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Counterfactual explanation (CFE) provides actionable counterexamples and enhances the 
interpretability of the decision boundaries in deep neural networks and thereby has gained 
increasing interest in recent years. An ideal CFE should provide both plausible and practical 
examples that can alter the decision of a classifier as a plausible CFE grounded in the real world. 
Motivated by this issue, we propose a CFE framework for identifying related features (CIRF) to 
improve the plausibility of explanations. CIRF comprises the following two steps: i) searching 
for the direction vectors that contain class information; ii) investigating an optimal point using 
a projection-point, which determines the magnitude of manipulation along the direction. Our 
framework utilizes related features and the property of a latent space in a generative model, 
thereby highlighting the importance of related features. We derive points that have many related 
features, and show a performance gain of more than 11% on the IM1 metric compared to points 
that have fewer related features. We validate the versatility of CIRF by performing experiments 
using various domains and datasets, and the two interchangeable steps. CIRF exhibits remarkable 
performance in terms of plausibility across various domains, including tabular and image datasets.

1. Introduction

The black-box nature of deep neural networks has led to concerns about the lack of interpretability in critical domains such 
as financial [1,2], medical [3], crime [4], or autonomous driving [5,6]. To address these concerns, researchers have examined 
the reasons behind the decisions of these models. Explanation approaches, such as feature attribution [7–10] and CounterFactual 
Explanation (CFE) [11,12], enhance the reliability and applicability of deep neural networks in industries by investigating the 
underlying reasons of predictions. Intuitively, CFE is based on the premise that modifying certain input features alters a model’s 
decision to align with a user’s intention. CFE is a post-hoc explanation method because it analyzes the basis of a model’s decision 
after the decision is made [10,13,14]. The perspective of CFE stems from counterfactual reasoning, which addresses the propositions 
of the form “If , then  [15–19].” Thus, CFEs provide an example-based explanation () that alters the decision of a classifier 
by modifying certain features. Through examples that can alter the decision, users can implicitly understand the decision-making 
mechanism of a classifier. In particular, the CFE is practical for users because it provides useful examples. For example, consider a 
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Fig. 1. (a) Comparison of non-related features and related features when altering class from ‘Brown’ hair to ‘Blond’ and ‘Gray’ hair. (b) Extent of manipulation required 
to produce a plausible CFE. The distances from the input latent codes for each image are provided at the bottom, and the classification confidence is provided at the 
top.

user who has been rejected for a loan using a credit rating model. The user requires insights not only into which features of their 
financial profile necessitate changes but also the degree to which these changes are needed. Therefore, it is advisable to provide 
actionable CFEs and quantify the extent of input changes so that the user adjusts their financial profile easily. The provision of 
plausible CFEs is thus essential. In summary, CFE modifies an input to alter the decision of a classifier, providing a sample-based 
explanation that enables users to understand the basis for the decision. While research aims to improve the plausibility of CFE, 
examining approaches to increase the plausibility remains under-explored.

Recent studies have aimed to improve the plausibility of CFE by providing examples as similar as possible to the input [11,14,

20–22]. A CFE that is similar to an input is deemed actionable, thus enhancing the plausibility of CFE by being easily attainable with 
small modification. However, a notable drawback of previous CFE approaches is that they provide implausible examples, particularly 
when the relationships between features are not considered. For instance, previous methods may produce implausible explanations, 
such as an increase in asset with decrease in deposit, which is unlikely plausible in the financial area because of the generally 
positive correlation between assets and deposits. In this case, assets and deposits are “related features,” which should be considered 
in a CFE to provide plausible examples. Such implausible examples degrade the credibility of an explanation as they are not aligned 
with the understanding of the relationship between features in the real world. Previous studies have examined spurious correlations, 
which are similar to related features [23,24]. Spurious attributes, which are the components of spurious correlations, are features 
associated with the class labels [25]. However, unlike spurious correlations, related features are associated with both features and 
the class labels. Consequently, both related features and target features collaboratively contribute to altering the class label. Although 
utilizing related features can enhance the plausibility of CFE by synergizing with target features, this promising approach has yet to 
be extensively explored.

In this study, we present a novel framework, called CFE identifying related features (CIRF), to generate plausible counterexamples 
that alter the decision of a classifier in a CFE manner. To provide a brief overview, we initially determine center-of-target points 
and direction vectors in a latent space. Subsequently, we calculate a projection-point in the latent space of a Generative Adversarial 
Network (GAN) [26], using a direction vector to influence the decision. The center-of-target point in the latent space is defined as 
a latent code that retains class features and related features identified by the classifier. As shown in Fig. 1(a), the CFE provided 
by our approach changes the ‘Age’ and ‘Color’ features when altering to ‘Gray hair.’ In contrast, the approach changes only ‘Color’ 
when altering to ‘Blond hair’ since ‘Blond hair’ lacks relationship with ‘Age.’ To verify whether these features are related or not, we 
investigated the training dataset and results at Sec. 4.5. Moreover, our framework attempts to produce the most plausible example 
through a projection-point, which is the point closest to the center-of-target point when the input moves along the direction vector. 
Due to the property that close latent codes produce similar outputs, the projection-point preserves the input features when the input 
is manipulated by a small magnitude. To show the plausible CFE, Fig. 1(b) illustrates three examples: the minimally changed CFE, the 
plausible CFE from the projection-point, and the implausible CFE due to excessive changes. As shown in Fig. 1(b), we observe that 
both ‘Eyeglasses’ and ‘Age’ are features associated with ‘Gray hair.’ Moreover, it is evident that the ‘Eyeglasses’ and ‘Age’ features 
influence the classification as ‘Gray hair,’ and the excessively changed sample loses the identity of the original input. To prevent 
excessive changes, CIRF specifies the magnitude of manipulation by calculating the projection-point, whereas previous approaches 
[27–29] investigated the latent spaces to change attributes without specific constraints on the magnitude. This procedure enables the 
2

projection-point to be located at the minimum distance from the input and the center-of-target point. Our method of calculating the 
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projection-point utilizes a direction vector and three reference points: the input, the center-of-target point, and the projection-point. 
Therefore, we address plausibility issues with the direction vector by changing the related features and specifying the magnitude of 
manipulation. Simultaneously, CIRF preserves the features that do not need to be changed to alter the decision, such as ‘Smile’ or 
‘Pose.’ Throughout the paper, we describe the method and demonstrate the adaptability of CIRF using various datasets: image datasets 
(MNIST [30], CIFAR10 [31], CelebA-HQ [32], and ImageNet [33]) and a tabular dataset (HELOC [34]). Lastly, we demonstrate the 
practicality of CIRF by integrating CIRF with GAN inversion, mapping an image space to the latent space [35–37]. Through the 
integration with GAN inversion, we can deploy CIRF to real-world data by manipulating inverted latent codes. The contributions of 
this study are summarized below.

• We propose a novel, data-driven framework that determines the magnitude of manipulation in a latent space, thereby creating 
plausible examples by projection of a center-of-target point. To the best of our knowledge, this is the first study to adopt using 
a classifier in a data-driven approach for determining the magnitude of modification in a latent space.

• We highlight the importance of related features in generating a plausible CFE by showing related features and investigating the 
dataset.

• The two interchangeable steps in our framework improve the applicability of the proposed method by replacing each step with 
other methods. We revisit the advantage of replacing the first step with InterFaceGAN [36].

2. Related works

The CFE is a post-hoc explanation method that has attracted attention because of its practicality by providing the implications 
for the model decisions and ready-to-use examples [15]. Previous methods cross a decision boundary by directly perturbing an input 
such that a decision can be intuitively altered [27,29,38–40]. Meanwhile, the methods that calculate the gradient of a classifier and 
reveal feature attributions have been proposed, and they exhibit potential for applications to complex datasets [9,11,41–44]. The 
contrastive explanations method approach [45] provides a saliency map to divide the areas to be classified into each class. Salience 
maps are widely used in explanation methods because they increase the intuitiveness of the user’s interpretation of the model. 
Counterfactual visual explanation [12] expands CFE to the vision domain by identifying the regions to be classified as counterclasses. 
These works report that a CFE should be distinguished from an adversarial attack [46], which is a fooling classifier. Furthermore, 
they have established a field of research by providing the appropriate basis for a decision of a given classifier. Studies [47,48] have 
provided diverse CFEs. Specifically, [47] provides nontrivial explanations to examine various decision boundaries of the model. 
Studies [17,49] provide model-agnostic CFEs, which can be applied to various models. The model-agnostic approach does not need 
an internal interpretation of the model, thereby enabling the approach to be broadly applied to various tasks. Moreover, studies 
have been conducted to improve the plausibility of CFE [20,39,50,51]. Gradual Construction [11] states that an explanation with 
a minor change is actionable, which inspires us to provide a minimally changed CFE. The approach creates an explanation by 
calculating the gradient of a classifier and gradually changing it from the most influential feature. Plausible exceptionality-based 
contrastive explanations (PIECE) [20] improves plausibility by changing exceptional features and simultaneously defining a semi-

factual explanation which are feature modifications within the bounds of not changing a decision. A semi-factual explanation is 
practical because it guides the users to the extent that they can act within a range that does not change a decision of a model. A 
study [48] points out a limitation of a semi-factual explanation, which is a lack of general definition, thereby providing CFEs and 
semi-factual explanations for one sample. A study [50] utilized the causal relationships between the input features and an oracle 
to improve plausibility. Recent work [52] aims to improve the plausibility by harnessing a generative model. [52] also points out 
small changes that have high adversarial power, leading to degrading plausibility, which is similar to a gap between conventional 
CFEs and our plausible explanation. Although numerous studies have attempted to enhance the plausibility of CFEs, the utilization 
of related features remains unexplored.

3. Methods

Table 1 summarizes mathematical symbols and their descriptions. Throughout this work, calculating and manipulating vectors is 
the fundamental process, so vectors are indicated by arrows at the top of the symbols to aid understanding.

3.1. Preliminaries

The goal of CFE is to generate examples that can cross the decision boundaries of a given classifier. A previous study [15]

formulated an objective function for CFEs by minimizing loss using the following equation:

 = argmin
𝑥′

(𝐹 (𝑥′) − 𝑐′)2 + 𝜏(𝑥,𝑥′), (1)

where 𝜏 is a coefficient and  is the Euclidean distance function. The CFE that is closer to the input is preferable because  calculates 
the distance between the input and the CFE. The quality of the CFE is determined by the evaluation metrics that comply with the 
objective function. We discuss these evaluation metrics in Sec. 4.2, including those based on distance (𝐿1 and 𝐿2 [15]) and those 
that assess plausibility or interpretability (IM1 and IM2 [53]). CFE uses the objective function to minimize the distance between the 
3

input and the CFE, and simultaneously alters the decision.
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Table 1

Notations, dimensions, functions, and descriptions of each symbol.

Notation Dimension or Function Description

𝐹 ℝℎ×𝑤 →ℝ𝑇 Target classifier to interpret

𝑇 ℝ Number of total classes produced by 𝐹

𝑥,𝑥′ ℝℎ×𝑤 Input of 𝐹 (𝑥 ∈)

𝐺 ℝ𝑑 →ℝℎ×𝑤 Generative model

⃖⃗𝑧, ⃖⃖⃗𝑧′ ℝ𝑑 Input latent code of 𝐺 (⃖⃗𝑧 ∈)

𝑑 ℝ Dimension of the latent code of 𝐺

⃖⃗𝑛 ℝ𝑑 Direction vector

⃖⃖⃖⃖⃖⃗𝐶𝑇 ℝ𝑑 Center-of-target

⃖⃖⃖⃖⃖⃗𝑃 𝑃 ℝ𝑑 Projection-point

𝜆 ℝ Scalar value for magnitude of manipulation

𝜏 ℝ Coefficient of the objective fuction of CFE

𝛼, 𝛽 ℝ Coefficient of the objective fuction of Step. 1

𝑅 ℝ Filtering ratio

(⋅, ⋅) ℝ Distance function

Fig. 2. Two primary steps of our framework for generating CFEs. In step 1, the direction vector is trained by pre-trained networks and class-change difficulty. The 
network in the blue box is a fixed network, whereas the network with the red box is a trainable network. In step 2, the projection-point is computed using the direction 
vector, input, and center-of-target point. Then the generator provides the CFE with the projection-point.

3.2. Problem statement

The primary objective of this study is to improve the plausibility of the generated CFE by leveraging the related features inherited 
in the classifier itself. To this end, CIRF calculates a direction vector, denoted as ⃖⃗𝑛, which enables the CFE to alter a prediction by 
manipulating related features. Subsequently, CIRF identifies the center-of-target point, ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ , which contains the related features of 
the target class. With ⃖⃗𝑛, ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ , and the input latent code ⃖⃗𝑧, CIRF determines three distinct points: i) the minimally changed CFE; 
ii) the semi-factual explanation; and iii) the plausible CFE. The minimally modified CFE faithfully satisfies Eq. (1). The semi-factual 
explanation indicates the potential feature modifications, achieved through latent interpolation, while retaining the original class to 
the maximum extent possible. The plausible CFE aims to determine the magnitude by which the latent input should be manipulated 
with respect to the input. We solve the problem of including as many related features of the target class as possible by simplifying 
the problem by finding the point closest to ⃖⃖⃖⃖⃖⃗𝐶𝑇 of the target class within the latent space. Consequently, our goal is to identify the 
magnitude and direction of manipulation with consideration of related features. The following sections explain how to calculate this 
simplified problem with a mathematical tool that finds the shortest distance in latent space.

3.3. Latent code manipulation

We utilize the property of the latent space in which close latent codes generate similar outputs throughout the study. As given by 
Eq. (1), it is recommended to generate a CFE that is similar to the input. The properties that yield similar outputs using close latent 
codes can satisfy the second term of Eq. (1). To comply with the first term of Eq. (1), CIRF initially calculates the direction vector 
⃖⃗𝑛 that contains target class features to alter the decision of a classifier. Fig. 2 visualizes our framework, including the calculation 
of ⃖⃗𝑛 (step 1) and ⃖⃖⃖⃖⃖⃗𝑃 𝑃 (step 2). The first step involves training ⃖⃗𝑛, and the second step entails manipulating the input latent code ( ⃖⃗𝑧) 
towards the direction ( ⃖⃗𝑛). In the second step, CIRF calculates the projection of ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ on ⃖⃗𝑛 to specify the magnitude of manipulation 
4

(𝜆∗). Subsequently, ⃖⃗𝑧 is directed toward the derived vector ⃖⃗𝑛 up to 𝜆∗. We interpolate from the input latent to the projection-point 
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Fig. 3. Diagrams in the latent space. (a): Principle of calculating the projection-point, given the input sample and direction vector. (b): Example of results generated 
by asymmetric distribution of center-of-target points.

to identify the minimally changed CFE which is a CFE closest to the decision boundary of 𝐹 . Finally, ⃖⃖⃖⃖⃖⃗𝑃 𝑃 is defined as ⃖⃖⃖⃖⃖⃗𝑃 𝑃 = ⃖⃗𝑧+ 𝜆∗ ⃖⃗𝑛
(see Fig. 3(a)). ⃖⃖⃖⃖⃖⃗𝑃 𝑃 stands closest to the ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ and it maintains similarity with ⃖⃗𝑧 in the latent space because of the close latent code 
property. In the following sections, we describe the calculation of ⃖⃖⃖⃖⃖⃗𝑃 𝑃 using CIRF in two steps: i) Direction vector calculation and ii) 
Projection-point search.

3.4. Direction vector calculation

As shown in Fig. 2, ⃖⃗𝑛 is calculated in the first step by utilizing a pre-trained generative model 𝐺 and a classifier 𝐹 . This algorithm 
can be applied to any classifier, given that a GAN is trained on the identical dataset. The training procedure begins with the 
identification of center-of-targets points, ⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐 and ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ , to capture the features of classes 𝑐 and 𝑐′. Each element of ⃖⃖⃖⃖⃖⃗𝐶𝑇 is defined 
as the mode of each element of latent codes. Mode points are defined by generating random samples from 𝐺 along with random 
noise . These samples are then classified using 𝐹 to extract confidently classified points along the output logits. Subsequently, 
the classified samples are filtered in a high logit order with a predefined filtering ratio 𝑅. Then, Gaussian Mixture Models (GMMs) 
learn from the filtered latent codes of each element and extract the mode points with the highest probability. We utilize GMMs to 
approximate unknown distributions. Candidates of ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ s (mean, median, and mode) are shown in Fig. 3(b). We empirically observe 
that mode points are preferable in the case of asymmetric distributions, as shown in Fig. 3(b). After defining ⃖⃖⃖⃖⃖⃗𝐶𝑇 s, we calculate the 
initial direction vector and normalized version of the direction vector as follows:

⃖⃗𝑛 =
⃖⃖⃖⃖⃖⃖⃗𝑛𝑖𝑛𝑖𝑡

∣∣ ⃖⃖⃖⃖⃖⃖⃗𝑛𝑖𝑛𝑖𝑡 ∣∣2
, ⃖⃖⃖⃖⃖⃖⃗𝑛𝑖𝑛𝑖𝑡 = ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ − ⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐, (2)

where ⃖⃖⃖⃖⃖⃖⃗𝑛𝑖𝑛𝑖𝑡 and ⃖⃗𝑛 denote the initial and normalized direction vectors, respectively. This initialization ensures that ⃖⃗𝑛 does not settle 
into undesired local optima. We simplify the optimization process by utilizing ⃖⃖⃖⃖⃖⃖⃗𝑛𝑖𝑛𝑖𝑡 , which guides ⃖⃗𝑧 toward the target features of 
𝑐′. Before ⃖⃗𝑛 is added to the input latent code ⃖⃗𝑧, ⃖⃗𝑛 is multiplied by 𝑐𝑐′ where 𝑐𝑐′ = ( ⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐, ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ ). 𝑐𝑐′ is the reference of class 
difficulty, and it enables ⃖⃗𝑛 to consider the difficulties associated with crossing the decision boundaries from the class 𝑐 to 𝑐′. For 
instance, the distance required to alter the class from ‘Dog’ to ‘Truck’ is longer than that required to alter the class from ‘Dog’ to ‘Cat’ 
because the former involves changing more features. If normalization and class difficulty are neglected, then ⃖⃗𝑛 identifies a typical 
direction and magnitude, thus ensuring monotonous manipulations and achieving the high class-confidence for the target class. In 
particular, the normalizing term prevents extremely large magnitudes, which can dominate the class-confidence. For training ⃖⃗𝑛, we 
calculate the initial counterfactual example 𝑥′ with the following equation:

𝑥′ =𝐺(⃖⃗𝑧+𝑐𝑐′ ⃖⃗𝑛), (3)

where 𝑥′ denotes an initial CFE. Then, ⃖⃗𝑛 is optimized by minimizing the following loss:

 = (𝐹 (𝑥′), 𝑐′) + 𝛼 ∣∣ ⃖⃗𝑛 ∣∣1 +𝛽 ∣∣ ⃖⃗𝑛 ∣∣2, (4)

where  represents the cross-entropy function. The second and third terms are elastic net regularization terms, which are introduced 
to allow sparse manipulation of ⃖⃗𝑛 and to prevent ⃖⃗𝑛 from simultaneously changing a large number of features [54]. The calculation of 
⃖⃗𝑛 is shown in Algorithm 1. Note that the first step, which aims to calculate the direction vector ⃖⃗𝑛 can be substituted with a method 
that identifies meaningful directions in the latent space. The alternative to the first step is discussed in Sec. 4.6.

3.5. Projection-point search

In the second step, as shown in Fig. 2, we calculate ⃖⃖⃖⃖⃖⃗𝑃 𝑃 to determine the magnitude of latent manipulation, as shown in Fig. 3(a). 
⃖⃖⃖⃖⃖⃗𝑃 𝑃 is derived through a projection operation that fulfills three conditions: i) ⃖⃖⃖⃖⃖⃗𝑃 𝑃 facilitates the class alteration from 𝑐 to 𝑐′, ii) ⃖⃖⃖⃖⃖⃗𝑃 𝑃

remains proximate to the input ⃖⃗𝑧, and iii) ⃖⃖⃖⃖⃖⃗𝑃 𝑃 maintains closeness to ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ . The first and second conditions stem from the first and 
5

second terms in the objective function of CFE (Eq. (1)). The last condition is added to capture target features and related features. 
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Algorithm 1 Direction Vector Calculation.

Require: Classifier 𝐹 , Generator 𝐺, Input latent ⃖𝑧, Training steps 𝑆 , Filtering rate 𝑅, Gaussian Mixture Model 𝐺𝑀𝑀 , Euclidean distance function 
, Cross-Entropy function 𝐶𝐸, Sampling function 𝑓𝑠 samples the mode of the class from 𝐺𝑀𝑀 , Predefined variance Σ and Σ𝑛⃗

1: Sample  ∼ (0, Σ)
2: 𝑁𝑐, 𝑁𝑐′ ← sort(𝐹 (𝐺())) ⊳ Sort by confidence for corresponding classes

3: 𝑁 ′ is assigned the first 𝑅 ⋅ len(𝑁) elements from the sorted list 𝑁
4: Fit 𝐺𝑀𝑀𝑐(𝑁 ′

𝑐
) and 𝐺𝑀𝑀𝑐′ (𝑁 ′

𝑐′
) ⊳ Train 𝐺𝑀𝑀 with latent codes

5: ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ ← 𝑓𝑠(𝐺𝑀𝑀𝑐′ )
6: ⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐 ← 𝑓𝑠(𝐺𝑀𝑀𝑐 )
7: Initialize ⃖⃗𝑛= ⃖⃖⃖⃖⃗𝑛𝑖𝑛𝑖𝑡

∣∣⃖⃖⃖⃖⃗𝑛𝑖𝑛𝑖𝑡 ∣∣2
, ⃖⃖⃖⃖⃖⃗𝑛𝑖𝑛𝑖𝑡 = ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ − ⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐 ⊳ Eq. (2)

8: for 𝑠 ∈ 1, . ., 𝑆 do

9: 𝑐 ← 𝐹 (𝐺(⃖⃗𝑧))
10: 𝑐𝑐′ ←(⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐 , ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ )
11:  ← 𝐶𝐸(𝐹 (𝐺(⃖⃗𝑧+ ⃖⃗𝑛𝑐𝑐′ )), 𝑐′) + 𝛼 ∣∣ ⃖⃗𝑛 ∣∣1 +𝛽 ∣∣ ⃖⃗𝑛 ∣∣2 ⊳ Eq. (3), (4)

12: ⃖⃗𝑛 is updated by 
13: end for

14: return ⃖⃗𝑛

In order to capture features, we need to find the closest point from ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ , on the line of ⃖⃗𝑛. We transform the problem of finding this 
point into the least square solution, which can be obtained using a projection operation. The projection operation is calculated by 
the inner product of two vectors ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ − ⃖⃗𝑧 and ⃖⃗𝑛, identifying the closest point on the line of ⃖⃗𝑛 from ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ . Leveraging the properties 
of the generative model, ⃖⃖⃖⃖⃖⃗𝑃 𝑃 integrates features from both ⃖⃗𝑧 and ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ , while altering class. Given that ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ contains representative 
information for the target class 𝑐′, an ideal ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ enhances the overall performance (discussed in Table 4). We project ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ onto ⃖⃗𝑛 to 
obtain ⃖⃖⃖⃖⃖⃗𝑃 𝑃 . We define the initial ⃖⃖⃖⃖⃖⃗𝑃 𝑃 , which is formulated as follows:

⃖⃗̂𝑧 = ⃖⃗𝑧+ 𝜆⃖⃗𝑛, 𝜆 = ⃖⃗𝑛 ⋅ ( ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ − ⃖⃗𝑧), (5)

where ⃖⃗̂𝑧 represents the initial ⃖⃖⃖⃖⃖⃗𝑃 𝑃 . Thereafter, CIRF establishes the final CFE by iteratively expanding to both sides of the ⃖⃗𝑛 vector 
with an initial ⃖⃖⃖⃖⃖⃗𝑃 𝑃 as the center. This iterative search algorithm enables us to consider the imprecision of 𝐹 and the entangled latent 
space of 𝐺. As a result, the algorithm helps prevent the classification of ⃖⃖⃖⃖⃖⃗𝑃 𝑃 as 𝑐 despite containing numerous features of 𝑐′, thereby 
enabling that the CFE is appropriately classified as 𝑐′. Thus, CIRF calculates a new point located close to ⃖⃗̂𝑧, which is classified as 𝑐′. 
The formula for identifying the new point is as follows:

⃖⃗𝑧∗ = ⃖⃗𝑧+ 𝜆∗ ⃖⃗𝑛, 𝜆∗ = 𝜆− 𝑣,

𝑣 = argmin
𝑣

(𝐹 (𝐺(⃖⃗𝑧+ (𝜆− 𝑣)⃖⃗𝑛)) − 𝑐′), (6)

where 𝑣 ∈ ℝ, and ⃖⃗𝑧∗ is the new ⃖⃖⃖⃖⃖⃗𝑃 𝑃 . This algorithm is useful when applying complex datasets that prevent the CFE from being 
classified as 𝑐′, for example, ImageNet. The second step is represented at Algorithm 2. Moreover, our method is able to provide the 
following three types of explanations by interpolating the input latent ⃖⃗𝑧 and ⃖⃗𝑧 + 𝜆∗ ⃖⃗𝑛: i) 𝐺(⃖⃗𝑧 + 𝜆̂⃖⃗𝑛): a minimally modified CFE that 
alters the class and enlightens the decision boundary, where the magnitude of the change 𝜆̂, is derived by interpolating ⃖𝑧 and ⃖⃗𝑧+𝜆∗ ⃖⃗𝑛; 
ii) 𝐺(⃖⃗𝑧 + ( ̂(𝜆 − 𝛾)⃖⃗𝑛): a semi-factual explanation [20] that is close to the decision boundary but does not cross it, where 𝛾 is a small 
value; and iii) 𝐺(⃖⃗𝑧+ 𝜆∗ ⃖⃗𝑛): a plausible CFE derived from ⃖⃖⃖⃖⃖⃗𝑃 𝑃 .

Algorithm 2 Generating CFE.

Require: Classifier 𝐹 , Generator 𝐺, Input latent ⃖⃗𝑧 from 𝑥, Target class 𝑐′ , Center-of-target points ⃖ ⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ , Direction vector ⃖⃗𝑛 derived from Algorithm 1)

1: 𝜆 ← ⃖⃗𝑛 ⋅ (⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ − ⃖⃗𝑧),
⃖⃗̂𝑧← ⃖⃗𝑧+ 𝜆⃖⃗𝑛 ⊳ Eq. (5)

2: if 𝐹 (𝐺( ⃖⃗̂𝑧)) = 𝑐′ then:

3: ⃖⃗𝑧∗ ← ⃖⃗̂𝑧

4: return ⃖⃗𝑧∗

5: else:

6: ⃖⃗𝑧∗ ← ⃖⃗𝑧+ 𝜆∗ ⃖⃗𝑛, where 𝜆∗ = 𝜆 − 𝑣,

𝑣 ← argmin𝑣(𝐹 (𝐺(⃖⃗𝑧+ (𝜆 − 𝑣)⃖⃗𝑛)) − 𝑐′) ⊳ Eq. (6)

7: return ⃖⃗𝑧∗

8: end if
6
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4. Experiments

4.1. Experimental setup

We use the following four classification datasets in tabular and image domains: a) HELOC is a tabular dataset designed for loan 
approval/refusal classification, b) MNIST is a handwritten digit dataset, c) CelebA-HQ is a facial dataset encompassing with 40 
classes, and d) ImageNet is a comprehensive image database comprising 1,000 classes. The same paired datasets ( or  for the 
projected latent for StyleSwin [37] and StyleGAN-XL [55], along with  of 𝐺) are used to evaluate each method. Note that  is 
replaced by the projected latent  in StyleSwin and StyleGAN-XL to utilize the highly disentangled latent factors of variation [56]. 
The settings of all the predefined hyperparameters and each model are described in the appendix.

4.2. Evaluation metrics

We used the following evaluation metrics to assess our method.

IM1 Metric. This metric is defined as IM1=
∣∣𝐼 ′−𝐴𝐸𝑐′ (𝐼

′)∣∣22
∣∣𝐼 ′−𝐴𝐸𝑐 (𝐼 ′)∣∣22

, where a lower score indicates better performance [53]. 𝐼 ′ denotes a 

generated CFE, and 𝐴𝐸s are autoencoders trained by the corresponding classes. The IM1 metric evaluates both interpretability [53]

and plausibility [20]. We use this metric to measure the plausibility of the target class, and the score is low when generated 𝐼 ′
is plausible. Thus, a lower IM1 score suggests that 𝐼 ′ closely aligns with class 𝑐′ and deviates from 𝑐. Since the degree of 𝐴𝐸
training influences the IM1 score, we use multiple random seeds for the complex dataset in Sec. 4.6. The IM2 metric is given by 

IM2=
∣∣𝐴𝐸(𝐼 ′)−𝐴𝐸𝑐′ (𝐼

′)∣∣22
∣∣𝐼 ′∣∣1+𝜖

, where 𝐴𝐸 is trained by all classes [53]. Since this metric has an inaccuracy issue [20], we will investigate 
its performance in the future work.

MC-mean and NN-dist Metrics. These two metrics were introduced in a recent study [20]. MC-mean assesses the robustness 
of a CFE. It activates the dropout of the fully-connected layers of 𝐹 and checks the classification of the CFE into 𝑐′ across multiple 
inference trials. We performed 1,000 inferences to ensure consistency with the baseline [20]. NN-dist assesses the distance between 
the input(𝑥) and the CFE(𝑥′) using the feature space rather than the input space. Hence, it is particularly suitable for image domain 
evaluations. It becomes feasible to differentiate CFEs from adversarial attacks [46,57] by comparing similarities in the feature space, 
particularly because adversarial examples exhibit high similarity in the input space. Conventional distance metrics in the input space, 
such as 𝐿1 and 𝐿2 metrics [15], frequently fail to differentiate between adversarial attacks and CFEs.

Validity score. The validity score quantifies the fraction of CFEs correctly classified as 𝑐′ by a given classifier.

Note that we did not evaluate the Fréchet Inception Distance (FID) or other metrics for generative models for several reasons. 
Firstly, as CIRF employs a pre-trained generative model, the FID of CFEs inherently depends on the pre-trained generator. Further-

more, the primary purpose of CFEs is to probe the decision boundary of a classifier, which does not necessitate an evaluation of the 
image structure. The reason is that CFE approaches are designed to alter the prediction of the classifier efficiently, so the generated 
CFEs are not required to closely resemble the training dataset in the feature space. Consequently, our evaluation mainly concentrated 
on the IM1 metric, assessing the plausibility and interpretability.

4.3. Shifting latents towards the center-of-target point

In this section, we describe how shifting a latent closer to the ⃖⃖⃖⃖⃖⃗𝐶𝑇 s enables the latent to provide more plausible examples. This 
plausibility is attributed to the ⃖⃖⃖⃖⃖⃗𝐶𝑇 s containing the critical features that are considered by the classifier. We present an experiment to 
demonstrate the capability of ⃖⃖⃖⃖⃖⃗𝐶𝑇 s in generating more plausible examples. This example shows that the points close to ⃖⃖⃖⃖⃖⃗𝐶𝑇 s provide 
more plausible examples for the classifier than those far from ⃖⃖⃖⃖⃖⃗𝐶𝑇 s. First, we trained a GAN with a three-dimensional latent space 
using the MNIST dataset in order to visualize the latent space. Fig. 4 represents the three-dimensional latent space of the trained 
GAN. We created grid sample points in the latent space and classified the samples generated from these points using a classifier. As 
shown in Fig. 4(a), the latent codes that generate samples to be classified into the same class were grouped. Subsequently, only the 
points classified with high confidence were filtered out, leading to clearer groupings as depicted in the right part of Fig. 4(a). The 
outline was drawn using the Convex Hull construction, where the dotted line represents a pseudo-decision boundary. Furthermore, 
we noticed that the centroids of the grouped latent codes generated examples that appeared more plausible to humans as evident 
in the centers corresponding to classes 1 and 0 in Fig. 4(b). Through this experiment, we empirically demonstrate that the closer 
a latent code is to the centroid of the grouped latent codes, the more likely it is to be classified into the corresponding class. As a 
result, our goal is narrowed down to defining the center of the grouped latent codes and determining the magnitude of manipulation 
of the input latent code. In the following section, we present a performance comparison of ⃖⃖⃖⃖⃖⃗𝑃 𝑃 s using multiple ⃖⃖⃖⃖⃖⃗𝐶𝑇 s to determine the 
manipulation.

4.4. Comparison of center-of-targets

As discussed in Sec. 3.5, ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ strongly affects the plausibility performance. We empirically know the mode is better in case of 
non-symmetric distribution, like Fig. 3 (b). We thus use the mode point of each component from the filtered samples. Before deriving 
7

the ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ , we first analyze the distributions of the latent codes in the MNIST training dataset. As shown in Table 2, the distributions 
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Fig. 4. The latent space of a GAN is trained with a three-dimensional latent space. Each color corresponds to a specific class. (a): Latents and their corresponding classes 
as classified by the classifier. The left side presents the classification results for grid sample points in latent space, while the right side presents the outcomes after 
filtering confidently classified points. (b): Gradual changes along the black arrow shown in (a). The lined up samples are results generated by gradually manipulating 
latent codes directed by the black arrow in (a).

Table 2

Distributions of each latent element of training 
datasets tested using the Kolmogorov-Smirnov test. 
The ‘Gaussian’ and ‘Else’ distributions are described 
in Fig. 5.

Dataset Class Gaussian Else Total

HELOC
Entire 0 128 128

Each 6 250 256

MNIST
Entire 28 72 100

Each 824 166 1000

had characteristics of either a Gaussian distribution or a gamma distribution. Even in the case of an ‘else’ distribution, it takes on 
a specific form that closely resembles a Gaussian distribution, as shown in Fig. 5. A Kolmogorov-Smirnov test is conducted with 
a significance level of 0.05 to determine whether the distributions fit the Gaussian or gamma distribution. In addition, we further 
analyze the percentile probability for each value of the latent element. We sample 10,000 values and calculate the probability of each 
value using trained GMMs. Subsequently, we extract the 0.25, 0.5, 0.75, and 1.0 percentile points in ascending order of probability. 
As shown in Fig. 6, the overall performances get better as the probability of an element’s value increases, particularly reflected in 
the IM1 score. This is because ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ s contain the features of 𝑐′, thereby enabling ⃖⃖⃖⃖⃖⃗𝑃 𝑃 to have the features of 𝑐′. Therefore, the target 
features are effectively captured using the mode as ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ , thus improving the overall performance.

4.5. Investigation of related features

This section describes the identification of related features by classifier 𝐹 for the CelebA-HQ dataset, which is used for training 
𝐹 . In addition, we demonstrate how these features manifest in plausible CFEs. The CelebA-HQ dataset comprises 30,000 facial 
images and 40 classes. Each class corresponds to each attribute. These rich attribute labels enable us to effectively explore related 
features. First, we examine the relationship between the classes ‘Gray hair’ and ‘Young’ classes. Since the ‘Young’ class is negatively 
related features to ‘Gray hair’ 1,242 samples are labeled as having ‘Gray hair,’ out of which 43 are labeled as ‘Young’ and 1,199 are 
labeled as ‘not Young.’ We analyzed odds ratio (OR) to investigate relationships between features. An OR greater than 1 indicates a 
positive association, whereas an OR less than 1 suggests a negative association. The odds of having ‘Gray hair’ given being ‘Young’ 
are 0.0018 and for not being ‘Young’ are 0.22, resulting in an OR of 0.0083 (see Table 3). As the OR value for the ‘Young’ class 
was extremely lower than 1, the ‘Young’ and ‘Gray hair’ features can be represented as negatively correlated. When the classifier is 
trained using this dataset, it naturally associates ‘Gray hair’ with being ‘not Young.’ As a result, if an example contains both related 
8

features, the classifier considers it to be more plausible. The results of setting 𝑐′ to ‘Gray hair’ are shown in Fig. 7. In addition to the 
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Fig. 5. ‘Gaussian’ and ‘Else’ distributions of each latent element on the training dataset.

Fig. 6. Brief comparison of ⃖⃖⃖⃖⃖⃗𝐶𝑇 s. The overall performance improves as the percentile increases on the MNIST dataset.

‘Young’ class, we also examine other related features ‘Male’ and ‘Eyeglasses,’ as shown in Table 3 and Fig. 7. A significant number of 
examples change the ‘Young,’ ‘Male,’ and ‘Eyeglasses’ classes together when altering class to ‘Gray hair.’ This alignment enhances the 
plausibility of decisions within the scope of 𝐹 . As the CIRF algorithm calculates ⃖⃖⃖⃖⃖⃗𝑃 𝑃 by projecting ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ onto ⃖⃗𝑛, the related features 
considered by 𝐹 are reflected in the CFEs. The reason for this is that 𝐹 influences ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ and ⃖⃗𝑛. Conversely, Fig. 8 represents cases 
of low relationships between features. When the target class has low relationships with other features, CIRF only changes the target 
9

features. Details on the OR for ‘Brown hair’ and ‘Blond hair’ are presented in the appendix.
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Table 3

Related features in the CelebA-HQ dataset, which consists of 30,000 face 
images and 40 labels.

Odds of having ‘Gray hair’ given
Odds ratio Variations

features (𝑂𝑑𝑑𝑠(𝐺𝑟𝑎𝑦|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠))

Male

(0.10)

not Male

(0.012)
8.3

not Male →
Male

Young

(0.0018)

not Young

(0.22)
0.0083

Young →
not Young

Eyeglasses

(0.27)

no Eyeglasses

(0.034)
7.9

no Eyeglasses →
Eyeglasses

Fig. 7. Altering class to ‘Gray hair’ to examine related features. ‘Gray hair’ is associated with certain related features, such as ‘Age,’ ‘Gender,’ and ‘Eyeglasses.’.

4.6. Evaluation of plausibility

This section describes the evaluation results and the assessment settings and highlights how CIRF achieves high performance in 
terms of plausibility through the IM1 metric. Table 4 shows the performance of the CFEs. The terms ‘Ours w/ SVM’ and ‘Ours w/ St.1’ 
denote the usage of the Support Vector Machine (SVM) in InterFaceGAN [36] and step 1 in our method to compute ⃖𝑛⃗, respectively. As 
shown in the table, ‘Ours w/ SVM’ and ‘Ours w/ St.1’ exhibit the highest performance in terms of the IM1 metric. This is because CIRF 
simultaneously changes the critical and related features for the target class. Direction vector ⃖⃗𝑛 guides the manipulation of related 
features, and ⃖⃖⃖⃖⃖⃗𝑃 𝑃 represents the point close to ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ . In contrast, the baseline only changes critical features to alter the decision. To 
ensure a fair comparison, Table 4 is obtained using publicly available code and uses the same datasets, classifier, and generator as 
the baseline. Note that the baseline only evaluates 163 samples for MNIST and 60 samples for CIFAR10, and this was conducted for 
only one target class. In contrast, our evaluation encompasses 108 samples for MNIST (split evenly between 54 misclassified and 
54 correctly classified samples) and the first 300 samples of the CIFAR10 test dataset, covering all classes. Consequently, we assess 
over 18 times more samples than those used in the baseline for evaluation. Additionally, no attempts are made to simultaneously 
10

and correctly evaluate the IM1 and MC-Mean metrics on financial datasets. Therefore, we carefully compare the performance of 
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Fig. 8. Samples altering the class to ‘Blond’ and ‘Brown hair’ exhibit little correlation with other features. CIRF primarily changes the target feature due to the low 
relationships between features.

Table 4

Quantitative evaluation of plausibility. ‘Ours w/ SVM’ and ‘Ours w/ St. 1’ achieved the highest or performance 
on IM1 and validity.

Dataset Method Validity(↑) MC-Mean(↑) MC-STD(↓) NN-Dist(↓) IM1-mean(↓)

HELOC

PIECE 0.60 0.60 0.49 4.5 0.99

Ours w/ SVM 0.65 0.48 0.66 4.4 0.99

Ours w/ St. 1 0.91 0.28 0.27 4.4 0.99

MNIST

PIECE 0.84 0.78 0.30 3.3 1.05

Ours w/ SVM 0.95 0.82 0.15 4.4 0.54

Ours w/ St. 1 0.99 0.82 0.19 4.3 0.59

CIFAR10

PIECE 0.25 0.27 0.33 1.34 1.16

Ours w/ SVM 0.94 0.50 0.37 1.41 1.0

Ours w/ St. 1 1.0 0.33 0.34 1.4 1.1

our method with that of the baseline, while considering that the baseline study does not focus on tabular datasets. Moreover, the 
results obtained using the SVM not only demonstrate the CIRF’s versatility but also suggest its potential for further enhancement 
when integrated with other advanced methods. Table 5 presents a comparison of plausibility across selected classes in the image 
dataset: ‘Brown,’ ‘Black,’ ‘Blond,’ and ‘Gray hair.’ The classes and datasets are selected on the basis of the baseline study. To mitigate 
performance variability due to different 𝐴𝐸 training levels, particularly in complex datasets, we employ three random seeds across 
300 samples. As the reconstruction errors of 𝐴𝐸s in the IM1 metric are influenced by the training level of 𝐴𝐸s, we use three random 
seeds and calculate the mean. CIRF achieves competitive performance in terms of the IM1 metric when modifying related features.

4.7. Visualization of plausibility

To qualitatively assess our method, plausible CFEs are visualized using widely recognized handwritten digits (Fig. 9), images 
(Fig. 10), and face datasets (Fig. 11). We collect the samples that the classifier misidentifies to present intuitive examples, as shown 
in Fig. 9. The 𝐹 and 𝐺 use identical architectures and parameters for all methods to ensure fair comparison. ‘Ours w/ SVM’ and 
11

‘Ours w/ St. 1’ successfully generate plausible examples that resemble handwritten words. CIRF accurately promotes the positive 
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Table 5

Plausibility evaluation on image datasets. The av-

erage of three evaluations is calculated to account 
for performance variations due to the extent of AE 
training.

Dataset Method IM1-Mean(↓)

CelebA-HQ
DiVE 1.10

Ours w/ St. 1 1.09

Fig. 9. Comparison of our method with the existing methods for the MNIST dataset. The highlighted yellow (prominent) and blue (suppressed) dotted boxes illustrate 
critical areas for altering the decision.

area (yellow dotted boxes) and suppresses the negative area (blue dotted boxes) in Fig. 9. ⃖⃖⃖⃖⃖⃗𝑃 𝑃 prevents the generation of implausible 
examples by limiting excessive manipulation. The ‘Minimally changed’ explanations in the second column provide only slight changes 
in the input to alter the decision. The ‘Minimally changed’ explanation is designed to investigate the decision boundary of 𝐹 by 
perturbing a marginal amount of the latent code. In addition, the most critical parts are identified through both CFEs: minimally 
changed explanations and plausible examples (‘Ours w/ SVM’ and ‘Ours w/ St. 1’).

Fig. 10 intuitively shows the effect that modifying related features has on improving plausibility and interpreting classifiers in 
the CIFAR-10 dataset. The leftmost ‘Original’ column is the original data, and the second ‘Inversion’ column is data restored through 
the inversion of the generative model. The more similar these two columns are, the better the inversion is. The third column ‘Ours 
with St. 1’ column is the plausible example made by CIRF. As shown in the figure, when changing the ‘Airplane’ class to ‘Horse,’ not 
12

only the object but also the background changes from air to grass. If generated CFE modifies only the object ‘Airplane’ to ‘Horse,’ an 



Information Sciences 678 (2024) 120974H.-D. Kim, Y.-J. Ju, J.-H. Hong et al.

Fig. 10. Examples of related features showing images more plausible.

implausible example (‘Horse’ floating in the sky) will be created. However, in the real world, images of a ‘Horse’ floating in the sky 
are not plausible, and the dataset on which the classifier trained also rarely contains a ‘Horse’ floating in the sky. Similarly, when 
changing from ‘Ship’ to ‘Horse,’ the sea in the background gradually transforms into grassland.

Fig. 11 shows a comparison with DiVE [47], which utilized autoencoders to create CFEs on a facial dataset. Given that the extent 
of manipulation is not apparent in a complex dataset, we measure the distances in the latent space below the samples. The CFEs 
obtained using our method modify related features, such as race when changing from ‘Blond’ to ‘Black’ hair. This is attributed to 
the training dataset for 𝐹 , which contains a relatively large proportion of races with ‘Black’ hair. The CFEs with the related features 
enable users to figure out that race affects the decision of 𝐹 . Thus, CIRF modifies the related features to alter the class, thereby 
providing natural and high-quality CFEs compared to the blurrier CFEs produced by DiVE.

Table 6 shows the qualitative results obtained for the HELOC dataset. Several highlighted features are simultaneously modified, 
whereas unrelated features are preserved. For example, the ‘MaxDelqEver’ and ‘NetFractionInstallBurden’ features refer to delayed 
payments and total assets, respectively. Intuitively, people with numerous assets infrequently make late payments. We consider the 
‘MaxDelqEver’ and ‘NetFractionInstallBurden’ features to be negatively related. As assets increase, the number of late payments 
decreases, and vice versa, thus naturally providing plausible CFEs. We exclude two types of outliers from the HELOC dataset. The 
first outlier data contains a value of -9, and the second is an externally referenced feature, namely ‘ExternalRiskEstimate.’

In conclusion, as discussed in Sec. 4.5, the incorporation of related features enhances plausibility and provides a clearer depiction 
of the decision boundary of the classifier itself, which constitutes our primary focus.

4.8. Real-world samples

To verify the applicability of our method to real-world samples, we apply CIRF to the ImageNet dataset, incorporating the 
13

inversion process. We successfully generate CFEs for real-world data by integrating CIRF with the GAN inversion process. We employ 
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Fig. 11. Comparison of our method with DiVE for the CelebA-HQ dataset. The distances ((⃖⃗𝑧, ⃖⃖⃖⃖⃖⃗𝑃 𝑃 ) / (⃖⃖⃖⃗𝑧∗ , ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ )) from the input to ⃖⃖⃖⃖⃖⃖⃖⃗𝐶𝑇𝑐′ and ⃖⃖⃖⃖⃖⃗𝑃 𝑃 are shown below 
the images.

the StyleSwin inversion process for ImageNet and use instance-level optimization for the MNIST, CIFAR10, and HELOC datasets 
[20,35,37]. Although the inverted images are slightly blurrier than the original images, features such as ingredients and texture are 
well-preserved, as shown in Fig. 12. It should be noted that when an image of ‘Carbonara’ is changed to that of ‘Mashed potatoes,’ 
the texture of carbonara noodles is pasted onto the texture of mashed potatoes, and ingredients are suppressed, which are the related 
features of ‘Carbonara.’ As a result, it captures more related features compared to the minimally changed images.

5. Conclusion

This study introduced the CIRF framework to enhance the plausibility of counterfactual explanation (CFE) by defining center-

of-target points, direction vectors, and projection-points. Within CIRF, projection-points served as CFEs, resembling the input while 
altering the classifier’s decision. Leveraging the inherent property of generative models, wherein close latent codes generated similar 
outputs, the framework incorporated both input and class features. Furthermore, the framework’s utilization of related features 
further enhanced CFE plausibility, underscoring the significance of these related features. The given classifiers were successfully 
utilized to determine the magnitude of manipulation of the latent code by the projection-point, preventing the generation of an 
implausible example. While the results indicated that a new approach incorporating related features can improve the plausibility of 
CFE, we acknowledge a disadvantage of the heavy computational costs when estimating data distributions for center-of-target points. 
Future approaches are anticipated to efficiently capture the related features, with advancements in computational hardware expected 
to significantly expedite processing speeds. This study employs GANs as the generative model, which introduces a potential limitation 
since the effectiveness of CFEs is closely tied to the performance of the chosen generative model. Given the rapid advancements in 
14

diffusion models, which possess different latent spaces, we designed the framework to enable the integration of alternative generative 
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Table 6

Additional results for the HELOC dataset. The CFEs are generated using ‘Ours w/ St. 1.’

Features Input_1 CFE_1 Input_2 CFE_2 Input_3 CFE_3

MSinceOldestTradeOpen 143 81 46 273 175 193

MSinceMostRecentTradeOpen 3 4 2 5 6 11

AverageMInFile 54 27 17 119 99 106

NumSatisfactoryTrades 15 0 13 28 24 26

NumTrades60Ever2DerogPubRec 0 2 2 0 0 0

NumTrades90Ever2DerogPubRec 0 1 2 0 0 0

PercentTradesNeverDelq 100 71 92 100 100 100

MSinceMostRecentDelq -7 52 -7 -7 -7 -7

MaxDelq2PublicRecLast12M 7 0 5 7 7 7

MaxDelqEver 8 2 7 8 8 8

NumTotalTrades 15 4 16 47 25 26

NumTradesOpeninLast12M 1 1 4 4 2 1

PercentInstallTrades 26 86 43 40 56 62

MSinceMostRecentInqexcl7days 5 0 0 2 1 1

NumInqLast6M 0 1 1 1 2 1

NumInqLast6Mexcl7days 0 1 1 1 2 1

NetFractionRevolvingBurden 12 11 53 3 85 13

NetFractionInstallBurden 65 92 84 64 68 68

NumRevolvingTradesWBalance 1 1 6 3 5 6

NumInstallTradesWBalance 3 -8 4 4 3 3

NumBank2NatlTradesWHighUtilization 0 -8 1 0 3 3

PercentTradesWBalance 36 100 89 89 80 79

Labels 1 0 0 1 0 1

models. Future work will extend this verification to contemporary generative models, underscoring the need for continued research 
into the diverse properties of latent spaces among various generative models.
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Appendix A. Hyperparameters and model architectures

We outline the predefined hyperparameters and model architectures used in the experiments. The filtering rates are shown in 
Table A.7, and they indicate the extent to which the data used to calculate ⃖⃖⃖⃖⃖⃗𝐶𝑇 s, are filtered based on confidence. A low filtering rate 
implies that the data with a high classification confidence are used to calculate ⃖⃖⃖⃖⃖⃗𝐶𝑇 s. The perturbation counts indicate the number 
of times that the perturbing algorithm is used. As the perturbation magnitude is 0.02, we apply the same number of perturbations to 
15

all data. 𝛼 and 𝛽 in Eq. (4) are set 0.001 and 0.01, respectively [54].
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Fig. 12. Adapting real image data using inversion. The inversion images are generated by the inverted latent code optimized by original images. Minimally changed 
and ‘Ours w/ St. 1’ suppress the texture of noodles and alter it to that of mashed potatoes.

Table A.7

Hyperparameters for each dataset.

Hyperparameters HELOC MNIST CIFAR10 CelebA-HQ ImageNet

Filtering rate 0.2 0.2 0.2 0.2 0.05

Latent dimension 128 100 100 512 512

Perturbation count

/ magnitude
15 / 0.02 15 / 0.02 15 / 0.02 15 / 0.02 15 / 0.02

𝛼, 𝛽 0.1, 0.01 0.1, 0.01 0.1, 0.01 0.1, 0.01 0.1, 0.01

The number of 𝐺𝑀𝑀

components
5 5 5 5 5

Sampling variances

Σ,Σ𝑛⃗

1 1 1 1 1

Table A.8 presents the classifiers and generators that were used in the experiment. Each pair of a classifier and generator is 
trained by the same dataset. The MLP model consists of three linear layers, and the CNN model consists of five convolution blocks. 
We use the default hyperparameters of CTGAN, which is used to generate tabular datasets. We also use pre-trained generators for 
complex datasets (CelebA-HQ and ImageNet). Details of experiments can be found at https://github .com /poongi /CIRF _CFE.

Appendix B. Additional qualitative results on each dataset

HELOC We conduct a further qualitative analysis of the HELOC dataset using a probability distribution approach. As shown in 
16

Fig. A.13, the actual distribution of highly modified features in the training data is presented in terms of labels. The comparison of 

https://github.com/poongi/CIRF_CFE
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Table A.8

Model setup for each dataset.

Datasets Classifier Generator

HELOC [34] MLP CTGAN [58]

MNIST [30] CNN DCAN [59]

CIFER10 [31] ResNet-18 [60] DCGAN

CelebA-HQ [32] ResNet-18 StyleSwin [37]

ImageNet [33] ResNet-50 StyleGAN-XL [55]

Fig. A.13. Visualization of the distribution of real data. Orange and blue colors represent different classes, respectively, and they are visualized as distributions.

Table C.9

Odds ratio for brown hair class.

Odds of having brown hair given
Odds ratio

features (𝑂𝑑𝑑𝑠(𝐵𝑟𝑜𝑤𝑛|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠))

‘Male’

(0.21)

not ‘Male’

(0.36)
0.60

‘Young’

(0.34)

not ‘Young’

(0.17)
1.94

‘Eyeglasses’

(0.086)

no ‘Eyeglasses’

(0.31)
0.27

the input data and CFE shows that the distribution of highly modified features exhibits significant variation among different classes, 
even in the actual dataset. This demonstrates that the provided CFE reflects the distribution of actual data and generates plausible 
examples.

Appendix C. Odds ratio for other features

The odds ratio (OR) is a statistical measure used to assess the strength and direction of the association between two binary 
variables. It quantifies how the odds of one outcome in the presence of a particular condition compare to the odds of the same 
outcome in the absence of that condition. An OR greater than 1 indicates a positive association, while an OR less than 1 suggests 
a negative association. An OR equal to 1 implies no association between the variables. Table C.9 and Table C.10 represent the 
relationships of both ‘Brown hair’ and ‘Blond hair’ class with ‘Young’ and ‘Eyeglasses.’ As seen in the tables, the OR is relatively not 
too high or lower than 1, compared to the ‘Gray hair’ class in Table 3. Consequently, CIRF made relatively minor changes in the 
17

features ‘Young’ and ‘Eyeglasses’ when altering the class to ‘Blond hair’ or ‘Brown hair.’
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Table C.10

Odds ratio for ‘Blond hair’ class.

Odds of having blond hair given
Odds ratio

features (𝑂𝑑𝑑𝑠(𝑏𝑙𝑜𝑛𝑑|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠))

‘Male’

(0.02)

not ‘Male’

(0.35)
0.057

‘Young’

(0.23)

not ‘Young‘

(0.14)
1.6

‘Eyeglasses‘

(0.047)

no ‘Eyeglasses’

(0.22)
0.22

Appendix D. Visualizations of the tabular dataset

The distribution of the tabular dataset is visualized to verify whether a manipulation to change the class resides within the dis-

tribution of real data. The values that deviate from the distribution of real data are unrealistic and require verification, because this 
may decrease the plausibility. Fig. A.13 illustrates the distribution of real values for each class, highlighting the features that require 
substantial modifications to change the class and those that require only minor adjustments. The three highlighted distributions 
represent the features that have been actively modified in contrast to PIECE. All features remain within the distribution, thus pre-

venting the generation of implausible CFEs. These highlighted features are ‘MSinceMostRecentDelq’ (last period since delinquency), 
‘NetFractionRevolvingBurden’ (revolving asset), and ‘PercentTradesWBalance’ (balance transaction), respectively. The differences 
between classes are also noticeable in the real data distribution for each class. In other words, the highlighted features are important 
for predicting an individual’s credit score. We determined the features that are the primary contributors to changing a classifier’s 
decision and the magnitude of change in these features.
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