*ﬂ_l. As shown in Tab. 5,
omitting key frame guidance leads to prolonged optimization
and degraded performance.

—

2) Pair-wise merging with visibility-mask-driven Gaussian
pruning (Fig. 4 fyellow): To avoid duplicating Gaussians in re-
gions where GGy already provides adequate scene reconstruc-
tion, with p (the pixel position on image plane), we use a vis-
ibility mask to determine areas that G{ could faithfully re-
construct: M (p) = Conf(p) > 8+ D(p) > 0. where D(p)
is rendered depth. Conf(p) = Y, a;(p) H;;ll (1-a;(p))
is the rendered confidence, e.g. if a pixel contains informa-
tion from the current gaussian, and threshold 5 determines
the masking criteria.

Fig. 5 shows that the visibility mask effectively identifies
regions where Gaussians from G{ could provide sufficient
depth and confidence. Importantly, the mask remains robust
to occlusions, even when covered by large Gaussians. As our
initialization is pixel-wise point clouds, the inverse of the
visibility mask can be directly applied to Gg to select Gaus-

i
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Figure 5. Visibility Mask showing rendering G{ into next two
novel frames in G. White region denotes faithful reconstruction
using GY, while black represents pixels unseen from G{ . With visi-
bility mask, we select complementary gaussians from Gg , merging
them with GY into G2/,

sians that complement the missing regions of G{ . These
selected Gaussians inherit previously optimized parameters,
ensuring seamless integration into a unified representation.

3) (Fig. 4 pink): After merging pair of
local Gaussians, further joint optimization is needed to
ensure the merged Gaussian set G?f meets our consistency
objectives. We jointly optimize Gaussian properties and
camera poses for G?‘f . Specifically, we randomly sample
frames within [/7, Is], render all Gaussians into each frame,
and backpropagate gradients to Gaussian positions, colors,
scales, opacities, and camera poses.

4. Experiments
4.1. Experimental Setup

Datasets: We carry out comprehensive experiments on vari-
ous real-world datasets, including Tanks and Temples [15]
and CO3D-V2 [26]. For Tanks and Temples, we evaluate
under two settings. The first follows prior works such as
NoPe-NeRF [3] and CF-3DGS [7], using a subset of up to
350 frames. The second leverages much longer video se-
quences (~1,000 frames), which cover substantially larger
scene areas. This longer-sequence setting is designed to
stress-test scalability and robustness in handling extended
trajectories. In both settings, we assess novel view synthe-
sis quality and pose estimation accuracy across 8 scenes
spanning both indoor and outdoor environments. In each
case, we use 7 out of every 8 frames from the video clips
as training data and evaluate the novel view synthesis on
the remaining frames except Family. For CO3D-V2, which
contains thousands of object-centric videos with cameras
orbiting the object, recovering camera poses is significantly
more challenging due to the complex, large camera motions
We follow the experimental settings of CF-3DGS [7] to se-
lect the same 10 scenes from different object categories and
apply the same procedure to divide training and testing sets.
Metrics: We assess our approach on two key tasks: gen-
erating novel views and estimating camera poses. For the
task of novel view synthesis, we evaluate performance using
common metrics such as PSNR, SSIM [36], and LPIPS [40].



Camera Param.  Train Time SSIM T PSNR1 LPIPS| ATE/]
COLMAP+3DGS GTK & Pose  ~50min 09175 3020 _ 0.1025 5
iﬁiggﬂl‘&[\%ﬁms) 14mins6s  0.5617 1828 0488  0.021
NeRF-mm [37] : ~13h33min _ 0.5313 2002 0.5450  0.035
BARF [17] GTK ~20h 06075 2342 05362  0.078
NoPe-NeRF [3] GTK ~30h 07125 2549 04113  0.013
CF-3DGS [7] GTK ~2h20min 09213 3114 00859  0.004
Ours - 26min20s _ 0.9347 3159 0.0730  0.004

Table 3. Quantitative Evaluations on Tanks and Temples Dataset. Our method achieves superior rendering quality and pose accuracy
while requiring minimal training time and no camera parameters. (-) indicates no camera parameters required, GT K indicates known
intrinsics, GT K & Pose indicates both known intrinsics and extrinsics. * InstantSplat cannot process dense views directly due to OOM
(see Tab. 2); thus, we adopt its chunk-by-chunk version, which yields inferior quality on long-sequence videos.

In terms of camera pose estimation, we evaluate Absolute
Trajectory Error (ATE) [31] and utilize COLMAP-generated
poses from all dense views as our ground-truth. While Rela-
tive Pose Error (RPE) [31] evaluates the local consistency of
relative transformations between consecutive frames, it can
be sensitive to discrepancies in intrinsic parameters such as
focal length. ATE provides a more comprehensive measure
of global trajectory accuracy and is better aligned with the
goals of our method, which emphasizes globally consistent
3D reconstruction [31]. As such, we prioritize ATE as the
primary metric for evaluating the poses of VideoLifter.
Implementation Details: During fragment registration,
each fragment consists of £ = 4 frames. For depth map
prediction, we utilize MASt3R with a resolution of 512 on
the longer side. We run 200 iterations for key frame optimiza-
tion. For hierarchical Gaussian alignment, we initialize each
local Gaussian using the number of pixels within the frag-
ment and train it for 200 steps. Camera poses are represented
in quaternion format. For pair-wise merging, the transfor-
mation matrix from key frame optimization is applied to
the camera poses and Gaussian points of the subsequent lo-
cal Gaussian. First, the camera poses are optimized with a
learning rate of 1e-3 for 200 steps. Next, a mask is rendered
to identify inadequately reconstructed regions, where new
Gaussians are added. This process is repeated iteratively un-
til a globally consistent Gaussian representation is achieved.
We uniformly sample % and i training views on Tanks and
Temples and CO3D-V2, respectively. All experiments were
conducted on a single Nvidia A6000 GPU to maintain fair
comparison.

4.2. Quantitative Evaluations

To quantitatively evaluate the quality of synthesized novel
views, we present the results in Tab. 3 for the Tanks and Tem-
ples dataset and Tab. 4 for the CO3D-V2 dataset. Baseline
models were re-trained using their officially released code
to ensure a fair comparison of training time. Compared to
other self-calibrating radiance field methods, our approach
achieves superior performance in terms of efficiency and
rendering quality, which is largely thanks to our decoupled

fragment registration and hierarchical alignment process.
Compared to the most relevant baseline CF-3DGS [7], we
reduce >80% training time yet get >0.012 LPIPS improve-
ment on Tanks and Temples, and reduce >85% training time
yet get >0.12 LPIPS improvement on CO3D-V2 dataset.
Note that our VideoLifter does not require any ground-
truth camera parameters, making it more adaptable to scenes
that do not have or fail to get precomputed intrinsics from
COLMAP. Compared to NeRFmm [37], which also does not
need ground-truth camera parameters, our VideoLifter
delivers much better quality and much less training time.
Quantitative results on the longer-sequence setting, as well
as detailed per-scene breakdowns, are provided in the Sup-
plementary.

4.3. Qualitative Evaluations

As shown in Fig. 6, for large-scale scenes from the Tanks
and Temples dataset, thanks to the hierarchical design in
VideoLifter, our method consistently produces sharper
details among all test views, and preserves fine details that
are well-optimized within each fragment. For the CO3D-V2
dataset, which includes 360-degree scenes with complex tra-
jectories, achieving a globally consistent 3D reconstruction
without any COLMAP initialization is even more challeng-
ing. Baselines that rely on monocular depth prediction to
unproject images into point clouds often suffer from depth
scale inconsistencies, making them fragile and prone to fail-
ure. Even CF-3DGS, which uses the more robust ZoeDepth
monocular depth estimator [2], encounters severe failures
on CO3D-V2. In contrast, VideoLifter leverages 3D ge-
ometry priors to achieve robust registration, making it highly
adaptable and resilient in challenging settings. More results
can be found in the Supplementary.

4.4. Ablation Study

Tab. 5 reports the impact of various design choices on train-
ing time and reconstruction quality.

Local Fragment Registration. Replacing it with direct
MASt3R multi-view stereo initialization increases training
time and lowers reconstruction quality, suggesting that out-



Camera Param.  Train Time SSIMT PSNR1 LPIPS | ATE |
COLMAP+3DGS GTK & Pose  15mindds 09211 3226  0.1662 -
zlr\l/iilslggzli\tll[\f]SHDGS) 19min3s  0.6400 1848 05355  0.045
NeRF-mm [37] - ~17h22min  0.4380 13.43 0.7058  0.061
NoPe-NeRF [3] GTK ~35h 07030 2554 05190  0.055
CF-3DGS [7] GTK ~2h55min  0.6821 2298 03515  0.014
Ours - 24min58s  0.8502 2837 02237 0012

Table 4. Quantitative Evaluations on CO3D-V2 Datasets. (-) indicates no camera parameters required, GT K indicates known intrinsics.

Tanks and Temples

CO3D-V2

CF-3DGS

Nope-NeRF

Ground-truth

Figure 6. Visual Comparisons with other baselines on TT and CO3D-V2 datasets. The insets highlight the details of renderings.
VideoLifter achieves faithful 3D reconstruction, preserves better details, and alleviates incremental error in progressive learning.

Model Train Time SSIM1 PSNR1 LPIPS |
Ours(k =4, 5=0.9) 28min49s  0.8957 30.02 0.1745
Local: Use MASt3R MVS Init. [5] 35min 0.8582 2791 0.1768

53minl2s  0.6969 20.22 0.3876
35min42s  0.7629 24.35 0.3433

Global: Hierarchy — sequential
Global: Remove Key Frame Guidance

k=2 35min2s 0.8936 29.77 0.2138
k=4 28min49s  0.8957 30.02 0.1745
k=8 38min5s 0.8787 27.51 0.2743
B=05 23minl8s  0.6529 18.50 0.4457
B=09 28min49s  0.8957 30.02 0.1745
B=0.99 43min55s  0.8325 29.08 0.2691

Table 5. Ablation studies on 3414034393 scene from CO3D-
V2 Dataset. k denotes the number of frames in local fragment. 8
denotes the rendering confidence threshold in Gaussian merging.

puts directly from MASt3R are less accurate and introduce
errors to Gaussian optimization, especially in the challeng-
ing video setup. While MASt3R serves as the most direct
baseline, we further compare against more recent end-to-
end multi-view stereo methods, including CUT3R [35] and
VGGT [34], to contextualize our approach within stronger
alternatives (refer to the Supplementary).

Hierarchical Gaussian Alignment. Removing our hier-
archical alignment and instead adding local Gaussians se-
quentially (as in CF-3DGS [7]) prolongs training and hurts
performance, showing the efficiency and accuracy gains

from our hierarchical design.

Key Frame Guidance. Omitting key frame guidance forces
additional time for pose optimization without achieving opti-
mal performance, showing the crucial role of key frames in
stabilizing and accelerating the merging process.
Fragment Size k. A smaller k yields more precise intra-
fragment registration but complicates fragment alignment,
whereas a larger k reduces joint correspondences within frag-
ment and degrades relative pose estimation, thus degrading
the performance.

Confidence Threshold 5. Low 3 allows fewer Gaussians to
merge, leading to under-reconstructed areas, while a high g
merges too many Gaussians, slowing down training.

5. Conclusion

We presented VideoLifter, a framework for efficient
3D scene reconstruction from monocular videos with-
out relying on pre-computed camera poses or known
intrinsics. By leveraging learning-based stereo priors
and a hierarchical alignment strategy with 3D Gaus-
sian splatting, VideoLifter produces dense, globally
consistent reconstructions with significantly reduced
computational overhead compared to prior methods [3, 7].
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