
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HOW TRANSFORMERS LEARN STRUCTURED DATA:
INSIGHTS FROM HIERARCHICAL FILTERING

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding the learning process and the embedded computation in transform-
ers is becoming a central goal for the development of interpretable AI. In the
present study, we introduce a hierarchical filtering procedure for generative mod-
els of sequences on trees, allowing us to hand-tune the range of positional cor-
relations in the data. Leveraging this controlled setting, we provide evidence
that vanilla encoder-only transformers can approximate the exact inference al-
gorithm when trained on root classification and masked language modeling tasks,
and study how this computation is discovered and implemented. We find that cor-
relations at larger distances, corresponding to increasing layers of the hierarchy,
are sequentially included by the network during training. Moreover, by compar-
ing attention maps from models trained with varying degrees of filtering and by
probing the different encoder levels, we find clear evidence of a reconstruction of
correlations on successive length scales corresponding to the various levels of the
hierarchy, which we relate to a plausible implementation of the exact inference
algorithm within the same architecture.

1 INTRODUCTION

Transformer-based large language models have revolutionized natural language processing, and have
notably demonstrated their capacity to perfectly assimilate the grammatical rules of the languages
they are trained on. While this evidence shows that transformers can handle and exploit the subtle
long-range correlations that emerge in natural language, their inner workings remain largely unclear.

Due to the complexity of the standard transformer architecture (Vaswani et al., 2017), understanding
what strategy is precisely implemented via the attention mechanism to solve a given problem has
been limited so far to very simple tasks (Weiss et al., 2021; Zhong et al., 2024; Behrens et al., 2024).
Nonetheless, significant results have been obtained by studying transformers on simplified models of
language known as Context-Free Grammars (CFGs). Through probing of the so-called parsing tree
of CFGs, evidence has notably pointed towards transformers trained on predicting masked symbols
implementing the optimal dynamic programming algorithm to reconstruct the hidden structure of
the grammar, but alas without finding a fully plausible implementation within the architecture (Zhao
et al., 2023; Allen-Zhu & Li, 2023). On the other hand, when tasked with reconstructing the most
probable parsing tree in the context of probabilistic CFGs, transformers may struggle to match the
optimal algorithm if ambiguity is high (Khalighinejad et al., 2023).

Beyond language models, the significance of data structure in machine learning applications is well
recognized yet remains poorly understood. CFGs represent a data structure characterized by hier-
archical correlations (Mossel, 2016). In general, understanding how standard deep networks can
take advantage of this hierarchical structure in their training is an important research question. To-
wards this objective, simplified hierarchical models of structured data on fixed trees have proved
very useful in understanding the effectiveness of Convolutional Neural Networks (CNNs) (Cagnetta
et al., 2024), for which there are now formal results supporting the idea that the optimal Belief Prop-
agation (BP) algorithm can be approximately implemented (Mei, 2024). Unfortunately, while the
implementation of the hierarchy in CNNs is made quite transparent by the hierarchical structure of
their convolutional filters, this is not true for transformers, and one can therefore not straightfor-
wardly transpose this interpretation to other architectures (Cagnetta & Wyart, 2024).

In this work, we present a complementary study to those described above, which allows us to under-
stand further how transformers approach optimal inference in a structured data model.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Synthesis of our main results. (a) The proposed filtered hierarchical model, illustrated here
with ℓ = 3 layers and with a filtering parameter 0 ≤ k ≤ ℓ, allowing one to truncate the hierarchy
and generate data with more or less structure. (b) Scatter plot of the predictions of a trained trans-
former for a masked symbol (ℓ = 4, k = 0, q = 4 possible states) versus the corresponding exact
marginals obtained with the BP oracle, in-sample on 104 sequences (top), and out-of-sample on uni-
formly generated sequences (bottom). (c) Evolution along training, on a root classification task with
P = 217 examples (ℓ = 4, k = 0, q = 4) of the average Kullback-Leibler divergence between trans-
former predictions and marginals obtained from the matched BP (black) and mismatched BP (from
light green k = 1 to purple k = 4) on identical in-sample inputs, demonstrating the transformer
learns increasingly structured representations. (d) Identical to (c) for a MLM task on P = 218 data.
(e) Attention maps averaged over 104 in-sample inputs, for a transformer with nL = ℓ = 4 layers
of attention trained on the MLM task with fully hierarchical data, exhibiting a structure that mirrors
the organization of the generative tree and the sequence of operations of BP. (f) Test accuracy on
root classification on fully hierarchical data (ℓ = 4, k = 0, q = 4) versus number of labeled training
samples P with no pretraining (circles) compared to MLM pretraining with frozen (squares) and
unfrozen (diamonds) encoder weights during fine-tuning.

Our contributions. We propose a controlled hierarchical model of discrete sequences, in which
we can easily tune the strength of correlations between tokens thanks to a “filtering” parameter k,
illustrated in Fig. 1(a). This tree-based probabilistic graphical model gives us access to the exact
inference algorithm for reconstructing any symbol on the tree, Belief Propagation (BP) (Mézard &
Montanari, 2009). Leveraging this context, we show that

• Transformers not only approach optimal performance in root classification and Mask Lan-
guage Modeling (MLM) tasks, but they spontaneously do so in a calibrated way—i.e., by
predicting probabilities that approximate those yielded by the BP oracle even on out-of-
sample inputs, see Fig. 1(b)—which provides evidence of an equivalence in computation
to the exact inference algorithm.

• When trained with stochastic gradient descent, transformers sequentially discover the exis-
tence of higher hierarchical correlation levels (i.e., longer-range correlations), progressively
aligning with the prediction of algorithms that impute only parts of the full correlation
structure, see Fig. 1(c)-(d). In other words, our simplified setting allows us to understand
how transformers learn from structured data in time.

• Well-trained transformers reconstruct the correct hierarchical structure through the suc-
cession of attention blocks. Matching the number of transformer layers to the number of
layers in the generative tree, we find that the attention maps are compatible with a natural
implementation of BP within the architecture, see Fig. 1(e). We verify this affinity through
probing experiments, providing strong clues on how transformers learn from our struc-
tured data in “space”, thereby explaining the effectiveness of unsupervised pre-training for
supervised classification tasks, illustrated in Fig. 1(f).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The paper is organized as follows. First, we provide a detailed description of our tunable hierarchical
model in Sec. 2. We then perform numerical experiments on standard transformer architectures in
Sec. 3, shedding light on the learning dynamics. The understanding of the implementation learned
by the transformer, and its compatibility with a possible implementation of the Belief Propagation
algorithm in the architecture that we propose, is analyzed in-depth in Sec. 4. We finally conclude
and discuss the wider implications of our results in Sec. 5.

2 A MODEL WITH FILTERED HIERARCHICAL CORRELATIONS

2.1 THE FULL HIERARCHICAL MODEL

We consider a tree-based generative process producing structured sequences of discrete symbols.
We here focus on the fixed tree topology case, allowing for direct control over the effective range
of the hierarchical correlations induced in the generated sequences (2.2), and enabling exact and
efficient inference through Belief Propagation (2.4).

The “full” hierarchical generative process shown in the first row of Fig 1(a) can be described as
follows. The chain starts from an initial symbol x0, which we will refer to as the root of the tree,
sampled with probability p0 from a vocabulary X = {1, . . . , q}. Then, the first layer of the tree
is drawn randomly using a transition tensor M, which assigns the probability of generating some
children—from the same vocabulary X—given a parent (here x0). In this work, we will restrict
ourselves to binary trees for simplicity. We therefore have M ∈ Rq×q×q

+ , with Mabc the probability
of generating the pair (b, c) given a parent a. Since its elements are transition probabilities, this
tensor should satisfy Mabc ∈ [0, 1] ∀ a, b, c and

∑
bc Mabc = 1 ∀ a. The process, with the same

tensor M, is then repeated independently for each of the newly created children nodes for a total
of ℓ generations, eventually yielding a sequence of 2ℓ symbols {xi}i=1,...,2ℓ . We will refer to the
symbols in the sequence as the leaves of the generative tree.

The class of transition tensors M that we use is defined precisely in Appendix A. In short, we
will resort to randomly sampled log-normal transition probabilities, yielding complex long-range
correlations along the sequences. Importantly, we will only consider tensors with non-overlapping
entries, such that: if Mabc > 0, then ∀a′ ̸= a Ma′bc = 0. As a result, the production rules of
our unfiltered generative model are non-ambiguous in the sense that a pair of children symbols can
only have a single parent. Given all the symbols on the leaves, one can therefore deterministically
reconstruct the underlying generative tree, all the way up to the root.

2.2 FILTERING HIERARCHICAL CORRELATIONS

We develop a filtering tool that enables control over the correlation structure in the generated se-
quences. In particular, we consider a family of generative models, indexed by an integer k ≤ ℓ, with
hierarchical correlations truncated at a given depth k of the tree.

In the k = 0 case described in the previous paragraph, all children generated at any level of the
tree are sampled in pairs from their respective parents and are strongly correlated. When k > 0,
we instead generate the tree by drawing the children at level k conditionally independently given
the root, with the same marginals as the full (k = 0) model. Then, for layers below layer k,
the generative process is the standard one described above, inducing correlations within blocks of
2ℓ−k tokens. The procedure is illustrated in Fig. 1(a), where dashed segments indicate conditional
independence.

In order to match the correct marginal probabilities in the truncated models, the conditional inde-
pendent sampling at level k is done as follows. For each of the 2k variables at level k, say xj ,1
one considers the unique path that relates the root to this intermediate child in the original fully
hierarchical tree, yielding a probability

P (xj = b | x0 = a) =
(
p0M

σ0(j)Mσ1(j) . . .Mσk−1(j)
)
a,b

, (1)

with σm(j) ∈ {L,R} indicating whether the path leading to the tree element j considered at layer k
takes a left or right branching at the previous layer m. The q × q transition matrices ML and MR

1Here we take j > 2ℓ to refer to the internal nodes of the tree, while x0 remains the root and xi with
i = 1, . . . , 2ℓ are the leaves.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

are computed by tracing the original tensor

ML
ab =

∑
c

Mabc, MR
ac =

∑
b

Mabc, (2)

By constructing filtered trees in such a way, we ensure that the conditional correlations of the leaves
capture up to the kth level of the hierarchy. Note, however, that when k > 0 the root can no longer
be recovered deterministically from the leaves.

2.3 RELATED DATA MODELS

Context-free grammars. Our hierarchical model can be considered as an instance of a simplified
probabilistic context-free grammar (PCFG) with log-normally distributed transition rates (De Giuli,
2019). The simplification is two-fold. Standard CFGs typically include two distinct sets of symbols,
non-terminals and terminals, representing parts of speech—i.e. nouns, verbs etc.—and actual words
respectively, plus a root symbol. Here, instead, we consider a single vocabulary X for all the symbols
in the tree, including the root—which allows us to define a root classification task. Moreover, the
parsing trees underlying CFGs are not fixed: terminals can be produced at different levels and the
sequence length can vary. Instead, we assume a fixed parsing tree for our model, where the 2ℓ leaves
are collected from the last layer—which allows us to define a filtering procedure based on removing
layers of hidden symbols above the leaves.

The Random Hierarchy Model. Our model is closely related to the recently introduced Random
Hierarchy Model (RHM) of Cagnetta et al. (2024), which was studied to improve the understanding
of the effect of hierarchical structures on generative diffusion (Sclocchi et al., 2024) or last token
prediction (Cagnetta & Wyart, 2024). The main differences to our formulation are that in the RHM
the allowed transitions have uniform transition rates—while we consider a log-normal distribution—
and that the production rules depend on the layer—while we here consider a single transition tensor
throughout the tree. Correlations between the leaves arise in the RHM when some children pairs
cannot be produced, leading to a reduced entropy of viable sequences. Having non-uniform transi-
tions in our model similarly limits the entropy, while leading to a significantly different correlation
structure. One should for instance notice that the staircase decrease of the correlations as a function
of the distance between leaves presented in Cagnetta & Wyart (2024) is not visible in our case.

2.4 EXACT INFERENCE

A key advantage of generating sequences through a tree-based process is that we can perform exact
inference efficiently using a dynamic programming approach. Moreover, the fixed tree topology
allows us to consider a simplified version of the general inside-outside algorithm (Baker, 1979),
which can be written in a message-passing form within the Belief Propagation (BP) formalism (Sato,
2007; Mézard & Montanari, 2009). Assuming that the transition tensor M and root probabilities p0

are known, with BP one can compute the exact marginal probabilities for all the symbols at any
position in the tree, with a computational cost linear in the size of the tree. Without going into detail
on the derivation, let us describe the BP scheme for the filtered tree graphs we are considering.

We start by randomly initializing an upgoing and downgoing message—each one being a vector
in Rq that represents a probability distribution over the q possible symbols—for each edge in the
generative tree. In the following, we denote with νj→α a message going from a so-called variable
node j (shown by a circle in the sketches) to a factor node α (shown by a full or empty square in the
sketches), and with ν̂α→j the message in the opposite direction. Wherever there is a known variable
one should then fix νj→α[xj] = δxj ,a, where a is the known value e.g. of the leaf.

When the hierarchy is truncated, two distinct types of updates are possible, depending on whether
one lies in the filtered or unfiltered regions of the tree. In the former, the root is directly connected
to 2k “empty” factor nodes, as shown in Fig. 2(a), each connected to a single and distinct variable
node below. In this case the BP fixed point equations for messages from the root to the empty factor
are given by

ν0→αj
[x0] ∝

∏
ℓ ̸=j

ν̂αℓ→0[x0], (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

i.e. outgoing messages are simply a product of the incoming messages from all the other edges. At
each of the 2k factor nodes, both upgoing and downgoing messages satisfy

ν̂αj→0[x0] ∝
∑
xj

P (xj | x0)νj→αj
[xj], ν̂αj→j [xj] ∝

∑
x0

P (xj | x0)ν0→αj
[x0], (4)

where P (xj | x0) is given by equation 1, and is specific to the factor node considered. The notation
∝ means that the messages—that are probabilities—are to be normalized (e.g.

∑
x0

ν̂αj→0[x0] = 1).

Figure 2: Illustration of the
two types of BP updates: (a)
above; (b) below the filter
level k.

We now consider the lower, unfiltered part of the tree. As illus-
trated in Fig. 2(b), each of the “full” factor nodes is connected to
three variable nodes, representing the parent and two children in
the standard branching process. The outgoing messages from the
factor node should satisfy

ν̂α→u[xu] ∝
∑
xl,xr

Mxuxℓxr
νl→α[xl]νr→α[xr]. (5)

For all variable nodes except for the root detailed above, the sin-
gle outgoing messages are equal to the single incoming messages
in these variable nodes at the previous/next layer of the tree. For
example, the upgoing messages ν1→α1 in Fig. 2(a) is simply ν̂α→1,
where α is the full factor node lying below variable 1 (assuming
k < ℓ). Efficient convergence to the fixed point is guaranteed if
one starts from the leaves and updates the messages in an upgoing
pass, and then performs a downgoing pass from the root, for a to-
tal of 2(ℓ − k + 1) steps. Once the messages have converged, any
unknown variable can be optimally reconstructed by computing the
marginals as

µ[xi] ∝
∏
α∈∂i

ν̂α→i[xi], (6)

where ∂i is the set of factor nodes connected to variable node i. In our problem, this product will
therefore typically be over a single factor node when inferring masked leaves, or 2k factor nodes
when inferring the root.

In the following, we will adopt the short-hand notation BPk to denote a BP implementation that
assumes the computational graph of the k-filtered hierarchical model, thus able to perform exact
inference in a matched case with data with filtering parameter equal to k.

3 HOW TRANSFORMERS LEARN TO CLIMB THE HIERARCHY IN TIME

3.1 EXPERIMENTAL SETUP

We will focus on the encoder-only variant (Devlin et al., 2019) of the celebrated “vanilla” trans-
former architecture, introduced in Vaswani et al. (2017). A full recap of this parametrization is
given in Appendix B.

In a nutshell, each of the sequence elements xi ∈ {1, . . . , q} is first converted to a positionally-
informed token x

(0)
i ∈ Rd. For our experiments, we consider d = 128 and the standard sinusoidal

positional encoding of Vaswani et al. (2017). Each transformer block in the network then maps
the previous encoded sequence onto a new sequence of tokens with the same length and embedding
dimension, through a concatenation of a self-attention layer and a fully connected layer, with residual
connections and layer normalization. The self-attention layer importantly introduces some mixing
between the different tokens in the sequence, represented by what we will refer to as an attention
matrix A ∈ R2ℓ×2ℓ

+ . We take the fully connected layer to be a standard 2-layer network with relu
activations and hidden dimension d′ = 2048. Following these operations, repeated nL times to
obtain the full encoder, we obtain a position-dependent high-dimensional representation of each of
the original symbols in the sequence. What is finally done with this sequence of tokens depends
on the task at hand: we consider root classification in Sec. 3.2 and masked language modeling in
Sec. 3.3.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Motivated by our focus on understanding the transformer’s implementation, we will take the number
of attention layers to match the depth of the unfiltered generative tree, nL = ℓ. Studying varying
values of k for the training data will effectively allow us to explore cases where there are more
attention layers than hierarchical levels in the generative tree, while we discuss the consequences of
having nL smaller than the number of hierarchical levels in Appendix D.1.

In the following, all numerical experiments are performed on the same realization of the transi-
tion tensor, randomly sampled for q = 4 using the parametrization described in Appendix A (see
also our Reproducibility Statement below). While there may be quantitative differences for differ-
ent randomly generated tensors—particularly at small q—results remain qualitatively unchanged in
experiments on different grammars, see Appendix D.2.

3.2 SUPERVISED CLASSIFICATION

In the context of our model, a natural idea is to use the root of a tree x0 as a label for the generated
sequence {xi}, and to train a transformer encoder architecture on the associated classification task
using a dataset of P labeled sequences. To perform the root prediction, the tokens in the final layer
are concatenated position-wise (forming a large d × 2ℓ vector) and fed to a linear readout, which
outputs q logits associated with the possible root symbols. The network is trained by minimizing
the cross-entropy loss between these logits and the correct one-hot encoding of the root.

104 106

P

0.6

0.8

1.0

T
es

t
ac

cu
ra

cy

Figure 3: Evolution of
the root prediction accu-
racy on full hierarchical
ktest = 0 test samples for
transformers trained on P
labeled samples generated
with ktrain = 0, 1, 2, 3, 4
(top to bottom). Dashed
lines indicate, for each k,
the accuracy computed with
the BPk algorithm on unfil-
tered data.

Optimal test accuracy. We find that given sufficient labeled data
P ≥ P ∗, transformers achieve perfect in-sample root classification
accuracy in the fully hierarchical model, k = 0, as illustrated in
Fig. 3. When the training data has filtering parameter k > 0, the
networks approach the optimal in-sample accuracy predicted by BPk,
see Fig. 10 of Appendix D.3. Notice that, while in the case k = 0 the
exact algorithm finds the value of the root with accuracy 1, this is no
longer the case for k ≥ 1 where the optimal accuracy is < 1.

Different from the Random Hierarchy Model of Cagnetta et al.
(2024), characterizing analytically the scaling of P ∗ with the param-
eters of the grammar with our non-uniform transition probabilities is
a challenging goal, and is left for future work. Still, we discuss the
role of the filtering parameter k of the data model on the sample com-
plexity in Appendix D.3

Out-of-sample testing. In our data model, one can also test out-
of-sample with respect to the filtering parameter k. For example, we
test models trained on intermediate filtered data on a fully hierarchi-
cal dataset, i.e., ktrain > 0 and ktest = 0, in Fig. 3, or vice-versa,
i.e., ktrain = 0 and ktest > 0, in Fig. 4. In both cases, the transformers
achieve a performance that exactly matches that of BPktrain , in the pres-
ence of the same mismatch between the assumed inference model and
the data generative model. We stress that, in this mismatched task, the
BP prediction is no longer optimal, yet the trained networks systemat-
ically reach the same accuracy. This observation provides the first evidence that the transformers are
implementing an approximation of the BPktrain algorithm matched to the training data distribution.

Full prediction matching. So far, we have established that the trained transformers match
the accuracy of the exact inference algorithm on the root prediction in- and out-of-sample.
We can however go one step further, as the transformers output q logits, which were passed
through an argmax operation to yield a prediction. Taking the softmax instead gives a nor-
malized q-dimensional vector, which we can interpret as the predicted probabilities of the root
symbol given the input sequence, to be compared to the exact marginals obtained with BP.
We find a close match at the end of training, as shown by the small Kullback-Leibler di-
vergences averaged over in-sample inputs in the k = 0 case in Fig. 1(a), and similarly for
k ≥ 0, on both in-sample and entirely out-of-sample inputs in Fig. 11 of the Appendix.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 100 101 102

Epoch

0.2

0.4

0.6

0.8

1.0

T
es

t
ac

cu
ra

cy

Figure 4: Evolution of
the root prediction accu-
racy of the ktrain = 0
model computed on filtered
test datasets, with ktest =
0, 1, 2, 3, 4 (from top to bot-
tom), for a model trained on
ktrain = 0 data and P = 217,
ℓ = 4, q = 4. The dashed
lines represent the out-of-
sample BP prediction.

While such a match is not entirely surprising in the deterministic
k = 0 problem, as the one-hot encoding of the root label against
which the transformer logits are compared at training corresponds to
the exact marginal distribution yielded by BP0, the match is highly
non-trivial in the ambiguous k > 0 instances, where the transformer
is never explicitly guided towards the correct values during training,
as the one-hot encoding of the root label does not correspond to the
exact marginals anymore. This calibration therefore provides a sec-
ond strong piece of evidence that the transformers spontaneously im-
plement exact inference.

Supervised learning dynamics. Looking more specifically at the
learning dynamics of a network trained on the full hierarchy sheds
some light on the learning process of the transformer encoder. Fig. 4
shows the evolution of the test accuracy of the ktrain = 0 model both
in-sample, with ktest = 0 data, and out-of-sample, on filtered data with
ktest > 0. One can notice multiple stages in the learning procedure: in
the first epochs, the network imputes a simplistic explanation of the
training data, resolving the leaf-to-root correlations—aided by the su-
pervised signal—, as well as the short-range correlations between the
leaves. As a result, the test accuracy increases for all values of ktest.
As time progresses and longer-range correlations are discovered in the
training data, the accuracy on the most filtered datasets drops towards
the mismatched BP0 prediction, since the imputed higher correlation
levels are not present in the out-of-sample ktest > 0 data. In the mean-
time, the accuracy for the smallest values of ktest keeps increasing. In a limited number of epochs,
as the network perfectly learns to infer the root on ktest = 0 data, the BP0 oracle accuracy is reached
on test sets generated with all levels of factorization.

This picture can be further refined by considering the predictions of a transformer trained on the
full hierarchy and the evolution of their distance from the marginals predicted on the same data
by the BPk oracles, for all k ≥ 0. As illustrated by the DKL in Fig. 1(c), we observe an initial
stronger alignment to BPℓ, which only considers leaf-to-root correlations. As training on ktrain = 0
data progresses and the transformer shifts towards the correct prediction, the model predictions
sequentially align to versions of BP that incorporate more and more of the correlation structure—
i.e., BPk with decreasing values of k.

3.3 MASKED LANGUAGE MODELING

We now turn to self-supervised training, where the model learns from a dataset of P unlabeled
sequences. In simple terms, the Masked Language Modeling (MLM) training procedure consists of
randomly masking parts of the sequences and asking the model to recover them from the context.
This is closer to what is done in practice to train large language models, see e.g. Devlin et al. (2019);
Liu et al. (2019). While in principle one could mask several symbols simultaneously in training, we
focus on single-symbol masking—at a random position in the sequence—in the following, given
the limited length of our sequences (a single symbol representing already 6.25% of the sequence for
ℓ = 4). Contrary to the root inference task, in MLM perfect accuracy cannot be achieved even in the
fully hierarchical case, because of the stochastic nature of the branching process in the generative
tree. The optimal performance is still yielded by the BP matched to the test data.

To reconstruct the masked symbol, we now feed a single token, selected from the final transformer
encoding at the positions associated with the masked element, to a linear layer producing a vector
of logits. The network is then trained by minimizing the cross-entropy loss between these logits and
the one-hot encoding of the masked element in the sequence.

Optimal reconstruction performance. Given sufficient data, we find that transformers again ap-
proach optimal in-sample accuracy on data with any level of filtering. We show the case trained
on ktrain = 0 in Fig. 5, where the transformer reaches the BP0 accuracy also on out-of-sample test
data with ktest > 0. Consistent with intuition, the required amount of training data P ∗ is increased
relative to the supervised task, as the network must learn to resolve the weak long-range correlations
in the sequence without any supervised signal from the top of the hierarchy. Moreover, compared to

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

root classification, the networks trained for MLM require much longer training to approach optimal
performance—typically ∼ 103 epochs in place of a mere ∼ 10 epochs for classification—, see Fig. 5
vs Fig. 4.

Full prediction matching. To go beyond test accuracy, we also consider the full probabilities
outputted by the transformer. As shown in the top panel Fig. 1(b), we find a close match with the
exact marginals obtained from BP when measured on in-sample inputs. To confirm the generality
of this correspondence, we extend the comparison to uniformly sampled data in the bottom panel of
Fig. 1(b). In this setting, we still observe high correlations between the outputs, albeit with more
dispersion related to the markedly atypical nature of these test samples compared to the training data
distribution. Measuring the alignment using the Kullback-Leibler divergence, shown in Fig. 1(d),
or else the sample-specific prediction match and Spearman (ranking) correlation between the two
discrete probability distributions, shown in Fig. 12 of Appendix D.4, confirms the near equivalence
between transformer and BP computation. Note again the remarkable calibration of the logits, al-
though the network is trained with hard labels for the masked symbols despite the probabilistic
nature of the task.

0 100 101 102 103

Epoch

0.3

0.4

0.5

0.6

0.7

T
es

t
ac

cu
ra

cy
Figure 5: Evolution of
the root prediction accu-
racy computed on filtered
test datasets, with ktest =
0, 1, 2, 3, 4 (from top to bot-
tom), for a model trained on
ktrain = 0 data and P = 217,
ℓ = 4, q = 4. The dashed
lines represent the in- and
out-of-sample BP0 predic-
tions.

Self-supervised learning dynamics. By analyzing the out-of-
sample performance with different filtering levels, we also unveil the
sequential nature of the MLM learning process. Computing the test
accuracy on all ktest levels throughout the training dynamics, we ob-
serve a clean “staircase” behavior in the test accuracy, as shown in
Fig. 5. This picture confirms and clarifies the experiments in Fig. 4,
showing that the network sequentially resolves the nested levels of
the hierarchy, in a bottom-up order. Note that the observation of the
shorter-range correlations being learned first is consistent with the
signal-to-noise picture exposed in Cagnetta & Wyart (2024). More-
over, the presence of a sequential mechanism of discovery and resolu-
tion of different moments of the data distribution has been studied in
Refinetti et al. (2023); Bardone & Goldt (2024); Rende et al. (2024).
Overall, the convergence of the transformer to both the in-sample and
the out-of-sample token prediction accuracy of BP supports the claim
that the model learns to implement a close approximation of the exact
algorithm. The learning mechanism is also confirmed by the behavior
of DKL along the training, shown in Fig. 1(d): analogous to the root
inference case, but more qualitatively compelling, the predictions of
a transformer trained on the fully hierarchical data sequentially align
with the marginals yielded by BPk, with decreasing k as training pro-
gresses and longer-range correlations are accounted for.

4 HOW TRANSFORMERS EMBED THE EXACT INFERENCE COMPUTATION

Attention map analysis. In the root inference task, the readout performing the prediction is fed
with the entire sequence of tokens. As a result, there are many ways for the transformer encoder to
distribute the computation across its layers, and no necessity for single tokens to carry information on
all the ancestry levels in the tree, making it a non-ideal setting for mechanistic interpretation.2 In the
MLM task, on the other hand, single token encodings are used to predict the masked symbols. This
requirement seems to guide the model towards more interpretable attention maps, shedding some
light on how the model may approximate the optimal algorithm. They are shown in Fig. 6, each row
referring to a transformer encoder trained on data with different filtering levels—k increasing from
top to bottom.

In the fully filtered case (bottom row) there is no need to combine the different elements of
the sequence before the readout and the attention matrices are nearly uniform. Now, as we re-
duce the level of filtering in the generative process, clear patterns emerge in the attention map.

2Note that transformers trained on the classification task still present some patterns related to the hierarchical
nature of the data model, albeit less clearly, see Appendix D.5.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 6: Visualization of the nL = 4 attention
matrices (averaged over 104 input sequences)
for transformers trained on the MLM task on
different filtered datasets, with k = 0, 1, 2, 3, 4
(top to bottom rows), and P = 218, ℓ = 4,
q = 4. For the fully factorized model, k = 4,
where the leaves are independent conditional
to the root the attention matrix appears struc-
tureless. When k decreases one sees the emer-
gence of attention blocks of size ≤∼ 2ℓ−k. For
k = 0, 1, the trained attention matrices reflect
all the hierarchies of the correlations.

First, the model focuses on short-ranged corre-
lations between nearest neighbors when k = 3
and, as we decrease k, towards patterns of size
∼ 2ℓ−k, which is the exact size of the stronger
correlated block with a filtering parameter k—see
Sec. 2. Note that the similarity between the k = 1
and k = 0 cases (top two rows) is natural, the tree
topology in these two cases being identical and
with only the transition probabilities for this first
layer differing.

Interestingly, the network naturally organizes the
attention layers hierarchically. This is particu-
larly visible when there are fewer redundant lay-
ers i.e. in the cases k = 0, 1 (two top rows in
Fig. 6). Such a layout is consistent with the BP
algorithm on the full tree, where one combines el-
ements pairwise while going up the tree. While a
typical BP implementation includes a downward
pass, it is possible to avoid this step if the to-
ken embedding dimension, d, is sufficiently large.
To illustrate this point, we propose an existence
proof of a plausible implementation of the BP al-
gorithm in an architecture.

Exact transformer embedding of BP. In a
natural implementation of BP, inference for the
MLM task requires the messages from the visi-
ble leaves to reach the top of the hierarchy and
descend back to the masked symbol, effectively
propagating through 2ℓ layers. A proposal in
Zhao et al. (2023) for a transformer embedding of
the inside-outside parsing algorithm—a general-
ization of the above-described BP to the unknown
topology setting—requires as many transformer
blocks as double the sequence length—here 2ℓ—
, and an attention head per hidden symbol in the hierarchy. Thus, it might seem surprising that a
single-head transformer encoder with ℓ blocks could be sufficient to mimic the BP algorithm. To
prove the feasibility of its implementation within these architectural constraints, we propose an ide-
alized transformer implementation of the BP algorithm. Note that some of the key ingredients of
this feasible implementation are introduced for the sake of interpretability but are not imposed in our
experiments, and therefore this does not represent an exact explanation of the trained transformer
computation. The complete existence argument is deferred to Appendix E, while here we provide a
high-level description of some key ideas.

We consider a fully disentangled embedding of positional and semantic information in the vectorized
tokens, contained in d = q(q + 2) + ℓ dimensions. The isolation of the semantic information
allows the implementation of a simple position-based attention mechanism, inspired by the factor
graph structure, and compatible with the attention matrices in Fig. 6. Then, going up the hierarchy
requires the computation of a trace of products (see equation 4), which can be well approximated
by the fully connected layers in the second part of the transformer blocks, provided the attention
selects the right terms in the product. The less intuitive component of the implementation is the
computation of the messages directed towards the leaves, used in the MLM task. Given the limit
on the number of transformer blocks, this computation must be done in parallel with the upward
climb of the hierarchy, despite the missing downward messages. It turns out that, by exploiting
O(q2) memory slots in the token embedding—and thus with an increased memory cost compared to
BP—a different recursion with the same result as the standard message-passing can be implemented,
within the nL = ℓ constraint for the number of transformers layers.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

3210
Tree layer

0.4

0.6

0.8

1.0

T
es

t
ac

cu
ra

cy

4

3

2

1

Figure 7: Test accuracy in
the ancestor prediction task
(layer 0 is the root) with ℓ =
4, q = 4, k = 0 obtained by
reading out the intermediate
transformer encoding levels
(legend) of a model pre-
trained on the full hierar-
chy. The readout is trained
on 214 labeled examples.

Probing the encoder representations. To confirm that the compu-
tation going up the tree is distributed sequentially in the transformer
blocks, consistent with the proposed embedding of BP, we undertake
a probing experiment similar to those performed e.g. in Zhao et al.
(2023). First, we analyze the encoder trained for the MLM task on
k = 0 data, cf. top row of Fig. 6. Keeping the encoder weights
frozen, we investigate how much information about the ancestors of
any leaf is contained in the successive hidden representations of the
corresponding token—see Appendix D.6 for implementation details.
While in the exact embedding of BP the k-th level ancestor infor-
mation must be available at layer k to iterate the recursion for the
downgoing messages, the MLM training does not set such a require-
ment. To probe the encodings, we employ a specialized two-layer
readout for each encoder-layer/ancestry-level pair—independent of
the token position—trained on a supervised dataset with 214 exam-
ples. In Fig. 7, we show that the prediction accuracy is high on an-
cestors up to the same level as the probed layer and deteriorates on
higher levels of ancestry. Note that, unless the information about the
entire block of 2ℓ−k tokens is properly mixed in through the atten-
tion mechanism, a perfectly accurate prediction of the common kth

level ancestor from a single token representation is impossible, as the
mapping becomes non-deterministic. Moreover, the “overfitting” sce-
nario, where the ancestors are reconstructed solely by the trained probes and the sequential recon-
struction is an artifact, can be ruled out by considering the gap between the accuracies achieved
from different layers—the relative comparisons are fair since the readouts are trained on the same
datasets—, and by training the probes only on some positions—see Appendix D.7.

In Appendix D.7, we also conduct similar ancestor prediction experiments on the last encoder layer
of models trained with k > 0 data (lower rows of Fig. 6), where we again find that the ancestry
information is consistent with the attention maps.

Synergy between tasks and MLM pre-training. In the context of our model, we can straightfor-
wardly explain why self-supervised pre-training allows a large speed-up in the supervised training
process, in line with many empirical observations on real-world data (Howard & Ruder, 2018). We
show in Fig. 1(f) an MLM pre-trained model fine-teuned for root inference. A significant reduction
in the labeled data required to achieve optimal root inference —P ∗ in Sec. 3.2— is observed, both
with frozen and with fine-tuned encoder weights.

5 CONCLUSIONS

By using a simple, tunable, hierarchical model of structured sequences, we were able to shed some
light on the inner workings of transformer encoders and better understand how they achieve optimal
inference on both supervised and self-supervised tasks. The modularity of our data model also
allowed us to uncover how transformers sequentially implement longer-range correlations during
the learning dynamics, compatible with similar controlled studies (Rende et al., 2024) and with the
general understanding of LLMs trained on natural language (Kaplan et al., 2020). This mechanism
could perhaps be exploited to shape theory-driven curriculum learning strategies for NLP, where
curating the presentation order of training examples was already proven effective (Campos, 2021).

Generalizing our filtering-based interpretative tool to the case of variable sequence lengths (Allen-
Zhu & Li, 2023; Zhao et al., 2023)—where the topology of the parsing tree is not known a priori—is
a challenging but promising direction for approaching a more detailed understanding of the learning
dynamics and the embedded computation in transformer trained on natural language. On the other
hand, while the idealized model of structured sequences studied in the present work might be less
suited for modeling natural language compared to standard CFGs, the agnostic nature of the ap-
proach could open connections to other related fields, like protein sequences analysis (Zhang et al.,
2023) and immunology (Meynard-Piganeau et al., 2024). It could finally be interesting to undertake
a similar investigation on the way transformers learn in other problems where optimal inference can
also be achieved via dynamic programming (Mossel et al., 2014; 2023).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We provide the source code used to perform our numerical experiments in the Supplementary Mate-
rial (SM). It includes a Python script generating the data, as well as the PyTorch implementation of
the transformer and training scripts for both root inference and MLM. It finally provides an efficient
implementation of the Belief Propagation algorithm which can be used for both root inference and
Masked Language Modeling. The data used to produce the figures in the main text corresponds to
fixing seed = 0 and sigma = 1 in the data generation script, see Appendix A for details on the
role of the latter.

A FURTHER DETAILS ON OUR DATA MODEL

The transition tensor M—the “grammar” of our generative model in CFG terminology—fully con-
trols the properties of the above-defined generative process. We define a parametrized ensemble
of random grammars, from which multiple transition tensors can be sampled independently. Two
grammars generated with the same parameters are expected to share some high-level features and
produce data of comparable complexity, at least in the large vocabulary size limit. Elaborating on
recent work on context-free grammars (see Sec. 2.3 of the main text), we generate transition proba-
bilities as

Mabc =
ehabc∑

b′c′ e
hab′c′

(7)

where the logits habc are generated as

habc =

{
σξabc if (b, c) ∈ Oa,

−∞ otherwise,
(8)

with ξabc independent Gaussian random variables of zero mean and unit variance, and σ controlling
the probability fluctuations between likely and unlikely transitions. Here, the q sets Oa build a
equal-sized partition of the q2 possible children pairs (b, c), i.e. Oa ∩ Oa′ = ∅ if a ̸= a′ and
| ∪a Oa| = q2. This non-overlapping prescription implies that the broadcast from the root to the
leaves has no ambiguity. Therefore, as stated in the main text, if the transition tensor M is known,
one can deterministically go up the hierarchy of the tree and infer the root given a set of leaves. We
leave generalizations of this setting for future work.

B VANILLA ENCODER-ONLY TRANSFORMER ARCHITECTURE

A sequence of leaves {xi} generated by the hierarchical model and represented by 2ℓ integers is
first converted into a sequence of one-hot vectors {xi}, with xi ∈ Bq . 3 Then, we perform the
first encoding step producing a sequence of tokens {x(0)

i } ∈ Rd, with arbitrary dimension d ≥
q, obtained through a learnable projection to the embedding space and the inclusion of positional
encoding pi,

x
(0)
i = WExi + pi, (9)

with WE ∈ Rd×q and pi ∈ Rd. For our experiments, we consider d = 128 and the standard
sinusoidal positional encoding of Vaswani et al. (2017).

As described in the main text, each transformer block in the network then transforms the tokens as
follows,

x̃
(l)
i = layernorm

(
x
(l−1)
i + selfattention(x(l−1);W

(l)
Q ,W

(l)
K ,W

(l)
V)
)
, (10)

x
(l)
i = layernorm

(
x̃
(l)
i + FC(x̃

(l)
i ;W

(l)
1 ,W

(l)
2)
)
. (11)

The single-head self-attention layer considered in this work entails the computation of three different
quantities from each token: the query qi = WQxi, the key ki = WKxi and the value vi = WV xi.

3For simplicity, the procedure described here does not consider special tokens. In practice, we will take a
vocabulary of size q + 1 to account for masked symbols when doing MLM, see Devlin et al. (2019).

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

For simplicity, we take WQ, WK and WV in Rd×d. The queries and keys are combined to compute
the attention matrix

Aij = softmax

(
qi · kj√

d

)
, (12)

then used to build a linear combination of the values,

selfattention(x;WQ,WK ,WV) =

2ℓ∑
j=1

Aijvj . (13)

The fully-connected layer, instead, is a standard 2-layer network with relu activations:

FC(xi;W1,W2) = W2 relu (W1xi) , (14)

where W1 ∈ Rd×d′
, W2 ∈ Rd′×d, and d′ = 2048 in our experiments. We refer the reader to the

original paper by Vaswani et al. (2017) for additional details on the transformer encoder operations.

C FURTHER DETAILS ON NUMERICAL EXPERIMENTS

All numerical experiments presented in this paper were performed using PyTorch (Paszke et al.,
2019) version 2.3.0. We use the Adam (Kingma & Ba, 2014) optimizer with batches of size 32
and a fixed learning rate of 10−4, other parameters left as default. We did not find learning rate
scheduling to provide significant benefits in our experiments. All models were initialized randomly
using the default settings (Xavier uniform distribution).

In both root inference and MLM, the accuracy of the transformer implementation and of the BP over
M trials is measured straightforwardly as

Accuracy =
1

M

M∑
γ=1

δx̂ν ,xν , (15)

where xν is understood as the ground truth and x̂ν the symbol inferred using the network or BP.

The Kullback-Leibler divergence between two discrete probability distributions encoded as n-
dimensional vectors u and v, is given by

DKL(u ∥ v) =

n∑
α=1

uα log

(
uα

vα

)
. (16)

D ADDITIONAL FIGURES

D.1 INFLUENCE OF THE NUMBER OF ATTENTION LAYERS

Establishing a relation between the number of encoder layers nL in the transformer and the ability
to achieve this optimal classification on data generated from hierarchical models is also not straight-
forward. Indeed, given the concatenation of operations involved in a single transformer block and
the presence of residual and normalization layers, the effective number of computational layers in
a transformer is not as explicit as in a multilayer perceptron or a CNN architecture. As apparent in
the main text, setting nL = ℓ—or nL ≥ ℓ− k for filtered data—enables the transformer to converge
towards a very interpretable parameter configuration. However, this natural choice does not appear
to be strictly necessary for the transformers to achieve optimal inference, at least when the number
of embedding dimensions d is large.

More specifically, Fig. 8 shows that the test accuracy on the root classification task on k = 0
unfiltered data can reach the optimal value for nL < ℓ. While nL = ℓ = 4 is the most sample
efficient, it is clear that nL = 3 provides comparable performance, and only nL = 1 appears to lead
to poor sample efficiency. In all the performed experiments, a bigger value for nL corresponded to
better sample efficiency, which seems to indicate that more flexible models require less data to reach
the same performance level despite the increased number of parameters to train.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

103 104 105

P

0.6

0.8

1.0

T
es

t
ac

cu
ra

cy

nL = 1

nL = 2

nL = 3

nL = 4

Figure 8: Reproduction of Fig. 1(b) with now nL ≤ 4 attention layers in the transformer encoder
and restricted to the “worst case” k = 0 unfiltered dataset.

103 104 105

P

0.4

0.6

0.8

1.0

T
es

t
ac

cu
ra

cy

103 104 105

P
103 104 105

P

Figure 9: Reproduction of Fig. 1(b) on other realizations of the transition tensor M for the same
parameters ℓ = 4, q = 4, σ = 1. We remind that for the k > 0 cases, the BP predictions (dashed
lines) are not Bayes optimal, as the test accuracy is measured out-of-sample here. From left to right,
these grammars can be reproduced by fixing seed = {1,15,31} in the data generation code
provided in the SM.

In any case, the required complexity of the architecture is clearly related to the amount of structure
in the data model. As an extreme illustration, in the case of fully filtered correlations k = ℓ, the
BP marginals for the root are just products of conditional probabilities on the leaves as P (x0 = a |
{xi}) ∝

∏2ℓ

i=1 P (xi | x0 = a), i.e. a “Naive Bayes” classifier is optimal. Any layer of attention is
thus superfluous since a standard feed-forward network with a single hidden layer is sufficient for
this task. In fact, the analysis of the attention maps (trained this time on MLM) in Sec. 4 confirms
this natural intuition, as most attention layers appear effectively unused by the transformer when
nL > k.

D.2 OTHER GRAMMARS

As expected from the log-normal nature of its entries, there may be significant sample to sample
fluctuations in the transition tensor M for a given value of σ, which we expect to (slowly) decay
as q becomes large. All the results presented in the main text come from the same grammar with
q = 4, σ = 1 (corresponding to seed = 0 in the data generation script provided in the SM, see the
Reproducibility Statement above), however we illustrate that all our conclusions should qualitatively
hold for any realizations of M in Fig. 9. Indeed, while there are some very clear differences in the
“difficulty” of the grammars presented, the transformer architecture performs very similarly, here on
the root inference task. All subsequent experiments can be reproduced on these different grammars,
yielding an unchanged phenomenology.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

104 106

P

0.4

0.6

0.8

1.0

T
es

t
ac

cu
ra

cy

Figure 10: Reproduction of Fig. 3 with the test accuracy computed on (in-sample) factorized data,
rather than the out-of-sample testing presented in the main text.

103 104 105

P

10−3

10−2

10−1

100

D
K

L

103 104 105

P

Figure 11: Reproduction of Fig. 10 with the Kullback-Leibler divergence between the transformer
outputs BP marginals for identical levels of factorizations for (Left) in-sample inputs, (Right) uni-
formly randomly generated inputs.

D.3 IN-SAMPLE CLASSIFICATION PERFORMANCE ON FILTERED DATASETS

Fig. 10 shows the test accuracy computed in-sample for the factorized datasets as a function of the
training set size P . The optimal inference accuracy predicted by the Belief Propagation, which is
not unity when k > 0, is reached by the transformers in all cases when trained on sufficient data.

It appears that the required amount of data P ∗ for reaching optimal accuracy not only depends on
the specific transition tensor M (see Fig. 9 for an illustration for k = 0), but also on the level of
factorization. For intermediate values of k, P ∗ is notably larger than with the k = 0 full hierarchy.
This is due to the fact that the k = 0 case is quite unique for two (related) reasons. The first is
that the logits outputted from the network need not be calibrated, so the accuracy can reach the
optimum without the transformer having fully implemented an algorithm equivalent to BP, whereas
the relative weights of prediction must be well understood to match the optimal inference in the
ambiguous k > 0 cases—in other words it is easier to match perfect accuracy with approximate
weights when the true distribution is δ-distributed. The other is that this being said, matching the
BP is also easier in the k = 0 case because it is the only case where the training cross-entropy loss
corresponds exactly to that computed with the true marginals—that are also delta distributed due to
the determinism of the task—whereas in the k > 0 cases the training loss does not guide explicitly to
the exact marginals. The latter clearly appears in Fig. 11, showing the Kullback-Leibler divergence
between the transformer outputted logits and the BP marginals instead of the test accuracy.

Note that the other case which has a singularly small sample complexity is that of the fully filtered
data, k = ℓ, as it is implementable in a single feedforward layer and does not require an implemen-
tation equivalent to BP.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 100 101 102 103

Epochs

0

20

40

60

80

100

P
re

di
ct

io
n

m
at

ch
to

B
P

(%
)

0 100 101 102 103

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

S
p

ea
rm

an
co

rr
el

at
io

n

Figure 12: Reproduction of Fig. 1(d) with the prediction (i.e. argmax) match (left) and Spearman
(i.e. ranking) correlation (right) between the transformer outputs and BP marginals.

D.4 ADDITIONAL COMPARISON OF THE OUTPUTS

For completeness, we show the comparison between the full transformer predictions and the BP
marginals through MLM training using the percentage of matches in the largest value (i.e. prediction
match) and the spearman (ordering) correlation in Fig. 12. These confirm the observations described
in the main text.

D.5 CLASSIFIER ATTENTION MAPS

Figure 13: Reproduction of Fig. 6 for the supervised task on filtered datasets of size P = 217 for
k = 0 and P = 220 for k > 0.

Fig. 13 shows the attention maps resulting from the supervised training for transformers achieving
the optimal performance on datasets with different filtration levels. As in the masked language
modeling task, one immediately notices the emergence of blocks of size ∼ 2ℓ−k. In this prescription,
where tokens are not required to be fully descriptive, it is however difficult to identify a clear pattern
relating to the distribution of the computation across the different layers.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

3210
Tree layer

0.4

0.6

0.8

1.0

T
es

t
ac

cu
ra

cy

4

3

2

1

3210
Tree layer

Figure 14: (Left) Reproduction of the probing experiment presented in Fig. 7, with the readout
trained only on the first and last token embeddings of the sequences and tested on all elements.
(Right) Test accuracy in the ancestor prediction task (layer 0 is the root) with ℓ = 4, q = 4,
ktest = 0, obtained by reading out the complete transformer encoding of models pre-trained
ktrain = 0, 1, 2, 3, 4 (from top to bottom), i.e. using the attention maps illustrated in Fig. 6 The
readout is trained on 214 labeled examples.

D.6 DETAILS ON THE PROBING EXPERIMENTS

In order to perform the experiments presented in Fig. 7, we replace the linear readout of a trained
MLM transformer by a two-layer feedforward network with 64 hidden units, acting independently
on all of the d-dimensional sequences (d = 128 in all of our experiments, see Sec. 3) outputted by
the frozen transformer encoder. The training of the readout is performed on 214 labeled sequences,
the labels being, for each of the elements of the sequence, the symbol on the relevant ancestor in the
generative tree. Here again, the loss is taken to be the cross-entropy between the logits outputted
by the network for each token and their correct ancestor label, then averaged on all the sequence
elements. We present another experiment, where the cross-entropy is measured only with the first
and the last token embeddings of the sequence, just below. The readout is trained on 100 epochs in
all cases, which we found to be sufficient for the relatively small training set size we used.

D.7 FURTHER PROBING EXPERIMENTS

To complement and contextualize the probing experiments presented in the main text, we provide
two additional experiments. In the left panel of Fig. 14, we perform the same experiment as in Fig.7,
but with probes trained only on two positions in the token sequence (first and last) and tested across
all positions. While some accuracy is lost, since the readout cannot fully disentangle the positional
information from the semantic one in positions that were never seen at training, the sequential effect
is still evident. Moreover, we also performed the same procedure as Fig. 7 on the tokens’ hidden
representations, but with models trained on factorized data. As visible in the right panel of Fig. 14,
a model trained of factorized data can only accurately recover ancestors up to the level in which
factorization kicks in. For example, in an l = 4 tree, a model trained on ktrain = 2 data can
only predict ancestors up to level 2 (two ancestry layers above the leaves - above that, the tree
is factorized), while a model trained on ktrain = 3 can only predict ancestors up to level 3 (the
ancestors right above the leaves - for the same reason). This is exactly what could be expected from
the attention maps of Fig. 6. As before, we are probing the hidden representations of individual
tokens, so this happens because the attention must provide mixing between ∼ 2ℓ−k elements of the
sequence in order for individual tokens to carry information up to the level k of the fully hierarchical
generative model.

E A POSSIBLE TRANSFORMER IMPLEMENTATION OF BELIEF PROPAGATION

We show here how the BP algorithm for leaf inference can be implemented using ℓ layers of trans-
formers with token sizes which are compatible with what is used in our experiments. We consider
the “worst case” scenario of a complete, unfiltered tree generative process of depth ℓ.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Token embedding. We propose an implementation that relies on vectorized tokens with a structure
of the form

x
(m)
i =

r
(1,m)
i

...
r
(q,m)
i

m
(m)
i

m
(m)
i
p̃i

, (17)

where:

• i ∈ {1, ..., 2ℓ} is the index of a leaf
• m ∈ {1, ..., ℓ} is the index of a transformer layer

• r
(1,m)
i , . . . , r

(q,m)
i are q vectors of dimension q (q2 elements in total) storing the quantities

needed to compute the final leaf marginals,

• m
(m)
i is a vector of size q storing the up-going message for the ancestor of leaf i at level

m,

• m
(m)
i is a vector of size q storing the up-going message for the mth complementary ancestor

of leaf i, see Fig. 15,
• p̃i is a ℓ-dimensional binary vector containing positional information on the full path from

root to leaf i (see below).

In this prescription, the total dimension of each token is therefore d = q2 + 2q + ℓ.

Figure 15: Illustration of the upgoing
messages embedded in the tokens of the
transformer implementation of BP for a
tree with ℓ = 3. Complementary ances-
tors are shown with dashed lines.

Initialization. We are going to consider the following
initialization,(

r
(a,0)
i

)
b
=

1

q
, ∀a, b = 1, . . . , q, (18)

m
(0)
i = 0, (19)

while the messages m
(0)
i should be initialized as in the

standard BP given a sequence, i.e. with a Kronecker δ for
known symbols and a uniform vector for masked leaves.
The positional vector p̃i should finally be a binary ±1
vector representing the sequence of left/right turns from
the root to leaf i (as σ in equation 1).

Attention layer. In our implementation, the dot product(
W

(m)
Q x

(m)
i

)⊤ (
W

(m)
K x

(m)
j

)
entering the softmax and at the heart of the attention
mechanism only encodes positional information; more precisely, it combines the common ances-
tors of tokens i and j down to layer ℓ −m of the generative tree. This can be achieved with query

and key matrices such that
(
W

(m)
Q

)⊤
W

(m)
K has elements equal to zero except in its lower right

corner of size ℓ× ℓ which has the following structure:β1(ℓ−m−1)×(ℓ−m−1) 0 0
0 −β 0
0 0 [0]

m×m

 , (20)

with β ≫ 1. Let us detail the role of this ℓ× ℓ sub-matrix. Its upper left terms proportional to β will
be relevant in the softmax, when β ≫ 1, if they are positive, meaning these are common ancestors
to tokens i and j, and negligible if they are negative. The diagonal term proportional to −β requires

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

the two considered tokens to be in different positions in the sequence to contribute to the softmax,
ensuring there is no influence of the messages on themselves in the following steps. Its lower right
corner, which is populated by a m × m matrix of zeros, ensures that layers below ℓ − m in the
generative tree are no longer considered.

On the other hand, the value matrix may be used to select the correct messages in the token vector,
with zeros elsewhere.

As a result, the total operation amounts to averaging the message incoming from the complementary
sub-tree over all the trajectories within the complementary sub-tree

selfattention(x(m);W
(m)
Q ,W

(m)
K ,W

(m)
V)i ≈

0
...

E
j∈S(m)

i

[
m

(m)
j

]
...
0

 =

0
...

m
(m)
i
...
0

 , (21)

where S(m)

i is the set of tokens belonging to the complementary tree of token i at layer ℓ − m of
the generative tree. Note that in principle it is not necessary to average since all of the paths should
lead to the same message from the complementary tree, however keep in mind that in practice some
tokens will be masked. The averaging procedure therefore allows recovering the information (unless
all of the tokens in S(l)

i happen to be masked). Thanks to the skip connections, this contribution is
added to the initial token, populating the initially empty entries of these complementary messages
while leaving the rest of the tokens unaffected.

Fully connected feedforward layer. Following the initialization and after the attention layer, the
encoded token has the correct structure of equation 17. One must now update the relevant informa-
tion in order to go to the next attention layer and therefore the next layer in the generative tree. More
precisely, we need to:

• Compute the messages of the m+ 1th ancestor,

• Update the quantities needed to compute the marginal for the leaf associated with the token
considered,

• Remove temporary or unwanted quantities stemming from the previous steps.

All of these must be done with an identical operation for all tokens as the feedforward layer is
applied independently for all positions in the sequence.

The first part is to update the messages following the equivalent of equation 4,(
m

(m+1)
i

)
a
∝
∑
bc

MaPi(b,c)

(
m

(m)
i

)
b

(
m

(m)
i

)
c
, (22)

where Pi(b, c) is either bc or cb depending on the topology of the factor node at which the up-
date takes place—a piece of information fully contained in p̃i. This type of operation should be
implementable, at least approximately, by a two-layer network since it is known to be a universal
approximator.

Now, we are to compute the actual leaf marginals. As mentioned in the presentation of the standard
BP implementation (Sec. 2.4), the standard approach is to perform both an upwards and downwards
pass, which would require 2ℓ attention layers.

Here, we instead wish to perform the computation in ℓ step, as we have seen from experiments that
the transformer can achieve perfect accuracy with ℓ attention layers and that it does not appear to
use all layers when k < ℓ. To do so, we have included the q2 elements of r(l)1 , . . . , r

(l)
q in the token

and now show how to update these. Note that if we had 2ℓ layers, we could instead only store q
quantities.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

As an example, consider the factor graph in Fig. 15 and assume the root is not pinned. We can start
from the standard BP recursion for the down-going message received by leaf i:(

m̂
(1)
i

)
b1

∝
∑
a2,c1

∑
a3,b2

(∑
a4,c3

(
m

(3)
i

)
c3

Ma4a3c3

)(
m

(2)
i

)
b2

Ma3b2a2

(m(1)
i

)
c1

Ma2b1c1

(23)
and define an auxiliary message with a double index dependence:(

r(a2,1)
)
b1

=
∑
c1

(
m

(1)
i

)
c1

Ma2b1c1 . (24)

In particular, the idea is that we are tracing only over the index of the complement ancestor—which
is already available from the first layer—but not on the index of the downgoing message, which can
only be computed after reaching the top of the hierarchy. Instead, we keep in memory all the separate
contributions for each parent index. Then, we can obtain a recursion for the auxiliary messages:(

r
(a,m+1)
i

)
b
∝
∑
h,k

MbPi(h,k)

(
r
(a,m)
i

)
h

(
m

(m)
i

)
k
, (25)

with the base case given in Eq. 24 treated in the transformer first layer. At the last transformer layer,
one can also trace over the root index, completing the recursion. Doing so in the final feedforward
layer notably yields, at the end of the transformer encoder,∑

b

(
r
(a,ℓ)
i

)
b
∝
∑
h,k

(∑
b

MbPi(h,k)

)(
r
(a,ℓ−1)
i

)
h

(
m

(ℓ−1)
i

)
k
, (26)

which is proportional to the incoming message on the leaf and therefore to its marginal if it is to
be inferred. The final linear readout may then select this relevant part of the outputted tokens to
perform the masked language modelling.

Including intermediate layers. In principle, one could add q × (ℓ− 1) new vectors entries in the
token in order to store the marginals at intermediate layers. These would simply be used to store the
intermediate values of the

∑
b

(
r
(a,l)
i

)
b
.

Accommodating for filtration. The implementation described above considered the case of k =
0, unfiltered generative trees, i.e. the most complex case from the BP standpoint. In the case of a
dataset with filtering parameter k, one can adapt the implementation by taking ℓ − k layers. The
central difference then lies in the ℓ − kth block, which must then combine the 2k messages going
up to the root in its feedforward layer (instead of two messages like at all other layers in the k = 0
case).

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, context-free grammar. arXiv
preprint arXiv:2305.13673, 2023.

James K Baker. Trainable grammars for speech recognition. The Journal of the Acoustical Society
of America, 65(S1):S132–S132, 1979.

Lorenzo Bardone and Sebastian Goldt. Sliding down the stairs: how correlated latent variables
accelerate learning with neural networks. arXiv preprint arXiv:2404.08602, 2024.

Freya Behrens, Luca Biggio, and Lenka Zdeborová. Understanding counting in small transformers:
The interplay between attention and feed-forward layers. arXiv preprint arXiv:2407.11542, 2024.

Francesco Cagnetta and Matthieu Wyart. Towards a theory of how the structure of language is
acquired by deep neural networks. arXiv preprint arXiv:2406.00048, 2024.

Francesco Cagnetta, Leonardo Petrini, Umberto M Tomasini, Alessandro Favero, and Matthieu
Wyart. How deep neural networks learn compositional data: The random hierarchy model. Phys-
ical Review X, 14(3):031001, 2024.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Daniel Campos. Curriculum learning for language modeling. arXiv preprint arXiv:2108.02170,
2021.

Eric De Giuli. Random language model. Physical Review Letters, 122(12):128301, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/
N19-1423.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification,
2018. URL https://arxiv.org/abs/1801.06146.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Ghazal Khalighinejad, Ollie Liu, and Sam Wiseman. Approximating CKY with transformers. arXiv
preprint arXiv:2305.02386, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach, 2019. URL https://arxiv.org/abs/1907.11692.

Song Mei. U-nets as belief propagation: Efficient classification, denoising, and diffusion in genera-
tive hierarchical models. arXiv preprint arXiv:2404.18444, 2024.

Barthelemy Meynard-Piganeau, Christoph Feinauer, Martin Weigt, Aleksandra M Walczak, and
Thierry Mora. Tulip: A transformer-based unsupervised language model for interacting peptides
and t cell receptors that generalizes to unseen epitopes. Proceedings of the National Academy of
Sciences, 121(24):e2316401121, 2024.

Marc Mézard and Andrea Montanari. Information, physics, and computation. Oxford University
Press, 2009.

Elchanan Mossel. Deep learning and hierarchal generative models. arXiv preprint
arXiv:1612.09057, 2016.

Elchanan Mossel, Joe Neeman, and Allan Sly. Belief propagation, robust reconstruction and optimal
recovery of block models. In Conference on Learning Theory, pp. 356–370. PMLR, 2014.

Elchanan Mossel, Allan Sly, and Youngtak Sohn. Exact phase transitions for stochastic block models
and reconstruction on trees. In Proceedings of the 55th Annual ACM Symposium on Theory of
Computing, pp. 96–102, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Maria Refinetti, Alessandro Ingrosso, and Sebastian Goldt. Neural networks trained with SGD learn
distributions of increasing complexity. In International Conference on Machine Learning, pp.
28843–28863. PMLR, 2023.

Riccardo Rende, Federica Gerace, Alessandro Laio, and Sebastian Goldt. A distributional simplicity
bias in the learning dynamics of transformers. arXiv preprint arXiv:2410.19637, 2024.

Taisuke Sato. Inside-outside probability computation for belief propagation. In IJCAI, pp. 2605–
2610. Citeseer, 2007.

20

https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1907.11692

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Antonio Sclocchi, Alessandro Favero, and Matthieu Wyart. A phase transition in diffusion models
reveals the hierarchical nature of data. arXiv preprint arXiv:2402.16991, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In International Confer-
ence on Machine Learning, pp. 11080–11090. PMLR, 2021.

Shuang Zhang, Rui Fan, Yuti Liu, Shuang Chen, Qiao Liu, and Wanwen Zeng. Applications of
transformer-based language models in bioinformatics: a survey. Bioinformatics Advances, 3(1):
vbad001, 2023.

Haoyu Zhao, Abhishek Panigrahi, Rong Ge, and Sanjeev Arora. Do transformers parse while pre-
dicting the masked word? arXiv preprint arXiv:2303.08117, 2023.

Ziqian Zhong, Ziming Liu, Max Tegmark, and Jacob Andreas. The clock and the pizza: Two
stories in mechanistic explanation of neural networks. Advances in Neural Information Processing
Systems, 36, 2024.

21

	Introduction
	A model with filtered hierarchical correlations
	The full hierarchical model
	Filtering hierarchical correlations
	Related data models
	Exact inference

	How transformers learn to climb the hierarchy in time
	Experimental setup
	Supervised classification
	Masked Language Modeling

	How transformers embed the exact inference computation
	Conclusions
	Further details on our data model
	Vanilla encoder-only transformer architecture
	Further details on numerical experiments
	Additional figures
	Influence of the number of attention layers
	Other grammars
	In-sample classification performance on filtered datasets
	Additional comparison of the outputs
	Classifier attention maps
	Details on the probing experiments
	Further probing experiments

	A possible transformer implementation of Belief Propagation

