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Abstract001

Recently, very large language models (LLMs)002
have shown exceptional performance on several003
English NLP tasks with just in-context learn-004
ing (ICL), but their utility in other languages005
is still underexplored. We investigate their ef-006
fectiveness for NLP tasks in low-resource lan-007
guages (LRLs), especially in the setting of zero-008
labelled cross-lingual transfer (0-CLT), where009
no labelled training data for the target language010
is available – however training data from one011
or more related medium-resource languages012
(MRLs) is utilized, alongside the available un-013
labeled test data for a target language. We intro-014
duce Self-Supervised Prompting (SSP), a novel015
ICL approach tailored for the 0-CLT setting.016

SSP is based on the key observation that LLMs017
output more accurate labels if in-context exem-018
plars are from the target language (even if their019
labels are slightly noisy). To operationalize020
this, since target language training data is not021
available in 0-CLT, SSP operates in two stages.022
In Stage I, using source MRL training data, tar-023
get language’s test data is noisily labeled. In024
Stage II, these noisy test data points are used025
as exemplars in ICL for further improved la-026
belling. Additionally, our implementation of027
SSP uses a novel Integer Linear Programming028
(ILP)-based exemplar selection that balances029
similarity, prediction confidence (when avail-030
able) and label coverage. Experiments on three031
tasks and eleven LRLs (from three regions)032
demonstrate that SSP strongly outperforms ex-033
isting SOTA fine-tuned and prompting-based034
baselines in 0-CLT setup.035

1 Introduction036

Very large language models (LLMs) such as GPT-037

3.5-Turbo & GPT-4 (Ouyang et al., 2022; Achiam038

et al., 2023) show exceptional performance on a039

variety of NLP and reasoning tasks via In-Context040

Learning (ICL) (Brown et al., 2020; Chowdhery041

et al., 2022). ICL feeds a task-specific instruction042

along with a few exemplars, appended with the test043

input, to the LLM. As LLMs can be highly sensitive 044

to exemplars (Zhao et al., 2021), exemplar retrieval 045

is crucial for ICL. 046

While LLMs have shown excellent performance 047

on English tasks, their utility on other languages 048

is relatively underexplored. In this work, we study 049

zero-labelled cross-lingual transfer (0-CLT) to low- 050

resource languages (LRLs) – a setting where la- 051

beled task data from one or more related medium- 052

resource languages (MRLs) is available, but no 053

labeled data exists for the target LRL. We also ad- 054

ditionally leverage the available test sentences (un- 055

labeled) of the target language. This is in contrast 056

to (Wan et al., 2023a,b), who utilize a set of exter- 057

nal unlabelled sentences for English tasks and pose 058

this as a transductive zero-shot setting. The high 059

cost of annotating LRL sentences for new tasks or 060

domains underscores the relevance of the 0-CLT 061

setting for non-English languages. 062

Cross-lingual transfer has been addressed 063

through standard fine-tuning (Muller et al., 2021; 064

Alabi et al., 2022), and language adapters (Pfeif- 065

fer et al., 2020; Üstün et al., 2020; Rathore et al., 066

2023), but there is limited work on cross-lingual 067

ICL. There are two exceptions (Ahuja et al., 2023; 068

Asai et al., 2023), where ICL is employed with 069

exemplars from a source language, but they use 070

uniformly random sampling for exemplar selection, 071

resulting in performance inferior to cross-lingually 072

fine-tuned models, such as mBERT and XLM-R 073

(Devlin et al., 2019; Conneau et al., 2020). 074

In our preliminary experiments, we prompt the 075

Llama2-70B model with exemplars from source 076

MRLs, and compare its performance with the same 077

LLM prompted with exemplars from the target 078

LRL. We vary the label noise on the target exem- 079

plars. Unsurprisingly, LLMs show better perfor- 080

mance with less label noise. More interestingly, we 081

find that a reasonably-sized noise region exists (see 082

Figure 1), such that if the exemplar noise is within 083

that range, then the overall performance is higher 084
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Figure 1: Llama2 70B, prompted with target LRL exem-
plars, along with artificially injected label noise (x-axis).
Dashed lines represent performances when prompted
with source MRL exemplars.

than prompting with accurate source language data.085

Armed with this observation, we present Self-086

Supervised Prompting (SSP) – a novel ICL frame-087

work for 0-CLT to LRLs. Since the target LRL088

training data is not available in 0-CLT, SSP oper-089

ates in two stages. In Stage I, SSP labels all test090

instances of LRL using training data from MRL.091

This may be done by LLM prompting (as in the092

experiment above), or using any other existing093

approaches for 0-CLT, such as by fine-tuning or094

adapters. Once (noisy) labels on target LRL are ob-095

tained, in Stage II, SSP uses ICL using these noisy096

test data points (except itself) as exemplars for fur-097

ther performance improvement. Additionally, to098

select the best exemplars, we develop a novel In-099

teger Linear Programming (ILP) based selection100

approach, which balances the various objectives101

of (1) similarity of exemplar with test sentence,102

(2) high confidence in label predictions, and (3)103

coverage of the various labels for better task un-104

derstanding. Figure 2 gives an overview of our105

proposed pipeline.106

We define 3 scenarios for our zero-labelled setup107

- (1) 0-CLT: Only the available test sentences of108

the target language are used, with no additional109

unlabelled data, (2) 0-CLT-U: the full wikipedia110

data available for target language is utilized, and111

(3) 0-CLT-T: a translation model supporting the112

target language is leveraged. The primary focus113

of this work is on 0-CLT (setting 1). However,114

we also conduct stage 1 experiments for both 0-115

CLT-U and 0-CLT-T settings. This enables us to116

comprehensively assess SSP’s effectiveness across117

varying degrees of noise in stage I.118

We perform experiments on sequence labelling119

tasks (POS and NER), and natural language infer-120

ence (NLI) – a text classification task. Our datasets 121

encompass eleven low-resource languages from 122

typologically diverse language families and three 123

regions: African, Germanic and American. Our 124

experiments show consistent and substantial im- 125

provements over existing fine-tuning as well as 126

simpler ICL-based approaches. We will make both 127

our codebase and prompts publicly accessible. 128

Our contributions are summarized as follows: 129

1. We Investigate ICL strategies for zero-labelled 130

cross-lingual transfer to LRLs, using labeled 131

data from related MRLs and unlabeled test 132

data from the target language. 133

2. We propose SSP, a two-stage self-supervised 134

prompting paradigm for this task, where the 135

first stage may be done by an LLM or other 136

cross-lingually fine-tuned models. 137

3. We introduce an exemplar selection approach 138

utilizing an ILP. The ILP incorporates simi- 139

larity to test input along with confidence of 140

prediction (when available), and enforces la- 141

bel coverage constraints for better selection. 142

4. Experiments on 3 tasks and 11 languages 143

show that SSP outperforms existing fine- 144

tuning and SOTA LLM-based models in 0- 145

CLT, 0-CLT-U (full unlabeled) as well as 0- 146

CLT-T (translation-based) settings, hence im- 147

proving labelling in the second iteration, irre- 148

spective of the initial labelling method. 149

2 Related Work 150

An ICL prompt consists of (1) task description: 151

to facilitate the understanding of task, (2) labeled 152

input-output pairs: Written sequentially in order of 153

their relevance to input query, and (3) input itself. 154

Cross-lingual ICL: In general, cross-lingual ICL 155

has not been systematically explored in literature. 156

In existing works, prompting is primarily done in a 157

high-resource language, typically English. This is 158

called cross-lingual (CL) prompting. This differs 159

from in-language (IL) prompting, where examples 160

are retrieved from the candidate pool of the target 161

language itself. This assumes the availability of 162

labeled data for target LRL, which is not true in 163

our zero-labelled (0-CLT) setting. In response, we 164

develop novel techniques making use of both CL 165

prompting and IL prompting, while not utilizing 166

the gold labels during IL prompting stage. 167

Most existing cross-lingual ICL methods use 168

uniformly random input-output pairs for exem- 169

plar selection (Zhang et al., 2021; Winata et al., 170
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2021; Ahuja et al., 2023; Asai et al., 2023). Re-171

cent approaches (Agrawal et al., 2022; Tanwar172

et al., 2023) address this gap by utilizing semantic173

similarity for cross-lingual retrieval from a high-174

resource language’s labeled data, given the target175

LRL’s instance as query. This is facilitated by176

embedding-based multilingual retrievers such as177

multilingual sentence-transformers (Reimers and178

Gurevych, 2020). More recently, OpenAI-based179

embeddings such as Ada-002 1 have been used ef-180

fectively for cross-lingual retrieval (Nambi et al.,181

2023). We extend this line of work by also in-182

corporating label confidence and label coverage in183

exemplar selection.184

Fine-tuning approaches for Cross-lingual Trans-185

fer: Most approaches rely on fine-tuning a Pre-186

trained LM (PLM) such as BERT or XLM-R on187

one or more source languages ((Muller et al., 2021;188

Alabi et al., 2022)) and deploying on an unseen tar-189

get language. Recently, Language-Adapter based190

approaches have been found more effective (Üstün191

et al., 2020) for cross-lingual transfer settings.192

For sequence labelling tasks (NER and POS tag-193

ging), ZGUL (Rathore et al., 2023) is a recent194

SOTA method that leverages ensembling Language195

Adapters from multiple MRLs to label each word196

in a target language. We leverage this in our pro-197

posed SSP pipeline.198

Cross-lingual label-projection techniques: Re-199

cent methods (Chen et al., 2023a; García-Ferrero200

et al., 2023; Le et al., 2024) utilize an off-the-shelf201

translation model (NLLB Team et al., 2022) for202

label-projection in 2 ways – (1) Translate-train:203

translate from English to target language (X) to204

generate training data in X, or (2) Translate-test:205

translate test data in X to English to perform label-206

projection and obtain annotations in X. Although207

our focus is 0-CLT transfer, we also experiment208

with these translation models in Stage I, to assess209

the robustness of SSP across multiple settings.210

3 Self-Supervised Prompting211

We define the setting of zero-labelled cross-lingual212

transfer (0-CLT) as follows. We are given213

source training data for a specific task: D =214

{(xi, lgi, yi)}, where xi is the input text in lan-215

guage lgi, and the output is yi. We are additionally216

given a set of unlabeled test data points T = {qj}217

from a target language lgt. Our goal is to train a218

model/create a protocol, using D, T and a large219

1https://platform.openai.com/docs/guides/embeddings/

pre-trained LLM, that outputs good predictions on 220

T for the task, assuming that lgt is a low-resource 221

language, due to which its training data is not avail- 222

able, and that languages lgi are related to lgt. 223

Our solution approach, Self-Supervised Prompt- 224

ing (SSP), comprises two key stages as follows. In 225

Stage I, it proposes a noisy labelling for all data 226

points in T using source data D. This may be done 227

in different ways, as described next. In Stage II, it 228

uses the LLM and noisy labelling on T from Stage 229

I as exemplars to improve the labellings. Further- 230

more, SSP uses a novel integer-linear programming 231

based exemplar selection. We now describe each 232

component of our system. 233

3.1 Stage I: initial labelling using source data 234

To create a first labelling for all test points, SSP 235

can use any existing approaches for 0-CLT, such as 236

fine-tuning a multilingual language model for the 237

task, or use of language adapters or using our LLM 238

with in-context exemplars from source language. 239

In our experiments, we experiment with adapters 240

and ICL, which we briefly describe next. 241

Cross-Lingual ICL: In the method, we use ICL 242

over LLM for obtaining Stage I labellings. First, 243

we retrieve a set of top-K exemplars from D using 244

each test instance qj as query. This selection is 245

based on cosine similarity between their Ada-002 246

embeddings. The selected exemplars are arranged 247

in descending order of similarity scores, and in- 248

cluded in the prompt between the task description 249

(TD) and the input test instance. This approach has 250

two drawbacks. First, since the LLM will typically 251

be a large expensive model – this will require an 252

LLM call per test data point in Stage I. Second, 253

generally, these LLMs do not expose their logits, 254

hence, we will not have access to prediction confi- 255

dences from Stage I labellings. 256

Training smaller model(s) using D: Another 257

possibility is to fine-tune a smaller multilingual 258

LM, such as mBERT or mDeBerta-v3 (He et al., 259

2021) on D for NLI task. For sequence labelling, 260

we can use ZGUL (Rathore et al., 2023), which 261

trains source language adapters using D, and uses 262

inference-time fusion of source adapters for la- 263

belling test data points. These approaches can pro- 264

vide Stage I labellings for T along with prediction 265

confidences, without making any expensive LLM 266

calls. 267
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Figure 2: SSP Paradigm for Cross-Lingual Transfer to target low-resource language

3.2 Stage II: in-language ICL using268

ILP-based exemplar selection269

After Stage I predictions for target instances T are270

obtained, SSP prompts the LLM to label each test271

data point q ∈ T , but uses in-context exemplars272

in target language using Stage I labellings. For ex-273

emplar selection, SSP implements a novel integer274

linear program (ILP) that balances semantic simi-275

larity, prediction confidence (when available) and276

label coverage.277

Our primary objective is to maximize the aggre-278

gated semantic similarity of the selected exemplars,279

which is obtained using cosine similarity score be-280

tween their OpenAI Ada-v2 embeddings. In addi-281

tion, we impose two constraints:282

• Label Coverage: The ILP tries to ensure the283

coverage of all labels for the given task in284

the selected exemplars – this has been found285

effective for ICL (Min et al., 2022).286

• Confidence: In case Stage I predictions are287

made by a model whose logits are accessible288

(unlike the OpenAI LLMs), the ILP prefers289

selection of more confident exemplars. Our290

hypothesis is that confident predictions are291

also accurate (assuming the model is well-292

calibrated), and previous work has shown that293

performance of LLMs can be sensitive to cor-294

rectness of exemplars (Wei et al., 2023)295

SSP formulates these three factors into an ILP as296

follows. For a dataset D with n examples indexed297

from I = {1 . . . n}, given a test data point qj , let298

zi be a binary variable denoting whether ith test299

instance qi is selected as an exemplar. We use a300

semantic similarity function sim(qi, qj) to get the301

similarity between two examples. K is the number302

of exemplars to be selected. Since qj cannot be303

an exemplar for itself, we select exemplars from 304

I \ {j} only. 305

Let the set of all labels in the task be L, and the 306

multiset of all labels predicted (using argmax) for 307

example qi be Li. The Stage I prediction confi- 308

dence for label l in qi is denoted as ŷil . This confi- 309

dence is computed as average of probability scores 310

across all predictions of label l in ith sentence (de- 311

tails in Appendix A). The ILP uses a threshold τl 312

for prediction confidence for a label l. Intuitively, 313

the ILP maximizes the semantic similarity of K 314

chosen exemplars, subject to each label l being 315

present at least once in the exemplars, and average 316

prediction confidence of each data point for each 317

label being greater than τl. 318

Formally, the ILP is formulated as 319

max
∑

i∈I\{j}

zi · sim(qi, qj) (1) 320

such that
∑

i∈I\{j}

zi = K (2) 321

zi · (ŷil − τl) ≥ 0 ∀ i ∈ I \ {j},∀ l ∈ Li (3) 322∑
i∈I\{j}

zi · count(Li, l) ≥ 1 ∀ l ∈ L (4) 323

Here count(Li, l) denotes the number of occur- 324

rences of l in Li. In our experiments, we set K = 8, 325

and τl = 80th percentile threshold of the set {ŷil}ni=1 326

for a particular label l. The idea is to have label- 327

specific threshold since the fine-tuned model may 328

not be equally calibrated for all labels. 329

Since logits are not accessible for OpenAI LLMs 330

GPT-3.5 and GPT-4x, in case Stage I labelling is 331

done by either of these models using ICL, we skip 332

the confidence thresholding constraint of ILP. This 333

means that for this variant of SSP, the selection is 334

made based on only similarity and label coverage. 335
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Model Hau Ibo Kin Lug Luo Avg. Fo Got Gsw Avg
zero-labelled (0-CLT)
Full Fine-Tuning (FFT) 49.9 54.9 55.4 56.3 40.2 51.3 77.6 17.8 62 52.5
CPG (Üstün et al., 2020) 48.6 50.4 52.6 54.3 38.6 48.9 77.3 16.9 63.9 52.7
ZGUL 52.2 56 53.7 54.5 44.4 52.2 77.2 21.1 65 54.4
ICL-Llama-2-70b 64.3 61.2 59.2 60.1 47.3 58.4 79.1 36.0 71.8 62.3
ICL-GPT-3.5-turbo 54.5 69.2 57.8 63.7 46.4 58.3 81.2 37.9 72.2 63.8
ICL-GPT-4x 64.7 80.8 64.6 71.0 53.3 66.9 81.3 66.5 82.3 76.7
SSP(ICL)-llama-2-70b 57.6 62.6 56.0 57.6 43.1 55.4 78.5 37.9 73.5 63.3
SSP(ICL)-GPT-3.5-turbo 62.8 68.4 64.0 63.8 47.6 61.3 82.4 63.2 79.4 75.0
SSP(ICL)-GPT-4x 67.2 79.6 63.3 74.1 54.4 67.7 81.8 73.7 85.4 80.3
SSP(ZGUL)-Llama-2-70b 68.4 58 56.1 54.7 42.3 55.9 79.9 39.9 72.9 64.2
SSP(ZGUL)-GPT-3.5 61.1 68.9 62.1 67.1 51.4 62.1 82.8 67.5 77 75.8
SSP(ZGUL)-GPT-4x 72.5 79.8 71.4 77.4 55.1 71.2 82.2 71.5 85.6 79.8
w/o Conf. thresholding 71.3 81.9 69.2 74.6 52.7 69.9 82.8 57 81.4 73.7
w/o Label Coverage 71.1 79.8 71.4 77.4 55.1 71 82.2 71.6 85.6 79.8
w/o both (sim-based) 70.3 81.8 68 74.8 51.9 69.4 82.4 55.8 82.3 73.5
w/o ILP (Random) 64.1 77.6 61.5 66.1 46.6 63.2 80.6 54.8 80.9 72.1
Translate-train (0-CLT-T)
ZGUL 72.5 68.5 67.9 65.5 47.3 64.3 - - - -
ICL-GPT-4x 68.7 78.1 58.7 76.3 53.8 67.1 - - - -
SSP(ZGUL)-GPT-4x 75.1 76.7 72.3 79.9 54.4 71.7 - - - -
SSP(ICL)-GPT-4x 69.9 79.8 60.6 74.7 53.8 67.8 - - - -
Translate-test (0-CLT-T)
Self-fusion (GPT-4x) (Chen et al., 2023b) 68.4 68 58.8 66.5 39.7 60.3 83 - 70 -
SSP(Self-fusion)-GPT-4x 70 78.6 64.6 77 51.3 68.3 83.7 - 83.9 -
Unlabeled data (0-CLT-U)
AfriBERTa (Ogueji et al., 2021) 75.4 79.1 64.9 54.7 39.3 62.7 - - - -
ZGUL++ (Rathore et al., 2023) 78.5 68.9 62.5 66 50.2 65.2 81.5 18.7 80.4 60.2
SSP(ZGUL++)-GPT-4x 75.6 84.7 70.3 75.4 54.6 72.1 83.9 71.7 86 80.5
Skyline (GPT-4x) 75.5 85.9 70.7 73.6 67.2 74.6 93.5 80.7 89.9 88

Table 1: Micro-F1 scores for African NER (left) and Germanic POS (right). Best 0-CLT results are bolded while
overall best results are underlined. Translate-train baselines could not be run for POS tagging due to absence of
label-projection models for POS. However, Translate-test was possible as label-projection is performed using GPT-4
(Exception being Gothic, as it’s translation is not supported in NLLB-200). Statistical significance of bold numbers
(0-CLT comparison): McNemar p-value = 0.008 and 0.0004, respectively.

4 Experiments336

Our main experiments assess SSP performance337

compared to existing state-of-the-art models for338

0-CLT. We also wish to compare various SSP vari-339

ants, and estimate the value of the ILP-based exem-340

plar selection.341

4.1 Tasks and Datasets342

We experiment on three tasks – POS tagging, NER343

and Natural Language Inference (NLI). We use344

the UDPOS dataset (Nivre et al., 2020) for POS345

tagging over Germanic languages, MasakhaNER346

(Adelani et al., 2021) for African NER, and Amer-347

icasNLI (Ebrahimi et al., 2022) for NLI task on348

the indigenous languages of Americas. Overall,349

we use eleven low-resource test languages as tar-350

get (e.g., Kinyarwanda, Faroese, and Aymara), and351

2-4 source languages per dataset (e.g., Icelandic,352

Spanish and Swahili; always including English).353

Further details are in Tables 4 and 5.354

Recent studies have shown sensitivity of the out-355

put to the template/format of input-output pairs 356

written in the prompt (Sclar et al., 2023; Voronov 357

et al., 2024). We follow the best template given 358

in Sclar et al. (2023) for NLI, while for sequence 359

labelling, we explore various templates on our own 360

and report our results on the best one. We refer 361

to Appendix B for details and the exact templates 362

used for each of our tasks. 363

For obtaining test set, we randomly sample 100 364

test samples for each target language for NER and 365

POS tasks. We justify this as each sentence has 366

multiple labels, bringing the total no. of instances 367

to be labeled per language to 2370 and 1100 for 368

POS and NER respectively. For the NLI task, we 369

sample 501 test samples (167 for each class: ‘en- 370

tailment’, ‘contradiction’ and ‘neutral’). We report 371

statistical significance (in table captions) to justify 372

our evaluation. 373

We also perform a careful contamination study, 374

following (Ahuja et al., 2022), by asking LLMs 375

to fill dataset card, complete sentence (and labels), 376
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Model Aym Gn Nah Avg.
0-CLT
mDeBerta100 34.9 43.9 48.9 42.6
mDeBertaFT 33.9 47 46.9 42.6
ICL-GPT-3.5 38.2 41.7 35.3 38.4
ICL-GPT-4 32.8 55.8 42.2 43.6
SSP(ICL)-GPT-3.5 38.4 38.8 43.2 40.1
SSP(ICL)-GPT-4 37.5 58.5 51.8 49.3
SSP(mDeBertaFT )-Llama-2 36.5 37.8 41 38.4
SSP(mDeBertaFT )-GPT-3.5 43.1 46 46.8 45.3
SSP(mDeBertaFT )-GPT-4x 36 61.3 59.2 52.2

Model Aym Gn Nah* Avg.

w/o Conf. 42.9 60.1 50.3 51.1
w/o Label 37 58.2 57.4 50.9
w/o both 34.3 59.7 57.1 50.4
w/o ILP (Random) 33.4 53.8 53.4 46.9
Translate Train
ICL-GPT-4 42.4 49.5 - -
SSP(ICL)-GPT-4 44.4 58.6 - -
Translate Test
ICL-GPT-4 36.4 45.5 - -
SSP(ICL)-GPT-4 42.4 57.6 - -
Skyline (GPT-4x) 49.2 55.6 60 54.9

Table 2: Micro-F1 scores for Americas NLI (Statistical significance of bold number (0-CLT comparison): McNemar
p-value = 0.054). * Nahuatl (Nah) not supported in NLLB-200.

given partial sentence, and generate next few in-377

stances of the dataset. As further detailed in Ap-378

pendix F, we do not observe any evidence of con-379

tamination for these languages’ test splits in the380

OpenAI LLMs.381

4.2 Comparison Models382

Zero-shot Baselines: We compare our SSP ap-383

proach with the SoTA fine tuning models, as well384

as LLM-based ICL methods using naive random ex-385

emplar selection. In particular, we fine-tune ZGUL386

– mBERT Language Adapter-based SoTA zero-shot387

baseline for NER and POS tagging, and mDe-388

BERTa fine-tuned for NLI. We additionally utilize389

the public model mDeBERTa-v3-base-xnli (Lau-390

rer et al., 2022) for NLI evaluation. We term our391

own fine-tuned model as mDeBERTaFT and the392

public model as mDeBERTa100, as it was trained393

on 100 languages (excluding our target languages).394

For POS and NER, we also add full parameter395

fine-tuning and Conditional Parameter Generation396

(CPG (Üstün et al., 2020)) baselines, all fine-tuned397

using the same underlying LM (i.e. mBERT).398

SSP Variants: We implement SSP with a se-399

ries of top-of-the-line LLMs – GPT-3.5-turbo400

(Ouyang et al., 2022), GPT-4x (GPT-4/GPT-4-401

Turbo) (Achiam et al., 2023), and LLaMa-2-70b402

(Touvron et al., 2023). If Stage I uses ICL, then the403

same LLM is used for both stages I and II. Alter-404

natively, ZGUL and mDeberta based methods are405

also used in Stage I of SSP.406

To understand the value of the ILP, we perform407

three ablations on exemplar selection strategy –408

(a) without confidence thresholding (for fine-tuned409

LM), (b) without label coverage and (c) without410

both, i.e. pure similarity-based. The ablations411

are conducted with the best performing underly-412

ing LLM i.e. GPT-4x.413

Leveraging Translation Models and Unla- 414

beled Data: For a comprehensive evaluation, we 415

use the cross-lingual label projection models Codec 416

(Le et al., 2024) for translate-train and Self-fusion 417

(Chen et al., 2023b) for translate-test baselines. 418

More details are provided in Appendix A.1. 419

Additionally, we leverage unlabeled data in the tar- 420

get language to establish a stronger baseline. We 421

use the AfriBERTa encoder (Ogueji et al., 2021) 422

for African languages and ZGUL++ (Rathore et al., 423

2023), which utilizes target Wikipedia data to pre- 424

train a target language adapter, and fuses it with 425

MRL adapters for fine-tuning on MRL data. 426

Skyline: To understand the current performance 427

gap due to lack of target language training data, 428

we also implement a skyline utilizing the avail- 429

able data for target languages and perform few-shot 430

in-language similarity-based exemplar selection 431

(using Ada-002) for in-language ICL to the LLM. 432

5 Results and Analysis 433

We present the results for all tasks in Tables 1, 434

and 2. ICL-X represents ICL over an LLM X 435

with source language exemplars. SSP(model)-X 436

represents the use of model for Stage I followed by 437

LLM X for Stage II. In case ICL is used in Stage I, 438

then same LLM X is used in both stages. 439

Analyzing the results, we first observe that all 440

ICL-X baselines perform much better than previ- 441

ous fine-tuning approaches for the 0-CLT task. This 442

reaffirms the importance of studying and improv- 443

ing in-context learning over very large language 444

models for our setting. 445

Comparing among SSP variants, it is not surpris- 446

ing that GPT-4 performance supercedes GPT-3.5, 447

which is much better than Llama2 70B. We next 448
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compare ICL baselines and SSP variants, when us-449

ing the same LLM. We find that SSP’s two stage450

workflow consistently outperforms ICL by signifi-451

cant margins. In fact, in-language exemplars with452

very noisy labels from stage 1 (E.g. for Got lan-453

guage with GPT-3.5-Turbo) perform quite well.454

These observations underscore the value of target455

language exemplars in ICL, even at the cost of la-456

bel noise. Moreover, we compare SSP with Stage457

I via ICL over an LLM vs. via a fine-tuning base-458

line (ZGUL or mDeBerta). Fine-tuning baseline459

for Stage I has two benefits – it is cheaper (due to460

no LLM calls in Stage I), and has prediction confi-461

dence that can allow ILP to select highly confident462

Stage II exemplars. Due to the latter, in two of the463

three language groups, the use of a fine-tuning base-464

line performs much better, and in the third group,465

it is marginally behind due to weaker performance466

in one language (Gothic). This happens because467

ZGUL has a particularly poor performance on this468

language, leading to much noisier labels in Stage469

II exemplars.470

Finally, we experiment on SSP in 0-CLT-U (full471

target wikipedia) and 0-CLT-T (Translation model)472

settings, as shown in Table 1. We observe that the473

order of stage I performance is 0-CLT-T (translate-474

test) < 0-CLT < 0-CLT-T (translate-train) < 0-CLT-475

U, and same order of performance gets translated in476

stage II as well, while stage II performance being477

consistently better than stage 1 in all scenarios.478

This validates our hypothesis that SSP is effective479

under varying levels of noise in stage I labelings.480

Overall, our best 0-CLT SSP solution uses a fine-481

tuning baseline (ZGUL or mDeBerta) for Stage I482

and GPT-4 for Stage II, using its novel ILP-based483

exemplar selection. It outperforms closest 0-CLT484

baselines by around 3 F1 pts, on average, establish-485

ing a new state of the art for zero-labelled cross-486

lingual transfer to low-resource languages. The487

best SSP reported 0-CLT results are statistically488

significant compared to the second best counterpart489

using McNemar’s test (p-values in Tables 1 and490

2 captions). We believe that our work is a signifi-491

cant advancement to the existing paradigm (Tanwar492

et al., 2023; Nambi et al., 2023), which is restricted493

to optimizing only 1 round of In-context learning.494

5.1 Ablation Study495

We now discuss the results of removing ILP compo-496

nents in Stage II exemplar selection. Tables 1, and497

2 (last four rows) report the impact of removing498

confidence thresholding constraint, label coverage499

Model Neu. Ent. Con. Macro-F1
DeBertaCL 34.7 53 40.3 42.6
SSP-V2 51.7 53.4 51.4 52.2
(w/o Label) 42.6 52.3 57.9 50.9

Table 3: Labelwise F1 scores for fine-tuned model
(DeBerta-CL) and SSP-V2 variants w. and w/o Label
coverage (GPT-4-Turbo)

constraint, both of these constraints (i.e., just using 500

similarity) from the ILP. The final row removes 501

ILP completely and presents results of random ex- 502

emplars in Stage II. All these ablations are done 503

on SSP with ZGUL/mDeBerta for Stage I, as only 504

those output prediction probabilities. 505

Impact of label coverage: We observe an av- 506

erage gain of 1.3 F1 points for AmericasNLI com- 507

pared to the ablation model that does not impose 508

label coverage constraint. We further compute the 509

average number of exemplars for each label that 510

are covered in the selected set for both methods, 511

along with their label-wise F1 scores (see Figure 512

3). We observe that the ‘neutral’ label is not sam- 513

pled in most cases for w/o label coverage variant, 514

while exactly one ‘neutral’ label is sampled in the 515

SSP(mDeBerta), with label constraint. This hap- 516

pens as the fine-tuned model mDeBerta-FT has 517

very poor recall (24) for ‘neutral’ class and hence 518

any selection strategy has a tendency to not sample 519

this label, unless enforced via a constraint. The 520

class-wise recall for SSP(DeBertaCL)-GPT4 with 521

and w/o label coverage are presented in Table 7. We 522

observe a difference of 22 recall points for ‘neutral’ 523

class (57.6 vs 35.6) between the two ILP variants. 524

An example illustrating this behavior is shown in 525

Figure 6 (appendix). 526

Impact of confidence thresholding: For se- 527

quence labelling tasks, confidence thresholding 528

plays a key role. This is validated from ablation 529

results in Table 1, wherein removing confidence 530

thresholding from SSP leads to 5.7 points drop 531

for POS tagging (Germanic) and 1.3 points for 532

NER. The drop is particularly significant (around 533

13.5 points) for Gothic (Got), which shows that not 534

utilizing the confidence scores can lead to drastic 535

drop. This may be because performance of ZGUL 536

is already poor on Gothic (21 F1 points), but confi- 537

dence thresholding may have likely compensated 538

by picking higher quality exemplars. Removing 539

thresholding would increase noise in exemplars 540

considerably, leading to the drop (see figure 4). 541

We further study its impact by computing 542

the quality of Stage II exemplars selected by 543
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Figure 3: Label-wise statistics for AmericasNLI: Left to right - Label-wise count per prompt, Precision of ICL
exemplars, and F1 results (averaged over target languages) using different selection strategies (GPT-4-Turbo)

SSP(mDeBerta), as well as it’s ablation variants.544

We compute the label-wise precision over all K×N545

(K=8, N=no. of test instances) samples for each tar-546

get language, and then report their macro-average.547

We observe for (Figure 3) that the macro-precision548

of selected exemplars by full ILP is consistently549

higher than it’s other ablation variants, the least550

value being of w/o both (similarity-based) variant.551

This implies that the ILP is able to effectively sam-552

ple high-precision (correctly labeled) exemplars553

which, in turn, gets translated into it’s superior554

downstream performance on the task.555

For completeness, we also show the exemplar pre-556

cision (correctness) statistics for NER and POS in557

Figure 4. The trends hold similar in the sense-that558

‘w/o confidence’ and ‘similarity-based’ variants559

have significantly lower precision (higher noise)560

than SSP. This is expected because both these es-561

chew confidence thresholding, leading to sampling562

of lower-confidence predictions. This translates to563

worse downstream performance (see Table 1).564

We also note that w/o ILP (completely random se-565

lection) ablation performs much worse than SSP,566

showcasing the importance of carefully selecting567

the exemplar set.568

We present an error analysis of SSP approach in569

section B.2.570

6 Conclusions and Future Work571

We study the zero-labelled cross-lingual transfer572

(0-CLT) setting for low-resource languages, when573

task-specific training data is available for related574

medium resource languages, along with unlabeled575

test data for target language. We present Self-576

Supervised Prompting (SSP) – a novel two-stage577

framework for the use of in-context learning over578

very large language models. At a high-level, SSP579

first noisily labels the target test set using source580

training data (either by training a model/adapter) or581

by in-context learning over an LLM. SSP then uses582

Figure 4: Precision of selected exemplars for African
NER and Germanic POS

these noisily labeled target data points as exemplars 583

in in-context learning over the LLM. A key tech- 584

nical contribution is the use of integer-linear pro- 585

gram that balances exemplar similarity, labelling 586

confidence and label coverage to select the exem- 587

plars for a given test point. Thorough experiments 588

on three NLP tasks, and eleven low-resource lan- 589

guages from three language groups show strongly 590

improved performance over published baselines, 591

obtaining a new state of the art in the setting. Abla- 592

tions show the value each ILP component in down- 593

stream performance. 594

In the future, we seek to extend our technique 595

to more non-trivial applications such as open gen- 596

eration tasks (E.g. summarization) and semantic 597

parsing. We also posit that smaller fine-tuned mod- 598

els, when calibrated properly, can result in more 599

efficient selection of exemplars to an LLM, as com- 600

pared to poorly calibrated counterparts, in terms 601

of downstream performance. We leave a careful 602

and systematic investigation into this hypothesis 603

for future work. 604
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7 Limitations605

We show all our results and ablations on the recent606

state-of-the-art LLMs including GPT4. The infer-607

ence for these LLMs is expensive, and makes the608

model deployment infeasible. Other potential limi-609

tations are extending our method to tasks such as610

fact checking, in which the LLMs suffer from hal-611

lucinations and overprediction issues. The reason612

why we don’t use LLM logits in ILP framework is613

because they are not openly released by OpenAI614

and hence, there becomes a need to rely on smaller615

fine-tuned models - which can potentially lead to616

sub-optimal downstream performance, in case the617

fine-tuned models are poorly calibrated. Another618

serious implication of using LLMs for non-roman619

script languages is unreasonably high fertility (to-620

kens per word split) of the LLM tokenizers, which621

increases the cost as well as strips the input prompt,622

which is not desirable.623

We also could not evaluate our approach on open624

generation tasks such as summarization, since their625

evaluation metrics are not reliable as to obtain a626

fair comparison of various models. Also, human627

evaluation could not be done at scale. That said, we628

note that every task is a generative task for LLM629

and we pose NLI as a short-form generation, while630

the POS and NER tasks as a templated long-form631

generation in current scope of our work.632
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A Implementation and Hyperparameter 871

Details 872

We use Azure OpenAI service 2 for all experi- 873

ments involving GPT-3x and GPT-4x models. For 874

LLama-2-70b, we use the together API 3. We set 875

temperature as 0.0 consistently for all our exper- 876

iments, making our results directly reproducible. 877

The max_tokens (max. no. of generated tokens) 878

parameter is set to 1024 for POS and NER tasks, 879

while 15 for the NLI. For all experiments, the no. 880

of exemplars (M ) is fixed to 8 for uniform com- 881

parison. For ILP solver, we use Python’s gurobipy 882
4 package. The run-time for ILP per test query = 883

0.05 seconds, while that of pure similarity-based 884

retrieval = 0.006 seconds. 885

A.1 Translation-based baselines 886

We explain both translate-train and translate-test 887

methods as follows - 888

• Translate-train: Following (Le et al., 2024), 889

we employ Codec method to generate train- 890

ing data in target language X, Xtrain, using 891

MRL labeled data. We perform stage 1 using 892

following ways - 893

1. fine-tune a model on Xtrain, and infer 894

on Xtest 895

2. perform ICL using exemplars from 896

Xtrain for each test query in Xtest 897

• Following (Chen et al., 2023b), we utilize 898

Self-fusion using GPT-4, that takes input as 899

target query, it’s English translation and En- 900

glish translation’s annotations, appended as 901

a prompt, and outputs the annotated target 902

query.5 903

A.2 Estimating confidence ŷik 904

For NLI task, the model always predicts a single 905

label: ‘neutral’, ‘contradiction’ or ‘entailment’. We 906

simply apply softmax on the class logits for the pre- 907

dicted label to compute the confidence ŷij (for ith 908

test instance). 909

In sequence labelling tasks, suppose for an in- 910

put sentence having words: {w1, w2, ..., wT }, 911

2https://azure.microsoft.com/en-in/products/ai-
services/openai-service

3https://www.together.ai/
4https://pypi.org/project/gurobipy/
5We also tried Codec for translate-test, but could not repro-

duce the results reported in their paper for African languages
(replicated avg. F1 = 60.5 v/s reported avg. F1 = 72).
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the model predicts labels {o1, o2, ..., oT } with912

probabilities {p̂1, p̂2, ..., p̂T }. Let LabelSet be913

{l1, l2, ..., lN}. We compute confidence ŷl for each914

label for a given test example as follows:915

for k ← 1 to N do916

ŷk ← 0 ▷ init each label’s confidence917

ck ← 0 ▷ init each label’s count918

end for919

for i← 1 to T do920

for j ← 1 to N do921

if lj == oi then922

ŷj ← ŷj + p̂i ▷ Update ŷj923

cj ← cj + 1 ▷ increase counter924

end if925

end for926

end for927

for k ← 1 to N do928

ŷk = ŷk/ck ▷ average over all occurrences929

end for930

This outputs the confidence scores ŷl for a given931

example, with those not predicted in a sequence932

having 0 value.933

A.3 Dataset Details934

Family Source languages Source size
Germanic {En,Is,De} 30000
African {En,Am,Sw,Wo} 19788
American {En,Es} 19998

Table 4: Size (No. of sentences) of Combined Source
language datasets (En - English, Is - Icelandic, De -
German, Am - Amharic, Sw - Swahili, Wo - Woloff, Es
- Spanish)

Family Test languages Labels
Germanic {Fo, Got, Gsw} 2370
African {Hau,Ibo,Kin,Lug,Luo} 1100
American {Aym,Gn,Nah} 501

Table 5: Size (No. of labels) of Target language datasets,
per language, on average. (Fo - Faroese, Got - Gothic,
Gsw - Swiss German, Hau - Hausa, Ibo - Igbo, Kin -
Kinyarwanda, Lug - Luganda, Luo - Luo, Aym - Ay-
mara, Gn - Guarani, Nah - Nahuatl)

B Prompt details935

Prompts for the Named Entity Recognition (NER)936

and Part of Speech Tagging (POS) tasks are pre-937

sented in the tab separated format shown in B.0.2938

and B.0.3 respectively.939

Prompts for Natural Language Inference (NLI) 940

initially used the framework in Ahuja et al. (2023) 941

. To improve our performance, we changed the 942

prompt to use Sclar et al. (2023)’s framework, 943

where the authors performed an exhaustive search 944

over tokens used for a prompt in order to find the 945

prompt with optimal performance. This increased 946

Macro F1 score by atleast 10% across all the tested 947

languages. We use the same prompt across all mod- 948

els used in our experiments. 949

B.0.1 Natural Language Inference (NLI) 950

Task Description: You are an NLP assistant whose 951

purpose is to solve Natural Language Inference 952

(NLI) problems. NLI is the task of determining 953

the inference relation between two (short, ordered) 954

texts: entailment, contradiction, or neutral. Answer 955

as concisely as possible in the same format as the 956

examples below: 957

Input format: 958

Premise: {premise} , Hypothesis: {hypothesis} , 959

Output format: 960

Answer: {output} 961

Verbalizer: 962

match the one-word response from the model (neu- 963

tral, contradiction or entailment) 964

B.0.2 Named Entity Recognition (NER) 965

Task Description: Tag the following sentence ac- 966

cording to the BIO scheme for the NER task, using 967

the tags PER (person), LOC (location), ORG (or- 968

ganization) and DATE (date). Follow the format 969

specified in the examples below: 970

Input format: 971

Sentence: w1 w2 ... wT 972

Output format: 973

Tags: 974

w1<TAB>o1 975

w2<TAB>o2 976

... 977

wT<TAB>oT 978

Verbalizer: 979

Extract the sequence of labels o1, o2, ...o3 from 980

generated response. 981

B.0.3 Part of Speech (PoS) tagging 982

Task Description: Tag the following sentence ac- 983

cording to the Part of Speech (POS) of each word. 984

The valid tags are ADJ, ADP, ADV, AUX, CCONJ, 985

DET, INTJ, NOUN, NUM, PART, PRON, PROPN, 986

PUNCT, SCONJ, SYM, VERB, X. Follow the for- 987

mat specified in the examples below: 988

12



Input format:989

Sentence: w1 w2 ... wT990

Output format:991

Tags:992

w1<TAB>o1993

w2<TAB>o2994

...995

wT<TAB>oT996

Verbalizer:997

Extract the sequence of labels o1, o2, ...o3 from998

generated response.999

B.1 Verbalizer details for Tagging tasks1000

The verbalizer for tagging tasks requires the LLM1001

to output the words as well as the associated labels.1002

The LLM’s output may not be perfect, as it may1003

fail to generate all words or associate a label with1004

each word. As a result, we find the Longest Com-1005

mon Subsequence between the words generated by1006

the LLM and the words of the example. This is1007

done using Dynamic Programming, as described in1008

(Bergroth et al., 2000).1009

Once we have found the longest common subse-1010

quence, we assign the corresponding tags generated1011

by the LLM to these words. If the tags are invalid,1012

we assign a default tag (O for NER, and X for POS).1013

Finally, for the words which don’t have any tags1014

associated with them, we assign the same default1015

tag as before.1016

It is to be noted that in most cases, the sentence1017

generated by the LLM perfectly matches the origi-1018

nal sentence. For GPT-4, less than 1% of the words1019

fell into the category of having an invalid tag gen-1020

erated, or not having the word generated.1021

B.2 Error Analysis1022

We investigate scenarios where SSP approach1023

systematically fails compared to other methods.1024

For NER, we find that ZGUL (fine-tuned LM)1025

underpredicts the ‘DATE’ label. As a result,1026

SSP almost never samples this label in stage 21027

exemplars, hence hurting the performance for1028

this label. For NLI task, we observe that in1029

order to ensure label coverage, SSP samples the1030

underpredicted label ‘neutral’ but while doing1031

so, also ends up hurting the performance for1032

‘contradiction’ label (as seen in last plot of Figure1033

3).1034

1035

B.3 Prompts for GSW Examples 1036

The base SSP-SIM prompts for the GSW examples 1037

highlighted in Figure 5 are given below. Labels 1038

which are misclassified in the in-context exemplars 1039

are coloured in red, and the AUX labels which are 1040

to be flipped in the ablations are coloured in blue. 1041

It is interesting to note that examples 1 and 2 are 1042

similar, as example 1 is retrieved as an in-context 1043

exemplar for example 2. 1044

B.3.1 Example 1 1045

Tag the following sentence according to the Part 1046

of Speech (POS) of each word. The valid tags 1047

are ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ, 1048

NOUN, NUM, PART, PRON, PROPN, PUNCT, 1049

SCONJ, SYM, VERB, X. Follow the format 1050

specified in the examples below: 1051

Sentence: I main , das Ganze letscht Wuchä isch 1052

mier scho ächli iigfaarä . 1053

Tags: 1054

“‘ 1055

I PRON 1056

main VERB 1057

, PUNCT 1058

das DET 1059

Ganze NOUN 1060

letscht ADJ 1061

Wuchä NOUN 1062

isch AUX 1063

mier PRON 1064

scho ADV 1065

ächli ADV 1066

iigfaarä VERB 1067

. PUNCT 1068

“‘ 1069

Sentence: Du gsehsch uus , wi wenn de nöime no 1070

hättisch z trinken übercho . 1071

Tags: 1072

“‘ 1073

Du PRON 1074

gsehsch VERB 1075

uus PRON 1076

, PUNCT 1077

wi SCONJ 1078

wenn SCONJ 1079

de DET 1080

nöime ADJ 1081

no ADV 1082

hättisch AUX 1083

z PART 1084

trinken VERB 1085

übercho VERB 1086

13



Ds Gueten isch immerhin gsi , dass i ungerdesse söfu müed bi gsi , dass i ändlech ha chönne go schlofe .

CLT-SIM DET NOUN AUX ADV VERB PUNCT SCONJ PRON ADV VERB ADJ ADP VERB PUNCT SCONJ PRON ADV AUX AUX VERB VERB PUNCT

SSP-CLT-SIM DET NOUN AUX ADV AUX PUNCT SCONJ PRON ADV ADV ADJ ADP AUX PUNCT SCONJ PRON ADV AUX AUX PART VERB PUNCT

SSP-CLT-SIM
(Half AUX->VERB)

DET NOUN AUX ADV AUX PUNCT SCONJ PRON ADV ADV ADJ ADP AUX PUNCT SCONJ PRON ADV AUX AUX PART VERB PUNCT

SSP-CLT-SIM
(All AUX->VERB)

DET NOUN VERB ADV VERB PUNCT SCONJ PRON ADV ADV ADJ ADP VERB PUNCT SCONJ PRON ADV AUX AUX VERB VERB PUNCT

Gold DET NOUN AUX ADV AUX PUNCT SCONJ PRON ADV ADV ADJ AUX AUX PUNCT SCONJ PRON ADV AUX AUX PART VERB PUNCT

I cha der ihri Telefonnummere gä , de nimmsch mou unverbindlech Kontakt uuf .

CLT-SIM PRON VERB DET ADJ NOUN VERB PUNCT PRON VERB ADV ADJ NOUN VERB PUNCT

SSP-CLT-SIM PRON AUX PRON PRON NOUN VERB PUNCT PRON VERB ADV ADJ NOUN ADP PUNCT

SSP-CLT-SIM
(Half AUX->VERB)

PRON AUX PRON PRON NOUN VERB PUNCT PRON VERB ADV ADJ NOUN ADP PUNCT

SSP-CLT-SIM
(All AUX->VERB)

PRON VERB PRON PRON NOUN VERB PUNCT DET VERB ADV ADJ NOUN ADP PUNCT

Gold PRON AUX PRON DET NOUN VERB PUNCT ADV VERB ADV ADJ NOUN PART PUNCT

Figure 5: Label flips for CLT-SIM and SSP-SIM, for POS tagging in Swiss-German (gsw). Incorrect labels are
marked in red. SSP-SIM ablations include flipping half/all of the AUX labels in the prompt to VERB labels. Gold
labels are given for reference.

. PUNCT1087

“‘1088

Sentence: Dir weit mer doch nid verzöue , di1089

Wäutsche heige vo eim Tag uf en anger ufghört1090

Chuttlen ässe .1091

Tags:1092

“‘1093

Dir PRON1094

weit VERB1095

mer PRON1096

doch ADV1097

nid ADV1098

verzöue VERB1099

, PUNCT1100

di DET1101

Wäutsche NOUN1102

heige VERB1103

vo ADP1104

eim DET1105

Tag NOUN1106

uf ADP1107

en DET1108

anger ADJ1109

ufghört VERB1110

Chuttlen NOUN1111

ässe VERB1112

. PUNCT1113

“‘1114

Sentence: es isch nämli echt usgstorbe gsi .1115

Tags:1116

“‘1117

es PRON1118

isch AUX1119

nämli ADV1120

echt ADJ1121

usgstorbe VERB1122

gsi AUX1123

. PUNCT 1124

“‘ 1125

Sentence: Aso bini rächt uufgschmissä gsi und 1126

dem entschprächend fascht verzwiiflät . 1127

Tags: 1128

“‘ 1129

Aso ADV 1130

bini AUX 1131

rächt ADV 1132

uufgschmissä VERB 1133

gsi AUX 1134

und CCONJ 1135

dem PRON 1136

entschprächend ADJ 1137

fascht ADV 1138

verzwiiflät VERB 1139

. PUNCT 1140

“‘ 1141

Sentence: Der Ääschme wett nöd schaffe biin em . 1142

Tags: 1143

“‘ 1144

Der DET 1145

Ääschme NOUN 1146

wett AUX 1147

nöd ADV 1148

schaffe VERB 1149

biin ADP 1150

em PRON 1151

. PUNCT 1152

“‘ 1153

Sentence: Zerscht hends am Dani gsait , är söli 1154

dòch Hoochdütsch redä , das gängi denn grad gaar 1155

nöd , wenn är so redi , wiäner redi . 1156

Tags: 1157

“‘ 1158

Zerscht ADV 1159

hends PRON 1160

14



am ADP1161

Dani PROPN1162

gsait VERB1163

, PUNCT1164

är PRON1165

söli AUX1166

dòch ADV1167

Hoochdütsch ADJ1168

redä VERB1169

, PUNCT1170

das PRON1171

gängi VERB1172

denn ADV1173

grad ADV1174

gaar ADV1175

nöd ADV1176

, PUNCT1177

wenn SCONJ1178

är PRON1179

so ADV1180

redi VERB1181

, PUNCT1182

wiäner PRON1183

redi VERB1184

. PUNCT1185

“‘1186

Sentence: Isch das e Sach gsi , bis mer se gfunge1187

hei gha .1188

Tags:1189

“‘1190

Isch AUX1191

das PRON1192

e DET1193

Sach NOUN1194

gsi AUX1195

, PUNCT1196

bis SCONJ1197

mer PRON1198

se PRON1199

gfunge VERB1200

hei AUX1201

gha VERB1202

. PUNCT1203

“‘1204

Sentence: Ds Gueten isch immerhin gsi , dass i1205

ungerdesse söfu müed bi gsi , dass i ändlech ha1206

chönne go schlofe .1207

Tags:1208

“‘1209

1210

B.3.2 Example 2 1211

Tag the following sentence according to the Part 1212

of Speech (POS) of each word. The valid tags 1213

are ADJ, ADP, ADV, AUX, CCONJ, DET, INTJ, 1214

NOUN, NUM, PART, PRON, PROPN, PUNCT, 1215

SCONJ, SYM, VERB, X. Follow the format 1216

specified in the examples below: 1217

Sentence: I ha ar Marie-Claire gseit , es sig mer 1218

chli schlächt und i mög jetz nümm liire . 1219

Tags: 1220

“‘ 1221

I PRON 1222

ha AUX 1223

ar PART 1224

Marie-Claire PROPN 1225

gseit VERB 1226

, PUNCT 1227

es PRON 1228

sig AUX 1229

mer PRON 1230

chli ADV 1231

schlächt ADJ 1232

und CCONJ 1233

i PRON 1234

mög VERB 1235

jetz ADV 1236

nümm ADV 1237

liire VERB 1238

. PUNCT 1239

“‘ 1240

Sentence: De Spanier hed de Kontakt vermettlet , 1241

d Rumäne sölled d Holländer ombrocht ha . 1242

Tags: 1243

“‘ 1244

De DET 1245

Spanier NOUN 1246

hed AUX 1247

de DET 1248

Kontakt NOUN 1249

vermettlet VERB 1250

, PUNCT 1251

d DET 1252

Rumäne NOUN 1253

sölled AUX 1254

d DET 1255

Holländer PROPN 1256

ombrocht VERB 1257

ha AUX 1258

. PUNCT 1259

“‘ 1260

Sentence: Ds Gueten isch immerhin gsi , dass i 1261
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ungerdesse söfu müed bi gsi , dass i ändlech ha1262

chönne go schlofe .1263

Tags:1264

“‘1265

Ds DET1266

Gueten NOUN1267

isch AUX1268

immerhin ADV1269

gsi VERB1270

, PUNCT1271

dass SCONJ1272

i PRON1273

ungerdesse ADV1274

söfu VERB1275

müed ADJ1276

bi ADP1277

gsi VERB1278

, PUNCT1279

dass SCONJ1280

i PRON1281

ändlech ADV1282

ha AUX1283

chönne AUX1284

go VERB1285

schlofe VERB1286

. PUNCT1287

“‘1288

Sentence: Isch das e Sach gsi , bis mer se gfunge1289

hei gha .1290

Tags:1291

“‘1292

Isch AUX1293

das PRON1294

e DET1295

Sach NOUN1296

gsi AUX1297

, PUNCT1298

bis SCONJ1299

mer PRON1300

se PRON1301

gfunge VERB1302

hei AUX1303

gha VERB1304

. PUNCT1305

“‘1306

Sentence: De Dialäkt muess zu de Gschecht und1307

zum Inhaut vonere Werbig passe .1308

Tags:1309

“‘1310

De DET1311

Dialäkt NOUN1312

muess AUX1313

zu ADP 1314

de DET 1315

Gschecht NOUN 1316

und CCONJ 1317

zum ADP 1318

Inhaut NOUN 1319

vonere ADP 1320

Werbig NOUN 1321

passe VERB 1322

. PUNCT 1323

“‘ 1324

Sentence: Mit der Zit hani mi mit mir säuber uf ei 1325

Schriibwiis pro Wort aafo einige . 1326

Tags: 1327

“‘ 1328

Mit ADP 1329

der DET 1330

Zit NOUN 1331

hani VERB 1332

mi PRON 1333

mit ADP 1334

mir PRON 1335

säuber ADJ 1336

uf ADP 1337

ei DET 1338

Schriibwiis NOUN 1339

pro ADP 1340

Wort NOUN 1341

aafo VERB 1342

einige DET 1343

. PUNCT 1344

“‘ 1345

Sentence: Mit all denä Wörter hani natürli nüt 1346

chönä aafangä . 1347

Tags: 1348

“‘ 1349

Mit ADP 1350

all DET 1351

denä DET 1352

Wörter NOUN 1353

hani PRON 1354

natürli ADV 1355

nüt ADV 1356

chönä VERB 1357

aafangä VERB 1358

. PUNCT 1359

“‘ 1360

Sentence: Aso bini rächt uufgschmissä gsi und 1361

dem entschprächend fascht verzwiiflät . 1362

Tags: 1363

“‘ 1364

Aso ADV 1365
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bini AUX1366

rächt ADV1367

uufgschmissä VERB1368

gsi AUX1369

und CCONJ1370

dem PRON1371

entschprächend ADJ1372

fascht ADV1373

verzwiiflät VERB1374

. PUNCT1375

“‘1376

Sentence: I cha der ihri Telefonnummere gä , de1377

nimmsch mou unverbindlech Kontakt uuf .1378

Tags:1379

“‘1380

1381

C Source and Target Languages for each1382

task1383

Code Language
En English
Am Amharic
Sw Swahili
Wo Wolof
Hau Hausa
Ibo Igbo
Kin Kinyarwanda
Lug Luganda
Luo Luo
Is Icelandic
De German
Fo Faroese
Got Gothic
Gsw Swiss German
Nds Low-Saxon
Es Spanish
Aym Aymara
Gn Guarani
Nah Nahuatl

Table 6: Languages and their codes

D NLI Label coverage Analysis1384

We present an example of correct prediction made1385

by SSP as compared to the version that doesn’t en-1386

sure label coverage in Figure 6 (English translation1387

in Fig. 7).1388

Model Neu. Ent. Con. Overall
DeBertaCL 24.3 72.7 38.7 45.2
SSP-V2 57.8 46.5 51.5 52
(w/o Label) 35.3 43.8 68.5 49.2

Table 7: Labelwise Recall for fine-tuned model
(DeBerta-based) and ILP variants w. and w/o Label
coverage (GPT-4-Turbo)

E Qualitative Analysis: SSP-SIM 1389

We present the analysis for the gains obtained via 1390

SSP-SIM for Germanic POS in Figure 8. The con- 1391

fusion matrix difference between SSP-SIM and 1392

CLT-SIM suggests that the model misclassifies aux- 1393

iliary verbs as verbs in CLT-SIM, and this is cor- 1394

rected in SSP-SIM. These errors are a consequence 1395

of the labels on the in-context exemplars the model 1396

receives, and not the tokens of the language itself. 1397

We highlight this via the two Swiss-German POS 1398

examples in Figure 5. The misclassified verbs are 1399

corrected by SSP-SIM, and these labels are again 1400

misclassified when more than half of the labels in 1401

the in-context exemplars are corrupted. 1402

F Data Contamination Analysis 1403

Following Ahuja et al. 2023, we conduct contami- 1404

nation tests on test datasets for our target languages. 1405

We perform the following tests: 1406

• Dataset Card filling: Generate dataset card 1407

(supported languages, dataset description, #in- 1408

stances in each split, etc.) 1409

• Completion: Given a few words, complete the 1410

sentence and their labels, and 1411

• Generation using first few instances: Given 1412

first K instances (K=5) in the dataset, generate 1413

next few instances following them. 1414

We observe negligible contamination as depicted 1415

in table 8. The 40% accuracy for Quechua was 1416

a result of all the labels passed for the exemplars 1417

being entailment labels. As a result, the model 1418

repeated the same label for all the other examples, 1419

giving a 40% accuracy. Following these results, to 1420

prevent any chance of contamination, we remove 1421

Quechua from our evaluation dataset. 1422

17



Figure 6: Correct case of ‘Neutral’ detected by ILP (left), while ‘w/o label’ variant misses it (right). We note that
exact one ‘neutral’ class has been sampled by ILP, while no ‘neutral’ is sampled in ‘w/o label’ version.

Figure 7: English translations of Exemplars shown in Fig. 6
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Predicted

A
D
J

A
D
P

A
D
V

A
U
X

C
C
O
N
J

D
ET

N
O
U
N

PR
O
N

PR
O
PN

PU
N
C
T

VE
R
B

X

G
ol
d

ADJ -2 0 0 0 0 2 -5 4 0 0 1 1

ADP -2 6 -3 0 0 0 0 -3 0 0 -1 4

ADV -5 -3 28 0 1 -6 -1 -5 0 0 -6 -4

AUX 0 -1 -2 17 0 0 0 -1 -1 0 -13 1

CCONJ 0 -4 -1 0 7 0 1 -3 0 0 -1 0

DET 1 1 -4 0 0 9 0 -3 -4 0 0 0

NOUN 2 0 0 -1 0 -2 7 -3 0 0 -3 1

PRON -3 -3 -5 -1 0 2 -3 24 -4 0 -4 -2

PROPN 0 0 0 0 0 0 -2 0 -1 0 0 3

PUNCT 0 0 0 0 0 0 0 0 0 -2 0 -1

VERB 0 -1 0 4 0 -1 -15 0 0 0 15 -2

X 0 0 0 0 0 0 0 0 -1 -1 0 1

Figure 8: Difference in confusion matrices between similarity-based SSP Stage 1 and Stage 2 for the POS task,
summed across all languages (tags with less than 100 instances have been omitted). The increase in correct tags is
visible along the diagonal, and misclassifications between VERB and AUX tags / NOUN and VERB tags have also
improved.

Task Card Filling Completion Few-Shot Generation

NER
Didn’t predict correct

languages; no split sizes
generated

No match found NA

POS
predicted 33 languages,

but doesn’t contain any of
our target languages

No match found NA

NLI
predicts 3 languages, of
which only one matches
with our target language
(Quechua); wrong test

split size

Refuses to generate for 3
out of 4 target languages,
except for Quechua - for

which it predicts 100% of
the tokens wrong and only
40% labels correctly (out

of 10 instances)

Repeats the premise of
last instance, copies the

premise string to
hypothesis as well (No

match detected)

Table 8: Results of Contamination Study
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