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Abstract: Monitoring a fleet of robots requires stable long-term tracking with1

re-identification, which is yet an unsolved challenge in many scenarios. One ap-2

plication of this is the analysis of autonomous robotic soccer games at RoboCup.3

Tracking in these games requires handling of identically looking players, strong4

occlusions, and non-professional video recordings, but also offers state informa-5

tion estimated by the robots. In order to make effective use of the information6

coming from the robot sensors, we propose a robust tracking and identification7

pipeline. It fuses external non-calibrated camera data with the robots’ internal8

states using quadratic optimization for tracklet matching. The approach in this9

work is validated using game recordings from previous RoboCup World Cups.10

1 Introduction11

Robust tracking with stable object identification is a crucial step towards extracting game statistics12

and improving gameplay in many team sports. While this is usually approached using an exter-13

nal camera only, our application in understanding soccer games played by humanoid robots allows14

us to fuse this information with measurements from robot-mounted sensors. In this work, we fo-15

cus on the RoboCup Standard Platform League (SPL) where humanoid NAO robots compete fully16

autonomously. Game analytics in this setting can offer objective feedback on the algorithms’ per-17

formance to the teams and help to improve the gameplay.18

Our problem differs in multiple ways from the well-known tracking and identification problem in19

game analytics: RoboCup games are recorded with non-professional uncalibrated camera equip-20

ment, robots look identical except for their jerseys, jersey numbers are too small to be detected21

reliably, and human referees often occlude the camera. To handle these challenges, we propose a22

long-term tracking pipeline consisting of the following modules:23

1. Camera calibration, to estimate camera distortion, intrinsics, and pose relative to the field.24

2. Short-term object tracking based on Tracktor [1] and trained on our data to generate tracklets.25

3. Optimization-based long-term tracking and player identification by fusing cues from an external26

camera and the robot sensor data.27

2 Related Work28

Multi Object Tracking (MOT) describes the tracking of all objects belonging to a given set of29

categories [2]. In joint tracking and detection approaches, the object detector is a fundamental part of30

the tracking pipeline [1, 3, 4]. We use Tracktor [1], which follows this paradigm as a building block31

in our pipeline. Another category of trackers uses detections provided by a separate object detector,32

followed by solving a data association problem. This framework includes fully deep learning based33

methods [5, 6, 7] as well as optimization based approaches [8, 9, 10].34
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Figure 1: Overview of the proposed approach.

Game Analytics covers the tracking and identification of the players in videos [11] as a key chal-35

lenge, where MOT is an important component. This can further be aided by robust team detec-36

tion [11, 12]. A key aspect of our work, usually not addressed in player tracking and identification37

is the integration of player-mounted sensor data, as it is not easily applicable to human players.38

Camera Calibration Tracking and identity assignment requires accurate camera intrinsics and ex-39

trinsics. Standard calibration processes generally use point correspondances, robot’s motion or cal-40

ibration patterns to provide accurate intrinsics [13, 14, 15], which cannot be used in our case due to41

poor point correspondences. Therefore, our approach utilizes a technique proposed by Alvarez et42

al. [16], which minimizes an energy objective based on rectifying lines present on the field.43

3 Method44

In this section, we detail our pipeline for consistent player tracking and identification/ Figure 145

provides an overview of the key components and information flow. First, the camera is calibrated46

to compute its intrinsic and extrinsic parameters with respect to the known soccer field, which is47

required only once for each video sequence. Then, the tracklets, the team color for each player and48

all relevant robot state information is extracted. Subsequently, each tracklet is associated with a49

specific robot player by optimizing a binary quadratic program as described in Section 3.5.50

Data and Application: We consider RoboCup SPL matches between humanoid NAO robots, us-51

ing a dataset comprised of 8 annotated 5000-frame sequences recorded by wide-angle cameras at52

30 FPS. The videos were recorded at RoboCup 2019 and 2022, together with the corresponding53

team communication and game controller logs. Annotations include the bounding box, jersey color54

and number for each active player and frame. Object detection and classification models and the55

optimizer hyperparameters are trained on five sequences, and evaluated on the remaining three.56

3.1 Camera Calibration and Extrinsics57

We assume a static camera over the sequence and compute the median of each pixel over all frames58

to remove moving objects and obtain a clear view of the field. Then the wide-angle image is undis-59

torted, by estimating the distortion using [16] on detections of field line candidates. We apply the60

SOLD2 [17] line detector on the undistorted image and obtain intersection points on the field which61

can then be matched to known field 3D coordinated. The camera pose is computed using P3P [18].62

3.2 Multi Object Tracker63

To generate tracklets, we use Tracktor [1] with Faster-RCNN [19] and a ResNet-50 backbone. We64

initialize the model with MS-COCO [20] pretrained weights and fine-tune it on the 5 training se-65

quences of our dataset. The tracklets are robust in easy tracking scenarios without occlusions, but66

do not cover a whole video. For further processing, each tracklet is projected to field coordinates67
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Figure 2: Visualization of robots identified by the tracker. The
tracking result is represented by bounding boxes and IDs at their
top. Ground truth positions are represented by green crosses and
corresponding green IDs. Figure 3: Ablation weigths.

using the estimated camera pose. Subsequently, each projected tracklet is smoothed using a Kalman68

filter with a constant velocity model.69

3.3 Jersey color detection70

In the SPL, 9 distinct jersey colors are used. The team colors for a match provide a strong signal71

to associate tracklets to players from either team. We detect colors using a VGG16 network that72

assigns a score for each of the team colors used by the two teams in a game.73

3.4 Robot States74

We furthermore use the robots’ states for our matching problem. These include information from75

the robot sensors as well as the game state:76

– Self Localization: The robots calculate their relative position on the field based on their views.77

– Fallen Robots: The robots use the IMU sensor information to determine if they have fallen.78

– Penalized Robots: The robots removed from the field is a constraint in the optimization problem.79

3.5 Global optimization80

Occlusions and distractors cause Tracktor to split the idealy long tracks into a large number of81

shorter tracklets. Therefore, we frame the long-term tracking problem as an assignment of tracklets82

to a fixed number of player tracks similar to [10] as a constrained quadratic binary optimization83

problem. We denote the index set of player tracks I = {1, ..., N} (with N = 10) and generated84

tracklets J = {1, ...,M}. The objective is to minimize:85

H(x) =
∑
i∈I

∑
j∈J

xi,j(Ou +
∑
l∈L

wlcli,j) +
∑
i∈I

∑
j∈J

∑
k∈J

xi,jxi,k(
∑
p∈P

wpcpj,k) (1)

where xi,j ∈ {0, 1} are binary optimization variables, with xi,j = 1 meaning tracklet j is assigned86

to track i, L and P the sets of unary and pairwise cost functions with costs cli,j and cpi,j,k. wl and87

wp are used to weight different cost terms. The offsets are negative to penalize the trivial solution88

of assigning nothing (xi,j = 0 ∀i, j). Two constraints are imposed to ensure feasible matchings:89

1. One tracklet can only be assigned to one track.90

2. Temporally overlapping tracklets cannot be merged to the same track.91

3.6 Cost terms92

Different cost terms control the assignment of tracklets to tracks. We use the following terms.93

• Duration: Penalizes short tracklets, as these are often spurious tracklets.94

• Self-localization: The distance between the position estimated by a robot from its camera95

and the position estimated for a tracklet from the external camera.96
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88.1 15.4 51.1 76.5 86.2 76.3 83.3

Table 1: Tracking performance and ablation
study. Results are provided in percent MPIR.

Time
Frame 30 15

0

30
0

90
0

18
00

36
00

54
00

MPIR 42.5 42.3 40.1 43.8 38.4 38.5 38.5

Table 2: DeepSort Performance with different re-
identification time.

• Jersey color detection: The score for the color-based team detection throughout a tracklet.97

• Global trajectory continuity: The pairwise spatial distance between the end of a tracklet98

and the start of a new temporally close tracklet.99

3.7 Reference Method: DeepSORT100

To fulfill the task of long-term tracking and player identification under strong occlusions we aug-101

ment the DeepSORT tracker [21, 22] by a greedy tracklet matching algorithm that matches any new102

tracklet to the spatially closest inactive track. Constraints are applied to prevent temporarily overlap-103

ping tracklets from being assigned to the same track. To provide a strong baseline, we provide this104

approach with oracle information; the total number of robots that are present in a sequence, which105

defines the maximum number of tracks as well as the ground truth ID of the first tracklet for each106

robot. Finally, the best re-identification time for DeepSORT is selected on the testset.107

4 Results108

We evaluate our approach over a test set containing 3 video sequences of 3 minutes. Each video109

covers a different game, thus testing our approach under different conditions.110

Table 1 shows the Mean Player Identification Recall (MPIR), the ratio of times each player has been111

identified correctly. The first column shows our full approach. Subsequent columns show ablations,112

each feature removed separately with the cost term optimized using PSO [23] for each scenario.113

With all features we achieve 88.1% MPIR. Removing the robot self localization has the strongest114

impact with 15.4% MPIR, while removing the fallen robot flag results in the least performance drop.115

The self-localization is an important feature since it provides information about the position of the116

robot. The fallen robot flag is unreliable, as it relies on the robot’s IMU and a heuristic to detect117

whether the robot has fallen in the video.118

Table 2 shows the performance of our DeepSORT baseline over different reidentification times. The119

best performance as achieved with 900 frames which corresponds to 30s of video. In this case,120

the performance is 43.8% MPIR, compared to 88.1% MPIR with our method using all available121

features.122

We further analyze each feature’s importance through its weighting, where a higher weight indicates123

a more important feature. Figure 3 shows the importance of the features in the different ablations.124

Strong weights are assigned to the self-localization and tracklet duration. Removing these features125

shows that weighting is redistributed: the noisy fallen robot events are incorporated when no self-126

localization information is available, as it can provide unique information about a robot’s ID.127

5 Conclusion128

In this work, we presented a sensor fusion based method for tracking multiple similar humanoid129

robots. We utilize information from both visual data and their own sensors by combining tracklets130

using a quadratic optimization technique. The method allows automated tracking of robot players131

over a long time on a stationary video sequence. Open points that we will investigate in the future132

include the evaluation in more complex environments, the interpolation of tracks during occlusions133

as well as the extraction of high-level game statistics.134
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