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ABSTRACT

The formidable capacity for zero- or few-shot decision-making in language agents
encourages us to pose a compelling question: Can language agents be alterna-
tives to PPO agents in traditional sequential decision-making tasks? To inves-
tigate this, we first take environments collected in OpenAI Gym as our testbeds
and ground them to textual environments that construct the TextGym simulator.
This allows for straightforward and efficient comparisons between PPO agents
and language agents, given the widespread adoption of OpenAI Gym. To ensure
a fair and effective benchmarking, we introduce 5 levels of scenario for accurate
domain-knowledge controlling and a unified RL-inspired framework for language
agents. Additionally, we propose an innovative explore-exploit-guided language
(EXE) agent to solve tasks within TextGym. Through numerical experiments
and ablation studies, we extract valuable insights into the decision-making capa-
bilities of language agents and make a preliminary evaluation on their potential
to be alternatives to PPO in classical sequential decision-making problems. This
paper sheds light on the performance of language agents and paves the way for
future research in this exciting domain. Our code is publicly available at https:
//anonymous.4open.science/r/Text-Gym-Agents-5220.

1 INTRODUCTION

Proximal policy optimization (PPO) (Schulman et al., 2017) is a representative traditional rein-
forcement learning (RL) method, attains or exceeds human decision-making performance with a
large number of environment interactions in diverse classic tasks (Jaderberg et al., 2019; Mankowitz
et al., 2023), and has been treated as a popular choice for learning decision. For example, when we
face a CliffWalking task (Brockman et al., 2016a), our first attempt may be taking PPO as a try.
However PPO usually needs a large number of interactions in the environment. Conversely, Large
language models (LLMs; Vaswani et al., 2017; Brown et al., 2020; Devlin et al., 2019; OpenAI,
2023) exhibit formidable zero- or few-shot decision-making capabilities based on multiple LLM
calls for reasoning (Creswell et al., 2023; Wu et al., 2022; Yao et al., 2022b; Shinn et al., 2023) or
manipulating internal memory (Guu et al., 2020; Park et al., 2023; Qian et al., 2023; Xu et al., 2023)
and other external tools (Schick et al., 2023; Mialon et al., 2023; Qin et al., 2023). Consequently, a
direct and inescapable question arises:

Can language agents be alternatives to PPO in sequential decision-making tasks?

A plethora of environments have been proposed to assess the decision-making capabilities of lan-
guage agents across domains, including games (Shridhar et al., 2021; Fan et al., 2022), code exe-
cution (Hendrycks et al., 2021; Zheng et al., 2023), and real-world tasks (Yao et al., 2022a; Zhou
et al., 2023). Nonetheless, these environments, still in their formative stages, mainly focus on natural
language understanding instead of general sequential decision-making. To this end, we adopt envi-
ronments gathered by OpenAI Gym, the often-used sequential decision environments in RL, as our
testbed. To evaluate the performance of language agents, we first ground the environments to texts
with LLMs and propose a pioneering platform, TextGym. Due to the continuous advancements
integrated into OpenAI Gym environments, TextGym not only enables a reliable and exhaustive
comparison between RL and language agents in terms of performance, sample efficiency, and gen-
eralizability but also involves, in a light-weight manner, the critical challenges inherent to existing
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environments specifically designed for language agents, including complex reasoning, long planning
horizons, and exploration of high-dimensional policy spaces.

Nonetheless, evaluating language agents’ decision-making capabilities (to decide which agents to
use) in TextGym, which contains a set of classic sequence decision problems, with efficiency and
fairness is challenging due to two factors. On the one side, varying degrees of domain knowledge
are supplied to LLMs by different language agents while forming decisions, ranging from zero-shot
prompting (Kojima et al., 2022), fine-grained few-shot (or in-context) examples (Du et al., 2023), to
coarse-grained expert guidelines (Wang et al., 2023a); conversely, disparate language agents equip
LLMs with distinct cognition skills, such as thinking (Wei et al., 2022), memorizing (Park et al.,
2023), and reflecting (Shinn et al., 2023), with blurred boundaries in different algorithmic frame-
works. We shall expound upon these factors, i.e., domain knowledge, and algorithmic frameworks
individually.

Firstly, the design of LLM prompting for various language agents frequently incorporates disparate
degrees of domain knowledge. For instance, Zero-shot-CoT (Kojima et al., 2022) merely appends
“Let’s think step by step” prior to each response, devoid of any task-related knowledge. In contrast,
ELLM (Du et al., 2023) provides ground-truth examples in each round of goal generation, exem-
plified by “Q: You see water, grass, cow, and diamond. You are targeting grass. You have in your
inventory plant. What do you do? A: Drink water.” Furthermore, Voyager (Wang et al., 2023a) offers
expert guidance for attaining elevated scores through prompting, as illustrated by “I may sometimes
need to repeat some tasks if I need to collect more resources to complete more difficult tasks. Only
repeat tasks if necessary.” Intuitively, varying domain knowledge levels will unavoidably influence
language agents’ performance. Consequently, regulating the extent of domain knowledge is vital for
ensuring fair comparisons.

Secondly, to enhance the decision-making ability of LLMs, different language agents bestow upon
them various cognitive skills via the incorporation of external modules. CoT (Wei et al., 2022)
introduces a series of intermediate reasoning steps in the prompt, considerably improve LLMs’ ca-
pacity to conduct complex reasoning; Generative Agents (Park et al., 2023) delineate an architecture
that expands an LLM to maintain the agent’s experiences in natural language, synthesize memo-
ries over time, and dynamically retrieve them to plan more efficient behavior; Reflexion (Shinn
et al., 2023) proposes a novel framework to endow LLMs with self-reflection capabilities, thereby
facilitating planning via trial-and-error analogous to RL. However, the boundaries between different
cognitive skills are blurry, with reflection potentially encompassing both thinking and memorization
processes. Simultaneously, different language agents employ distinct algorithmic frameworks in
pursuit of identical cognitive skills. This status quo hinders the conduction of fair comparisons and
thorough ablation studies of diverse language agents. As such, it is imperative to integrate extant
language agents into a unified algorithmic framework.

This paper addresses the above challenges and assesses the decision-making capabilities of language
agents in a more efficient and fair manner. More concretely, we introduce a hierarchy of domain
knowledge, comprising 5 levels, ranging from the absence of domain knowledge to the provision of
expert strategies required for task completion. Additionally, drawing inspiration from the RL, we
dissect the language agents assessed in this paper into three components: actor, critic, and learner,
thereby assimilating these agents within a unified algorithmic architecture. Lastly, we put forth
an innovative EXplore-Exploit-guided language agent (EXE) devised to tackle partially observable,
sparse reward tasks, which pose significant challenges to all language agents examined herein. With
numerical experiments and ablation studies, we summarize the following important observations:
1) Language agents have the potential of completing tasks in the TextGym for several environments
(i.e., Blackjack, Cartpole, CliffWalking, MoutainCar, and MoutainCarContinu-
ous) while failing at more challenging environments (i.e., Acrobot, LunarLander, and Taxi).
2) By engaging in environmental interactions, the performance of language agents approaches lev-
els akin to those obtained via expert knowledge prompting. 3) Our proposed EXE achieves higher
performance compared to other language agents in the TextGym setting.

Remark 1: This paper presents a preliminary study that investigates the potential of language agents
in executing traditional sequential decision tasks, an area typically dominated by PPO and other RL
techniques. As a nascent field of inquiry, the decision-making capabilities of language agents are still
under-explored, particularly in the context of environments like OpenAI Gym. In this exploratory
phase, we aim to unveil the competencies of LLMs in understanding and engaging with sequential

2



Under review as a conference paper at ICLR 2024

decision-making processes. Our intent is not to perform an exhaustive comparison with PPO, but
rather to spark a dialogue on the adaptability and evolution of language agents within this domain.
We acknowledge the limitations inherent in such an early-stage investigation, and any conclusions
drawn are intended to serve as a foundation for future, more comprehensive research. This work
should be interpreted as a stepping stone towards a broader understanding of the roles that language
agents can play in the realm of decision-based tasks and their potential to complement or, in some
instances, offer alternative solutions to conventional approaches.

2 BENCHMARK DESIGN

This section presents a benchmark framework that facilitates the effective and fair comparison of var-
ious language agents’ decision-making capabilities in classic sequential tasks. At the same time, this
framework juxtaposes their capacities against those of PPO in terms of cumulative reward thereby
addressing the core question raised at this paper’s outset: Can language agents be alternatives to
PPO in traditional sequential decision-making tasks? More concretely, we elucidate upon the metic-
ulous design process of TextGym, crafting a dependable validation platform for language agents
and RL in Section 2.1. Subsequently, we propose a hierarchical domain knowledge framework,
facilitating precise and fair comparison of language agents through accurate prompt control in Sec-
tion 2.2. Ultimately, we introduce an RL-inspired unified algorithmic architecture, incorporating
mainstream language agents, thus rendering penetrative ablation studies feasible in Section 2.3.

2.1 TEXTGYM : A FRIENDLY GYM FOR LANGUAGE AGENTS

We select OpenAI Gym (Brockman et al., 2016b) as our benchmark environment, owing to its
extensive utilization in the assessment of PPO and other RL agents. In order to render Gym com-
patible with language agents, it is necessary to transform the environments into text-based represen-
tations, i.e., TextGym. It should be noted that we presuppose language agents possess access to the
fundamental documentation of the environments. Concretely, we use the environment description,
including the observation space, action space, reward function, and episode terminate conditions,
for benchmarked environments in the official documentation1 for the transformation. We construct
TextGym by adding a translation wrapper for OpenAI Gym. Specifically, the wrapper wraps each
observation in a mixture of “game description”, “goal description”, “action space description”, and
“observation description”. To speed up the translation, we take GPT-4 (OpenAI, 2023) to make the
translation, and the details are presented in Appendix C.1.

Remark 2: The assumption regarding the acquisition of documentation is justifiable, as documents
are typically accessible in real-world applications (Harbour et al., 2001; Brockman et al., 2016a).
By providing language agents with fundamental documentation, we emulate a pragmatic situation
in which the agent possesses an elementary comprehension of the environment. This establishes
the foundation for assessing language agents. In contrast to the prevailing handcrafted few-shot
examples and heuristic prompting techniques, our assumption exhibits a higher degree of realism.

2.2 HIERARCHICAL CONTROL OF DOMAIN KNOWLEDGE AND SCENARIO FORMULATION

This subsection addresses the issue of inequitable comparisons among language agents due to un-
regulated domain knowledge in prompting. Specifically, we introduce a hierarchical organization
of domain knowledge, consisting of 5 levels, and employ it to devise corresponding scenarios for
regulating the domain knowledge utilized in prompting (see Appendix C.2 for all pseudo codes).

We define the first level of domain knowledge as a constraint where no external knowledge is pro-
vided, and the situation created by this constraint is termed the Lv1:Zero Guidance (De Peuter
& Kaski, 2023; Chen et al., 2022). Achievable through a powerful, highly generalizable agent,
this level represents the ultimate goal for language agents. However, as evidenced by our empir-
ical studies and existing literature (Shinn et al., 2023), current agents are considerably far from
achieving this objective. Another constraint of domain knowledge occurs when a human participant
supplies valuable knowledge, expertise, or even optimal policy descriptions, which we designate
as the ultimate level of domain knowledge. The situation created by this constraint is called the

1https://gymnasium.farama.org/.
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Lv5:Expert Guidance. This approach is prevalent in contemporary language agent develop-
ment. Nonetheless, human guidance is not always reliable, and the significant reliance on it poses a
major challenge when deploying language agents to address general decision-making problems.

To facilitate the assessment of more practical scenarios, we propose 3 additional levels of domain
knowledge and corresponding scenarios, inspired by data-driven learning paradigms. Firstly, in-
formed by offline RL, experiences acquired through non-optimal policies can serve as a form of
domain knowledge. We label such experiences as the second level of domain knowledge, and the sit-
uation created by this level is called the Lv2:Sub-optimal Experience Guidance. Sub-
sequently, influenced by RL, interactions with the environment can be considered a unique form of
knowledge to direct learning. We classify these interactions as the third level of domain knowledge,
and the situation created by this level is termed the Lv3:Self-Guidance (as shown in Algo-
rithm 1). The Lv3 scenario enables agents to accumulate experience autonomously and implement
corresponding enhancements. Finally, we identify expert or optimal policy-derived experiences as
the fourth level of domain knowledge and the associated scenario as the Lv4:Optimal Expe-
rience Guidance, which is informed by imitation learning. These 3 scenarios explicitly control
domain knowledge by imposing the same experience or number of interactions on language agents.

Algorithm 1 Pseudo-code for Level 3: Self-Guidance

Initialize agent M , knowledge memory Mk = ∅.
for episode = 1 to N do

Update agent M .update(Mk) ▷ Update agents with the knowledge
Collect a trajectory τ with M in the environment. ▷ Rollout
Append τ to Mk. ▷ Update the knowledge

end for

Viewed from another angle, the complexity of scenario formulation generally increases with each
level. Constructing a Lv1 scenario is relatively simple for any task. For Lv2 and Lv4, the chal-
lenges involve formulating corresponding policies and implementing them in real world or simula-
tors to gather experiences. For Lv3, the challenge lies in deploying an unstable and evolving policy
to collect experiences and update accordingly. For example, in autonomous driving, numerous sub-
optimal trajectories can be readily obtained, thus establishing Lv2. Lv3 requires the deployment
of agents in real-world settings or simulators, which are more difficult to develop. For Lv4, re-
searchers must initially design expert policies and subsequently collect expert trajectories. The final
level, Lv5, necessitates that researchers create knowledge explicitly to guide the agent in making
safe and effective driving decisions. Although humans perform well on the road, it remains an open
question how to construct human knowledge to assist language agents in accomplishing the task.
This challenge becomes even more difficult for tasks that humans cannot complete.

2.3 RL-INSPIRED UNIFIED ALGORITHMIC FRAMEWORK FOR LANGUAGE AGENTS

In this subsection, we propose a comprehensive framework (Figure 1) for the conceptualization
of language agents, drawing inspiration from RL principles. The language agents consist of three
components: the actor, critic, and learner, where the actor is tasked with action selection based on
the current environmental state, the critic is responsible for assessing the quality of actions executed
by the actor, and the learner is accountable for updating the actor and critic in response to feedback
obtained from the environment.

Actor. The majority of existing language agents predominantly emphasize actor design. Three com-
ponents are involved for an actor: the profile, memory, and action instruction. The profile delineates
its features, the action instructions specify the ways to generate the final action response, and the
memory establishes its capacity for retaining historical information. Despite the diversity of pro-
file designs, we classify them according to their adopted style, rather than concentrating on specific
“magic words or prompts.” The prompt style represents the manner in which researchers formulate
prompts for the actor. Numerous prompting variants have been proposed, which can be broadly cate-
gorized into machine language, free-form verbal, and structured verbal. Machine language prompts
direct the language agent to produce programs as opposed to natural language. Structured verbal
prompts instruct language agents to generate output in an organized fashion (e.g., SaP; Press et al.,
2022) produces output in the “Follow up→Intermediate answer” format), while free-form verbal
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Figure 1: Illustration of the actor-critic-learner framework. A typical language agent is composed of
3 components: the actor, critic, and learner, each with its profile, memory, and action instructions.
Initially, the actor interacts with the environment, collecting a trajectory. Subsequently, the critic
evaluates the trajectory and provides feedback to the learner. Finally, the learner offers suggestions
to the actor based on the critique, forming an iterative process of sampling and learning.

prompts impose no structural constraints. Regarding action instructions in the actor, two primary
methods exist single-path and multi-path action generation. The majority of agents employ single-
path generation, which directly yields the current action, while a select few utilize multi-path action
generation, generating the actions in a tree-like structure. In terms of memorization, most language
agents do not directly retain environmental history, whereas Reflexion (Shinn et al., 2023) and our
proposed method permit agents to maintain a brief memory.

Critic. We classify critics in language agents into three categories: those without critics, numerical-
based critics, and verbal-based critics. Numerical-based critics assess the policy by providing binary
or scalar scores akin to RL critics. Capitalizing on the extensive input space acceptable to language
agents, verbal-based critics offer descriptions of the policy and its performance, facilitating the
conveyance of richer information.

Learner. As for learners, the majority of existing language agents do not incorporate learners to
autonomously adjust the actor. Learners can be differentiated based on their aims, either learn to
exploit or learn to explore and exploit. We provide a summary of existing language agents within
the context of this framework in Table 1. We posit that this categorization enhances clarity in com-
parisons and fosters further development in language agent design.

Through the incorporation of language agents within the actor-critic-learner paradigm, it becomes
feasible to discern the salient features of language agents. Furthermore, this paradigm facilitates the
adaptation of concepts from RL in the development of language agent architectures.

Remark 2: It is important to note that many language agents do not directly account for the data
collected in Lv2 to Lv4. To facilitate equitable comparisons, we incorporate a default critic and
learner component for these agents. The critic summarizes the trajectory directly while the learner
takes the summarized information as a suggestion to the actor. See Appendix C.3 for details.

3 EXPLORE-EXPLOIT GUIDED LANGUAGE AGENT (EXE)

Consider the cliff-walking scenario as an illustrative example: agents are initially unaware of the lo-
cations of cliffs and the goal. It is, therefore, imperative that agents engage in exploration within the
environment to acquire this information. Subsequently, they must leverage such information for ex-
ploitation to develop an optimal strategy. The principle of maximum-entropy reinforcement learning
(RL) (Haarnoja et al., 2018) takes into account both exploration and exploitation within its gradient
propagation, demonstrating commendable outcomes in scenarios characterized by partial observ-
ability and sparse rewards. Inspired by this, we introduce the Explore-Exploit Guided Language
Agent (EXE), designed to direct the actor with a dual emphasis on exploration and exploitation, as
illustrated in Figure 2 and delineated in Algorithm 4.

Actor: The actor, a language model, consists of three primary components. Initially, it accepts the
game description, state, and action space description as input, analogous to reinforcement learning
configurations. Subsequently, a suggestions component receives input from the learner prior to the
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Critic
Profile of Critic: You are now an evaluator. 
This is a game about: <Game Description> and the 
trajectory is:  <Trajectory>.

Short-term Memory: 
# 0: <Observation Description>, Action, Reward
# 1: <Observation Description>, Action, Reward
…
# t: <Observation Description>, Action, Reward’

The Suggestions to guide the trajectory is 
Suggestions:     […]

Action Instruction: 
1. Describe the policy and summarize its performance; 
2. Describe new information from the trajectory that can be exploited to 
improve performance compared to the summarization memory;

Profile of Actor: Now you are completing a task.
The Game is about <Game Description>.
The current state is <State Description>, and a
description of all possible actions is as follows:
<Action Description>.

Action Instruction: Please choose an action in the action space. 

Short-term Memory: 
# 0: <Observation Description>, Action, Reward
# 1: <Observation Description>, Action, Reward
…
# t: <Observation Description>, Action, Reward

Suggestions from the Learner:
1. Exploration: [try different actions]
2. Exploitation: [push towards the tilt direction]
3. Tradeoff: [explore more.]

Trajectory

Observation
and Reward

Action

Learner
Profile of Learner: You are an AI assistant that
help a human player win the following game. The Game
is about <Game Description>.

Long-term Memory:
Episode #0:
Criticism: The policy in this trajectory seems to be …, The 
performance of the policy in this trajectory is

Action Instruction: Help the human player win the game in the last 
episode. He has only 5 episodes left to try.

1. Summary insights of the game.
2. What information should the player obtain through exploration, and 
how to make the exploration (exploration) in the next episode? 
3.  How we improve the policy to gain a higher performance (exploitation) 
in the next episode? 
4. The weight of the exploration and exploitation?

Insights, 
Suggestions

Criticism

Insights from the Learner:
Insights on how to win the game is … Environment

Figure 2: Illustration of EXE in the CartPole-v0 game, featuring three main components. Actor
receives insights and suggestions from the learner and interacts with the environment, Critic evalu-
ates the trajectory generated by the actor based on the suggestions used by the actor. The Learner
processes criticism from the critic and provides insights and suggestions to the actor.

commencement of each episode, corresponding to the gradient descent and exploration framework
in reinforcement learning. In addition to these elements, the actor possesses a short-term mem-
ory module that retains experiences from the current episode, analogous to the recurrent design in
reinforcement learning policies. Utilizing these components, the actor directly selects actions and
engages with the environment.

Critic: The critic is characterized by a combination of memory, game description, trajectory, sug-
gestion, and critic instruction. The game description informs the critic of its environmental context,
while the trajectory provides the necessary information for evaluation. The suggestion tells what the
trajectory is for and what information should be noted. Upon acquiring this information, the critic
adheres to the instructions to generate criticism, which characterizes the policy and extracts novel
information accordingly. This criticism is subsequently transmitted to the learner.

Learner: The learner receives the game description and utilizes its memory to retain the criticism
provided by the critic. Prior to the initiation of each episode, the learner processes the game de-
scription and its memory as the current state, adhering to instructions that explicitly account for the
number of episodes in order to offer suggestions regarding 1) exploration strategies, 2) exploitation
methods, and 3) the optimal balance between exploration and exploitation in subsequent episodes.
These suggestions are then conveyed to the actor. It should be noted that our EXE always generate
suggestions even if there is no trajectory obtained (Lv1 and Lv5)

4 EXPERIMENTS

This section performs a series of experiments to assess the efficacy of our proposed EXE, alternative
language agents within the TextGym, and PPO agents within OpenAI Gym. Our investigation
seeks to address the following research questions: Q1: Are language agents capable of achieving
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performance levels comparable to those of PPO? Q2: What is the influence of domain knowledge
controlling on language agent performance? Q3: How does the design of a language agent affect its
performance?

Environment and Scenario Configurations. Grounded environments include Classic Control
(Acrobot-v1, CartPole-v0, MountainCar-v0 and MountainCarContinuous-v0),
Toy Text (Blackjack-v1, Taxi-v3, CliffWalking-v0), and Box2D (LunarLander-
v2). Each environment poses distinct challenges for agents, as outlined in Appendix C.1. Moreover,
we devise the 5-level domain knowledge controlling scenario for each environment. For Lv2, we
employ a random policy to gather 5 trajectories per environment, offering a rudimentary approach to
scenario creation. For Lv3, we allow each agent to interact with the environment across 5 episodes.
For Lv4, we train cutting-edge policies based on Tianshou (Weng et al., 2022) for each environment
to collect 5 expert trajectories. To create Lv5 scenarios, we meticulously design the scenarios with
human input. Specifically, we allocate 1 hour of effort to develop scenarios for a single agent in each
environment, randomizing the sequence of language agents. These scenarios are crafted to evaluate
the agents’ capacity to leverage information and perform in a variety of contexts.

Language Agent Configurations. For language agents lacking a critic or learner, we implement
them with default one, as elaborated in Appendix C.3. This implementation does not modify their
behavior in Lv1 and Lv5 scenarios but allows them to exploit information in Lv2 to Lv4 scenarios.
We implement agents using OpenAI APIs2, with all agents employing the gpt-3.5-turbo0301
model if not specifically mentioned. For more details, we refer the reader to Appendix C.3

We conduct extensive experiments involving all agents across every scenario within the given envi-
ronments with 5 seeds if not specifically mentioned. To assess performance across diverse environ-
ments, we initially establish a solvability threshold l and a state-of-the-art threshold h as in Table 3.
The solvability threshold evaluates the extent to which the primary objective3 of the task is achieved,
while the optimal threshold is derived from RL agents employed in constructing the Lv4 scenario.
Subsequently, we normalize the performance r to rn by setting rn = r−l

h−l if r > l while rn = −1
for r <= l. When the value surpasses 0, it signifies that agents can access the solvability zone, and
values nearing 1 indicate closeness to state-of-the-art performance. We take the median performance
of the agent across 5 seeds its performance when not specifically mentioned. For a more detailed
description of the evaluation process, refer to Appendix C.5.

4.1 INVESTIGATING THE POTENTIAL OF LANGUAGE AGENTS.

Blackjack-v1

CartPole-v0

CliffWalking-v0

MountainCarContinuous-v0

MountainCar-v0

Acrobot-v1

Taxi-v3

LunarLander-v2

1.0
0.5

0.0
0.5

1.0

Solvability
PPO
Language Agents

(a) Solvability results across environments. (b) Solvability results across scenarios.

Figure 3: The radar graph and histogram comparing language agents and PPO. For Figure 3a, the
gray area demarcates the solvability threshold, and beyond this region, the task can be completed
by the algorithm. Figure 3b displays the solvability, with PPO solving 6 out of 8 environments
and language agents solving 5. This figure further examines the agent’s performance in specific
scenarios, showing that language agents in Lv3 and Lv5 solve 4 games, while others solve less.

2https://openai.com/blog/openai-api.
3E.g., the minimal return of reaching the goal without stepping into cliffs is set as the solvability threshold

of Cliffwalking.

7

https://openai.com/blog/openai-api


Under review as a conference paper at ICLR 2024

Figure 3a illustrates the median value of the normalized performance of the top-performing language
agents for each environment. It is evident that language agents can successfully solve 5 out of the
total 8 environments, demonstrating the potential of language agents. Furthermore, in our experi-
mental setup, language agents require no more than 5 episodes to achieve this performance, whereas
the PPO agent necessitates 20, 000 episodes. This highlights the superior task-relevant interaction
efficiency of language agents in comparison to RL.

However, there are 3 environments (LunarLander-v2, Taxi-v3, and Acrobot-v1) where
no language agents can attain the solvability threshold. This reveals that language agents still face
difficulties in addressing the challenges presented by these environments. Such tasks typically in-
volve extremely partial observations and complex and stochastic dynamics. We posit that further
advanced design are needed to overcome these challenges and render the tasks manageable.

Key Observations: 1) Language agents exhibit good performance in environments that have simple
dynamics. They can achieve the solvability threshold in these environments with significantly fewer
interactions or data compared to PPO. 2) Additional efforts are required to design language agents
designed to achieve similar performances to PPO in more challenging TextGym environments.

4.2 EXAMINING THE IMPACT OF SCENARIO VARIATIONS

Figure 3b presents the maximal performance and median performance achieved by language agents
in each environment, considering various scenario levels. It is evident that agents in Lv3 and Lv5
outperform their counterparts, successfully solving 4/8 environments in the median performance.
Agents in Lv1, Lv2, and Lv4 can only solve 2/8 environments indicating the zero-, sub-optimal,
and optimal experience guidance are less helpful in achieving great performance in median.

Key Findings: 1) The Lv3 scenario is effective and should be prioritized when designing a prompt.

4.3 EXPLORING LANGUAGE AGENTS CHOICE
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Figure 4: Heatmap for the performance of language agents in different scenarios and environments.

Given a specific scenario, which language agent should be preferred? Figure 4a displays the
average performance across all solvable environments for each language agent under different sce-
nario levels. It is evident that the proposed EXE significantly surpasses other agents in the Lv3
scenario, emphasizing the importance of active exploration and exploitation in this context. In the
Lv1, Lv2, Lv3 and Lv5 scenario, EXE and Self-Consistency achieve similar performance and are
not outperformed by other agents significantly. Thus EXE is generally preferred.

Given a specific environment, which language agent should be preferred? We visualize the
maximal performance across scenarios that each language agent can achieve for the environments
in Figure 4b. EXE solves 4 environments while others can not solve more than 3 environments,
demonstrating the superiority of our method. See Appendix D for extensive case studies.
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Key Findings: 1) In the Lv3 scenario, EXE outperforms other agents due to its active exploration
and exploitation capabilities. 2) In environments that are solvable for language agents, EXE sur-
passes other agents with the ability to solve 4 out of 5 environments.

4.4 CASE STUDY BETWEEN EXE AND REFLEXION

EXE and Reflexion are designed for Lv3, however their performances diverge. Figure 5 and 6b
visualize their learning processes. Relfxion does not learn to avoid cliff in CliffWalking-v0
and fails to reach the goal in MoutainCarContinuous-v0. While EXE learns to improve
median performances reach to the solvability threshold at the last episode for the two environments.

(a) The performance of EXE in Lv3 scenario. (b) The performance of Reflexion in Lv3 scenario.

Figure 5: The performance of EXE and Reflexion in the CliffWalking-v0 environment at Lv3.

(a) The performance of EXE in Lv3 scenario. (b) The performance of Reflexion in Lv3 scenario.

Figure 6: The performance of EXE and Reflexion in MountainCarContinuous-v0 at Lv3
with 5 successive episodes.

5 CONCLUSION

This paper introduces a benchmark for evaluating language agents in RL-dominated, classic
decision-making problems. This benchmark encompasses a language-agent-friendly simulator,
TextGym, a domain-knowledge-controlled hierarchical scenarios, and a unified language agents
framework. We assess language agents’ capabilities in approaching PPO, the influence of domain
knowledge construction, and the implications of agent design. Moreover, we present a novel lan-
guage agent, EXE, inspired by the exploration and exploitation principles inherent in RL. EXE
demonstrates superior performance in certain scenarios compared to other language agents. We
conclude by outlining many key insights regarding both language agent design and domain knowl-
edge incorporating, which we believe will contribute to a deeper understanding of language agents
and inspire further research in this domain.
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A PROBLEM FORMULATION

This paper aims to solve a set of sequential decision-making problems which each can be char-
acterized by a partially observable Markov decision process (POMDP; Sutton & Barto, 2018)
M⟨S,A,P,R,Ω,O, γ⟩, by utilizing RL or language agents. For each problem, the environmental
state is denoted by s ∈ S . At each discrete timestep t, the agent observes an observation ot ∈ Ω
based on the emission or observation function O (ot | st), which is a probability distribution over
observations conditioned on the current state st. The agent maintains a belief state bt over the en-
vironmental states, which is updated based on the observation ot and the previous action at−1. The
agent then opts for an action at ∼ π (at | bt) ∈ A, based on the general policy π : B×A → [0, 1],∀i
and the current belief state bt. This action consequently leads to the subsequent state st+1 ∈ S ac-
cording to the transition function P (st+1 | st, at) and procures a scalar reward rt = R(st, at) ∈ R.
The principal objective for an agent is to determine a policy π that maximizes the total expected
cumulative reward, J = Eat∼π(·|bt),st+1∼P(·|st,at)[

∑T
t=1 γ

t−1rt(st, at)], via learning from transi-
tions during environment interaction. It is noteworthy that within the context of language agents, the
state, observations, actions, and rewards are manifested through textual representations.

We aspire to benchmark the two learning paradigms, RL and language agents, within the context
above, spanning the diverse tasks encompassed by TextGym and focusing on expected cumulative
rewards and sample complexity. Owing to the in-context learning ability of LLMs (Brown et al.,
2020), language agents naturally boast substantial superiority in the latter aspect (which shall be
thoroughly validated in the experiments). More concretely, RL necessitates a multitude of magni-
tudes more interactions with the environment to accomplish a task from scratch, compared to human
capabilities (Mnih et al., 2015; Badia et al., 2020; Vinyals et al., 2019). In contrast to RL, language
agents employ language as a universal interface, substantially diminishing the need for interaction
samples through their in-context learning capability and vast decision-making knowledge gleaned
from copious online text.
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B RELATED WORK

B.1 RELATED BENCHMARKS

As large language models (LLMs) have demonstrated remarkable capabilities in generalization and
planning, an array of executive benchmarks has been proposed to assess their proficiency. Initial
benchmarks primarily focused on text-based games such as ALFWorld (Shridhar et al., 2021), Jeri-
cho (Hausknecht et al., 2020), and TextWorld (Côté et al., 2018).

Contemporary research endeavors have sought to appraise LLMs’ performance in numerous real-
world tasks beyond text games. Pioneering works like APPS (Hendrycks et al., 2021), Hu-
manEval (Chen et al., 2021), and MBPP (Austin et al., 2021) emphasize code execution as a means
to assess LLMs for functional correctness rather than text similarity. Subsequent studies (Li et al.,
2022; Zheng et al., 2023; Xu et al., 2022; Nijkamp et al., 2022) have adopted this paradigm, further
solidifying its prominence.

A multitude of games has been devised to investigate LLMs’ task-planning aptitude. Examples
include approaches utilizing the Minecraft environment (Zhu et al., 2023; Wang et al., 2023a;c) to
gauge LLMs’ efficacy in planning and decision-making. Tachikuma (Liang et al., 2023) employs a
TRPG game log to measure LLMs’ capacity to interpret and deduce intricate interactions involving
multiple characters and unanticipated objects. MindAgent (Gong et al., 2023) introduces a virtual
kitchen setting to evaluate LLMs’ planning and coordination competencies.

Additionally, several studies have constructed interactive settings that simulate real-world scenarios.
WebShop (Yao et al., 2022a) establishes a mock e-commerce website to assess LLMs’ capabilities
in product search and retrieval, while WebArena (Zhou et al., 2023) provides a thorough website
environment encompassing an array of domains.

Diverging from the aforementioned benchmarks, our research aims to ascertain whether language
agents can rival PPO in sequential decision-making tasks. Our primary focus is on decision-making
capabilities, rather than proficiency in processing textual information and natural language under-
standing. To this end, we leverage environments curated by OpenAI Gym as our experimental
platforms. These environments are typified by their comparatively lower-dimensional state and ac-
tion spaces relative to conventional TextGames (Osborne et al., 2022), thereby focusing on present-
ing challenges in exploration, sparse reward, and stochastic dynamics crucial for decision learning,
which renders them well-suited for assessing the performance of PPO. To adapt language agents
to these environments, we introduce TextGym—a framework that transforms these environments
into textual counterparts using their documentation and GPT-4. This transformation process is gen-
erally feasible for non-image-based environments. Should the language agents within TextGym
demonstrate competitive performance against PPO in the OpenAI Gym settings, it would suggest
the potential of language agents as viable alternatives to PPO.

B.2 LANGUAGE AGENTS

LLM Agent Actor Critic LearnerPrompt Profile Action Instruction Memory
ChatGPT free-form single-path action - - -

CoT Wei et al. (2022) free-form single-path action - - -
SaP Press et al. (2022) structured-form single-path action - - -
ScP Wang et al. (2022) free-form multi-path action - - -

SPP Wang et al. (2023b) free-form multi-path action - - -
Reflexion Shinn et al. (2023) free-form single-path action short memory verbal/numerical-based Learn to exploit

EXE (Ours) free-form single-path action short memory verbal-based Learn to explore and exploit

Table 1: Summary of language agents in actor-critic-learner framework.

In recent months, numerous studies have emerged that consider pre-trained large language models
as agents for decision-making processes. Several of these works (Huang et al., 2022; Kojima et al.,
2022; De Peuter & Kaski, 2023) enable language agents to perform zero-shot decision-making tasks.
For instance, Kojima et al. (2022) employs a trigger phrase such as “think step by step” to prompt
language agents.

In addition to these, a multitude of research endeavors (Wei et al., 2022; Gao et al., 2023; Press et al.,
2022; Wang et al., 2022; 2023b;c; Sun et al., 2023; Shinn et al., 2023) seek to develop more intricate
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prompts, allowing language agents to execute few-shot decision-making tasks. Wei et al. (2022);
Gao et al. (2023); Press et al. (2022) formulate specific chain-of-thought and programming few-shot
examples to guide the language model’s appropriate behavior. Wang et al. (2022; 2023b) propose
diverse action selection strategies to augment decision quality through multiple-time queries.

Distinct from the aforementioned studies, Wang et al. (2023c); Sun et al. (2023); Shinn et al. (2023)
introduce innovative architectures to facilitate enhanced reasoning and decision-making capabilities
for agents, as well as improved action execution with feedback.

C EXPERIMENTS DETAILS

C.1 ENVIRONMENTS DETAILS

We summarize the environments of TextGym. The grounding process is subject to the criteria that
minimal human intervention to make the grounding scalable and objective. To fulfill this criterion,
we employ GPT-4 (OpenAI, 2023) for the grounding procedure. OpenAI Gym provides exhaustive
documentation elucidating the essential concepts of each environment. Initially, we develop a code
template (Appendix C.1) predicated on the CartPole-v0 environment and introduce code review
to make sure the code is objective. This template encompasses three classes: ObsTranslator,
GameDescriber, and TransitionTranslator. The ObsTranslator is responsible for
converting each observation into a textual description, while the GameDescriber offers an intro-
duction and delineates the objectives of the game. The TransitionTranslator grounds the
observation, action, reward, and consecutive observation in a textual format. Upon completion of the
code template, we adhere to the generation process illustrated in Figure 7 to ground additional en-
vironments. For each environment, we supply GPT-4 with the pertinent documentation and instruct
it to generate the translation code in Python format. Utilizing our manually crafted code exam-
ple, GPT-4 generates the remaining environments in a consistent manner. This grounding ensures
that our environments obviate the need for GPT-4 queries during sampling, substantially reducing
temporal and financial expenditures. In essence, we manually craft one environment and execute a
single query for each environment translation, rendering our grounding process both efficacious and
economical. To ground each environment, we first devise an example translation code as follows.
Then we adopt GPT-4 to verify the code does not introduce additional information compared to the
original document. After that, GPT-4 is further taken to ground all other environments as Figure 7.

Listing 1: The language grounded CartPole-v0 example.
class ObsTranslator:

def __init__(self,):
pass

def translate(self, state):
cart_position, cart_velocity, pole_angle, pole_angular_velocity =

state
cart_direction = "right" if cart_velocity > 0 else "left"
pole_direction = "right" if pole_angular_velocity > 0 else "left"
res = (f"The cart is positioned at {cart_position:.3f}, with a

velocity of {abs(cart_velocity):.2f} towards the {
cart_direction}. "

f"The pole is tilted at {abs(pole_angle):.2f} radians,
rotating at {abs(pole_angular_velocity):.2f} radians per
second towards the {pole_direction}.")

return res

class GameDescriber:
def __init__(self):

pass

def describe_goal(self):
return "The goal is to keep the pole balanced upright for as long

as possible."

def describe_game(self):
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Description
The MountainCar-v0 is a deterministic MDP…
Observation Space
The observation is a np.ndarray with shape (2,) …

Please use Python code to translate the
environment into an environment described in
the text based on the above task document. I can
solve tasks using an LLM that handles text input.
Below is a Python code template…

Grounded Cart Pole-V0 Code:
class BasicLevelTranslator:
class GameDescriber:

Grounded Mountain Car Code:
class BasicLevelTranslator:
class GameDescriber:

Document

Instruction

Code Snippet

Response

C
o

n
tr

o
l

B
o

x 
2D

Toy Text

Figure 7: Illustration of grounding process. The left side of the figure presents sample target ground-
ing environments, while the right side details the grounding process. Specifically, GPT-4 is pro-
vided with the target environment document, general grounding instructions, and a code example
for grounded results in another environment. The code generated by GPT-4 is then considered the
grounded output.

return "In the CartPole game, you control a cart that moves along a
horizontal track. There is a pole " \
"standing upright on the cart. The goal of the game is to keep

the pole balanced upright by moving the " \
"cart left or right. The game ends if the pole tilts too far

from the vertical position or if the cart " \
"moves too far from the center of the track. The longer you

can keep the pole balanced, the higher your score." \
"Note that when the Cart Position is out of the (-2.4, 2.4)"

zone or the Pole Angle is out of the zone (-.2095, .2095)
"\

", the round ends and the game is lost. "

def describe_action(self):
return "Your Next Move: \n Please choose an action. Type ’1’ to

push the cart to the left or ’2’ to push the cart to the right.
Ensure you only provide the action number from the valid

action list, i.e., [1, 2]."

class TransitionTranslator(ObsTranslator):
def translate(self, infos, is_current=False):

descriptions = []
if is_current:

state_desc = ObsTranslator().translate(infos[-1][’state’])
return state_desc

for i, info in enumerate(infos):
assert ’state’ in info, "info should contain state information"
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state_desc = ObsTranslator().translate(info[’state’])
action_desc = f"Take Action: Push {’right’ if info[’action’] ==

2 else ’left’} ({info[’action’]})."
reward_desc = f"Result: Reward of {info[’reward’]}, "
next_state_desc = ObsTranslator().translate(info[’next_state’])
descriptions.append(f"{state_desc}.\n {action_desc} \n {

reward_desc} \n Transit to {next_state_desc}")
return descriptions

Environment Task Challenge Difficulty
Acrobot-v1 Swing a robot arm Complex dynamic Moderate
Blackjack-v1 Play Blackjack Stochastic dynamic Easy to moderate
CartPole-v0 Balance a pole on a cart Inherent instability Easy to moderate
CliffWalking-v0 Navigate in a grid world Partial-Observe Easy
FrozenLake Navigate in a slippery world Partial-Observe and stochastic dynamic Hard
LunarLander-v2 Land a lunar module Complex states and dynamic Hard
MountainCarContinuous-v0 Drive a car up a hill exploration Moderate
MountainCar-v0 Drive a car up a hill Sparse reward Moderate
Taxi-v3 Pick up and drop off passengers Complex states, partial observe and stochastic environment Hard

Table 2: Summary of OpenAI Gym environments.

C.2 SCENARIO DETAILS

This section presents the details of each scenario. First, we propose the pseudocodes.

Algorithm 2 Pseudocode for Lv1:Zero Guidance and Lv5:Expert Guidance

Initialize agent M , knowledge memory Mk = ∅ for Level 1 while Mk = {expert− prompts}.
Update agent M .update(Mk) ▷ Update agents with the knowledge
Collect a trajectory τ with M in the environment. ▷ Rollout

Algorithm 3 Pseudocode for Lv2:Suboptimal Guidance and Lv4:Optimal Guidance

Initialize agent M , knowledge memory Mk = ∅, experiences τ1, . . . , τN . ▷ τ is sub-optimal
(optimal) trajectory
for episode = 1 to N do

Append τ to Mk. ▷ Update the knowledge
Update agent M .update(Mk) ▷ Update agents with the knowledge

end for
Collect a trajectory τ with M in the environment. ▷ Rollout

C.3 DETAILS OF LANGUAGE AGENTS

We set the temperature as 0 to reduce the uncertainty raised by the LLM. It should be noted that
GPT-3.5/4 has unavoidable stochastic even set the temperature as 0. For EXE, its pseudocode in
Lv3 scenario is shown in Algorithm 4.

17



Under review as a conference paper at ICLR 2024

Algorithm 4 Pseudo-code for Explore-Exploit Guided Language Agent (EXE) in Lv3.

Initialize agent M (which consists of actor Ma, critic Mc, learner Ml) and knowledge memory
Mk = {game document}.
for episode = 1 to N do

if Mk = {game document} then
suggestion←Ml(Mk) ▷ Learning without experience
Update actor Ma.update(suggestion) ▷ Update agents with the knowledge
Collect a trajectory τ with Ma in the environment. ▷ Rollout

else
suggestion, insight←Ml(Mk) ▷ Learning with experience
Update actor Ma.update(suggestion, insight) ▷ Update agents with the knowledge and

insight
Collect a trajectory τ with Ma in the environment. ▷ Rollout

end if
evaluation←Mc(τ, suggestion) ▷ Evaluation
Append (τ, evaluation) to Mk. ▷ Update Knowledge

end for

For Reflexion, its algorithm is shown below and the critic uses the cumulative reward as the evalua-
tion results.

Algorithm 5 Pseudocode for Reflexion in Lv3.

Initialize agent M (which consists of actor Ma, critic Mc, learner Ml) and knowledge memory
Mk = {game document}.
for episode = 1 to N do

Update actor Ma.update(Mk) ▷ Update agents with the knowledge
Collect a trajectory τ with Ma in the environment. ▷ Rollout
evaluation←Mc(τ) ▷ Evaluation
suggestion←Ml(Mk, τ, evaluation) ▷ Learning with experience
Append (suggestion) to Mk. ▷ Update Knowledge

end for

For other agents that have no critic or learner, they follow the implementation of Reflexion but with
a different learner prompt:

Listing 2: Prompt of the Defual Learner
You will be given the history of a past experience in which you were

placed in an environment and given a task to complete. Summarize
your trajectory and reasoning relation between your policy and the
obtained result. Here are two examples:

{FEW_SHOT_EXAMPLES}
{game description}, {goal description}
{traj}
Memory from past attempts:

Trial 1: [..]
Trial 2: [..]

Summary:

C.4 DETAILS OF PPO AGENT

This section primarily elaborates on the implementation of PPO within OpenAI Gym. In our experi-
ment, we try Tianshou (Weng et al., 2022) in almost every environment and Taxi-v3 environment
with stable-baselines3 (Raffin et al., 2021), and we employed a custom neural network architecture,
The PPO architecture consists of the following components:

Policy Network: A sequential neural network with a linear layer (input features: observation space
(obs space), output features: 64, bias: enabled), followed by a hyperbolic tangent activation
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function, another linear layer (input features: 64, output features: 64, bias: enabled), and another
hyperbolic tangent activation function.

Value Network: A sequential neural network with a linear layer (input features: 2, output features:
64, bias: enabled), followed by a hyperbolic tangent activation function, another linear layer (input
features: 64, output features: 64, bias: enabled), and another hyperbolic tangent activation function.

Action Output Network: A linear layer with input features equal to 64, output features equal to the
number of actions (action num), and bias enabled (bias=True).

Value Output Network : A linear layer with input features equal to 64, output features equal to 1,
and bias enabled (bias=True).

Regarding the model size, the total number of trainable parameters in our policy model is 8, 964
when the action number is 3, and the input dim is 1. This number was calculated by summing the
number of elements in each parameter tensor that requires gradient computation.

All our environments maintain consistency in the total number of training iterations, with 400 epochs
and 50 trajectories sampled per epoch. We conducted a grid search for the learning rate, including
{1e − 3, 1e − 4, 1e − 5}, discount factor, including {0.99, 0.95, 0.9}, weight for entropy loss, in-
cluding {0.01, 0.05, 0.1}, and the number of repeat times for policy learning, including {10, 20}.

C.5 EVALUATION DETAILS

For Blackjack-v1 which possesses strong uncertainty, we evaluate all agents for 100 episodes
at Level 3 and 20 episodes at the other levels. We utilize the consistency between the agent’s actions
(encompassing ”hit” and ”stick”) in each episode and the optimal actions (Sutton & Barto, 2018)
as the reward mechanism. Specifically, when the two actions align, a reward of 1 is assigned; con-
versely, when they are inconsistent, a reward of 0 is given. Subsequently, the cumulative reward
across 20 episodes is employed as the agent’s overall reward within the blackjack environment.
Under the conditions of Lv3, we divide the 100 episodes into 5 groups, with each group’s cumu-
lative reward functioning as an individual episode’s reward for Lv3, which is analogous to other
environments. For other environments, we take 5 seeds to evaluate each agent in a scenario of the
environment. For Lv2 and Lv4 scenarios, each agent is guided by the same 5 trajectories. For the
Lv3 scenario, each agent interacts with the environment with 5 episodes.

As for the solvability threshold, each environment has its own goal and we set the minimal cumu-
lative reward to obtain the final goal as the threshold. For the sota threshold, we take the best RL
performance as the SOTA. They are reported as Table 3.

Table 3: Solvability and SOTA thresholds for different environments.

Metric Blackjack-v1 CartPole-v0 CliffWalking-v0 MountainCar-Continuous-v0
Solvable Threshold 10 40 -200 0

SOTA 20 200 -13 94.53
MountainCar-v0 Acrobot-v1 Taxi-v3 LunarLander-v2

Solvable Threshold -200 -200 0 120
SOTA -87 -72 7.52 261

D EXTENSIVE RESULTS

D.1 ABSOLUTE PERFORMANCE COMPARISONS

See Figure 8 and Table 10.

D.1.1 ECONOMIC AND TIME COSTS

We statistic the time and economic costs for our experiments that contribute to Table 10 in Table 4,
5 and. The time cost is caused by the frequency limit and latency in access to OpenAI API. The
economic cost is caused by the service of OpenAI API. As a summary, the experiments in Table 4
consume about 64 hours and 2614 dollars.
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Figure 8: Radar graphs for absolute value comparison, which shows language agents’ performances
in different scenarios. For better representation, we clip the worst performance to −500.

Table 4: The total costs on time and economic for each environment.

Game Time Spend(s) Economic Cost ($)
Acrobot-v1 49830 565

Blackjack-v1 179 49
CartPole-v0 8000 74

CliffWalking-v0 23616 258
LunarLander-v2 38309 415
MountainCar-v0 35979 371

MountainCarContinuous-v0 41571 390
Taxi-v3 36072 489

Total 233556 2611

D.2 EXE WITHOUT THE GAME DESCRIPTION

Here we show the performance comparison between EXE and EXE-w/o doc to verify that GPT-
3.5 has a priori knowledge of the gym environment, and the results are shown in Table 6. From the
table, it can be observed that in Acrobot-v1, CliffWalking-v0, LunarLander-v2, and
Taxi-v3, both methods fail to achieve satisfactory results. Comparatively, in MountainCar-v0,
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Table 5: The total time spent on each decider.

Decider Time Spend(s)
CoT 18115

EXE (Ours) 12161
Naive-Actor 9291

Reflexion 12387
SPP 63095

Self-Ask 44640
Self-Consistency 64743

Total 224432

Table 6: Performance on different environments at Lv3 with 5 successive episodes using EXE and
EXE without game description (EXE-w/o doc). The results of the final episode are shown here.
The first value in each cell is the maximum and the second is the median of different trials.

Game EXE EXE-w/o doc
Acrobot-v1 -200/-200 -200/-200

Blackjack-v1 17/16 19/15
CartPole-v0 92/66 41/35

CliffWalking-v0 -118/-127 -101/-794
LunarLander-v2 -656/-735 -571/-590
MountainCar-v0 -116/-200 -200/-200

MountainCarContinuous-v0 91/88 -1/-1
Taxi-v3 -200/-227 -578/-731

CartPole-v0 and MountainCarContinuous-v0, due to the inability of EXE-w/o doc to
acquire pertinent knowledge about the game, its performance is markedly inferior to that of EXE.
However, in Blackjack-v1 setting, as GPT-3.5 possesses relevant prior knowledge, the disparity
between EXE and EXE-w/o doc is not pronounced. We shall proceed to analyze the two environ-
ments of MountainCarContinuous-v0 and Blackjack-v1 individually.

It is important to note that in the EXE-w/o doc, we obscure or attenuate the environment’s game
description and goal description but retain the action description, allowing the knowledge of the
valid action space to be preserved.

D.2.1 CASE STUDY: MOUNTAINCARCONTINUOUS-V0

This section analyzes the result of EXE and EXE-w/o doc in MountainCarContinuous-v0.
The prompts of the environment for EXE and EXE-w/o doc are shown below.

The prompts of the environment for EXE in MountainCarContinuous-v0
Now you are in the task. In the Mountain Car game, you control a car

placed stochastically at the bottom of a sinusoidal valley. The only
possible actions are the accelerations between -1 and 1 that can be
applied to the car in either direction. The goal of the game is to
strategically accelerate the car to reach the goal state on top of
the right hill as quickly as possible. The episode ends if either the
car reaches the goal position on top of the right hill or the length
of the episode is 200. Your Next Move:

Please select a numerical value within the range of [-1,1], which
represents the directional force being applied to the car. The action
will be limited to the range of [-1,1], and then multiplied by a

power of 0.0015. The goal is to reach the flag placed on top of the
right hill as quickly as possible.

The generated insights and suggestions of EXE in MountainCarContinuous-v0
The insights of the game are listed below: The key information that can

be exploited to improve the performance of the player includes
knowledge of the car’s position and velocity, trying different
actions and observing their effects on the car’s position and
velocity, using learned effective actions to move towards the flag as
quickly as possible, and balancing exploration and exploitation. The
player should also aim to improve their policy behavior by making
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more informed decisions and finding a better balance between
exploration and exploitation. Additionally, the player should aim to
achieve a higher final score in order to improve their overall
performance.

The suggestions are listed below:1. The player needs to know the car’s
position and velocity to determine the best way to move the car
towards the flag on top of the right hill. They also need to know
which actions are effective in moving the car towards the flag.

2. The player should try different actions and observe how they affect
the car’s position and velocity. They can also try combining
different actions to see if they work better together.

3. Once the player has learned which actions are best, they should use
them to move the car towards the flag as quickly as possible. They
can also try to anticipate the car’s movements and adjust their
actions accordingly.

4. The player should balance trying new actions to learn more about the
game with using the actions they have learned are effective to
improve their performance. They should also try to avoid taking
actions that have not been effective in the past.

The prompts of the environment for EXE-w/o doc in MountainCarContinuous-v0
Now you are in the task.
Your Next Move:
Please select a numerical value within the range of [-1,1], which

represents the directional force being applied to the car. The action
will be limited to the range of [-1,1], and then multiplied by a

power of 0.0015.
Your goal is to maximize the cumulative rewards for the game.

The generated insights and suggestions of EXE-w/o doc in MountainCarContinuous-v0
The insights of the game are listed below: The key information that can

be exploited to improve the performance of the player includes
understanding the movement of the car and how force application
affects it, avoiding obstacles and reaching the end of the track to
earn rewards, experimenting with different values of force and paths,
observing other players/experts, adjusting force application and

timing, balancing exploration and exploitation, learning from
mistakes, and maximizing rewards through exploration and exploitation
. The player should also try to take risks while avoiding unnecessary
risks that could lead to failure. The policy behavior should involve
trying different values of force, exploring different paths, and

adjusting force application and timing to avoid obstacles and reach
the end of the track faster. The player should also balance
exploration and exploitation to maximize rewards and learn from their
mistakes to improve their performance.

The suggestions are listed below:1. Understanding how the car moves and
how force affects its movement, as well as how to avoid obstacles and
reach the end of the track to earn rewards, is critical to determine
the optimal policy.

2. The player should try different values of force and explore different
paths to see how the car responds and learn from their mistakes. They
can also observe how other players or experts play the game to gain

insights.
3. The player can exploit the information obtained by adjusting their

force application and timing to avoid obstacles and reach the end of
the track faster. They can also try to earn more rewards by taking
risks and exploring new paths.

4. The player should balance exploration and exploitation by trying new
strategies while also sticking to what has worked in the past. They
should not be afraid to take risks, but also not take unnecessary
risks that could lead to failure.

22



Under review as a conference paper at ICLR 2024

From the aforementioned case study, it can be observed that due to the inability of the EXE-w/o
doc to ascertain the game description and the goal description, it consequently fails to generate
accurate and effective insights and suggestions. This, in turn, results in the actor being unable to
make well-informed judgments.

D.2.2 CASE STUDY: BLACKJACK-V1

This section analyzes the result of EXE and EXE-w/o doc in the environment Blackjack-v1.
The prompts of the environment for EXE and EXE-w/o doc are shown below.

The prompts of the environment for EXE in Blackjack-v1
Now you are in the task.
In the game of Blackjack, the main aim is to obtain a higher card sum

than the dealer, but not higher than 21. Face cards count as 10,
numerical cards hold their value, and aces can count either as 1 or
11. The game starts with the dealer having one face-up and one face-
down card, while the player has two face-up cards. The player can
either choose to ’hit’ (add a card) or ’stick’ (stop receiving cards)
. The game ends when the player or the dealer busts or when both the
player and dealer are finished drawing cards.

Your Next Move: \n Please choose an action. Type ’1’ to stick (stop
receiving cards) or ’2’ to hit (add a card). Ensure you only provide
the action number from the valid action list, i.e., [1, 2] in json
format.

The goal is to beat the dealer by obtaining cards that sum to closer to
21, without going over 21.

The current game state and the corresponding response of EXE in Blackjack-v1
Current Game State:
The player’s current sum is 14, the dealer is showing 10, and the player

has a usable ace: no.

The GPT response is: Based on the current game state, the player has a
total card value of 14, which is not very close to 21. The dealer is
showing a 10, which is a strong card. Since the player does not have
a usable ace, they cannot use it to improve their hand.

In this situation, the player should consider taking another card (action
2) to try and improve their hand. However, they should be careful

not to exceed 21 and bust.

Therefore, the optimal action for the player in this situation would be
to take another card (action 2).

Case Study: The prompts of the environment for EXE-w/o doc in Blackjack-v1
Now you are in the task.
Your Next Move: \n Please choose an action. Type ’1’ to stick (stop

receiving cards) or ’2’ to hit (add a card). Ensure you only provide
the action number from the valid action list, i.e., [1, 2] in json
format.

Your goal is to maximize the cumulative rewards for the game.

Case Study: The current game state and the corresponding response of EXE-w/o doc in
Blackjack-v1

Based on the current game state, the player’s total sum is 14, and the
dealer is showing 10. The player has two options: hit or stick.

If the player chooses to hit, they will receive another card. The new
card could be any value from 1 to 10. If the new card is a 7 or
higher, the player will bust and lose the game. If the new card is a
6 or lower, the player will have a chance to improve their hand.
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If the player chooses to stick, they will stop receiving cards and wait
for the dealer to reveal their hand. The dealer will then draw cards
until their total sum is 17 or higher. If the dealer busts, the
player wins. If the dealer’s total sum is higher than the player’s,
the player loses. If the dealer’s total sum is equal to the player’s,
the game is a tie.

Based on the current game state, the player’s best option is to hit. This
is because the player’s total sum is only 14, which is not a strong

hand. By hitting, the player has a chance to improve their hand and
get closer to 21 without busting.

Therefore, the optimal action for the player to take is to choose action
number 2, which is to hit.

The output should be formatted as a JSON instance that conforms to the
JSON schema below:

{"action": 2}

From the aforementioned case studies of Blackjack-v1, it is evident that GPT-3.5 possesses
prior knowledge pertinent to Blackjack-v1. Regardless of whether users provide a game de-
scription or goal description, the EXE method is able to execute superior actions in response.

D.3 EXE IN MORE ENVIRONMENTS

We have accomplished the translation of the FrozenLake-v1 environment and conducted experi-
ments using EXE Lv3 on it, with each trial consisting of five successive episodes. The performance
is illustrated in the following table 7. Evidently, EXE Lv3 is unable to resolve the FrozenLake-
v1 environment well.

Table 7: The performance of EXE with 5 successive episodes using GPT-3.5 at Level 3 in the
FrozenLake-v1 environment. The first value in each cell is the median of different seeds and the
value inside the parentheses represents the interquartile range while the last value is the maximum
value.

Episode 1 Episode 2 Episode 3 Episode 4 Episode 5
EXE 0(0)/0 0(0)/0 0(0)/0 0(0)/0 0(0)/0

We attribute the failure to the inherent randomness of the FrozenLake-v1 environment, where
the agent has a certain probability of moving in the wrong direction and falling into a hole, thereby
ending the round of the game. Consequently, EXE’s exploration fails to acquire any information
about the target point, making it unable to provide advantageous suggestions for the agent’s actions.

D.4 MISSING CASE STUDIES

In this section, we will present the performance differences of representative language agents in var-
ious environments, stemming from domain knowledge controlling or different architectural designs.
We will delve into a detailed analysis through typical cases.

D.4.1 BLACKJACK-V1

In this section, we analyze the performances of language agents in Blackjack-v1. From Ta-
ble 10, agents in Lv1 achieve great performance and their performances can hard to be improved by
injecting knowledge (Lv2 to Lv5). The main reason behind this is that GPT-3.5 may have enough
knowledge on accomplishing this task and inappropriate knowledge may mislead it.

Lv1 versus Lv5: For CoT and Naive Actor, their maximal performances downgrade more than 5.
Take CoT as an example:
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Case Study: The expert few-shot examples in Lv5 for CoT in blackjack-v1
Question:
State description: Current Game State: The player’s current sum is 12,

the dealer is showing 6, and the player has a usable ace: no.
Goal description: The goal is to beat the dealer by obtaining cards that

sum to closer to 21, without going over 21.
Action description: Your Next Move: Please choose an action. Type ’1’ to

stick (stop receiving cards) or ’2’ to hit (add a card). Ensure you
only provide the action number from the valid action list, i.e., [1,
2].

Answer:
In the specific case where the player’s hand is 12 and the dealer’s

visible card is 6, according to the game rules, the dealer must have
at least 17 points in their hand to stop taking another card. If the
dealer’s card value is relatively small, the probability of the
dealer taking another card is relatively high. If the player takes
another card in this situation, there is a risk of exceeding 21
points, so the optimal strategy is to stick (stop receiving cards).

So the final answer is: stick (stop receiving cards) (Action 1).

Example 2:
Question:
State description: Current Game State: The player’s current sum is 17,

the dealer is showing 10, and the player has a usable ace: no.
Goal description: The goal is to beat the dealer by obtaining cards that

sum closer to 21, without going over 21.
Action description: Your Next Move: Please choose an action. Type ’1’ to

stick (stop receiving cards) or ’2’ to hit (add a card). Ensure you
only provide the action number from the valid action list, i.e., [1,
2].

Answer:
The player’s current sum of cards is 17, while the dealer is showing a

10, and the player does not have a usable ace. The objective is to
have a card sum closer to 21, without exceeding that value, to beat
the dealer. Since the player’s sum is 17 and there is a risk of going
over 21 if the player hits, it might be wiser to stick with the

current hand and not take an additional card to avoid the risk of
busting.

So the final answer is: stick (stop receiving cards) (Action 1).

These examples are correct but CoT gets misled as follows:

Case Study: The decision of CoT in Lv5 for blackjack-v1
Prompt: {expert few-shot examples}
The player’s current sum is 14, the dealer is showing 1, and the player

has a usable ace: no.
Please select an action based on the current game state and the

information you get. You must select the appropriate action from the
given action descriptions and cannot refrain from taking action or
performing any prohibited actions. Here is the action description
below:

Your Next Move: \n Please choose an action. Type ’1’ to stick (stop
receiving cards) or ’2’ to hit (add a card). Ensure you only provide
the action number from the valid action list, i.e., [1, 2].

...

Response: Chain-of-Thought Method:

1. The player’s current sum is 14, and the dealer is showing 1.
2. According to the rules of Blackjack, the dealer must take another card

if their visible card is less than 17.

25



Under review as a conference paper at ICLR 2024

3. If the dealer takes another card, there is a high probability that
they will exceed 21 and bust.

4. If the player takes another card, there is a risk of exceeding 21
points, so the optimal strategy is to stick (stop receiving cards).

5. Therefore, the optimal action for the player is to stick (stop
receiving cards).

Output:
‘‘‘
{"action": 1}

The optimal action should be to hit (Action 2), not to stick (Action 1). The provided response is
conservative and does not favor hitting in this scenario to potentially improve the hand. Compared
to conservative reasoning, CoT in Lv1, which has no expert guidance can correctly make decisions
in such a scenario:

Case Study: The decision of CoT in Lv1 for blackjack-v1
The player’s current sum is 14, the dealer is showing 1, and the player

has a usable ace: no.

Chain of Thought:
- The dealer is showing a 1, which means there is a high probability that

the dealer’s next card will be a 10, resulting in a total of 21.
- The player’s current sum is 14, which is a low number and far from 21.
- The player does not have a usable ace, which means the player cannot

use it to improve their hand.
- Therefore, the best course of action is to hit (add a card) in hopes of

getting closer to 21 without going over.

Action: 2

This shows the challenge of expert guidance: correct examples may lead to unexpected performance
downgrades.

D.4.2 CARTPOLE-V0

In the Cartpole-v0 environment, the EXE algorithm outstrips competing methods in the Lv1
scenario with respect to median performance metrics, as evidenced in Figure 9. The primary distinc-
tion of EXE lies in its unique paradigm of learning without prior experience. This approach presents
initial heuristic suggestions to the agent, which are devoid of extensive historical data. Such prelim-
inary guidance, although rudimentary, does not necessitate a foundational dataset. Therefore, the
observed enhancement in performance with EXE under the Lv1 scenario could be primarily driven
by the generative reasoning step it induces for the agent.

Case Study: The suggestion in prompt of EXE in Lv1 for Cartpole-v0
The suggestions are listed below: 1. The player needs to understand that

the goal of the game is to keep the pole balanced upright by moving
the cart left or right. They should also know that the game ends if
the pole tilts too far from the vertical position or if the cart
moves too far from the center of the track. It’s important to pay
attention to the position of the cart and the angle of the pole to
make the right decisions.

2. The player should try different actions and observe the results to see
what works best. They can also try to keep track of their score and

see how it changes with different actions.

3. Once the player has gathered enough information, they can use it to
make better decisions in subsequent episodes. For example, if they
notice that moving the cart to the left tends to keep the pole
balanced for longer, they can try to do that more often.
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4. Balancing exploration and exploitation is important to improve
performance. The player should try different actions to explore the
environment and gather information, but also use the information they
have already obtained to exploit what they know works well. It’s

important to find a balance between trying new things and sticking
with what has worked in the past.

Figure 9: The performance of different deciders in CartPole-v0 game at level 1

D.4.3 CLIFFWALKING-V0

A comparison of the performance between EXE and Reflexion at Lv3 We conducted 5 con-
secutive experiments in the CliffWalking-v0 environment for EXE and Reflexion in the Lv3
scenario, and the performance is shown in Figure 5. The pink dashed line represents the solvable
threshold (−200), the blue solid line denotes the maximum value line, the orange solid line sig-
nifies the median line and the green solid line corresponds to the mean line. As can be observed,
with the increase of episodes, both the median and mean of the EXE show growth. In contrast, the
performance of Reflexion does not exhibit any improvement as the episodes progress.

Table 8: The number of goal-visiting of EXE and Reflexion at Lv3 with 5 successive episodes using
GPT-3.5. The first value in each cell is the number of goal visits and the second is the number of
trials.

Episode 1 Episode 2 Episode 3 Episode 4 Episode 5
EXE 5/5 4/5 3/5 5/5 5/5

Reflexinon 0/5 0/5 0/5 0/5 0/5

Additionally, we have also compiled the number of goal-visiting of EXE and Reflexion at Lv3 with
5 successive episodes. From Table 8, it can be discerned that under the GPT-3.5, EXE excels at
exploration, thus effectively locating the target points, while Reflexion’s exploration efficiency is
considerably less impressive. The case studies of EXE and Reflexion are shown below.

Case Study: The previous suggestion, summary, insight and current suggestion generated by GPT-
3.5 using EXE at Lv3
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The suggestion response is: 1. Critical knowledge for determining the
optimal policy includes the layout of the grid world, the location of
cliffs and the goal, safe actions and actions leading to cliffs or

boundaries, and the penalties associated with each action.
2. The player should try different actions and observe the rewards

received to explore the grid world. They can also try new actions to
acquire information while choosing actions that have been successful
in the past to achieve higher performance.

3. The player can exploit the information obtained by choosing actions
that have been successful in the past and avoiding actions that lead
to cliffs or boundaries. They can also use the optimal policy to
navigate towards the goal while avoiding cliffs.

4. The player should balance exploration and exploitation by trying new
actions to acquire information while also choosing actions that have
been successful in the past to achieve higher performance. They
should also use the optimal policy to navigate towards the goal while
avoiding cliffs.

The summary is: 1. {
"grid_size": "4x12",
"cliff_locations": [

{"x": 3, "y": 2},
{"x": 3, "y": 1},
{"x": 2, "y": 1},
{"x": 1, "y": 3},
{"x": 1, "y": 4},
{"x": 2, "y": 4}

],
"goal_location": {"x": 0, "y": 11},
"safe_actions": [1, 2, 3, 4],
"penalties": {

"cliff": -100,
"boundary": -1,
"safe": -1

}
}
2. The policy behavior is a combination of exploration and exploitation.

The player tries different actions to explore the grid world and
acquire information, while also choosing actions that have been
successful in the past to achieve higher performance. The player also
uses the optimal policy to navigate towards the goal while avoiding

cliffs. However, the player’s performance is poor, as they do not
reach the goal within 200 steps and receive a performance score of
-3863.

The insight response is: 1. Layout of the grid world, including the
location of cliffs and the goal.

2. Safe actions and actions leading to cliffs or boundaries.
3. Optimal policy for navigating towards the goal while avoiding cliffs.
4. Balancing exploration and exploitation to acquire information and

achieve higher performance.
5. Penalties for cliffs, boundaries, and safe actions.
6. Total reward received and performance score.
To improve performance, the player should focus on learning the optimal

policy and safe actions, while avoiding cliffs and boundaries. They
should also balance exploration and exploitation to acquire
information and achieve higher performance. Additionally, they should
aim to receive a higher total reward and performance score.

The suggestion response is: 1. Critical knowledge for determining the
optimal policy includes the layout of the grid world, the location of
cliffs and the goal, safe actions and actions leading to cliffs or

boundaries, and the penalties associated with each action.
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2. The player should try different actions to explore the grid world and
observe the rewards received. They can also use trial and error to
find safe paths to the goal while avoiding cliffs.

3. The player can exploit the information obtained by choosing actions
that have been successful in the past and using the optimal policy to
navigate towards the goal while avoiding cliffs.

4. The player should balance exploration and exploitation by trying new
actions to acquire information while also choosing actions that have
been successful in the past to achieve higher performance. They
should also use the optimal policy to navigate towards the goal while
avoiding cliffs.

Case Study: The plan generated by GPT-3.5 using Reflexion at Lv3
In this environment, my plan was to move right to avoid the cliff.

However, I was stuck in a loop in which I continually tried to move
down instead of moving right. In the next trial, I will move right if
I am stuck in a loop again.

It is evident that compared to Reflexion, EXE extracts a greater amount of information, offering
more detailed guidance.

GPT-4 VS GPT-3.5 Although EXE is capable of extracting some useful information, the limita-
tions in the performance of GPT-3.5 cause it to be prone to hallucinations and result in incomplete
information extraction. Consequently, the insights and suggestions provided by EXE may be some-
what misleading, leading to a certain degree of deviation in the agent’s action selection and hindering
it from reaching optimal performance. Therefore, we employ GPT-4 to evaluate its performance in
the CliffWalking-v0 environment.

We executed 5 iterations each for EXE and Reflexion within the GPT-3.5, allocating 200 steps per
iteration. In contrast, under the GPT-4 environment, merely 2 iterations were conducted, as the
decision-making component effectively resolved the problem within the second iteration. Addition-
ally, we capped the STEP parameter at 50 steps, owing to the elevated computational cost associated
with GPT-4. The performance and the cost per step are shown in Table 9. As we can see, using
GPT-4 can greatly improve the performance of EXE and Reflexion.

We compiled the occurrences of EXE and Reflexion visiting the goal position during the first round
of exploration under different versions of GPT. As can be seen, regardless of whether it is GPT-3.5
or GPT-4, EXE can locate the goal position during the initial exploration. In contrast, Reflexion
does not perform as effectively when navigating to the goal position under the GPT-3.5 version. It
is only with the GPT-4 version that Reflexion exhibits a 50% probability of discovering the goal
position (see the second row of Table 9).

Table 9: The performance of EXE and Reflexion in the CliffWalking-v0 environment when
using GPT-4 and GPT-3.5-turbo at Lv3. The first value in each cell is the maximum and the second
is the median of different trials.

EXE-GPT3.5 Reflexion-GPT3.5 EXE-GPT4 Reflexion-GPT4
Performance -118/-127 -19505/-19901 -13/-13 -13/-50

Goal found times 5/5 0/5 4/4 2/4
Cost(Per Step) 0.003 0.008 0.06 0.05

Case Study: The previous suggestion, summary, insight and current suggestion generated by GPT-4
using EXE at Lv3
The suggestion response is: 1. Important knowledge:

- Starting position
- Goal position
- Cliff locations
- Safe paths

2. Exploration in the next episode:
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- Start by moving carefully, one step at a time
- Try different directions to find safe paths
- Remember cliff locations to avoid them in the future

3. Exploit information:
- Use the safe paths found in the previous episode
- Avoid cliffs and dangerous areas
- Move towards the goal using the shortest path

4. Balance exploration and exploitation:
- Begin by exploring new paths to find the shortest route
- Once a safe path is found, exploit it to reach the goal quickly
- If stuck, explore a new direction but remember to avoid cliffs.

The summary response is: 1. {"Starting position": "(3, 0)", "Goal
position": "(3, 11)", "Cliff locations": ["(3, 1)"], "Safe paths":
["(2, 0)", "(2, 1)", "(2, 2)", "(2, 3)", "(2, 4)", "(2, 5)", "(2, 6)
", "(2, 7)", "(2, 8)", "(2, 9)", "(2, 10)", "(2, 11)", "(1, 11)",
"(0, 11)", "(0, 10)", "(0, 9)", "(0, 8)", "(0, 7)", "(0, 6)", "(0, 5)
", "(0, 4)", "(0, 3)", "(0, 2)", "(0, 1)", "(1, 1)", "(1, 2)", "(1,
3)", "(1, 4)", "(1, 5)", "(1, 6)", "(1, 7)", "(1, 8)", "(1, 9)", "(1,
10)"]}

2. The policy behavior involves exploring the grid world.

The insights of the game are listed below: To help the six-year-old
player improve their performance in the game, we can focus on the
following key information:

1. Starting position: The player starts at position (3, 0).
2. Goal position: The player needs to reach position (3, 11).
3. Cliff locations: There is a cliff at position (3, 1) that the player

should avoid.
4. Safe paths: There are multiple safe paths available for the player to

reach the goal, such as moving through positions (2, 0) to (2, 11) or
(1, 1) to (1, 10).

5. Policy behavior: The player should explore the grid world to find the
best path to the goal.

By understanding these key points, the player can focus on navigating
through the safe paths and avoiding the cliff while exploring the
grid world to reach the goal position.

The suggestions are listed below:1. Important knowledge:
- Remember the starting position (3, 0) and the goal position (3, 11).
- Be aware of the cliff location (3, 1) and avoid it.
- Follow the safe paths provided.

2. Exploration in the next episode:
- Start by moving up (action 1) to avoid the cliff.
- Then, move right (action 2) and follow the safe path.
- Keep exploring the safe paths and avoid cliffs.

3. Exploit the information:
- Use the safe paths to reach the goal quickly.
- Remember the steps taken in the previous episode to avoid mistakes.

4. Balance exploration and exploitation:
- Focus on following the safe paths and avoid unnecessary exploration.
- Learn from previous mistakes and make better decisions in the next

episode.

Through the above case study, we can observe that under the GPT-4 version, EXE is capable of
extracting more abundant and useful information without experiencing hallucinations. Simultane-
ously, the insights and suggestions provided by EXE in the GPT-4 are more specific and effective,
allowing the agent to reach the goal position more rapidly.

Case Study: The plan generated by GPT-4 using Reflexion at Lv3
In the previous attempt, I made a mistake by stepping into the cliff at

location (3, 1) at the beginning, which resulted in a large penalty
of -100. To avoid this mistake, I should move up first instead of
moving right. My new plan is as follows:
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1. Start at location (3, 0).
2. Move up to location (2, 0).
3. Move right along row 2, avoiding the cliffs, until reaching location

(2, 11).
4. Move down to location (3, 11), which is the goal location.

By following this plan, I should be able to reach the goal location with
a better performance score.

Similarly, we can see that under GPT-3.5, Reflexion does not generate useful plans, whereas under
GPT-4, Reflexion generates detailed and correct plans that tell the actor the optimal moves for each
step, thus allowing the actor to reach the goal point faster and gain points.

Nevertheless, during the examination of the GPT-4 version’s reflexion, we discerned that the plan
generated by the Reflexion is not entirely accurate, thus precluding the actor from obtaining sub-
stantial rewards while implementing the plan. We attribute this to an inadequate level of exploration
in the early stages of the Reflexion, thereby hindering the discovery of valuable information. The
incorrect plan generated by GPT-4 using Reflexion is shown below.

Case Study: The incorrect plan generated by GPT-4 using Reflexion at Lv3
In the previous attempt, I moved along the top row of the grid world,

then backtracked and moved along the second row. This approach was
inefficient and did not lead to the goal. In the next trial, I will
try a more direct path to the goal by moving right and up, avoiding
cliffs, and adjusting my path as needed.

Plan:
1. Start at location (3, 0).
2. Move right until reaching the last column (column 11).
3. Move up until reaching the top row (row 0).
4. If the goal is not found, adjust the path by moving left or down to

explore other areas of the grid world while avoiding cliffs.
5. Continue adjusting the path until the goal is reached or the maximum

number of steps (50) is reached.

Lv4 and Lv5 outperform other levels in CliffWalking-v0 From Table 10, with certain
deciders, agents can attain higher rewards under conditions Lv4 and Lv5 than other levels. The
primary reason is that both Lv4 and Lv5 contribute to knowledge leakage to a certain degree. For
example, in Lv4, the expert trajectories we provide allow the agent to deduce valuable information
such as the goal position. On the other hand, in Lv5, our action responses within the human ex-
amples make mention of useful data like the goal position and cliff position, thereby enabling the
agent to capitalize on this information for decision-making purposes. Here, We opt for 2 case studies
featuring Lv4 from EXE and Lv5 from CoT.

Case Study: The insight and the suggestion generated by using EXE at Lv4
The insight response is: 1. The grid size is 4x12.
2. The start position is at [3,0] and the goal position is at [3,11].
3. There are no cliff positions in the grid.
4. The optimal policy behavior is to move right repeatedly until reaching

the goal position, while avoiding cliffs and receiving small
penalties for each action taken.

5. The player’s current policy behavior is to repeatedly move right until
reaching the edge of the grid, then move down one row and repeat.

6. The player incurs a total penalty of -13.0 in all episodes.
7. In episode #3, the player’s policy behavior is slightly improved, but

still suboptimal.
8. The maximum number of actions allowed is 200.

The suggestion response is: 1. The player needs to know the location of
the cliffs and the goal, as well as the penalties for each action. It
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is also important to understand that moving towards the edge of the
grid may not always be the best strategy.

2. The player can explore the environment by trying different actions and
observing the resulting penalties. They can also try moving in

different directions to see if there are any hidden paths that lead
to the goal.

3. Once the player has obtained information about the environment, they
can use it to make better decisions. For example, they can avoid the
cliffs and take the shortest path to the goal.

4. Exploration and exploitation should be balanced by trying new actions
to gather information while also using the information already
obtained to make better decisions. The player should also be willing
to take risks and try new strategies to improve their performance..

Case Study: The response of CoT in CliffWalking-v0 at Lv5
State description:
Current Game State: The player is at location [2, 11] in the grid world.
Goal description: The goal is to navigate from the starting point to an

target which locate at (3,11), avoiding the cliff, in as few steps as
possible.

Action description: Your Next Move:
Please choose an action. Type ’1’ to move up, ’2’ to move right, ’3’ to

move down, or ’4’ to move left. Ensure you only provide the action
number from the valid action list, i.e., [1, 2, 3, 4].

Observation:
The player is at location (2, 11) in the grid world.

Chain of Thought:
The player is at the rightmost column of the grid and the goal is also at

the rightmost column. Therefore, the optimal action should be to
move down, i.e., action 3.

Action:
{"action": 3}.

From the suggestions and insights generated by EXE in Lv4, as well as the responses from CoT in
Lv5, it is evident that the agent can obtain global information pertaining to CliffWalking-v0,
which in turn facilitates superior action selection.

Self-Consistency Lv5 outperforms other deciders at Level 5 in the CliffWalking-v0 en-
vironment From Table 10, we can observe a fascinating phenomenon: under the condition of
Lv5, both the median and maximum values of Self-Consistency surpass those of other deciders.
This demonstrates that, in the CliffWalking-v0 environment, Self-Consistency can not only
achieve superior performance but also maintain excellence across multiple runs. The performance
of different deciders at Lv5 in the CliffWalking-v0 environment is depicted in Figure 10.

We attribute its outstanding performance to two aspects: on the one hand, Self-Consistency inherits
the way of thinking from CoT and the expert information of CoT at Lv5; on the other hand, Self-
Consistency employs a method that selects the action with the highest frequency after multiple
queries, thus reducing action outliers and making the choice of actions more deliberate and well-
considered. Here comes the case study with five responses to one query with Self-Consistency.

Case Study: The responses generated by using Self-Consistency at Lv5 in the CliffWalking-
v0 environment
Current Game State: The player is at location [3, 0] in the grid world.

Response 1:
Logic:
The player is currently at location (3, 0) in the grid world. Moving

right is not a valid action as there is a cliff at (3, 1...10).
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Figure 10: The performance of different deciders in CliffWalking-v0 environment at Lv5. In
the graph, the orange line represents the median value.

Moving down is the optimal action as the target is located at (3, 11)
, and there are no cliffs in the player’s neighborhood.

Output:
{"action": 3}

Response 2:
Thought process:
Since we are trying to reach the goal in as few steps as possible, we

need to choose the action that moves us closer to the goal. The goal
is at position (3, 11) which is to the player’s right side. Therefore
, we should choose action 2, i.e., move right.

Output:
{"action": 2}

Response 3:
Logic:
Since the player is at the leftmost column and there is a wall to their

left, the optimal action would be to move up (action 1). This will
keep the player away from the cliff and still allow them to make
progress towards the target.

Output:
{"action": 1}

Response 4:
Logic:
Since the player is at the leftmost position, the only valid actions are

moving up or down. Moving up will take the player closer to the
target, while moving down will take the player away from the target.
Therefore, the optimal action is to move up, i.e., action 1.

Output:
{"action": 1}

Response 5:
Thought process: Since the target is at (3,11), it is clear that the

player needs to move towards the right side of the grid. However,
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moving right from the current position (3,0) will lead the player to
fall off the cliff, which will incur a large penalty of -100.
Therefore, the player needs to move up towards row 2 to avoid the
cliff.

Answer:
{"action": 1}.

The action list is: [3, 2, 1, 1, 1]
The optimal action is: 1.

From the aforementioned response on self-consistency, it is evident that precisely due to the em-
ployment of multiple samples to select the action with the highest occurrence frequency, the agent
is capacitated to execute the accurate course of action when presented with a given state.

D.4.4 MOUNTAINCARCONTINUOUS-V0

In this section, we analyze the performances of different language agents in
MountainCarContinuous-v0. We conducted 5 consecutive experiments in the
MountainCarContinuous-v0 environment using EXE and Reflexion at Lv3, and the
resulting performance box plot is shown in Figure 6. It is evident that with the increase in episodes,
both the median and mean of the EXE method are growing, while the maximum value remains at a
relatively high figure. In contrast, the performance of Reflexion does not exhibit any improvement
as the episodes progress. The generated suggestions from EXE are presented below.

Case Study: The suggestion generated by GPT-3.5 using EXE in MountainCarContinuous-
v0 environment at Lv3
The suggestion response is: 1. The player needs to understand how the car

’s position and velocity change when they apply different amounts of
force. They should also try to figure out which direction to
accelerate in to move the car towards the goal faster.

2. The player should try different amounts of force in different
directions to see how the car responds. They can also try
accelerating in the same direction multiple times to see if it leads
to faster movement.

3. Once the player has gathered information about how the car responds to
different forces, they can use that information to make more

informed decisions about which actions to take. For example, if they
know that accelerating in a certain direction leads to faster
movement, they can exploit that knowledge by continuing to accelerate
in that direction.

4. The player should balance exploration and exploitation by trying new
actions to gather information while also using the information they
have already gathered to make more informed decisions. They should
try to find a balance between trying new things and using what they
already know to improve their performance.

The generated memory from Reflexion are presented below.

Case Study: The memory generated by GPT-3.5 using Reflexion in MountainCarContinuous-
v0 environment at Lv3
Trial #0: I will try to accelerate the car to the right hill as quickly

as possible. I will try to accelerate the car to the right hill as
quickly as possible.

Trial #1: I will try to accelerate the car to the right hill as quickly
as possible.

Trial #2: I have been trying to accelerate the car to the right hill as
quickly as possible. However, I have not been able to reach the goal
state. I should have tried to accelerate the car to the right hill as
quickly as possible while avoiding the left hill. I will try to

accelerate the car to the right hill as quickly as possible while
avoiding the left hill in the next trial.
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From the two case studies presented above, it is evident that EXE possesses the capacity to generate
considerably effective exploration strategies based on historical trajectories, such as “They can also
try accelerating in the same direction multiple times to see if it leads to faster movement.” Con-
versely, Reflexion is unable to generate accurate and useful strategies predicated on the historical
trajectories found in lengthy texts, which ultimately results in the actor’s inability to make optimal
decisions drawing from historical information.

Simultaneously, we observed that the performance of EXE Lv4 is significantly inferior to that of
EXE Lv3 in the MountainCarContinuous-v0 environment. We analyzed the suggestions provided
by EXE Lv4 which are shown below. It can be noted that the suggestions generated by EXE Lv4
are excessively broad and fail to effectively guide the agent’s action selection. We attribute the
aforementioned issues to the following factors: On the one hand, due to the limited capabilities of
GPT-3.5, it is unable to adequately summarize valuable information and conclusions from expert
trajectories or mimic expert actions for making superior choices. On the other hand, during the
generation of suggestions in EXE Lv3, various effective strategies are explored, as demonstrated
in the aforementioned case study, which can offer more effective guidance for the agent’s action
selection.

Case Study: The suggestion generated by GPT-3.5 using EXE in MountainCarContinuous-
v0 environment at Lv4
The suggestions are listed below:1. The player needs to understand that

the goal of the game is to reach the flag on top of the right hill as
quickly as possible. They also need to know that the only actions

they can take are to accelerate the car in either direction between
-1 and 1.

2. The player should try different acceleration values to see how they
affect the car’s movement. They can also observe how the car moves in
response to different actions.

3. Once the player has found a good acceleration strategy, they should
stick to it and try to optimize it. They can also try to anticipate
the car’s movements and adjust their actions accordingly.

4. The player should balance exploration and exploitation by trying new
actions to see if they improve performance, but also sticking to what
has worked well in the past. They should also pay attention to the

car’s movements and adjust their actions accordingly.

D.4.5 MOUNTAINCAR-V0

From Table 10, agents with Reflexion at Lv5 achieve great performance than any other deciders and
levels. So in this section, we analyze the performances of Reflexion in MountainCar-v0 at Lv5.

We surmise that the primary reason behind this is that at Lv5, we have provided Reflexion with past
cumulative experiences and human-generated actions along with their thought processes. However,
other deciders (such as CoT, SPP, and EXE) and levels have not furnished corresponding information,
which has led to Reflexion Lv5’s significantly superior performance in the MountainCar-v0 en-
vironment when compared to other deciders and levels. The prompt for Reflexion Lv5 is illustrated
below.

Case Study: The human few-shot example of Reflexion in MountainCar-v0 environment at Lv5
Question:
State description: Current Game State: The car is positioned at 0.472,

with a velocity of 0.049 towards the right.
Goal description: The goal is to reach the flag placed on top of the

right hill as quickly as possible.
Action description: Your Next Move:Please choose an action. Type ’1’ to

accelerate to the left, ’2’ to not accelerate, or ’3’ to accelerate
to the right.Ensure you only provide the action number from the valid
action list, i.e., [1, 2, 3].

Your memory for the task below:
Trial 0:
In this environment, my plan was to accelerate the car to the right as

quickly as possible. However, the goal of the game is to reach the
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flag placed on top of the right hill as quickly as possible. I should
have accelerated the car to the right until it had enough velocity

to reach the top of the left hill, then I should have accelerated the
car to the left to reach the flag. In the next trial, I will

accelerate the car to the right until it has enough velocity to reach
the top of the left hill, then I will accelerate the car to the left
to reach the flag.

Trial 1:
I will accelerate the car to the right until it has enough velocity to

reach the top of the left hill, then I will accelerate the car to the
left to reach the flag.

Trial 2:
In this environment, my plan was to accelerate the car to the right until

it had enough velocity to reach the top of the left hill, then I
should have accelerated the car to the left to reach the flag.
However, I did not take into account the fact that the car may not
have enough velocity to reach the top of the left hill. I should have
monitored the car’s velocity and adjusted my strategy accordingly.

In the next trial, I will accelerate the car to the right until it
has enough velocity to reach the top of the left hill, then I will
monitor the car’s velocity and adjust my strategy accordingly.

Answer:
Based on the current game state and memories of the task, the optimal

action for the player to take would be to accelerate to the right (
action 3). Therefore, the optimal action to take now is to push the
cart to accelerate to the right (action 3).

Despite a few inaccuracies in the above few-shot example, Reflexion is still able to execute a superior
strategy.

36



Under review as a conference paper at ICLR 2024

Table 10: Performance on different environments, deciders, and domain knowledge controlling lev-
els. The first value in each cell is the median of different seeds and the value inside the parentheses
represents the interquartile range while the last value is the maximum value.

Environment Decider Name Lv1 Lv2 Lv3 Lv4 Lv5

Acrobot-v1

EXE (Ours) -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200
CoT -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200

Naive-Actor -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200
Reflexion -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200
Self-Ask -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200

Self-Consistency -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200
SPP -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200
PPO -96(14)/-70

Blackjack-v1

EXE (Ours) 15(1)/17 16(1)/17 16(1)/17 16(1)/17 15(0)/16
CoT 14(2)/17 13(2)/16 14(1)/14 15(2)/16 11(0)/12

Naive-Actor 18(0)/18 16(2)/18 16(1)/17 13(6)/18 10(0)/11
Reflexion 13(0)/13 16(0)/16 16(1)/17 17(2)/17 11(0)/11
Self-Ask 16(1)/17 9(4)/16 15(1)/15 13(2)/14 19(0)/19

Self-Consistency 18(0)/19 15(4)/16 18(1)/18 15(2)/19 14(2)/15
SPP 13(1)/13 11(3)/16 13(1)/14 12(0)/19 14(1)/16
PPO 18(1)/20

CartPole-v0

EXE (Ours) 59(1)/131 62(28)/74 66(16)/92 52(39)/107 58(8)/67
CoT 45(15)/53 24(16)/69 34(20)/54 48(14)/63 34(27)/69

Naive-Actor 13(0)/13 9(0)/15 10(8)/18 10(0)/10 9(0)/9
Reflexion 12(3)/21 9(0)/11 12(5)/46 12(6)/15 9(0)/9
Self-Ask 28(1)/30 25(10)/40 35(6)/41 27(19)/65 69(18)/81

Self-Consistency 41(7)/56 52(8)/73 38(3)/48 70(23)/72 30(15)/55
SPP 53(14)/71 15(3)/22 17(17)/37 31(31)/76 51(26)/71
PPO 200(0)/200

CliffWalking-v0

EXE (Ours) -1982(738)/-563 -847(1363)/-354 -127(110)/-118 -2576(1889)/-26 -347/-2675(297)
CoT -249(37)/-217 -1685(990)/-200 -2159(990)/-394 -200(553)/-171 -551(1040)/-23

Naive-Actor -398(0)/-299 -299(1089)/-200 -398(198)/-200 -20000(0)/-18515 -200/-200(0)
Reflexion -893(297)/-497 -5843(17325)/-695 -19901(396)/-19505 -200(0)/-200 -794(0)/-596
Self-Ask -299(0)/-186 -497(87)/-299 -314(115)/-200 -398(99)/-299 -337(548)/-126

Self-Consistency -497(102)/-200 -425(99)/-299 -299(322)/-200 -1808(145)/-28 -134(110)/-15
SPP -354(132)/-124 -243(431)/-133 -992(982)/-133 -1883(693)/-319 -344(154)/-51
PPO -13/-13(0)

LunarLander-v2

EXE (Ours) -931(279)/-696 -926(93)/-743 -735(113)/-656 -825(72)/-755 -713(143)/-685
CoT -891(306)/-867 -1003(0)/-1003 -555(571)/-132 -1033(0)/-1033 -718(23)/-714

Naive-Actor -804(0)/-804 -1033(0)/-1033 -1033(0)/-1033 -1033(0)/-1033 -1033(0)/-1033
Reflexion -701(35)/-650 -279(92)/-174 -1033(0)/-978 -248(40)/-107 -1033(0)/-1033
Self-Ask -452(59)/-274 -889(432)/-795 -1073(343)/-643 -1376(87)/-1287 -1457(6)/-1029

Self-Consistency -1463(137)/-1026 -1408(381)/-1007 -550(549)/-483 -1033(0)/-1033 -747(25)/-726
SPP -814(149)/-694 -769(36)/-737 -728(360)/-459 -488(46)/-267 -766(118)/-586
PPO 262/261(103)

MountainCar-v0

EXE (Ours) -200(0)/-120 -200(0)/-139 -200(76)/-116 -200(70)/-123 -200(0)/-135
CoT -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200

Naive-Actor -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200
Reflexion -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -162(1)/-161
Self-Ask -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200

Self-Consistency -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200
SPP -200(0)/-200 -200(0)/-200 -200(0)/-194 -200(0)/-200 -200(0)/-200
PPO -90(1)/-87

MountainCarContinuous-v0

EXE (Ours) -13(1)/86 -10(6)/-4 88(99)/91 -8(1)/-6 -12(3)/88
CoT -15(1)/-14 -11(0)/-10 -6(5)/-2 -9(3)/-7 -20(0)/-20

Naive-Actor -5(0)/-5 -5(0)/-5 -17(13)/-5 -5(0)/-5 -2(0)/-2
Reflexion -5(0)/-4 -3(1)/-2 -7(11)/-4 -5(0)/-5 -20(0)/-20
Self-Ask -12(1)/-11 -12(1)/-11 -15(3)/-10 -12(4)/90 -10(1)/-9

Self-Consistency -14(1)/-14 -10(3)/-9 -13(1)/-12 -15(1)/-14 -20(0)/-20
SPP -11(1)/-10 -10(0)/-9 -12(6)/-6 -11(2)/-9 -12(0)/-10
PPO 0(0)/0

Taxi-v3

EXE (Ours) -821(0)/-605 -227(27)/-218 -227(630)/-200 -236(459)/-218 -740(216)/-605
CoT -245(18)/-227 -209(27)/-200 -353(261)/-218 -245(36)/-218 -200(0)/-200

Naive-Actor -1964(0)/-1964 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200
Reflexion -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200 -200(0)/-200
Self-Ask -254(45)/-227 -272(54)/-263 -335(81)/-272 -308(45)/-236 -200(0)/-200

Self-Consistency -200(18)/-200 -200(0)/-200 -290(72)/-200 -200(9)/-200 -200(0)/-200
SPP -875(99)/-675 -371(9)/-353 -686(423)/-290 -650(36)/-614 -866(72)/-812
PPO -144(12)/-140
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tive fiction games: A colossal adventure. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 7903–7910, 2020.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps. NeurIPS, 2021.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In ICML, 2022.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In NeurIPS, 2022.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
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