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ABSTRACT

Prompting large pretrained language models leads to strong performance in a va-
riety of downstream tasks. However, it is still unclear from where the model
learns task-specific knowledge, especially in zero-shot setups. In this work, we
propose a novel method ORCA to identify evidence of the model’s task-specific
competence in prompt-based learning. Through an instance attribution approach
to model interpretability, by iteratively using gradient information related to the
downstream task, ORCA locates a very small subset of pretraining data that di-
rectly supports the model’s predictions in a given task; we call this subset sup-
porting data evidence. We show that supporting data evidence offers new insights
about the prompted language models. For example, in the tasks of sentiment anal-
ysis and textual entailment, BERT shows a substantial reliance on BookCorpus—
the smaller corpus of BERT’s two pretraining corpora—as well as on pretraining
examples that mask out synonyms to the task labels used in prompts.1

1 INTRODUCTION

Large language models (LLMs) are trained on massive text corpora from the web, referred to as the
pretraining data (e.g., Devlin et al., 2019; Raffel et al., 2020). Due to their volume, pretraining data
typically cannot be inspected manually and are prone to spelling/logic errors, domain mismatch
w.r.t. target tasks, social biases, and other unexpected artifacts (Bender et al., 2021). Yet, LLMs
pretrained with such noisy data attain surprisingly good performance on numerous downstream
tasks, with little or no task-specific tuning (Petroni et al., 2019; Brown et al., 2020).

There are several hypotheses explaining the power of pretrained LLMs. One hypothesis is that the
pretraining data is huge and the model might be shallowly memorizing patterns in data (Bender
et al., 2021; Carlini et al., 2021; Razeghi et al., 2022). An alternative hypothesis is that LLMs
might be learning to reason through observed patterns in the pretraining data in novel ways (McCoy
et al., 2021). However, the evidence of these conjectures, especially in arbitrary downstream tasks,
remains underexplored.

Such evidence is useful as it can help explain model decisions, surface problematic patterns in data
or model behavior, and shed new light on how to improve the model and data (Zhong et al., 2019;
Han & Tsvetkov, 2020; 2021; Pruthi et al., 2022). Moreover, it can facilitate the trustworthiness of
the models (Lipton, 2018; Jacovi et al., 2021).

In this work, we develop a methodology to provide such evidence. Our hypothesis is that among the
enormous pretraining corpora, there is a subset of pretraining data that contributes to the model’s
behavior on a downstream task more than the rest of the pretraining data. Therefore, our task is to
locate a task-specific evidence set—a very small amount of pretraining data that particularly helps
the model’s performance on the task. We call it supporting data evidence (SDE). Such SDE can
help interpret the model if we analyze its task-relevant patterns compared to the rest of the corpora.

A related line of interpretability research focuses on instance attribution (Koh & Liang, 2017; Yeh
et al., 2018; Pruthi et al., 2020; Han et al., 2020), where the goal is to find which training examples

1Code and data will be released at ANONYMIZED upon publication.
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are most influential to the model’s decision, focusing on individual test examples. However, in this
work we are interested in locating sets of pretraining data influencing the whole task (i.e., a full test
set, rather than individual test instances). We seek such “global” evidence for the task because given
the scale of the pretraining and task data, it could be inefficient or even infeasible to find and inspect
the evidence for each of the task examples.2

We first formulate the problem of finding SDE in pretraining data by upweighting the SDE set and
measuring its impact on model performance (§2.1). In §2.2, we propose a novel method ORCA3

that effectively identifies the SDE by iteratively using task-specific gradient information. On two
classification tasks—sentiment analysis and textual entailment—in a prompt-based setup (§3), we
show the effectiveness of the SDE discovered by ORCA compared to random data subsets and
nearest-neighbor data in an embedding space (§4). Our analyses of the discovered SDE (§5) show
that our base language model BERT (Devlin et al., 2019) has an interestingly high reliance on the
smaller corpus of its two pretraining corpora (BookCorpus, Zhu et al., 2015). Also the pretraining
examples in SDE typically mask out synonyms to the task verbalizers (i.e., words mapped to the
task labels in the prompts, Schick & Schütze, 2021).

2 ORCA

We develop a method to explain the competence of large pretrained language models used in zero-
or few-shot prompt-based classification (Petroni et al., 2019; Brown et al., 2020).4 Without conven-
tional finetuning, model decisions rely on knowledge learned from the pretraining data, and our goal
is to identify what supporting data evidence (SDE) in pretraining data facilitates model’s competence
in a specific downstream task.

2.1 PROBLEM FORMULATION

Assume θPT, a LLM pretrained with a dataset DPT ∋ (xPT
context, y

PT
masked). For example, for a masked

language model xPT
context is a block of text with certain tokens masked, and yPT

masked are the masked
tokens in their original forms, to be reconstructed. θPT is trained to minimize a loss L over the
pretraining examples, θPT = argminθ L(DPT; θ).

The LLM can be applied to many downstream tasks without finetuning, via prompting (Schick
& Schütze, 2021; Liu et al., 2021). Given a dataset in a downstream classification task Dtask ∋
(xtask, ytask), the LLM is applied by measuring pθ(verbalizer(ytask) | template(xtask)). The template
supplies a prompt tailored to the task for the model, and the verbalizer maps the output of the
language model to the task’s label space (more details in §3.2).

We interpret the model decisions by finding the SDE S ⊂ DPT w.r.t. the task data Dtask. The size of
S should be very small (e.g., a few hundred) compared to the whole pretraining data, |S| ≪ |DPT|,
to facilitate further manual or semi-automatic analyses. More importantly, S should “contribute”
significantly to the performance of the model on the downstream task.

However, we first observe that defining this contribution is a non-trivial problem. Prior work in
instance attribution like influence functions (Koh & Liang, 2017) adopts a “leave-one-out” perspec-
tive (Cook, 1977). In our case, this would mean removing S from DPT, retraining a new LLM from
scratch, and testing it on Dtask. This is prohibitively expensive.5

We adopt an “upweighting” perspective. Instead of leave-one-out, we upweight certain pretraining
examples (e.g., S) by training the model on these examples for an additional epoch. The resulting
change to the model should be small to prevent overfitting. Specifically, we randomly batch the SDE
S to mini-batches, thereby updating the model via a very small number of optimizer updates:

θPT
new ← θPT + updatesθ,L(S) (1)

2Directly applying instance attribution methods to the task level has also been shown to yield negative
results (Kocijan & Bowman, 2020).

3Named after the marine mammal for nO paRtiCular reAson.
4While in this work we focus on text classification, the framework is also adaptable to generation problems.
5Moreover, the definition of influence functions and even leave-one-out can sometimes be arguable, espe-

cially in non-convex models (Basu et al., 2021; K & Søgaard, 2021).
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For the simplicity of notation, we fold a sequence of optimizer updates into updatesθ,L that depends
on a sequence of batched data S, the model parameters θ, the loss function L, and an optimization
algorithm used during pretraining.

The quality of the data evidence is reflected in the performance difference in the downstream task be-
tween the new model θPT

new and the original pretrained model θPT, measured by the metric associated
with the task.6

2.2 IDENTIFYING SUPPORTING DATA EVIDENCE

We now propose a novel method ORCA identifying the supporting data evidence S ⊂ DPT. The
goal is to find a subset of the pretraining data |S| ≪ |DPT| that is directly helpful to the downstream
task when we continue pretraining the language model over it (as described in §2.1). The intuitions
behind our method are simple: (1) We aim to find contributive examples in DPT that exert a similar
change to the model parameters as Dtask would. (2) There could be multiple subsets of pretraining
data that, in conjunction, are useful to the task. We thus select S in several iterations rather than at
once.

We build our SDE S in m iterations, S1, S2, . . . , Sm; the size of the subset at each iteration is |S|
m .

To find the first evidence subset S1, we rely on the intuition that continuing training on the task data
Dtask directly is likely to improve the original model θPT on the task. We thus batch the task data
and calculate a batch gradient∇θLtask(D

task; θPT).7 Descending along the gradient direction should
improve θPT, and we find a subset S1 of the pretraining data that exerts a similar gradient of the
model as∇θLtask(D

task; θPT):

S1 = {d ∈ DPT | cos(∇θLLM(d, θPT),∇θLtask(D
task; θPT)) > δ1} (2)

We measure a cosine similarity between the gradient for each example in DPT and the batch gradient
for the task.8 We then select for S1 the top-k examples in DPT with highest cosine; δ1 is simply
the cosine score of the k-th ranked example. §3.4 specifies the size of selection along with other
hyperparameters.

Now with the first data evidence subset S1, we continue pretraining an intermediate model θPT
1 :

θPT
1 ← θPT + updatesθ,L(S1) (3)

The procedure to find the rest of the data evidence subset Si with i = 2, 3, . . . ,m is similar to the
above but with one difference: these subsets should ideally be beneficial to the model in a way that
is not already fully captured by S1.

We hypothesize that the intermediate model θPT
1 captures information about S1. Therefore, for later

iterations we want to calculate a task batch gradient based on the previous intermediate model,
∇θLtask(D

task; θPT
i−1). The data evidence subset at each iteration should again exert a similar gradi-

ent:

Si = {d ∈ DPT | cos(∇θLLM(d, θPT
⌊i−1⌋),∇θLtask(D

task; θPT
i−1)) > δi} (4)

with δi as a threshold for selecting |Si| elements like δ1. ⌊i − 1⌋ is a design choice that can allow
for a “lagged” model (i.e., computing the gradient of the LM loss w.r.t. the model several iterations
before vs. the immediate previous intermediate model). This lagging aims to improve the stability
of the method. For the experiments in this work, θPT

⌊i−1⌋ is by default θPT, for a maximum lagging;
θPT
⌊i−1⌋ is θPT

i−1 in cases denoted by NL (no lagging).9

At each iteration, having a total of i data evidence subsets, we continue pretraining an intermediate
model θPT

i :

θPT
i ← θPT + updatesθ,L(∪ij=1Sj) (5)

6A discussion over the limitations of our problem formulation can be found in §A.
7The task loss over a single task example is Ltask(x

task, ytask) = − log pθ(verbalizer(ytask) | template(xtask)).
8The LM loss over a single pretraining example is LLM(x

PT
context, y

PT
masked) = − log pθ(y

PT
masked | xPT

context).
9Compared to θPT, the no-lagging version uses θPT

i−1 which comes from continuing pretraining over a small
amount of examples and can have a higher variance. Adding this lagging also remotely shares intuition with
some RL methods addressing training stability (Mnih et al., 2016).
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It is worth noting that for every iteration, we continue pretraining over the original language model,
and the data evidence subsets are unordered.

After the m-th iteration, we complete building our full supporting data evidence S = ∪mj=1Sj . The
resulting model θPT

m is essentially the final upweighted model, i.e., θPT
new introduced in §2.1.

3 EXPERIMENTAL SETUP

3.1 BASELINE METHODS

ORCA is a greedy algorithm and thus not guaranteed to find the global optimal SDE out of the(|DPT|
|S|

)
candidates. To evaluate the efficacy of the identified evidence, we compare ORCA with the

following baseline methods:

Random sampling We simply sample at random |S| examples from DPT as the SDE.

Embedding nearest neighbors Enhancing language models using examples with nearest neigh-
boring embeddings is a common approach in domain adaptation of LMs and kNN-LMs (Gururangan
et al., 2020; Khandelwal et al., 2020). Here we find nearest neighboring pretraining examples to the
task examples. We define a similarity score as below:

cos(hmasked(x̂
PT
context), hverbalizer(template(x̂task))) (6)

• hmasked is the last hidden representation at the position of the masked pretraining token.
• hverbalizer is the last hidden representation at the position of the task verbalizer token.
• x̂PT

context is the pretraining input to the model but containing the ground truth masked token.
• template(x̂task) is the templated task input but supplying the ground truth verbalized label.

We use the ground truth information here for a fair comparison with our method ORCA, where the
calculation of gradients involves the ground truth information as well.

Practically, since |Dtask| can be large and well over |S|, we first sample t examples from Dtask. Then,
for each of the t sampled task examples, we find the top-k nearest neighboring pretraining examples
in DPT. Finally, from the pool of the t · k pretraining examples, we sample |S| of them as the SDE.
We additionally have a hyperparameter max-r controlling the maximum allowed data repetitions in
the selected data evidence.

Iterative selection with embeddings We use the gradient information cos(∇θLLM(.),∇θLtask(.))
when collecting the SDE subsets in ORCA iteratively. Here we test whether we can substitute the
gradients with embeddings while keeping the selection iterative. Reusing the notations in the embed-
ding nearest neighbors baseline, we use cos(hmasked(.),

1
|Dtask|

∑
xtask hverbalizer(.)) for all the gradient

cosine operations in ORCA. Note that we use the average embeddings of all task examples to replace
the batch gradient over all task examples. Other design decisions of ORCA remain unchanged.

3.2 LANGUAGE MODEL AND DOWNSTREAM TASKS

BERT We use the BERT-large language model as θPT (Devlin et al., 2019).10

IMDB We primarily experiment with two text classification tasks, sentiment analysis and textual
entailment.11 For sentiment analysis, we use the IMDB movie review dataset (Maas et al., 2011).
The task data Dtask here is the IMDB test split containing 25,000 examples.12 The template for the
IMDB examples is “It was [MASK]. <REVIEW>”. The verbalizer maps the reconstruction of the
[MASK] token to the label space, {“good”→ positive, “bad”→ negative}.

10We choose it primarily due to the limited computing resources we have—BERT is small both in terms of
the number of model parameters and the size of the original pretraining data. ORCA is extendable to other
language models as well.

11Future work can explore more tasks, but we select two typical ones here mainly due to our computational
resources (more details in §B).

12The use of test set is our deliberate choice in this work. In §D, we further discuss the purpose of it and
show a sanity check on an alternative setup using the training set.
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MNLI For the textual entailment task, we use the MNLI dataset (Williams et al., 2018). The
task data Dtask here is the MNLI matched validation split containing 9,815 examples (the test
split is private). The template for the MNLI examples is “<PREMISE>[MASK], <HYPOTHE-
SIS>”. The verbalizer maps the reconstruction of the [MASK] token to the label space, {“yes” →
entailment, “no”→ contradiction, “maybe”→ neutral}. We use the OpenPrompt library (Ding
et al., 2022) to prompt the BERT model with the templates and verbalizers inherited from Gao et al.
(2021b).

Zero-shot transfer and prompt tuning When we formulate our problem, we are interested in the
evidence in pretraining that directly impact the pretrained model’s performance on the downstream
task—a zero-shot transfer scenario. There is no notion of finetuning with the in-task training data.
However, research in prompt tuning (e.g., Lester et al., 2021) folds the usage of in-task training
data into the template for the task. A sequence of soft embeddings is added to the beginning of
the template and trained with the in-task training data. The language model parameters remain
unchanged. Apart from our main experiments with the zero-shot transfer model, we also consider
such prompt tuning scenarios, finding pretraining data evidence useful for the task when the template
is enhanced with some in-task training data.13

3.3 PRETRAINING DATA

Source BERT uses the English Wikipedia and BookCorpus (Zhu et al., 2015) as its pretraining
data. During pretraining, 15% of the tokens are randomly masked out to be reconstructed. Though
BERT’s pretraining data is already small compared to those of many other language models (e.g.,
Raffel et al., 2020; Gao et al., 2021a), we unfortunately still do not have the resource to process the
full dataset. In fact, in this work we only randomly sample 0.5% of the full pretraining data.

Format During pretraining, BERT would reconstruct the masked 15% tokens in a sequence in
parallel (i.e., the reconstruction loss for each token is independent). From the training perspective,
this is efficient. However, this work aims to find the SDE. We particularly want to know learning
the reconstruction of which token could most impact the downstream task performance. Therefore,
we expand each pretraining data and treat each masked token as a standalone example.14 More
specifically in our setup, DPT ∋ (xPT

context, y
PT
masked). x

PT
context is a sequence of 512 tokens, and yPT

masked is
a single masked token in the sequence. Together this makes |DPT| = 3,924,635 (with 52,640 unique
xPT

context sequences). We choose at most 2,000 instances from DPT as the SDE S.

3.4 HYPERPARAMETERS

ORCA finds S in iterations. In this work we use m=20 iterations, with each iteration finding 100
examples from DPT (with a total |S|=2000).

For the embedding kNN baseline, we sample t=1000 task examples and choose k={10, 20, 50, 100}
most similar pretraining data. Within the t · k candidate pool, we sample |S|=2000 examples, with
a max number of repetitions r={1, 20, 2000}.15

During the continued pretraining for all methods, we use a batch size of 16, resulting in at most
125 optimizer updates from the original language model. The learning rate is set at one of BERT’s
default values 2e-5.

4 EVALUATION

13We use different amounts of in-task training data for prompt tuning depending on the task performance.
For IMDB, we use 100 examples per class, whereas for MNLI, we use 10,000 examples per class.

14Other masked tokens are still masked in the input context, to be faithful to the original LM objective.
15In our method ORCA, though the examples within Si are strictly non-overlapping, we don’t enforce dis-

tinctiveness across Si since we only work with 0.5% of the pretraining data. This means an example could at
maximum appear 20 times in our method. Therefore, we include the r > 1 options for the embedding kNN
baseline as well for a fairer comparison. In §C we further discuss the choice of t and k.

16Additional details and discussion of the results can be found in §E.
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Table 1: Main results (accuracy) of ORCA and base-
lines on the zero-shot model. NL means the no-
lagging variant. Numbers in regular fonts are aver-
aged from 5 random seeds, while numbers in small
fonts show a trajectory of performance with one
seed.16

On zero-shot model IMDB MNLI

Null 73.50 43.70

Random 71.25 ±2.56 42.56 ±0.43

Embedding kNN 76.55 ±2.16 45.15 ±0.48

Iterative embeddings 75.11 ±4.59 43.74 ±0.68

ORCA (NL) 84.51 ±0.77 45.46 ±0.73

0 < |S| ≤ 500 79.81 44.85
500 < |S| ≤ 1000 83.87 45.64
1000 < |S| ≤ 1500 84.40 46.10
1500 < |S| ≤ 2000 85.17 46.49
ORCA 84.33 ±1.51 46.06 ±0.35

0 < |S| ≤ 500 81.60 45.99
500 < |S| ≤ 1000 83.23 45.75
1000 < |S| ≤ 1500 84.42 46.40
1500 < |S| ≤ 2000 85.15 46.26

We evaluate the supporting data evidence
S, identified using ORCA and the base-
lines, by quantifying the supportiveness of
S (as defined in §2.1). Note that this section
does not focus on whether or not the discov-
ered data evidence is plausible to humans.
We will explore what humans can interpret
from the actual data evidence in §5.

Table 1 shows our main results: the per-
formance of our zero-shot language model
pretrained additionally on S, as identified
by different methods. We first notice a per-
formance gap between our original model
on IMDB and MNLI, indicating the entail-
ment task is intrinsically harder for mod-
els that have only been trained on pretrain-
ing data. We observe a moderate perfor-
mance improvement using the embedding
nearest neighbors method (|S| = 2000).
The best performance is achieved by our
proposed method ORCA, especially in the
task of IMDB by a large margin (even with
|S| ≤ 500), showing the effectiveness of
our method.

Table 2 shows some additional results on
the effect of the SDE S on a prompt-tuned

model. These results show that, compared to the zero-shot model, a prompt-tuned model is more
difficult to improve since the prompt may already be highly specialized towards the task, using the
in-task training data. The additional signals in the pretraining data that are useful to the task can be
scarce. That said, the pretraining data S identified by ORCA still improves the model on IMDB.

5 ANALYSIS

Table 2: Additional results (accuracy) of ORCA and
the baselines on the prompt-tuned model. All the
numbers are averaged from 5 random seeds.

On prompt-tuned model IMDB MNLI

Null 87.83 70.19
Random 86.06 ±0.82 69.07 ±0.50

Embedding kNN 86.53 ±0.77 68.93 ±0.61

Iterative embeddings 87.80 ±0.03 68.45 ±0.36

ORCA (NL) 87.65 ±1.10 68.79 ±0.28

ORCA 88.10 ±0.65 68.61 ±0.44

While useful in showing the effectiveness of
the SDE S, evaluations in §4 do not provide
us with tangible insights about the model it-
self. In this section, we analyze some prop-
erties of S, and see whether they reflect hu-
mans’ expectations for the model. We first
show a few qualitative examples of the evi-
dence discovered by ORCA in Table 3.

Which source corpus does the support-
ing data evidence come from? The pre-
training data of BERT consist of the English
Wikipedia and BookCorpus. We show the
source corpus of examples in S in Figure 1.

We find that though the pretraining set
consists of considerably more data from
Wikipedia than from BookCorpus (76.5% vs. 23.5%), the SDE identified by ORCA has a dras-
tically different source corpus distribution. In IMDB, 64.1% and 92.6% of the examples in S come
from BookCorpus, using the default ORCA and its no-lagging variant respectively. The demotion
of Wikipedia examples in the sentiment analysis task is somewhat reasonable, since Wikipedia is
meant to have a neutral point of view (NPOV).17 On the other hand, BookCorpus consists of novels
that could involve strong emotions and sentiments.

17https://en.wikipedia.org/wiki/Wikipedia:Neutral point of view
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Table 3: Examples of the supporting data evidence (S) in pretraining data discovered by ORCA
for IMDB and MNLI. The masked token (yPT

masked) in each example is underlined. The example
evidence for IMDB expresses sentiments, while it is less clear whether the example evidence for
MNLI is related to entailment.

IMDB ... we have to think that were awfully lucky as human beings to have the nice precise system.
the sloppy system is probably good enough for bacteria. it turns out – much to geneticists
surprise – that lowly bacteria store genes as whole units (weasel) ...

it was the only place she could afford. her meager earnings didnt provide much in the ways
of clean, modern style along with the privacy she required. she felt better if she thought about
how bad it could be. a year ago, shed lived with her mother. anywhere was better than living
with her ...

MNLI ... he then cut the cord that bound her hands and legs. are you ok to walk? he asked hoping the
answer was yes. i think so. but im quite stiff, she said. he helped her up. stretch your legs a
little. theyll feel better ...

... there was no way to hide the shock on her face, and she knew he saw it by his sigh. “do you
think yourself less than me?” “no!” she absolutely didn’t but ... he nodded his head. “i see.
you thought i would think you were less than me.” she was ashamed. “i’m sorry.” ...

... he shook his head, incredulous. in fact, he looked like he was considering throttling me.
“you’re just not getting it. maybe that’s my fault. maybe it’s because i don’t tell you i love you
often enough. baby, you’re the only ‘good’ thing that i’ve ever had ...

Figure 1: Source corpus distribution of the supporting data ev-
idence (SDE) in IMDB and MNLI.

A similar trend can be found
in MNLI as well, with 99.0%
and 92.9% of the examples in
S coming from BookCorpus, us-
ing the default and NL variant
of ORCA. We conjecture that the
over-reliance on BookCorpus in
MNLI could be due to the se-
lection of the colloquial verbal-
izer words (e.g., “yes”, “maybe”),
which can be scarce in Wikipedia.
Also, the BookCorpus data could
contain more everyday topics that
match MNLI’s genres (e.g., fic-
tion, letters, telephone speech).
However, whether it is reasonable

for the model to rely on BookCorpus for textual entailment is arguable: Wikipedia should be a more
reliable source if we want the model to build more upon factual information.

What are the masked tokens in the supporting data evidence? Prompted language models use
a verbalizer to adapt to the downstream task. For example, outputting “good” for a templated IMDB
input indicates a positive sentiment, “yes” for MNLI indicates entailment, etc. For a pretraining
example that supports the task, are there any relations between its masked, to-be-reconstructed pre-
training token (yPT

masked) and the verbalizer words for the task (verbalizer(ytask))? In Table 4, we show
the 10 most frequent masked words (types) in S, for each method in IMDB and MNLI.

We observe that the verbalizer words, in their original forms, are always the most common masked
token in S. For all of the methods in both tasks, over 50% of the masked tokens are exactly the
verbalizer words. Though there is some noise in yPT

masked (e.g., symbols that carry no task-relevant
meaning), most of the other masked tokens are synonyms to the verbalizer words in IMDB by
observation. In MNLI, the other masked tokens may capture relations between clauses similar to
the verbalizer words (e.g., then, to, probably). Overall, we find that yPT

masked in the discovered S is
reasonable for the sentiment analysis and textual entailment task.

7
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Table 4: Masked tokens (yPT
masked) in the supporting data evidence of IMDB and MNLI.

Task Method Most frequent yPT
masked in S

IMDB Embedding kNN bad, good, terrible, great, badly, excellent, worst, negative, better,
disappointment, ... [11 distinct tokens in total, 94.8% verbalizer words]

ORCA (NL) bad, good, worst, n, worse, ’, wrong, -, horrible, poisonous, ... [91
distinct tokens in total, 90.0% verbalizer words]

ORCA bad, good, `, horrible, not, worse, ugly, hated, poor, terrible, ...
[285 distinct tokens in total, 55.9% verbalizer words]

MNLI Embedding kNN no, yes, maybe, `, yeah, However, perhaps, n, ), No, ... [258 distinct
tokens in total, 58.3% verbalizer words]

ORCA (NL) maybe, yes, no, `, n, that, -, then, perhaps, the, ... [176 distinct
tokens in total, 69.1% verbalizer words]

ORCA maybe, yes, no, `, perhaps, to, probably, has, in, big, ... [125
distinct tokens in total, 59.4% verbalizer words]

Figure 2: MAUVE similarity on IMDB, be-
tween the sets of xPT

context in S and xtask.

Is the context of the supporting data evidence sim-
ilar to the task input data? We are interested in
the relationship between the context of the selected
pretraining data (xPT

context) and the input of the down-
stream task (xtask). Are they exceptionally similar,
indicating that the model may be memorizing shal-
low patterns? Alternatively, are they considerably
different, indicating that the model needs to transfer
some learnt knowledge from pretraining to the task
(either in a reasonable or spurious way)? Our ex-
ploratory step uses an automatic metric between two
distributions of texts, MAUVE (Pillutla et al., 2021),
to measure the similarity between our sets of xPT

context
and xtask. As a method based on quantized language
model embeddings, MAUVE similarity may capture
text attributes such as topics and style.18

Apart from using all 512 tokens in the context of the data evidence (xPT
context), we also truncate the

context, keeping the surrounding c tokens of the masked token (yPT
masked). We control for the scope

of the context by varying c. For xtask, we randomly sample 2000 examples to match the size of S.19

Figure 2 shows the results on IMDB. See §F for MNLI results.

We observe that the MAUVE scores between xPT
context and xtask are all between 0.512 and 0.577.

In contrast, the MAUVE score between the training set of the task and the test set (xtask) is 0.998
and 0.997 for IMDB and MNLI respectively. This substantial difference in MAUVE scores may
indicate a disparity in topics and style between the context of the pretraining evidence and the task
data. Additionally, the MAUVE score of our selected SDE is not higher than a random sample in
most cases. This further shows that the signal in the evidence context useful for the task is subtle, in
a way that MAUVE cannot capture. This is in contrast to the conjecture that the model must have
seen the exact inputs in the pretraining data and is only performing a shallow memorization.

While not within the scope of this paper, future investigation can also extend the analysis of the sup-
porting evidence with feature attribution methods (Pezeshkpour et al., 2022) or a human evaluation
with domain experts of the task (e.g., what exact spans in the SDE contribute to their supportiveness).
We further discuss the limitations of our method, computational resources, and future directions in
§A and §B.

18Grammaticality can be another attribute as Pillutla et al. (2021) work with machine-generated texts. This
is less relevant in our case as our sets of texts are naturally occurring.

19Here xtask is without template, and xPT
context has the masked token recovered. This is to give MAUVE most

natural texts for evaluation.
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6 RELATED WORK

LLMs have been showing competence in various downstream tasks in NLP with little to no task-
specific tuning, using prompts (Petroni et al., 2019; Brown et al., 2020; Schick & Schütze, 2021;
Gao et al., 2021b; Lester et al., 2021). We are especially interested in interpreting LLMs under a
zero-shot setup, where the knowledge relevant to the downstream task must come from the noisy
pretraining data.20

One common interpretability method for NLP models is feature attribution, where important tokens
or spans in the inference-time input are highlighted, indicating their contributions to the model’s de-
cision (Simonyan et al., 2014; Li et al., 2016; Ribeiro et al., 2016; Lundberg & Lee, 2017). However,
information relevant to explaining the model’s decisions (especially if abstract) is often not in the
inference-time input (Han et al., 2020; Wiegreffe & Marasović, 2021; Pezeshkpour et al., 2022). On
language models, feature attribution has been used to interpret and verify grammatical phenomena
(Yin & Neubig, 2022).

Another type of interpretation that aligns more with our focus is instance attribution, where impor-
tant training examples are highlighted for their influence on the model (Koh & Liang, 2017; Yeh
et al., 2018; Pruthi et al., 2020; Han et al., 2020; Guo et al., 2021). In this work, we are instead
interested in the influence of pretraining data and in finding SDE for the entire task rather than in-
dividual test examples.21 There has also been prior work analyzing what amount of data is needed
during pretraining to achieve models with certain capabilities (Zhang et al., 2021), but these works
do not attribute model performance to specific pretraining data.

Our formulation may seem similar to prior work in task-enhancing pretraining (Han & Eisenstein,
2019; Gururangan et al., 2020; Yao et al., 2021). However, such methods typically use a large
amount of loosely relevant pretraining data along with the in-task training data, to improve perfor-
mance. We instead aim to find an orders-of-magnitude-smaller set of pretraining data, providing a
clearer signal of their impact on the task for interpretability purposes.

Our proposed method to find the data evidence, ORCA, shares a similar intuition with prior work
that reweighs training data (Wang et al., 2020), as both methods use the gradient information of the
test data. However, their target model depends on an ordered sequence of data weights and model
checkpoints. In contrast, we apply an unordered data evidence set to the original model, mimicking
an upweighting in pretraining. In addition to the difference in methods, the purpose is different as
well: theirs is performance-oriented while ours is interpretability-oriented.

Other remotely related line of work in machine learning includes coreset construction (Coleman
et al., 2020; Mirzasoleiman et al., 2020; Huang et al., 2021) and dataset distillation (Wang et al.,
2018; Zhao et al., 2021). Their focus is typically an empirical risk minimization problem on the
training data, without a notion of downstream tasks or task transfer. They aim to create a substitution
set for the full training data for an efficiency purpose.

7 CONCLUSION

The source of competence of zero- and few-shot prompted language models on downstream tasks
is mysterious. The models should be gaining task-specific knowledge from the pretraining data,
but what pretraining data leads to the capability of the models is an underexplored area of research.
In this work, we formulate the problem of finding supporting data evidence in the pretraining data
of LLMs for downstream tasks. We propose ORCA to effectively identify such evidence with an
iterative guide from task-specific gradient information. Deeper analyses into the evidence show that
a prompted BERT on sentiment analysis and textual entailment relies heavily on the BookCorpus
data, as well as on pretraining examples that mask out task verbalizers and their synonyms.

20Interpreting the role of pretraining data in an unprompted, finetuning setup is intrinsically harder, but prior
work like Chen et al. (2020) have made attempts.

21A concurrent work by Akyürek et al. (2022) builds a candidate set for fact-tracing in question answer-
ing; the difference is the use of task-related training examples instead of pretraining data, and an information
retrieval evaluation.
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Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. Don’t stop pretraining: Adapt language models to domains and tasks. In
Proc. ACL, 2020.

Xiaochuang Han and Jacob Eisenstein. Unsupervised domain adaptation of contextualized embed-
dings for sequence labeling. In Proc. EMNLP, 2019.

10



Under review as a conference paper at ICLR 2023

Xiaochuang Han and Yulia Tsvetkov. Fortifying toxic speech detectors against veiled toxicity. In
Proc. EMNLP, 2020.

Xiaochuang Han and Yulia Tsvetkov. Influence tuning: Demoting spurious correlations via instance
attribution and instance-driven updates. In Proc. Findings of EMNLP, 2021.

Xiaochuang Han, Byron C. Wallace, and Yulia Tsvetkov. Explaining black box predictions and
unveiling data artifacts through influence functions. In Proc. ACL, 2020.

Horace He and Richard Zou. functorch: Jax-like composable function transforms for pytorch.
https://github.com/pytorch/functorch, 2021.

Ari Holtzman, Peter West, Vered Schwartz, Yejin Choi, and Luke Zettlemoyer. Surface form com-
petition: Why the highest probability answer isn’t always right. In Proc. EMNLP, 2021.

Jiawei Huang, Ru Huang, Wenjie Liu, Nikolaos M. Freris, and Huihua Ding. A novel sequential
coreset method for gradient descent algorithms. In Proc. ICML, 2021.
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Sarah Wiegreffe and Ana Marasović. Teach me to explain: A review of datasets for explainable
natural language processing. In NeurIPS Datasets and Benchmarks, 2021.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proc. NAACL, 2018.

Xingcheng Yao, Yanan Zheng, Xiaocong Yang, and Zhilin Yang. Nlp from scratch without large-
scale pretraining: A simple and efficient framework. ArXiv, abs/2111.04130, 2021.

Chih-Kuan Yeh, Joon Sik Kim, Ian En-Hsu Yen, and Pradeep Ravikumar. Representer point selec-
tion for explaining deep neural networks. In Proc. NeurIPS, 2018.

Kayo Yin and Graham Neubig. Interpreting language models with contrastive explanations. ArXiv,
abs/2202.10419, 2022.

Yian Zhang, Alex Warstadt, Haau-Sing Li, and Samuel R. Bowman. When do you need billions of
words of pretraining data? In Proc. ACL, 2021.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching. In
ICLR, 2021.

12



Under review as a conference paper at ICLR 2023

Ruiqi Zhong, Steven Shao, and Kathleen McKeown. Fine-grained sentiment analysis with faithful
attention. arXiv preprint arXiv:1908.06870, 2019.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In Proc. ICCV, 2015.

A LIMITATIONS OF THE PROBLEM FORMULATION

Implication of supporting data evidence One limitation of our setup is that the data outside our
defined SDE S may have additional value on the model which the current formulation does not
capture. For instance, there could be certain examples that exceptionally help the model capture
the grammar of the language, making an indirect contribution to the task. However, they are rather
unlikely to be picked as SDE: in the scope of this paper, we focus on finding the evidence that
is directly related to the downstream task. The indirect evidence is also interesting and may be
valuable for future work to investigate further (e.g., via finding which examples contribute most to
the contribution of SDE).

Alternatives to our problem formulation Another limitation of our problem formulation is that
the history of the model pretraining is ignored. Is it sufficient to check whether the evidence data
help the fully pretrained model? What if a data is truly related to the task but got overfitted during
earlier stages of pretraining, so continuing pretraining on it would not change the model? We think
this is possible, but only to some extent and with a limited risk, since the huge volume of pretraining
data can make it difficult to overfit to all examples related to an arbitrary task in a particular way.
Nevertheless, to improve that case, a potentially better solution would be continuing pretraining each
checkpoint of the model across the whole pretraining procedure. This would share an intuition with
some instance attribution methods based on model checkpoints (Pruthi et al., 2020). However, we
lack the resources to perform such experiments in this work, so we defer that to future research.22

B ETHICS STATEMENT

One ethical consideration and a limitation of our approach is the large computational cost, and conse-
quently the environmental impact caused by our computationally-expensive method (Strubell et al.,
2019). On our machine with 8 Nvidia A40 GPUs, the full 20 epochs of each ORCA experiment
would take about 7 days in total. The long computing time is partly because we need to calculate
per-sample gradients for 4M data points in each epoch, and also because there is no efficient way
to calculate the per-sample gradients in PyTorch at the time of our implementation.23 However, our
goal is to develop a research prototype (which can be optimized in the future) that will enable open-
ing up the black box of large language models. Insights into their pretraining data will potentially
lead to positive impacts—removing problematic data sources, demoting spurious correlations, and
alleviating other ethical issues caused by our current inability to interpret decisions of large language
models.

C CONTINUED DISCUSSION ON EXPERIMENTAL SETUP

The sample size t in the embedding kNN baseline For the embedding kNN baseline, we sample
t = 1000 task examples from Dtask and find k = {10, 20, 50, 100} most similar pretraining data
to each of the task example. This t should already be large enough since even with the smallest k,
t · k is well over |S| (meaning that we need to downsample anyway). We did not use the entire Dtask

because IMDB has 25K examples, and the calculation has a heavy requirement on the storage and
memory. Nevertheless, to check whether the current t is adequate, we experiment with t = 8000
and t = 9800 for IMDB and MNLI respectively. The performance is 74.82 and 45.04, no better than
the t = 1000 performance in the main evaluation.

22With unconstrained resources, one can extend the checkpoint proposal and even measure Shapley values
(Shapley, 1951) of the data, an equitable valuation method (Ghorbani & Zou, 2019).

23This may be possible with the latest release of functorch (He & Zou, 2021). We plan to work on it and
expect a significant speedup.
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Exact optimizer steps based on S For all of our experiments, we have |S| ≤ 2000 and a batch
size of 16. We additionally held out 5% of S during optimization as a sanity check for the LM loss.
Therefore, at most 119 optimizer steps were applied in all of the experiments.

D USING THE TEST SET AS DTASK

The use of test set over training set is our deliberate choice in this work.24 There are two main
reasons.

• We assume that the task’s test data is the only instantiation of the task, since we are in-
terpreting a model deployed in a zero-shot setup. We cannot assume the availability of a
“training set” in such scenario.

• More importantly, this work is about interpretability, not absolute model performance. We
are interpreting why the model can achieve a good test performance, not a good training
performance. Similar to other interpretability research, no matter feature attribution or
instance attribution (Ribeiro et al., 2016; Koh & Liang, 2017), we must use the test data,
since we are interpreting the model’s behavior on test examples exactly. This may also help
us reveal the data artifacts inside the test set (Han et al., 2020).

That being said, we do have sanity checks at the place we use test data in ORCA, that the effect
of using the training set gradient would be very close. For all 20 intermediate stages, the cosine
similarity between the test set and training set gradients is 0.977±0.023 for IMDB and 0.947±0.042

for MNLI, in a range of [-1,1].25

E CONTINUED DISCUSSION ON MAIN EVALUATION

Importance of selecting S in several iterations While not shown in the main evaluation table,
the first epoch of ORCA without later iterations (|S| = 100) would actually hurt the performance
(57.39 and 37.43 for IMDB and MNLI respectively). This is due to the imbalance of the selected
pretraining data, favoring only one label in the task. ORCA’s iterative selection strategy in this case
is essential, a difference from the instance attribution methods in previous interpretability research.

Calibration While not a focus of this work, prompt-based language models can be improved with
calibration techniques such as PMIDC (Holtzman et al., 2021). We did not use such calibration in
our work because our pilot study shows a rather even prior distribution among the labels—applying
PMIDC on our model (LM, template, verbalizers) in IMDB yields a less than 1% performance im-
provement.

Hyperparameter search Due to the high computing cost mentioned in §B, we did not perform
hyperparameter search in our ORCA experiments (whereas we did a search for the embedding kNN
baseline). It is possible that some other sets of ORCA hyperparameters can lead to better perfor-
mance numbers than those in the main evaluation table. We will release all of the code, experiment
scripts, and data at ANONYMIZED upon publication.

F ADDITIONAL ANALYSIS RESULTS

In Figure 3, we show the MAUVE similarity analysis on MNLI, accompanying the MAUVE analysis
on IMDB in the main paper.

24Also note that all of the investigated algorithms, ORCA and the baselines, have the same Dtask setup.
25These numbers mean the effect of using training and test gradients is extremely similar, noting that

the dimension of the gradients is very large (340M). Given two random vectors a and b at this dimension,
Pr[| cos(a, b)| > 0.9] < 1/e2.75×108 (Arora, 2013).
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Figure 3: MAUVE similarity on MNLI, between the sets of xPT
context in S and xtask.
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