
Under review as a conference paper at ICLR 2024

AUGMENTED POLICY OPTIMIZATION FOR SAFE REIN-
FORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Safe reinforcement learning (RL) holds a critical role in acquiring policies that
conform to explicit constraints, ensuring their suitability for safety-critical appli-
cations. However, methods rooted in the primal-dual concept demonstrate inher-
ent instability. Meanwhile, owing to policy initialization and algorithmic approx-
imation errors, prior methods relying on trust region invariably produce infeasi-
ble policies during training, rendering the constructed local optimization problem
insoluble. In this paper, we present the Augmented Constraint Policy Optimiza-
tion (ACPO) algorithm, which encompasses a novel approach to constructing lo-
cal policy search problems and an optimization problem decomposition method.
Specifically, this method introduces an approach for optimizing local policy search
that guarantees a solution without relying on hypothetical premises. Utilizing the
Alternating Direction Method of Multipliers (ADMM) algorithm as a foundation,
we partition the original optimization problem into simpler subproblems that can
be efficiently and robustly solved using first-order methods. Comprehensive ex-
perimental evaluations have conclusively demonstrated that our proposed method
consistently outperforms the baselines in terms of both performance and constraint
satisfaction.

1 INTRODUCTION

The combination of deep learning (LeCun et al., 2015) and reinforcement learning (RL) (Sutton
& Barto, 2018) has ushered in a new era of breakthroughs in diverse domains such as playing
Atari games (Mnih et al., 2013; Van Hasselt et al., 2016), Go (Silver et al., 2016; 2017), StarCraft
(Team, 2019), robotics (Schulman et al., 2015; 2017; Haarnoja et al., 2018; Singh et al., 2022)
and recommendations (Afsar et al., 2022). Nevertheless, the exploration nature of conventional RL
methods has hindered their seamless application to real-world challenges (Amodei et al., 2016).
This limitation becomes apparent when addressing critical concerns, like safeguarding robots from
damage and ensuring human safety during their practical deployment. As a result, the emerging
research avenue of safe RL has gained prominence, driven by the pragmatic necessities of our times.

One prevailing approach for addressing such concerns is the adoption of Constrained Markov Deci-
sion Processes (CMDP) (Altman, 1999) to model problems, thereby transmuting security considera-
tions into actionable policy set constraints. This extension introduces a challenge: the agents’ ability
to freely explore their surroundings is curtailed, posing a more formidable learning task than tradi-
tional RL. Over the past few years, a plethora of solutions have been proposed. Rooted in the primal-
dual method, Tessler et al. (2018) exploited Lagrangian functions to recast constrained conundrums
into unconstrained optimization objectives. These frameworks leverage classical RL methodologies
to unearth optimal policy. While computationally efficient and conceptually straightforward, they
suffer from convergence oscillations and instability issues.

In contrast, methods like Yang et al. (2020) and Yang et al. (2022), which hinged on projection tech-
niques, mitigated the security aspects by embedding projection steps to confine policy within feasi-
ble regions. However, their tendency towards overly conservative policies can impede the resolution
of practical problems. Building on the foundations of Trust Region Policy Optimization (TRPO)
(Schulman et al., 2015), algorithms such as Constrained Policy Optimization (CPO) (Achiam et al.,
2017) and First Order Constrained Optimization in Policy Space (FOCOPS) (Zhang et al., 2020)
retained the advantages of optimization stability and high-performance outcomes. However, it is

1

Under review as a conference paper at ICLR 2024

Direction of
higher rewards

Feasible region

𝜋

Trust region

(a) Intersection scenario

Direction of
higher rewards

𝜋

Feasible region

Trust region

(b) Non-intersection scenario

Figure 1: Constrained local policy search

crucial to note that the optimization problem constructed by this method is solvable only when an
intersection exists between the trust and the feasible region, as illustrated in Figure 1(a). Conversely,
when no such intersection is present, as depicted in Figure 1(b), the constructed optimization prob-
lem lacks a feasible solution. Nevertheless, issues like policy initialization and approximation errors,
as observed in these methods such as CPO and FOCOPS, present significant challenges that often
lead to encountering infeasible optimization problems during training composition. Confronted with
this unavoidable scenario, optimizing the policy becomes essentially meaningless.

In this paper, we propose the Augmented Constraint Policy Optimization (ACPO) algorithm at-
tempts to answer the following question: What is the proper form of local policy search op-
timization problem for Safe RL? ACPO introduces a construction method for a more broadly
applicable and robust local policy search problem. Specifically, ACPO introduces a novel approach
that relaxes the constraints of local policy search, ingeniously extending the feasible region when
misalignment with the trust region occurs, as illustrated in Figure 1(b). This guarantees the existence
of an optimal solution for the locally defined optimization problem, obviating the need for stringent
initialization requirements. Additionally, exact penalty functions (Han & Mangasarian, 1979) are
employed to penalize relaxation, thereby ensuring the preservation of the optimal solution’s invari-
ance. Furthermore, we employ the Alternating Direction Method of Multipliers (ADMM) (Boyd
et al., 2011) algorithm to decompose the optimization problem into multiple unconstrained opti-
mization subproblems. These subproblems alternate and can be efficiently solved using only one
step of gradient information.

In summary, this paper makes several significant contributions:

1. ACPO Algorithm: We introduce the ACPO algorithm, which features a novel approach
to constructing local policy search problems. This approach leverages exact penalty func-
tions to relax constraints, ensuring the solvability of optimization problems. Additionally,
we propose an optimization problem decomposition method that breaks down complex
constrained optimization problems into unconstrained optimization problems, drawing in-
spiration from the ADMM algorithm concept.

2. Theoretical Insights: We establish the equivalence between ACPO’s local policy search
construction method and the classical approach, while also offering an upper bound on the
cost return during training. Furthermore, we’ve conducted an analysis of the properties of
the algorithm’s stable solution.

3. Superior Performance: Extensive experimentation validates ACPO’s exceptional perfor-
mance, surpassing several state-of-the-art algorithms in terms of reward improvement and
constraint satisfaction while maintaining stable convergence.

2 RELATED WORK AND PRELIMINARY

2.1 RELATED WORK

The primal-dual approach stands as a widely employed method in solving constrained optimization
problems. This approach has given rise to influential algorithms (Chow et al., 2017; Tessler et al.,
2018). These algorithms tackle constrained optimization by translating them into unconstrained
counterparts through Lagrangian functions. By manipulating the Lagrange multiplier, they ensure
the constraints are satisfied. Yet, the primal-dual methods are susceptible to variations in Lagrange

2

Under review as a conference paper at ICLR 2024

multipliers, rendering optimization unstable. To address this concern, Stooke et al. (2020) drew
inspiration from control mechanisms and devised CPPOPID. This method uses a PID controller
(Willis, 1999) to update Lagrange multipliers resulting in it converging quickly and stably. Notably,
conventional dual methods necessitate separate Lagrange multiplier learning and cannot guarantee
constraint satisfaction throughout training.

Apart from the primal-dual paradigm, the projection approach finds prevalence in constrained opti-
mization. Yang et al. (2020; 2022) bifurcated optimization into two phases. Firstly, it exclusively
refined the objective function within the trust region, securing the optimal policy. Subsequently,
this optimal policy underwent projection into the feasible region. However, the policies derived
from such methodologies often display excessive conservatism, not aligning with practical utility.
Yang et al. (2021) counteracted this by integrating a baseline policy with outstanding pre-training
performance. This policy improvement involves projecting it closer to the baseline policy to ensure
performance standards. One drawback of this approach is its sensitivity to the performance of the
baseline algorithm, which can impact overall algorithm performance.

In parallel to the aforementioned intricate methodologies, the penalty function method emerges as
a straightforward yet effective optimization technique. By directly crafting a penalty function, a
minute value prevails within the feasible region while swiftly surging toward infinity as the edge of
the region approaches. This category includes notable algorithms such as Interior-point Policy Opti-
mization (IPO) (Liu et al., 2020) employing a logarithmic penalty function, and Penalized Proximal
Policy Optimization (P3O) (Zhang et al., 2022) incorporating exact penalty functions. However,
the challenge lies in delineating the penalty coefficient magnitude and narrowing the gap with the
optimal solution.

Beyond the traditional optimization models outlined earlier, the local policy search approach further
extends the unconstrained RL method into constrained optimization (Pirotta et al., 2013; Schulman
et al., 2015). CPO (Achiam et al., 2017) ingeniously involved upper and lower bounds from TRPO
to transform the primary problem into a local policy search problem. Subsequently, the second-
order approximation problem is iteratively solved to secure the policy. While CPO exhibits robust
convergence in practical scenarios, the computational costs are substantial due to the information
matrix calculations. FOCOPS (Zhang et al., 2020) introduced enhancements over CPO by attaining
the approximate optimal solution from the original problem, substantially curtailing computational
overhead. It’s important to note that this method primarily focuses on analyzing the intersection
between feasible region and trust region.

While both our work and the FOCOPS fall under the category of local policy search algorithms,
ACPO distinguishes itself by introducing a globally convergent policy optimization approach.
ACPO innovatively leverages exact penalty functions to formulate equivalent constrained optimiza-
tion problems and employs the ADMM (Boyd et al., 2011) algorithm to partition them into multiple
unconstrained optimization subproblems, enhancing the overall optimization process. Moreover, we
establish a theoretical upper bound for constraint violation when the sampling policy fails to meet
the constraints.

2.2 PRELIMINARY

A CMDP (Altman, 1999) is formally defined as a tuple M = (S,A,P, r, C, γ, ρ0), where S is the
state space , A is the action space, P(s′|s, a) : S × S × A → [0, 1] is the transition probability
function which represents the probability of state transition from s to s′ after applying action a, r :
S×A → R is the reward function, C = {(ck, bk)}Kk=1is the constraint set (where ck : S×A → R is
the k-th cost function, and bk is the k-th limits), γ ∈ (0, 1) is the discount factor, and ρ0 : S → [0, 1]
is the initial state distribution.

In the context of CMDP, a policy π is a probability distribution defined on S × A, where π(a|s)
denotes the probability of selecting action a at state s. Π denotes the set encompassing all possible
policies. Additionally, a stationary parameterized policy πθ is a probability distribution defined on
S×A, with πθ(a|s) denotes the probability of playing a at state s, and Πθ = {πθ : θ ∈ Rp} denotes
the set of all parameterized policies. Let ds0π (s) = (1 − γ)

∑∞
t=0 γ

tP(st = s|s0) be the stationary
state distribution of the Markov chain starting at state s0. We define dρ0

π (s) = Es0∼ρ0 [d
s0
π (s)] as the

discounted state visitation distribution on initial distribution ρ0.

3

Under review as a conference paper at ICLR 2024

We define τ = {st, at, r(st, at), ck(st, at)}∞t=0 ∼ π as the trajectory distribution generated by π,
where s0 ∼ ρ0, at ∼ π(·|st) and st+1 ∼ P(·|st, at). We express the state value function of the
reward as Vπ(s) := Eτ∼π[

∑∞
t=0 γ

tr(st, at)|s0 = s], the state-action value function of the reward
as Qπ(s, a) := Eτ∼π[

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a] and the advantage function of the reward is
Aπ(s, a) := Qπ(s, a) − Vπ(s). Similarly, we can define the state value function of the k-th cost as
V ck
π (s) := Eτ∼π[

∑∞
t=0 γ

tck(st, at)|s0 = s], define the state-action value function of the cost k as
Qck

π (s, a) := Eτ∼π[
∑∞

t=0 γ
tck(st, at)|s0 = s, a0 = a] and define the advantage function of the cost

k asAck
π (s, a) := Qck

π (s, a)−V ck
π (s). The expected discount k-th cost return is defined as Jk(π) :=

Es∼ρ0 [V
ck
π (s)] and the expected discount reward return is defined as J(π) := Es∼ρ0 [Vπ(s)]. The

feasible policy set ΠC is defined as: ΠC :=
⋂K

k=1{Jk(π) ≤ bk}. The goal of safe RL is to search
the optimal policy π∗ = arg max

π∈ΠC
J(π).

Solving the CMDP problem directly is challenging and inefficient. Typically, we iteratively up-
date the policy using a fixed policy to gather samples for constructing local optimization prob-
lems. Hence, during the i-th iteration, we expect to utilize the current policy πi to construct
a local optimization problem, resulting in the updated policy πi+1. Prior research (Peters &
Schaal, 2008; Schulman et al., 2015) had demonstrated that the inclusion of local trust domain
constraints during the construction of local optimization problems can lead to enhanced efficiency
and improved performance. Based on the above work, the CPO algorithm implemented a strin-
gent constraint ϵ on the Kullback-Leibler (KL) divergence and proposed substituting the original
reward and cost return functions with approximate surrogate functions to form a local optimiza-
tion problem. For simplicity, let Lπi

r (π) := −(1 − γ)−1Es∼d
ρ0
πi ,a∼π[Aπi(s, a)] and Lπi

ck
(π) :=

Jk(π
i) + (1 − γ)−1Es∼d

ρ0
πi ,a∼π[A

ck
πi(s, a)] − bk. By incorporating relaxation variables vector

ξi = (ξi1, . . . , ξ
i
K)T , the CPO algorithm updates policy as follows:

min
π∈Π,ξi

Lπi

r (π) (1a)

s.t. Lπi

ck
(π) + ξik = 0, k = 1, . . . ,K (1b)

DKL(π||πi) ≤ ϵ (1c)

ξik ≥ 0, k = 1, . . . ,K (1d)

where DKL(π||πi) := Es∼d
ρ0
πi
[DKL(π||πi)[s]].

Definition 1. (Slater’s condition) There exists a feasible policy π within the trust region of the old
policy πi : DKL(π||πi) ≤ ϵ.
However, in contrast to the Markov Decision Process (MDP) (Sutton & Barto, 2018), introducing the
KL divergence (Pollard, 2000) hard constraint can lead to potential issues in the CMDP optimization
process. Specifically, the feasible regions of (1b), (1c) and (1d) may not intersect, as illustrated in
Figure 1. If the updated policy πi violates Slater’s condition, the optimization problem (1) becomes
infeasible.

3 METHOD

3.1 FORMULATION OF THE RELAXATION PROBLEM

In this section, we focus on the construction of a novel local policy search optimization problem,
aiming to achieve a more tractable formulation while retaining the fundamental essence of the orig-
inal problem.

Upon analyzing the problem (1), it becomes evident that when the current policy fails to meet Slater’s
condition, the constraint limits we impose are overly stringent. There is no feasible policy that
satisfies the constraint within the KL divergence trust region, resulting in no feasible solution for the
problem (1). Therefore, by relaxing the original problem and permitting ξ to assume small negative
values, we can always find a feasible solution for the relaxed problem, as illustrated in Figure 1(b).
This holds true regardless of whether the provided policy πi adheres to Slater’s condition or not.
In light of this, we incorporate the exact penalty function method (Han & Mangasarian, 1979), a

4

Under review as a conference paper at ICLR 2024

penalty function method that does not change the optimal solution, into the problem (1) and rewrite
it as follows:

min
π∈Π,ξi

Lπi

r (π) + σg(ξi) (2a)

s.t. Lπi

ck
(π) + ξik = 0, k = 1, . . . ,K (2b)

DKL(π||πi) ≤ ϵ (2c)

where σ is positive penalty parameter and g(ξi) =
∑

k=1 max{0,−ξik} is exact penalty function.
Subsequently, we derive a policy iteration algorithm (Algorithm 1) based on this local policy search
optimization problem.

Theorem 1. Assuming υ is the optimal Lagrange multipliers to the constraints (1d) of problem
(1). Provided that the penalty factor σ is a sufficiently large constant (σ ≥ ||υ||∞), problems (1)
and (2) yield the same optimal solution.

Proof. See Appendix A.1.

Theorem 1 establishes the equivalence of the optimal solutions between the relaxed problem (1) and
the penalty problem (2). This equivalence holds under the assumption that policy π exists within the
trust region of the old policy πi, satisfying DKL(π||πi) ≤ ϵ. The chosen penalty factor σ ensures
that both problems converge to the same optimal solution, preserving the integrity and consistency of
the optimization process. Furthermore, regardless of whether the current policy πi satisfies Slater’s
condition or not, we can establish an upper bound on the k-th constraint’s return for policy πi+1:

Proposition 1. Suppose πi+1, ξi,∗ are the optimal solution of problem (2), the upper bound on the
k-th cost of πi+1 is

Jk(π
i+1) ≤ bk +

√
2ϵγδckπi+1

(1− γ)2
− ξi,∗k (3)

where δckπi+1 = max|Ea∈πi+1 [Ack
πi(s, a)]|, ξi,∗k ∈ R.

Proof. See Appendix A.2.

Algorithm 1 Local search policy iteration algorithm
Input: Policy π0, Penalty parameter σ.

for i = 0, 1, . . . until convergence do
Collect a set of trajectories D with policy πi.
Compute all advantage values Aπi(s, a), . . . , AcK

πi (s, a).
Construct and solve problem (2) for πi+1, ξi,∗.

end for
Output: π∗, ξ∗.

Theorem 2. With a sufficiently large penalty coefficient σ, the relaxation variable ξ∗ in the stable
solution produced by Algorithm 1 is guaranteed to be non-negative, and the worst-case constraint
violation for the k-th constraint in its stable policy π∗ is:

Jk(π
∗) ≤ bk +

√
2ϵγδckπ∗

(1− γ)2
(4)

Proof. See Appendix A.3.

Theorem 2 investigates the attributes of the algorithm’s stable solution. Building on the findings
of Theorem 1 and Proposition 1, which analyzes the properties of the solution to the problem (2),
Theorem 2 offers further insights into the stable solution generated by Algorithm 1, based on the
conclusions drawn earlier. Specifically, Theorem 2 establishes that the relaxation variable ξ∗ in the
stable solution is consistently non-negative, and the most significant constraint violation in its stable
policy aligns with that of the CPO algorithm.

5

Under review as a conference paper at ICLR 2024

3.2 FINDING THE OPTIMAL UPDATE POLICY

The optimization problem (2) involves numerous variables and intricate constraints, posing signifi-
cant optimization challenges. The ADMM algorithm, rooted in primal-dual augmented Lagrangian
problem, offers a decomposition approach that simplifies complex optimization problems into mul-
tiple easily solvable subproblems. Employing this method, we break down the original optimization
problem into three simpler subproblems. Below, we formulate the original dual augmented La-
grangian problem as follows, with its construction principles detailed in Appendix B.1:

max
ηi≥0,λi

min
π∈Π,ξi

L(π,λi, ηi, ξi;σ, ρ) (5)

L(π,λi, ηi, ξi;σ, ρ) = Lπi

r (π) + ηi(DKL(π||πi)− ϵ) + σg(ξi)

+

K∑
k=1

λik(Lπi

ck
(π) + ξik) +

K∑
k=1

ρ

2
||Lπi

ck
(π) + ξik||2 (6)

where ρ is the proximal factor, λi = (λi1, . . . , λ
i
K)T and ηi are Lagrange multipliers.

For the sake of conciseness, let us introduce the notation f i(π) := Lπi

r (π) +
max
η≥0

η(DKL(π||πi)− ϵ). Then, we can process by applying the ADMM (Boyd et al., 2011) al-

gorithm to solve the reformulated problem efficiently, see Appendix B.2 for the ADMM algorithm
details. Then we proceed with the following steps in the j-th iteration.

• Obtain an optimal policy based on the prior estimation λi,j and ξi,j by solving the follow-
ing optimization problem:

πi,j+1 = argmin
π∈Π

f i(π) +
ρ

2

K∑
k=1

||Lπi

ck
(π) + ξi,jk +

λi,jk
ρ
||22, (7a)

• Update ξ by:

ξi,j+1 = argmin
ξ
σg(ξ) +

ρ

2

K∑
k=1

||Lπi

ck
(πi,j+1) + ξk +

λi,jk
ρ
||22, (7b)

• Update λ by:

λi,j+1
k = λi,jk + ρ(Lπi

ck
(πi,j+1) + ξi,j+1

k), k = 1, . . . ,K. (7c)

Lemma 1. The policy sequence {πi,j}∞j=0 generated by (7a-7c) converges to πi,∗. Here, πi,∗

represents the optimal solutions of problem (1).

Proof. See Appendix A.4.

Lemma 1 establishes the convergence of the policy sequence {πi,j}∞j=0 generated by the specified
iterative scheme (7a-7c). The sequence converges to the optimal solution πi,∗ of the problem (1),
thereby ensuring the attainment of the best feasible policy. The iterative process guarantees that
the algorithm progressively approaches the optimal solution as the number of iterations increases,
ultimately achieving convergence to the desired policy.

Theorem 3. Given the prior estimation λi,j and ξi,j , the optimal policy πi,j+1 for problem (7a)
takes the form:

πi,j+1(a|s) = πi(a|s)
Z(s)

exp
{Aπi(s, a)−

∑K
k=1[λ

i,j
k + ρ(Lπi

ck
(π) + ξi,jk)]Ack

πi(s, a)

ηi,j+1(1− γ)

}
(8)

where Z(s) serves as a constant normalizer that ensures π belongs to the policy set Π and the dual
variables ηi,j+1 represent the solutions to the following convex optimization problem:

6

Under review as a conference paper at ICLR 2024

ηi,j+1 = max
η≥0

L(πi,j+1,λi,j , η, ξi,j ;σ, ρ) (9)

Proof. See Appendix A.5.

Through observing the results of Theorem 3, we discover that solving the problem (7a) optimally
is akin to addressing an unconstrained problem by maximizing a weighted average of the reward
and cost. We identify the constraint coefficient as a composition of error accumulation terms λi,jk ,
error terms ρ(Lπi

ck
(πi) + ξi,jk), and differential terms ρ(Lπi

ck
(π)−Lπi

ck
(πi)). This insight reveals that

our algorithm implicitly incorporates a PID controller for learning Lagrange multipliers, enhancing
learning stability.

3.3 PRACTICAL IMPLEMENTATION

While solving the problem (7a), allowing π to reside within the policy space Π may result in a policy
that does not necessarily belong to the parameterized policy space Πθ. Consequently, evaluating or
sampling from π may no longer be feasible. To address this issue, we replace the policy π with the
parameterized policy πθ.

To bolster computational efficiency and simplify complexity, our proposed algorithm in this paper
embraces a first-order approach. Specifically, we utilize the Proximal Policy Optimization (PPO)
Algorithm (Schulman et al., 2017) to optimize the policy, incorporating a line search approach and
advantage function clipping to ensure adherence to the KL divergence constraint. For a comprehen-
sive understanding of the ACPO algorithm, please refer to Algorithm 2. Detailed descriptions can
be found in Appendix D. The loss function of the ACPO algorithm is expressed as follows:

Loss(θ) = − 1

1−γ
Es∼d

ρ0
π
θi

,a∼πθi
[min{ri(θ)Aπθi (s,a), clip(r

i(θ), 1−ε, 1+ε)Aπθi (s,a)}]

+
ρ

2

K∑
k=1

|| 1

1−γ
max{ri(θ)Aπθi (s,a), clip(r

i(θ), 1−ε, 1+ε)Aπθi (s,a)}+ξ
i,j
k +

λi,jk
ρ
||22 (10)

where ri(θ) = πθ(a|s)
πθi (a|s) is the importance sampling ratio.

Algorithm 2 ACPO Outline
Input: Policy network πθ0 , Value networks Vϕ0 , V c1

ϕ0
1
, . . . , V cK

ϕ0
K

.
while stopping criteria not meet do

Generate trajectories τ ∼ πθi .
Estimate returns and advantage functions.
for each iteration do

for each minibatch do
Update value networks by minimizing MSE of Vϕ, V

target
ϕ , . . . , V cK

ϕK
, V cK ,target

ϕK
.

Update policy network minimizing problem (10).
end for
if DKL(πθ||πθi) > ϵ then

Break
end if
Update ξi by minimizing problem (7b).
Update λi using equation (7c).

end for
end while

4 EXPERIMENTS

4.1 TASKS

Safety-gymnasium (Ji et al., 2023) integrated and developed a Gym environment by amalgamating
environments like Bullet-safety-gym (Gronauer, 2022) and MuJoCo (Todorov et al., 2012), thereby

7

Under review as a conference paper at ICLR 2024

offering a comprehensive set of RL tasks focused on safety and security. We have crafted three
unique experimental scenarios, each featuring varying levels of difficulty coefficients. Further details
about these experiments are outlined in Appendix C, and you can access the code on our GitHub
repository: https://github.com/SDsly/ACPO.

Safe Velocity This task imposes a safety constraint on the agent’s speed in Mujoco, capping it at
50% of the agent’s speed after one million steps of optimization using PPO algorithms. We employ
four distinct agents, each with its own configuration: SafetyAnt, SafetyHalfCheetah, SafetyHopper
and SafetyHumanoid. See Appendix C.1 for more details.

Safe Navigation Safe navigation tasks demand agents to interact with the environment, achieving
specific goals while maintaining their own safety and avoiding damage to other objects in the envi-
ronment. In this study, we define two motion modes: Circle and Goal and employ Point and Car
agents to complete tasks in these respective modes, labeled PointCircle, CarCircle, PointGoal, and
CarGoal. See Appendix C.2 for more details.

4.2 RESULTS

Baseline Algorithms To assess the efficacy of our proposed feasible region relaxation method in
enhancing the performance of local policy search algorithms, we conducted experiments using CPO
(Achiam et al., 2017) and FOCOPS (Zhang et al., 2020) as our baseline algorithms. Furthermore, to
evaluate the impact of optimization stability achieved through the ADMM algorithm, we introduced
CPPOPID (Stooke et al., 2020) to our baseline. Additionally, to investigate the distinction between
directly employing penalty functions for constraint handling, we included the P3O (Zhang et al.,
2022) algorithm as another baseline in our comparative analysis.

Comparison to baselines Figures 3 and 2 illustrate that, in the majority of tasks, ACPO outper-
forms other baseline algorithms in terms of rewards while adhering to cost constraints. Moreover,
ACPO exhibits smoother convergence in its training curves and lower variance. Notably, in the
SafetySwimmer task, although the average reward performance of ACPO is slightly lower than CP-
POPID, it is imperative to highlight that CPPOPID’s training curves exhibit extreme variance and
heavy reliance on initialization.

Figure 2: Training curves in Safe Velocity. The rewards and costs are obtained from 10 million
interaction steps, with dashed black lines indicating the target cost value set at 25.

In comparison to closely related local policy search methods like CPO and FOCOPS, FOCOPS
demonstrates unstable convergence, coupled with significant early-phase cost fluctuations and
higher variance in tasks such as Goal. Conversely, CPO exhibits stable convergence and strong
constraint satisfaction performance, but it occasionally exhibits suboptimal reward performance in
certain tasks and necessitates second-order information, incurring substantial computational over-
head. Despite both ACPO and P3O employing exact penalty functions for constraint violations, P3O
consistently lags behind other algorithms in terms of reward performance, especially in tasks like
Goal. In a comprehensive assessment, ACPO stands out for its simplicity of implementation, stable

8

Under review as a conference paper at ICLR 2024

convergence, and superior performance. However, it’s important to note that ACPO does exhibit
slower convergence in cost for complex problems, particularly in the Goal environment.

Figure 3: Training curves for safety navigation. The X-axis represents the number of samples used,
while the Y-axis represents the average total reward or cost return over the last 100 episodes. Dashed
black lines indicate the target cost value set at 25.

Generalization Analysis To assess the algorithm’s performance, we followed the methodology
outlined by Mnih et al. (2015). We initially trained our model using a fixed random seed and subse-
quently conducted 100 trials using 10 different random seeds for testing. The performance of each
algorithm in these trials is summarized in Tables 1. Notably, ACPO consistently demonstrates the
ability to satisfy constraints across the majority of environments and, with the exception of the Goal
environment, achieves optimal performance.

Table 1: Performance evaluation
Environment CPO FOCOPS CPPOPID P3O ACPO

PointCircle
Reward 92.03± 7.67 94.19± 5.22 94.60± 2.09 56.06± 1.70 94.18± 2.58

Cost(<25) 15.02± 59.23 84.12± 93.12 46.91± 34.26 0.97± 6.20 13.70± 23.15

CarCircle
Reward 37.32± 1.76 37.87± 2.65 35.58± 1.40 37.32± 1.76 34.59± 1.69

Cost(<25) 64.67± 51.10 92.09± 54.28 35.03± 35.16 64.67± 51.10 16.11± 31.04

PointGoal
Reward 19.98± 4.21 16.72± 9.07 9.44± 5.74 0.82± 2.52 20.51± 4.86

Cost(<25) 26.45± 26.08 29.28± 42.61 28.62± 52.08 27.94± 95.18 30.71± 30.37

CarGoal
Reward 23.60± 7.54 19.76± 9.12 12.15± 6.93 −0.10± 1.90 21.95± 6.42

Cost(<25) 30.33± 31.96 30.83± 42.16 24.62± 36.53 15.74± 49.27 31.36± 31.40

SafetyAnt
Reward 3030.91± 197.32 3035.05± 514.98 3270.54± 297.76 2790.09± 29.87 3294.34± 16.37

Cost(<25) 14.32± 5.72 13.87± 6.18 29.97± 23.19 7.14± 4.39 18.64± 7.64

SafetyHalfCheetah
Reward 1844.11± 19.27 2957.40± 19.14 3002.13± 145.33 1898.66± 21.45 3005.01± 5.51

Cost(<25) 20.96± 5.79 0.50± 0.77 2.18± 1.92 27.83± 6.88 5.14± 2.22

SafetySwimmer
Reward 39.49± 1.48 44.63± 0.95 41.26± 2.87 21.13± 11.61 74.81± 1.32

Cost(<25) 26.67± 1.48 25.19± 1.59 23.16± 7.29 42.92± 45.81 23.03± 1.94

SafetyHumanoid
Reward 6388.03± 5.64 6549.05± 7.38 6605.81± 8.53 6355.88± 15.53 6657.39± 4.11

Cost(<25) 0.16± 0.31 20.44± 19.76 36.50± 50.27 285.78± 63.10 19.60± 21.56

5 DISCUSSION

In this work, we introduce a novel method for constructing constrained local policy search problems
without the need for initial solutions. Building upon this method, we present ACPO, a security RL
algorithm that is characterized by its simplicity, computational efficiency, and effectiveness. We
are confident that our proposed method holds substantial potential and can deliver enhanced perfor-
mance through refinements in policy optimization. Furthermore, our algorithm possesses decompo-
sition characteristics, making it well-suited for expansion into the realm of multi-agent systems and
the resolution of increasingly complex challenges.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International conference on machine learning, pp. 22–31. PMLR, 2017.

M Mehdi Afsar, Trafford Crump, and Behrouz Far. Reinforcement learning based recommender
systems: A survey. ACM Computing Surveys, 55(7):1–38, 2022.

Eitan Altman. Constrained Markov decision processes, volume 7. CRC press, 1999.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Con-
crete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers. Foundations and
Trends® in Machine learning, 3(1):1–122, 2011.

Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained re-
inforcement learning with percentile risk criteria. The Journal of Machine Learning Research, 18
(1):6070–6120, 2017.

Sven Gronauer. Bullet-safety-gym: A framework for constrained reinforcement learning. 2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

S P Han and Olvi L Mangasarian. Exact penalty functions in nonlinear programming. Mathematical
programming, 17:251–269, 1979.

Jiaming Ji, Borong Zhang, Xuehai Pan, Jiayi Zhou, Weidong Huang, Juntao Dai, and Yaodong Yang.
Safety-gymnasium. GitHub repository, 2023.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Yongshuai Liu, Jiaxin Ding, and Xin Liu. Ipo: Interior-point policy optimization under constraints.
In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 4940–4947, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients. Neural
networks, 21(4):682–697, 2008.

Matteo Pirotta, Marcello Restelli, Alessio Pecorino, and Daniele Calandriello. Safe policy iteration.
In International Conference on Machine Learning, pp. 307–315. PMLR, 2013.

David Pollard. Asymptopia: an exposition of statistical asymptotic theory. In Asymptopia: an
exposition of statistical asymp-totic theory, 2000.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

10

Under review as a conference paper at ICLR 2024

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Bharat Singh, Rajesh Kumar, and Vinay Pratap Singh. Reinforcement learning in robotic applica-
tions: a comprehensive survey. Artificial Intelligence Review, pp. 1–46, 2022.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning
by pid lagrangian methods. In International Conference on Machine Learning, pp. 9133–9143.
PMLR, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

AlphaStar Team. Alphastar: Mastering the real-time strategy game starcraft ii. DeepMind blog, 24,
2019.

Chen Tessler, Daniel J Mankowitz, and Shie Mannor. Reward constrained policy optimization. arXiv
preprint arXiv:1805.11074, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

MJ Willis. Proportional-integral-derivative control. Dept. of Chemical and Process Engineering
University of Newcastle, 6, 1999.

Long Yang, Jiaming Ji, Juntao Dai, Yu Zhang, Pengfei Li, and Gang Pan. Cup: A conservative
update policy algorithm for safe reinforcement learning. arXiv preprint arXiv:2202.07565, 2022.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based
constrained policy optimization. arXiv preprint arXiv:2010.03152, 2020.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Accelerating safe
reinforcement learning with constraint-mismatched baseline policies. In International Conference
on Machine Learning, pp. 11795–11807. PMLR, 2021.

Linrui Zhang, Li Shen, Long Yang, Shixiang Chen, Bo Yuan, Xueqian Wang, and Dacheng
Tao. Penalized proximal policy optimization for safe reinforcement learning. arXiv preprint
arXiv:2205.11814, 2022.

Yiming Zhang, Quan Vuong, and Keith Ross. First order constrained optimization in policy space.
Advances in Neural Information Processing Systems, 33:15338–15349, 2020.

11

Under review as a conference paper at ICLR 2024

A PROOFS

A.1 PROOF OF THEOREM 1

Lemma 2. Let π̂ and ξ̂ represent the optimal solution of problem (1), and let υ be the optimal
Lagrange multipliers for constraints (1d). When the penalty factor σ is chosen as a sufficiently large
constant (σ ≥ ||υ||∞), policy π̂ also qualifies as an optimal solution for problem (2).

Proof. Given any policy π and relaxation variables ξ that satisfy the constraint conditions of problem
(2), it follows that:

Lπi

r (π) + σg(ξ) = Lπi

r (π) + σ

K∑
k=1

max{0,−ξk} (11)

≥ Lπi

r (π) +

K∑
k=1

µkmax{0,−ξk} (12)

≥ Lπi

r (π) +

K∑
k=1

−µkξk (13)

≥ Lπi

r (π) +

K∑
k=1

λk(Lπi

ck
(π)− ξk) +

K∑
k=1

−µkξk + η(DKL(π||πi)− ϵ) (14)

≥ Lπi

r (π̂) +

K∑
k=1

λk(Lπi

ck
(π̂)− ξ̂k) +

K∑
k=1

−µk ξ̂k + η(DKL(π̂||πi)− ϵ) (15)

≥ Lπi

r (π̂) +

K∑
k=1

−µk ξ̂k (16)

= Lπi

r (π̂) +

K∑
k=1

µkmax{0,−ξ̂k} (17)

= Lπi

r (π̂) + σ

K∑
k=1

max{0,−ξ̂k} (18)

= Lπi

r (π̂) + σg(ξ̂) (19)

Under the condition σ ≥ ||υ||∞, equation (12) is verified to be true. Moreover, the fulfillment of
constraints (2b) and (2c) by policy π and relaxation variables ξ ensures the validity of equation (14).
Equation (15) holds since π̂ and ξ̂ minimize the Lagrange function. Additionally, equation (18) is
derived from the complementary slackness condition.

By considering equations (11) to (19), we can conclude that π̂ is a minimizer of the problem (2).
The proof of Lemma 2 is thereby completed.

Lemma 3. Given π̃ and ξ̃ represent the optimal solution for problem (2), and let µ be the optimal
Lagrange multipliers for constraints (1d). Assuming that the penalty factor σ is sufficiently large
(σ ≥ ||υ||∞), policy π̃ is also an optimal solution for problem (1).

Proof. Given any policy π and relaxation variables ξ that satisfy the constraint conditions of problem
(1), it follows that:

12

Under review as a conference paper at ICLR 2024

Lπi

r (π̃) (20)

≤ Lπi

r (π̃) + σ

K∑
k=1

max{0,−ξ̃k} (21)

≤ Lπi

r (π) + σ

K∑
k=1

max{0,−ξk} (22)

= Lπi

r (π) (23)

Equation (22) holds true since both policy π̃ and relaxation variables ξ̃ minimize the objective func-
tion.

Theorem 1. Assuming υ is the optimal Lagrange multipliers to the constraints (1d) of problem
(1). Provided that the penalty factor σ is a sufficiently large constant (σ ≥ ||υ||∞), problems (1)
and (2) yield the same optimal solution.

Proof. Based on the results of Lemma 2 and Lemma 3, Theorem 1 is proven, demonstrating the
equivalence of optimal solutions between problems (1) and (2) when the specified conditions are
met.

A.2 PROOF OF PROPOSITION 1

Lemma 4. For any policies π′ , π, and any cost function ck, with δck
π′ = max|Ea∈π′ [Ack

π (s, a)]|,
the following bounds hold:

Jk(π
′)− Jk(π) ≤

1

1− γ
Es∼d

ρ0
π ,a∼π′

[
Ack

π (s, a) +
2γδck

π′

1− γ
DTV (π

′||π)[s]
]

(24a)

≤ 1

1− γ
Es∼d

ρ0
π ,a∼π′

[
Ack

π (s, a)
]
+

2γδck
π′

(1− γ)2

√
1

2
Es∼d

ρ0
π ,a∼π′ [DKL(π′||π)[s]]

(24b)

≤ 1

1− γ
Es∼d

ρ0
π ,a∼π′

[
Ack

π (s, a)
]
+

√
2ϵγδck

π′

(1− γ)2
(24c)

Proof. The derivation of (24a) is achieved by applying Corollary 2 of Achiam et al. (2017), while
(24b) is obtained through Corollary 3.

Proposition 1. Suppose πi+1, ξi,∗ is the optimal solution of problem (2), the upper bound on the
k-th return of πi+1 is:

Jk(π
i+1) ≤ bk +

√
2ϵγδckπi+1

(1− γ)2
− ξi,∗k (25)

where δckπi+1 = max|Ea∈πi+1 [Ack
πi(s, a)]|.

Proof. Let’s begin by considering the policy definitions πi+1 and ξi,∗:

Jk(π
i) +

1

1− γ
Es∼d

ρ0
πi ,a∼πi+1 [A

ck
πi(s, a)] + ξi,∗k = bk (26)

Substituting equation (26) into inequality (24c) results in:

Jk(π
k+1)+

1

1− γ
Es∼d

ρ0
πi ,a∼πi+1 [A

ck
πi(s, a)]−bk+ξi,∗k ≤

1

1− γ
Es∼d

ρ0
π ,a∼πi+1

[
Ack

πi(s, a)
]
+

√
2ϵγδckπi+1

(1− γ)2
(27)

Jk(π
i+1) ≤ bk +

√
2ϵγδckπi+1

(1− γ)2
− ξi,∗k (28)

This concludes the proof.

13

Under review as a conference paper at ICLR 2024

A.3 PROOF OF THEOREM 2

We define the policy set Ππi

(ξ), the domain Ξπi

and the function lπ
i

(ξ) as:

Ππi

(ξ) := {π|Lπi

ck
(π) + ξik = 0, DKL(π||πi)− ϵ ≤ 0} (29)

Ξπi

:= {ξ|ξ = Lπi

(π), π such that DKL(π||πi)− ϵ ≤ 0} (30)

lπ
i

(ξ) = inf
π∈Π(ξ)

Lπi

r (π) (31)

where Lπi

(π) = (Lπi

c1 (π), . . . ,L
πi

cK (π))T .

Lemma 5. lπ
i

(ξ) is a convex function, the domain of ξ is Ξπi

.

Proof. To prove that Ξπi

is a convex set, we begin by considering two arbitrary points in Ξπi

,
denoted as µ and ν, satisfying the following conditions:

µ = Lπi

(πµ) (32)

DKL(π
µ||πi) ≤ ϵ (33)

ν = Lπi

(πν) (34)

DKL(π
ν ||πi) ≤ ϵ (35)

Now, for any scalar ψ ∈ [0, 1], we consider the convex combination of µ and ν. Leveraging the
linearity property of the function Lπi

, we obtain:

ψµ+ (1− ψ)ν = ψLπi

(πµ) + (1− ψ)Lπi

(πν) (36)

= Lπi

(ψπµ + (1− ψ)πν) (37)

By the convexity of KL divergence, we can write:

DKL(ψπ
µ + (1− ψ)πν ||πi) ≤ ψDKL(π

µ||πi) + (1− ψ)DKL(π
ν ||πi) (38)

≤ ψϵ+ (1− ψ)ϵ (39)
≤ ϵ (40)

This inequality shows that the convex combination of ψµ+ (1−ψ)ν belongs to Ξπi

. According to
the definition of convex sets, we can prove that the feasible domain Ξπi

is a convex set.

Then, we prove that the function lπ
i

(ξ) is a convex function. For any α ∈ [0, 1] and x,y ∈ RK ,
given π1 ∈ Π(x) and π2 ∈ Π(y), there exists απ1 + (1− α)π2 ∈ Π(αx+ (1− α)y).
From the given definitions, we have the following conditions:

Lπi

ck
(π1) + xk = 0 (41)

DKL(π1||πi)− ϵ ≤ 0 (42)

Lπi

ck
(π2) + yk = 0 (43)

DKL(π2||πi)− ϵ ≤ 0 (44)

As the KL divergence function is convex, we can apply the convex combination property:

DKL(απ1 + (1− α)π2||πi)

≤ αDKL(π1||πi) + (1− α)DKL(π2||πi)

≤ ϵ (45)

14

Under review as a conference paper at ICLR 2024

We add (41) that is α times larger and (42) that is (1− α) times larger to obtain:

α(Lπi

ck
(π1) + xk) + (1− α)(Lπi

ck
(π2) + yk) = 0 (46)

αLπi

ck
(π1) + (1− α)Lπi

ck
(π2) + αxk + (1− α)yk = 0 (47)

Lπi

ck
(απ1 + (1− α)π2) + αxk + (1− α)yk = 0 (48)

Thus, we have shown that απ1 + (1− α)π2 ∈ Π(αx+ (1− α)y).

For any β ∈ [0, 1] and x,y ∈ RK , suppose π1 = argmin
π∈Π(x)

Lπi

r (π) and π2 = argmin
π∈Π(y)

Lπi

r (π). Then,

we have:

lπ
i

(βx+ (1− β)y) = inf
π∈Π(βx+(1−β)y)

Lπi

r (π) (49)

≤ Lπi

r (βπ1 + (1− β)π2) (50)

≤ βLπi

r (π1) + (1− β)Lπi

r (π2) (51)

= βlπ
i

(π1) + (1− β)lπ
i

(π2) (52)

(50) holds due to the definition of the operator inf , (51) follows from the Jensen’s inequality, and
(52) is true based on the definition of the policies π1 and π2. This proves that lπ

i

(ξ) is a convex
function.

Theorem 2. With a sufficiently large penalty coefficient σ, the relaxation variable ξ∗ in the stable
solution produced by Algorithm 1 is guaranteed to be non-negative, and the worst-case constraint
violation for the k-th constraint in its stable policy π∗ is:

Jk(π
∗) ≤ bk +

√
2ϵγδckπ∗

(1− γ)2
(53)

Proof. Assuming that the optimization process converges to a stable solution after the z-th iteration,
we can deduce that πz and ξz,∗ represent the optimal solutions for the following problems:

min
π∈Π,ξz

Lπz

r (π) + σzg(ξz) (54)

s.t. Lπz

ck
(π) + ξzk = 0, k = 1, . . . ,K (55)

DKL(π||πz) ≤ ϵ (56)

Then, we can rewrite the above problem as:

min
ξ∈Ξπz

lπ
z

(ξ) + σzg(ξ) (57)

As function Lπz

ck
(π) is linear, it is evident that the extreme value of Lπz

ck
(π) must reside on the

boundary of the feasible region. Hence, ξz,∗ must fall within the domain Ξπz

. Then, leveraging the
Karush-Kuhn-Tucker (KKT) conditions, we can derive the following insights:

∇lπ
z

(ξz,∗) + σz∇g(ξz,∗) = 0 (58)

By definition, we know that:

∇g(ξ)[k] =

{
0, ξk > 0

[−1, 0], ξk = 0
−1, ξk < 0

(59)

Then, if we give a new penalty parameter σ̂ > σz and we can get:

∇lπ
z

(ξz,∗) + σ̂∇g(ξz,∗) ≤ 0 (60)

15

Under review as a conference paper at ICLR 2024

The inequality (60) holds true with an equality sign if and only if ξz,∗ ≥ 0. Since the function lπ
i

is a convex function, it can be known that the second derivative of lπi(ξz,∗) is a positive-definite
matrix, and the gradient is monotonically increased, so the optimal solution ξ̂z,∗ for σ̂:

ξ̂z,∗ ≥ ξz,∗ (61)
Hence, we can draw the conclusion that by introducing a larger penalty coefficient, we can effec-
tively mitigate the extent of policy constraint violations. Building upon the preceding analysis, we
can deduce that there always exists a penalty coefficient, denoted as σ > max{||∇l(ξ)||∞}, ensur-
ing that the stable solution ξ∗ satisfies the condition ξ∗ ≥ 0. From the preceding analysis, it can be
concluded that g(ξ∗) monotonically decreases and converges to 0. Then, employing Proposition 1,
we can derive an upper bound on the k-th cost return:

Jk(π
∗) ≤ bk +

√
2ϵγδckπ∗

(1− γ)2
− ξ∗k (62)

≤ bk +

√
2ϵγδckπ∗

(1− γ)2
(63)

A.4 PROOF OF LEMMA 1

Lemma 1. The policy sequence {πi,j}∞j=0 generated by (7a-7c) converges to πi,∗. Here, πi,∗

represent the optimal solutions of problem (1).

Proof. By leveraging the previously defined notation and incorporating the augmented Lagrangian
primal-dual method with a quadratic proximal operator, we can transform the problem into the
following form:

min
π∈Π,ξ

f i(π) + σg(ξ) (64a)

s.t. Lπi

ck
(π) + ξk = 0, k = 1, . . . ,K (64b)

The first term of the problem f i(π) is the linear function of the π, and the second term is the upper
bound of a convex function (KL divergence is the convex function). The function f i(π) is a closed
convex function since the linear function is a convex function and finding the upper bound is a
convexity operation. By definition, the indication function g(ξ) is also a closed-convex function.
Constraints are linear functions of policy π and relaxation variables ξ. If Slater’s condition holds,
the sequence {πi,j}∞j=0 generated by (7a - 7c) converges to πi,∗ can be proven by Boyd et al. (2011).

A.5 PROOF OF THEOREM 3

Theorem 3. Given the prior estimation λi,j and ξi,j , the optimal policy πi,j+1 for problem (7a)
takes the form:

πi,j+1(a|s) = πi(a|s)
Z(s)

{Aπi(s, a)−
∑K

k=1[λ
i,j
k + ρ(Lπi

ck
(π) + ξi,jk)]Ack

πi(s, a)

ηi,j+1(1− γ)

}
(65)

where Z(s) serves as a constant normalizer that ensures π belongs to the policy set Π and the dual
variables ηi,j+1 represent the solutions to the following convex optimization problem:

ηi,j+1 = max
η≥0

L(πi,j+1,λi,j , η, ξi,j ;σ, ρ) (66)

Proof. In order to ensure that the obtained policy πi+1 belongs to the policy space Π, here we add
the policy space constraint:

πi,j+1 = argmin
π

f i(π) +
ρ

2

K∑
k=1

||Lπi

ck
(π) + ξi,jk +

λi,jk
ρ
||22

s.t.
∑
a∈A

π(a|s) = 1, ∀s ∈ S (67)

16

Under review as a conference paper at ICLR 2024

The Lagrangian function can be written as follows:

F(π,λi,j , η, ξi,j) = −(1− γ)−1Es∼d
ρ0
π
θi

,a∼π[Aπθi (s, a)] + η(DKL(π||πθi)− ϵ)

+
ρ

2

K∑
k=1

||Lπi

ck
(π) + ξi,jk +

λi,jk
ρ
||22 +

∑
s∈S

κs

(
1−

∑
a∈A

π(a|s)
)

(68)

Take the derivative of Lagrangian function w.r.t π(a|s):

∂F
∂π(a|s)

= −(1− γ)−1Aπθi (s, a) + η + η log
π(a|s)
πi(a|s)

+ κs

+ ρ(1− γ)−1
K∑

k=1

(Lπi

ck
(π) + ξi,jk +

λi,jk
ρ

)Ack
πi(s, a) (69)

According to the KKT condition, the optimal policy is obtained if and only if equation 69 equals
zero, and we have the form of the optimal policy:

πj+1(a|s) =

πi(a|s)exp{− ηi,j+1 + κs
ηi,j+1(1− γ)

}exp
{Aπi(s, a)−

∑K
k=1[λ

i,j
k + ρ(Lπi

ck
(π) + ξi,jk)]Ack

πi(s, a)

ηi,j+1(1− γ)

}
(70)

where exp{− ηi,j+1+κs

ηi,j+1(1−γ)} is a normalizer of policy πj+1 to ensure that it is in the policy set Π.

Take the optimal policy πj+1 back to the augmented Lagrangian function
L(πi,j+1,λi,j , η, ξi,j ;σ, ρ), we can obtain optimal dual variables that can be calculated by

ηi,j+1 = max
η≥0

L(πi,j+1,λi,j , η, ξi,j ;σ, ρ) (71)

B OPTIMIZATION FUNDAMENTALS

B.1 AUGMENTED LAGRANGIAN

This chapter will introduce some basic knowledge of augmented Lagrangian, mainly considering
the following general constraint problems:

min
x

y(x) (72a)

s.t. hi(x) = 0, i = 1, . . . ,m (72b)

The Lagrangian function form of problem (72) can be expressed as:

min
x

max
λ

y(x) +

m∑
i=1

λihi(x) (73)

It is evident that unless hi(x) = 0, the Lagrange multiplier λi will tend toward infinity. The op-
timization of Lagrangian functions becomes particularly challenging due to the inherent lack of
smoothness in the maximization operation. The augmented Lagrangian is a method that orches-
trates the optimization process to be smoother without altering the optimal solution. The core con-
cept involves incorporating a prior estimate of the Lagrange multipliers and introducing a proximal
penalty term to enhance the problem’s smoothness. Assuming the existence of a prior estimate λ
for the Lagrangian multiplier, problem (72) can be modified as follows:

min
x

{
max
λ

y(x) +

m∑
i=1

λihi(x)−
1

2ρ
||λ− λ||2

}
(74)

17

Under review as a conference paper at ICLR 2024

In this way, we transform the maximization problem into a quadratic optimization problem, and
using Newton’s method to optimize, we can obtain update formula of λ as:

λi = λi + ρhi(x) (75)

Substituting equation (75) into problem (74) results in:

min
x
y(x) +

m∑
i=1

λihi(x) +
ρ

2

m∑
i=1

||hi(x)||2 (76)

In this way, we obtain the augmented Lagrangian function for the problem (74):

L(x,λ; ρ) := y(x) +

m∑
i=1

λihi(x) +
ρ

2

m∑
i=1

||hi(x)||2 (77)

B.2 ADMM ALGORITHM

In this chapter, we present a fundamental understanding of the Alternating Direction Method of
Multipliers (ADMM) algorithm. We will focus on its application to general constraint problems of
the form:

min
x,z

y(x) + k(z) (78a)

s.t. Ax+Bz = d (78b)

This optimization problem involves two variables, x and z, and a linear equality constraint involving
matrices A and B, and vectors d.

To tackle the problem, we introduce the augmented Lagrangian function:

L(x, z,λ; ρ) := y(x) + k(z) + λT (Ax+Bz − d) + ρ

2
||(Ax+Bz − d)||2 (79)

Here, λ is the Lagrange multiplier, and ρ is a positive scalar parameter.

The ADMM algorithm iteratively updates the optimization variables x, z, and the Lagrange multi-
plier λ. The updates are as follows:

xk+1 = argmin
x

L(x, zk,λk; ρ) (80)

zk+1 = argmin
z

L(xk+1, z,λk; ρ) (81)

λk+1 = λk + ρ(Axk+1 +Bzk+1 − d) (82)

The algorithm iteratively refines the solutions for x and z while updating the Lagrange multiplier λ
to enforce the constraint.

In addition to the standard ADMM form mentioned above, a more concise variant, known as Scaled
Form ADMM, has been developed. This variant involves modifications that can lead to more effi-
cient convergence. Specifically, the optimization approach for Scaled Form ADMM involves:

xk+1 = argmin
x

y(x) +
ρ

2
||Ax+Bzk − d+

λk

ρ
||2 (83)

zk+1 = argmin
z

k(z) +
ρ

2
||Axk+1 +Bz − d+

λk

ρ
||2 (84)

18

Under review as a conference paper at ICLR 2024

λk+1 = λk + ρ(Axk+1 +Bzk+1 − d) (85)

To demonstrate the equivalence relationship between optimization problem (80) and problem (83),
we provide the following analysis:

xk+1 = argmin
x

L(x, zk,λk; ρ) (86)

= argmin
x

y(x) + k(zk) + (λk)T (Ax+Bzk − d) + ρ

2
||(Ax+Bzk − d)||2 (87)

= argmin
x

y(x) +
ρ

2
||λ

k

ρ
||2

+ (λk)T (Ax+Bzk − d) + ρ

2
||(Ax+Bzk − d)||2 − ρ

2
||λ

k

ρ
||2 (88)

= argmin
x

y(x) +
ρ

2
||Ax+Bzk − d+

λk

ρ
||2 (89)

Similar methodologies can lead to:

zk+1 = argmin
z

k(z) +
ρ

2
||Axk+1 +Bz − d+

λk

ρ
||2 (90)

C EXPERIMENT ENVIRONMENTS

C.1 SAFE VELOCITY

Velocity tasks are a significant category of real-world applications, where agents must maximize
their speed while adhering to velocity constraints. In this task, a safety constraint is imposed on the
agent’s speed in Mujoco. We utilize four unique agents, each with its own configuration: SafetyAnt,
SafetyHalfCheetah, SafetySwimmer and SafetyHumanoid as illustrated in Figure 4. The reward
function Rt comprises three components, though certain agents may disregard some of them:

• rhealthy: Every timestep that the agent is healthy, it gets a reward of fixed value rhealthy.
• rforward: A reward of moving forward which is measured as (xt−xt−1)/dt. dt is the time

step. xt is the x-coordinate after action and xt−1 is the x-coordinate before action. This
reward would be positive if the ant moves forward (in the positive x direction).

• rctrl: A negative reward for penalizing the ant if it takes actions that are too large. It is
measured as wctrl ·

∑
action2 where wctrl is a parameter set for the control and has a

default value of 0.5.

The total reward returned is Rt = rhealthy + rforward − rctrl. And the cost function Ct can be
formulated as follows:

Ct = I(Vcurrent > Vthrehold)

where Vcurrent represents the current speed of the agent and Vthrehold is the threshold speed, which
is set to a maximum of 50% of the agent’s speed after one million steps of optimization using PPO
algorithms. For more comprehensive information on the environment and agent settings, please
refer to: https://www.safety-gymnasium.com/en/latest/environments/safe velocity.html

C.2 SAFE NAVIGATION

C.2.1 CIRCLE TASK

In the Circletask, the agent’s goal is to navigate a circular area while optimizing speed and main-
taining distance from the center to receive rewards. However, venturing into unsafe zones results in
penalties. We utilize two agent types, referred to as the Point and Car agents, as depicted in Figure
5. The task environment is illustrated in Figure 6(a). The observation is a vector that comprises

19

https://www.safety-gymnasium.com/en/latest/environments/safe_velocity.html

Under review as a conference paper at ICLR 2024

(a) Ant (b) HalfCheetah (c) Humanoid (d) Swimmer

Figure 4: Agent in safe velocity

information about the agent’s current state and pseudo LIDAR points. The reward function Rt and
cost function Ct are defined as follows:

Rt =
1

1 + |rtaget − rcircle|
∗ −(uy + vx)

ragent

Ct = I(|x| > xlimit)

where u and v represent the velocity components of the agent along the x and y axes, while x
and y denote the agent’s coordinates in the x and y axes. ragent represents the Euclidean dis-
tance of the agent from the origin, and rcircle corresponds to the radius of the circle geome-
try. I() represents the indicator function and xlimit is the safety margin. For more compre-
hensive information on the environment and agent settings, please refer to: https://www.safety-
gymnasium.com/en/latest/environments/safe navigation/circle.html

(a) Point front (b) Point flank (c) Car front (d) Car flank

Figure 5: Agent in safe navigation

C.2.2 GOAL TASK

In Goal task, the agent is tasked with reaching a series of goal positions. Upon reaching a goal, the
goal location is randomly reset to a new position, while maintaining the same environment layout.
The sparse reward component is earned when the robot successfully reaches a goal position (enters
the goal circle), while the dense reward component provides a bonus for making progress toward
the goal. Observation is the same as the Circletask environment. The task environment is illustrated
in Figure 6(b). The reward function Rt and cost function Ct are defined as follows:

Rt = (Dlast −Dnow)β +RgoalI(Dnow < Dthrehold)

Ct = Ctouch max{Sagent −Dhazard}
Dlast represents the distance between the agent and the target point at the previous time step, Dnow

represents the distance between the robot and the target point at the current time step. β is the dis-
count factor, and Rgoal is a positive value that represents the reward for completing a goal when it
is reached. Dthreshold is the threshold for judgment, Sagent is the size of the agent, Dhazard is the
distance between the agent and a hazard and Ctouch is the penalty per unit time . For more com-
prehensive information on the environment and agent settings, please refer to: https://www.safety-
gymnasium.com/en/latest/environments/safe navigation/goal.html

20

https://www.safety-gymnasium.com/en/latest/environments/safe_navigation/circle.html
https://www.safety-gymnasium.com/en/latest/environments/safe_navigation/circle.html
https://www.safety-gymnasium.com/en/latest/environments/safe_navigation/goal.html
https://www.safety-gymnasium.com/en/latest/environments/safe_navigation/goal.html

Under review as a conference paper at ICLR 2024

(a) Circle task (b) Goal task

Figure 6: Safe navigation

D ALGORITHM DETAILS

Upon observation, we identified that the variables ξi,j+1,∗ in the optimization problems described
above can be effectively decoupled. Consequently, we can derive the optimal value of ξi,j+1,∗

k by
solving the following optimization problem:

min
ξk

{
σmax{0,−ξk}+

ρ

2
||Lπi

ck
(πi,j+1) + ξk +

λi,jk
ρ
||22

}
(91)

If we make the assumption that ξi,j+1,∗
k > 0, we can establish the condition for it to satisfy a gradient

of 0 as follows:

ρ(Lπi

ck
(πi,j+1) + ξi,j+1,∗

k +
λi,jk
ρ

) = 0 (92)

ξi,j+1,∗
k = −Lπi

ck
(πi,j+1)−

λi,jk
ρ

(93)

If we make the assumption that ξi,j+1,∗
k ≤ 0, we can establish the condition for it to satisfy:

−σ + ρ(Lπi

ck
(πi,j+1) + ξi,j+1,∗

k +
λi,jk
ρ

) ≤ 0 (94)

ξi,j+1,∗
k ≤ σ

ρ
− Lπi

ck
(πi,j+1)−

λi,jk
ρ

(95)

In summary, we can obtain:

ξi,j+1,∗
k =

 −Lπi

ck
(πi,j+1)− λi,j

k

ρ , −Lπi

ck
(πi,j+1)− λi,j

k

ρ > 0

min{0, σρ − L
πi

ck
(πi,j+1)− λi,j

k

ρ }, otherwise
(96)

To enhance the algorithm’s convergence stability in the presence of sampling errors, we have made
modifications to the update process as follows:

ξi,j+1
k = (1− ϑ)ξi,jk + ϑξi,j+1,∗

k (97)

21

Under review as a conference paper at ICLR 2024

where ϑ ∈ [0, 1] is the update weight.

In accordance with the principles of ADMM, λ achieves the fastest convergence when its learn-
ing rate matches ρ, yet a smaller learning rate contributes to algorithm stability. Consequently, in
practical algorithms, we employ the following formula to update λ:

λi,j+1
k = λi,jk + ϱ(Lπi

ck
(πi,j+1) + ξi,j+1

k) (98)

where ϱ is the learning rate.

Additionally, to attain superior convergence results, we implement a warm-up technique for penalty
coefficients σ. The specific implementation of ACPO can be found in Algorithm 3.

22

Under review as a conference paper at ICLR 2024

Algorithm 3 Augmented Constraint Policy Optimization (ACPO)
Input: Policy network πθ, Value networks Vϕ, V c1

ϕ1
, . . . , V cK

ϕK
, Discount rates γ, GAE parameter

β, Learning rates αV , απ, ϑ, ϱ, Penalty parameter σmax, Warmup rate ∆, Trust region bound ϵ,
Cost bound b1, . . . , bK .
while Stopping criteria not met do

Generate dataset D={sm,t, am,t, rm,t, sm,t+1 . . . , c
k
m,t} of M episodes of length T from πθ.

Estimate k-th return by:

Ĵk =
1

M

M∑
m=1

T−1∑
t=0

γtckm,t

Estimate advantage functions: Â(sm,t, am,t), . . . , Â
cK (sm,t, am,t) using GAE.

Estimate value functions:
V t(sm,t) = Â(sm,t, am,t) + Vϕ(sm,t), . . . , V cK ,t(sm,t) = Â(sm,t, am,t) + V cK

ϕK
(sm,t)

Store old policy θ′ ← θ.
for each iteration do

for each minibatch of size B do
Get value loss functions:

LV (ϕ) =
1

2B

B∑
b=1

(Vϕ(sb)− V t(sb))
2

LVk
(ϕk) =

1

2B

B∑
b=1

(V ck
ϕk

(sb)− V ck,t(sb))
2, k = 1, . . . ,K

Update value networks:

ϕ← ϕ− αV∇LV (ϕ)

ϕk ← ϕk − αV∇LVk
(ϕk), k = 1, . . . ,K

Update policy network:

θ ← θ − απ∇Loss(θ)

end for
if 1

MT

∑M
i=1

∑T
t=0DKL(πθ||πθ′)[sm,t] > ϵ then

Break
end if
Calculate the approximation function:

L̂k = Ĵk +
1

MT

M∑
m=1

T∑
t=0

[Â(sm,t, am,t)]− bk, k = 1, . . . ,K

Update ξ:

ξ∗k =

{
−L̂k − λk

ρ , −L̂k − λk

ρ > 0

min{0, σρ − L̂k − λk

ρ }, otherwise

ξk ← (1− ϑ)ξk + ϑξ∗k, k = 1, . . . ,K

Update λ:

λk ← λk + ϱ(L̂k + ξk), k = 1, . . . ,K

end for
Warmup the penalty parameter σ ← min{σmax, σ +∆}

end while

23

	Introduction
	Related Work and Preliminary
	Related Work
	Preliminary

	Method
	Formulation of the Relaxation Problem
	Finding the Optimal Update Policy
	Practical Implementation

	Experiments
	Tasks
	Results

	Discussion
	Proofs
	Proof of Theorem 1
	Proof of Proposition 1
	Proof of Theorem 2
	Proof of Lemma 1
	Proof of Theorem 3

	Optimization Fundamentals
	Augmented Lagrangian
	ADMM Algorithm

	Experiment Environments
	Safe Velocity
	Safe Navigation
	Circle Task
	Goal Task

	Algorithm Details

