A View of Large Language Models in HPC: Challenges and Opportunities

Anonymous EMNLP submission

Abstract

There is a growing interest in using machine
learning techniques to automate and improve
the process of generating code. With the rapid
development of large language models (LLMs),
various models have been created to help write
and optimize code. However, they do not
yet meet the stringent requirements of high-
performance computing (HPC), where highly
optimized and efficient code is essential. This
paper explores the research direction of adapt-
ing and using LLMs for HPC code generation.
We present the reasoning behind our position
and suggest how existing ideas can be adapted
and enhanced to meet the demands of HPC
applications.

1 Introduction

Large language models (LLMs) represent a sig-
nificant advancement in natural language process-
ing (NLP), with one of their most notable applica-
tions being code generation. Both general-purpose
LLMs with code ability, like GPT-4 (Achiam et al.,
2023a), and LLMs specifically designed for code
generation, such as CodeLlama (Roziere et al.,
2023), have proven invaluable in software devel-
opment. Integrating these models into the coding
workflow helps developers accelerate coding tasks,
automate repetitive processes, and even debug and
improve existing code, significantly enhancing pro-
ductivity and innovation.

While LLMs have demonstrated significant po-
tential in general-purpose code generation (Xu
et al., 2022; Liu et al., 2024; Zhong and Wang,
2023), there is now a growing interest in apply-
ing these models to high-performance computing
(HPC). HPC is a specialized domain that utilizes
parallel processing techniques on modern multi-
core and many-core architectures to solve large-
scale, complex computational problems. It plays
a crucial role in various important applications
such as climate modeling, computational chemistry,

biomedical research, and astrophysical simulations.
By providing a framework for scalable processing
and analysis of massive datasets, HPC is funda-
mental to advancing scientific and technological
frontiers (Netto et al., 2018). Consequently, the ap-
plication of LLMs to HPC is attracting increasing
attention.

Despite the recent success of code LLMs in tasks
such as code generation and translation, there have
been few detailed studies on applying LLMs to
HPC tasks. It is essential to explore this applica-
tion due to the significance of HPC. Appendix A
showcases how LLMs can benefit the HPC domain.
However, using LLMs for HPC poses unique chal-
lenges because of the distinct characteristics of this
domain. HPC code differs from general code by fo-
cusing on maximizing computational performance
through parallelism, low-level optimization, and
efficient resource utilization. Each of these aspects
presents unique challenges and requires specialized
approaches to effectively leverage LL.Ms.
Position. This paper posits that integrating large
language models into HPC parallel code genera-
tion holds significant benefits and potential. The
distinct characteristics of HPC programs present
challenges for current code LLMs to perform ef-
fectively. This paper explores how LLMs can be
adapted for parallel code generation while address-
ing the associated challenges. The proposed re-
search directions provide an HPC perspective and
advocate for focused research on the development
of LLMs for HPC, ultimately contributing to the
broader field of machine learning and its applica-
tions in scientific computing.

2 Background

Large language models (LLM) and code LLM.
LLMs represent a significant advancement in NLP.
These models, trained on extensive textual datasets,
excel in understanding and generating human lan-
guage, demonstrating capabilities across various



NLP applications. Code LLMs are LLMs specifi-
cally designed for programming tasks. Typically,
code LLMs are trained with both natural language
(NL) and programming language (PL) corpora.
Consequently, the knowledge of PL has led to re-
markable outcomes of these models in various pro-
gramming language tasks, such as code genera-
tion (Poldrack et al., 2023; Achiam et al., 2023b),
code explanation (Khan and Uddin, 2022), and soft-
ware testing (Schifer et al., 2023). These achieve-
ments underscore LLMs’ capabilities in supporting
a wide range of programming tasks, enhancing
code completion accuracy, and facilitating interac-
tions between NL and PL. They have also inspired
recent attempts (Chen et al., 2023c; Nichols et al.,
2023; Dai et al., 2024; Chen et al., 2023b) to ap-
ply LLMs to the HPC domain. These works have
shown promising potential in utilizing LL.Ms for
HPC tasks, including parallel code generation.
High-Performance Computing Tasks. HPC plays
a pivotal role in fields such as scientific research
and data analytics. An HPC ecosystem is a compre-
hensive HPC environment that encompasses all the
hardware, software, workflows, networking, and
storage solutions (Grandinetti et al., 2018). HPC
tasks refer to challenges and problems addressed
within the HPC ecosystem. The uniqueness of HPC
tasks arises from the specific characteristics of the
HPC field itself. This work focuses on HPC code
generation, which focuses on generating parallel
code and ensuring compatibility with parallel com-
puting frameworks such as OpenMP and MPL. It
highlights the specialized focus required for HPC-
related activities.

3 LLMs for HPC Code Generation:
Problems and Directions

Motivation. Various works have applied LLMs to
HPC parallel code generation. Chen et al. (2023c)
were pioneers in applying LLMs to HPC tasks,
including parallelism detection. Their findings in-
dicated that LLMs can achieve competitive per-
formance in determining whether sequential code
can be parallelized. In a subsequent work (Chen
et al., 2024), they focused on generating OpenMP
pragmas, where their tailored LLM outperformed
GPT-4 on this task. Moreover, Nichols et al. (2024)
examined several existing general-purpose LLMs
from an HPC perspective, evaluating the speed and
scalability of the generated parallel code. Their
findings showed that LLMs are significantly less

effective at generating parallel code compared to
serial code.

Previous works have demonstrated the potential
of applying LLMs to HPC parallel code generation.
However, these studies also highlight the necessity
of a specialized approach to effectively harness the
capabilities of LL.Ms for HPC tasks. This section
delves into the challenges faced by current LLMs
in this area and explores directions for optimizing
LLMs for parallel code generation.

3.1 Dataset Considerations for HPC-Oriented
LLMs

Problem 1: As their name suggests, a central as-
pect of LLMs’ powerful performance is the size
of the dataset it is trained on. However, current
LLMs are not specifically designed for HPC, and
the datasets they are trained on do not focus on
HPC code.

Programming language focus. General-purpose
LLMs or code LLMs are typically trained on
datasets with a diverse set of programming lan-
guages, reflecting the wide array of languages used
in software development. For example, the widely
use Stack dataset (Kocetkov et al., 2022) covers
358 programming languages. However, within the
HPC community, the dominant languages are C,
C++, and Fortran due to their performance capa-
bilities. Consequently, an LLLM for parallel code
generation should prioritize these languages to en-
sure relevance and applicability.

Beyond the choice of programming languages,
it is crucial to include code that utilizes various par-
allel programming frameworks such as OpenMP,
MPI, and CUDA. These frameworks are integral to
HPC as they enable the parallel execution of code
across multiple processors or cores, a fundamental
aspect of achieving high performance. Therefore,
a well-rounded HPC dataset should encompass a
wide range of examples from these frameworks to
cover the spectrum of parallel programming prac-
tices. Kadosh et al. (2023a) proposed an HPC
dataset, HPCORPUS, by collecting C, C++, and
Fortran codes from GitHub. LLMs developed by
Chen et al. (2024) and Kadosh et al. (2023c¢) are
trained on this dataset and outperform GPT-4 in
specific HPC tasks.

However, directly collecting HPC code from
public repositories may not be sufficient. Previ-
ous NLP studies (Xie et al., 2023; Lee et al., 2021)
have demonstrated the importance of training data



quality to the model performance. Unlike general-
purpose code generation, HPC codes are typically
expected to be compilable and executable. Various
works (Chen et al., 2023a; Wang et al., 2022) have
leveraged compiler feedback to improve data qual-
ity, enhancing both compilability and executability.
These approaches can significantly improve the
quality of the training dataset, thereby enhancing
the performance of LLMs trained on higher-quality
data.

Research direction 1: The training dataset for an
HPC-oriented LLM should focus on the predom-
inant programming languages used in the HPC
community and include a diverse range of paral-
lel programming frameworks. Additionally, the
quality of the HPC dataset should emphasize its
compilability and executability.

3.2 Training Strategies

Problem 2: Traditional LLM training primarily
focuses on general-purpose code, which lacks the
specific considerations required for parallel code
generation. Additionally, the existing models do not
fully leverage the rich multimodal data available
in the HPC ecosystem, which is crucial for under-
standing the comprehensive performance charac-
teristics of HPC code.

Fill-in-the-Middle (FIM). FIM (Bavarian et al.,
2022) has been widely adopted by code LLMs due
to its effectiveness in generating coherent and con-
textually accurate code. Different LLMs use vari-
ous FIM configurations, either PSM (Prefix-Suffix-
Middle) or SPM (Suffix-Prefix-Middle), and em-
ploy different FIM rates. For example, DeepSeek-
Coder (Guo et al., 2024) adopted a 50% PSM con-
figuration after conducting an ablation study. The
FIM strategy is particularly critical for parallel code
generation in the HPC domain, as parallelism typi-
cally exists in the middle of the code. Different par-
allel frameworks have their specific patterns. For
example, in OpenMP, this involves inserting a sin-
gle line of OpenMP pragmas at appropriate points
within the code, while MPI requires adding multi-
ple lines of MPI function calls to enable commu-
nication between parallel processes. An effective
LLM for parallel code generation should determine
its FIM strategy through experimental validation.
Multimodal learning and code representation.
Multimodal learning has recently gained signifi-
cant attention in foundational model research. This
approach leverages data from multiple modalities

to enhance the model’s understanding and genera-
tion capabilities. The HPC community has devel-
oped numerous tools to provide critical information
about HPC code. Information such as runtime data,
dependency analysis, and performance reports is
crucial for understanding HPC code from both
static and dynamic perspectives. Moreover, code
representation studies (TehraniJamsaz et al., 2023;
Cummins et al., 2021; Chen et al., 2023d) in the
HPC domain have shown that different represen-
tations of HPC code can offer various levels of in-
sight, thereby enhancing the model’s performance
on HPC tasks. Previous studies (Chen et al., 2022;
Steinert et al., 2023) applying machine learning
in the HPC domain have utilized this multimodal
information and achieved remarkable results.
Research direction 2: 7o effectively harness the
capabilities of LLMs for HPC parallel code gen-
eration, future research should focus on develop-
ing specialized training strategies that incorporate
domain-specific characteristics and leverage multi-
modal data.

3.3 Fine-Tuning Strategies

Problem 3: Most existing LLMs are not fine-
tuned for parallel code generation, and no well-
recognized dataset exists for this task.

Fine-tuning is a critical step in adapting LLMs to
specific tasks or domains. By leveraging domain-
specific datasets and training techniques, fine-
tuning can significantly enhance the performance
and applicability of LLMs in specialized fields.
Fine-tuning for parallel code generation can benefit
from advanced training techniques such as transfer
learning and continual learning. Transfer learning
involves starting with a pre-trained general-purpose
LLM and then fine-tuning it on an HPC-specific
dataset. Continual learning, on the other hand, in-
volves continuously updating the model with new
data as it becomes available. This is particularly
useful in the rapidly evolving field of HPC, where
new programming techniques and optimizations
are constantly being developed.

However, no well-recognized dataset exists for
fine-tuning LLMs specifically for parallel code
generation. Most datasets collect as much pub-
lic code as possible without examining the qual-
ity of the data. The HPC domain has developed
several benchmarks, such as NAS Parallel Bench-
marks (Bailey et al., 1993), SPEC (Miiller et al.,
2010), and Polybench (Yuki, 2014), for paralleliza-



tion studies. Constructing fine-tuning datasets
based on these benchmarks can help models gener-
ate efficient and optimized parallel code.

Research direction 3: 7o address the lack of well-
recognized fine-tuning datasets, future research
should focus on creating high-quality, benchmark-
based datasets for fine-tuning LLMs in parallel
code generation. These datasets should be curated
to include diverse examples from established HPC
benchmarks, ensuring a comprehensive representa-
tion of parallel programming challenges.

3.4 Prompt Engineering

Problem 4: Effectively using prompt engineering
techniques to guide LLM to generate optimized par-
allel code is challenging. They should consider the
contextual details and domain-specific knowledge
required for parallel code generation.

Prompt engineering involves carefully crafting
input prompts to guide LLMs to generate more ac-
curate and contextually relevant outputs. In the con-
text of parallel code generation, prompt engineer-
ing can be particularly effective when the prompts
include relevant facts from previous interactions
or external resources. For example, when convert-
ing sequential code to parallel code using OpenMP,
the prompt can include details about the specific
loops or sections that need parallelization, the de-
sired level of parallelism, and any hardware con-
straints. Mahmud et al. (2023) crafted prompts for
parallel code generation by including paralleliza-
tion patterns generated by GNNs. Their superior
performance indicates that LLMs can benefit from
prompts enriched with external knowledge, which
can be obtained from previous HPC or ML tools.
Moreover, this approach can help models lever-
age external resources such as performance met-
rics, hardware specifications, and domain-specific
libraries, further enhancing the accuracy and effi-
ciency of the generated code.

Research direction 4: Future research should fo-
cus on developing advanced prompt engineering
techniques tailored for HPC parallel code gener-
ation. This includes integrating domain-specific
knowledge, performance metrics, and hardware
constraints into the prompts. Additionally, leverag-
ing external resources and tools to provide context
and enhance the prompts can significantly improve
the quality of the generated code.

3.5 Evaluation Metrics

Problem 5: Current evaluation methods, such as
HumanEval (Chen et al., 2021), are mostly de-
signed for general-purpose code. Metrics and eval-
uation datasets specifically designed for generated
HPC parallel code are needed.

Evaluating the performance of LLMs in gen-
erating parallel code is crucial to ensure their ef-
fectiveness and applicability in the HPC domain.
Evaluation impacts not only the assessment of the
generated code but also other processes, such as
fine-tuning. Unlike general code generation tasks,
where correctness and readability are primary con-
cerns, parallel code generation must also meet strin-
gent performance criteria. Nichols et al. (2024) has
made the first step in evaluating parallel code gener-
ated by LLMs from an HPC perspective. However,
there is significant potential in this direction to cre-
ate metrics and evaluation datasets for various HPC
languages and parallelization frameworks.

Research direction 5: Future research should fo-
cus on developing comprehensive evaluation meth-
ods and datasets specifically for HPC parallel code
generation. This includes creating metrics that as-
sess not only the correctness and readability of
the code but also its performance, scalability, and
efficiency in an HPC environment. Additionally, de-
signing evaluation datasets that encompass a wide
range of HPC languages and parallelization frame-
works will provide a more robust and thorough
assessment of LLM capabilities.

4 Conclusion

In this paper, we have explored the potential and
challenges of utilizing large language models for
high-performance computing parallel code genera-
tion. While LLMs have demonstrated remarkable
success in various general-purpose code genera-
tion tasks, adapting these models to the specific de-
mands of HPC requires specialized approaches and
considerations. We highlighted several critical ar-
eas that need attention for the effective integration
of LLMs into parallel code generation from the per-
spective of HPC. By addressing these key areas, we
believe it is possible to harness the full potential of
LLMs for parallel code generation and other HPC
tasks, ultimately contributing to advancements in
both machine learning and high-performance com-
puting.



5 Limitation

While our exploration into the potential of large
language models (LLMs) for high-performance
computing (HPC) parallel code generation high-
lights significant opportunities, it is also important
to acknowledge the limitations and challenges that
persist in this field. One of the primary limitations
is the quality and availability of datasets specifi-
cally tailored for HPC tasks. Current datasets of-
ten lack the necessary diversity and depth required
to train models effectively for HPC applications.
Furthermore, many available datasets do not ade-
quately address the compilability and executability
of the generated code, which are critical factors
for HPC. Second, the use of LLMs in HPC may
also raise ethical and security concerns. The po-
tential for biased outputs, data privacy issues, and
the inadvertent generation of insecure code are sig-
nificant risks that need to be addressed. Ensuring
that LLMs adhere to ethical guidelines and security
best practices is essential to their safe and effective
deployment.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023a. Gpt-4 technical re-
port. arXiv preprint arXiv:2303.08774.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023b. Gpt-4 technical re-
port. arXiv preprint arXiv:2303.08774.

David H Bailey, Eric Barszcz, Leonardo Dagum, and
Horst D Simon. 1993. Nas parallel benchmark re-
sults. IEEE Parallel & Distributed Technology: Sys-
tems & Applications, 1(1):43-51.

David H Bailey et al. 1991. The nas parallel bench-
marks. The International Journal of Supercomputing
Applications, 5(3):63-73.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak,
John Schulman, Christine McLeavey, Jerry Tworek,
and Mark Chen. 2022. Efficient training of lan-
guage models to fill in the middle. arXiv preprint
arXiv:2207.14255.

Le Chen, Arijit Bhattacharjee, Nesreen Ahmed, Ni-
ranjan Hasabnis, Gal Oren, Vy Vo, and Ali Jan-
nesari. 2024. Ompgpt: A generative pre-trained
transformer model for openmp. arXiv preprint
arXiv:2401.16445.

Le Chen, Arijit Bhattacharjee, Nesreen K Ahmed, Ni-
ranjan Hasabnis, Gal Oren, Bin Lei, and Ali Jannesari.
2023a. Compcodevet: A compiler-guided validation
and enhancement approach for code dataset. arXiv
preprint arXiv:2311.06505.

Le Chen, Xianzhong Ding, Murali Emani, Tristan Van-
derbruggen, Pei-Hung Lin, and Chunhua Liao. 2023b.
Data race detection using large language models. In
Proceedings of the SC’23 Workshops of The Interna-
tional Conference on High Performance Computing,
Network, Storage, and Analysis, pages 215-223.

Le Chen, Pei-Hung Lin, Tristan Vanderbruggen, Chun-
hua Liao, Murali Emani, and Bronis de Supinski.
2023c. Lmdhpc: Towards effective language model
application in high-performance computing. In /n-
ternational Workshop on OpenMP, pages 18-33.
Springer.

Le Chen, Quazi Ishtiaque Mahmud, and Ali Jannesari.
2022. Multi-view learning for parallelism discov-
ery of sequential programs. In 2022 IEEE Interna-
tional Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), pages 295-303. IEEE.

Le Chen, Quazi Ishtiaque Mahmud, Hung Phan, Nes-
reen Ahmed, and Ali Jannesari. 2023d. Learning
to parallelize with openmp by augmented heteroge-
neous ast representation. Proceedings of Machine
Learning and Systems, 5.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Béatrice Creusillet et al. 2009. Par4all: Auto-
parallelizing ¢ and fortran for the cuda architecture.
Computer.

Chris Cummins, Zacharias V Fisches, Tal Ben-Nun,
Torsten Hoefler, Michael FP O’Boyle, and Hugh
Leather. 2021. Programl: A graph-based program
representation for data flow analysis and compiler op-
timizations. In International Conference on Machine
Learning, pages 2244-2253. PMLR.

Liuyao Dai, Hao Qi, Weicong Chen, and Xiaoyi Lu.
2024. High-speed data communication with ad-
vanced networks in large language model training.
IEEE Micro.

Chirag Dave et al. 2009. Cetus: A source-to-source
compiler infrastructure for multicores. Computer,
42(12).

Michael Dever. 2015. AutoPar: automating the par-
allelization of functional programs. Ph.D. thesis,
Dublin City University.

William Godoy, Pedro Valero-Lara, Keita Teranishi,
Prasanna Balaprakash, and Jeffrey Vetter. 2023. Eval-
uation of openai codex for hpc parallel programming



models kernel generation. In Proceedings of the
52nd International Conference on Parallel Process-
ing Workshops, pages 136—144.

Lucio Grandinetti, Seyedeh Leili Mirtaheri, and Reza
Shahbazian. 2018. Big data and HPC: ecosystem
and convergence, volume 33. 10S Press.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data flow.
arXiv preprint arXiv:2009.08366.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the
large language model meets programming—the rise of
code intelligence. arXiv preprint arXiv:2401.14196.

Re’em Harel, Yuval Pinter, and Gal Oren. 2023. Learn-
ing to parallelize in a shared-memory environment
with transformers. In Proceedings of the 28th ACM
SIGPLAN Annual Symposium on Principles and
Practice of Parallel Programming, pages 450—452.

Re’em Harel et al. 2020. Source-to-source paralleliza-
tion compilers for scientific shared-memory multi-
core and accelerated multiprocessing: analysis, pit-
falls, enhancement and potential. International Jour-
nal of Parallel Programming, 48(1):1-31.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou
Sun. 2020. Heterogeneous graph transformer. In
Proceedings of the web conference 2020, pages 2704—
2710.

Intel. 2023. New 5th gen Intel® Xeon® processors are
built with ai acceleration in every core. Retrieved
from Intel.

Tal Kadosh, Niranjan Hasabnis, Timothy Mattson,
Yuval Pinter, and Gal Oren. 2023a. Quantifying
openmp: Statistical insights into usage and adoption.
In 2023 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1-7. IEEE.

Tal Kadosh, Niranjan Hasabnis, Timothy Mattson, Yu-
val Pinter, Gal Oren, et al. 2023b. Pragformer: Data-
driven parallel source code classification with trans-
formers. Research Square.

Tal Kadosh, Niranjan Hasabnis, Vy A Vo, Nadav Schnei-
der, Neva Krien, Mihai Capota, Abdul Wasay, Nes-
reen Ahmed, Ted Willke, Guy Tamir, et al. 2023c.
Domain-specific code language models: Unraveling
the potential for hpc codes and tasks. arXiv preprint
arXiv:2312.13322.

Tal Kadosh, Niranjan Hasabnis, Vy A Vo, Nadav Schnei-
der, Neva Krien, Abdul Wasay, Nesreen Ahmed, Ted
Willke, Guy Tamir, Yuval Pinter, et al. 2023d. Scope
is all you need: Transforming Ilms for hpc code.
arXiv preprint arXiv:2308.09440.

Tal Kadosh, Nadav Schneider, Niranjan Hasabnis, Tim-
othy Mattson, Yuval Pinter, and Gal Oren. 2023e.
Advising openmp parallelization via a graph-based
approach with transformers. In International Work-
shop on OpenMP, pages 3—17. Springer.

Junaed Younus Khan and Gias Uddin. 2022. Automatic
code documentation generation using gpt-3. In Pro-
ceedings of the 37th IEEE/ACM International Con-
ference on Automated Software Engineering, pages
1-6.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li,
Chenghao Mou, Carlos Munoz Ferrandis, Yacine Jer-
nite, Margaret Mitchell, Sean Hughes, Thomas Wolf,
et al. 2022. The stack: 3 tb of permissively licensed
source code. arXiv preprint arXiv:2211.15533.

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. 2021. Deduplicating training
data makes language models better. arXiv preprint
arXiv:2107.06499.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2024. Is your code generated by chatgpt
really correct? rigorous evaluation of large language
models for code generation. Advances in Neural
Information Processing Systems, 36.

Quazi Ishtiaque Mahmud, Ali TehraniJamsaz, Hung D
Phan, Nesreen K Ahmed, and Ali Jannesari. 2023.
Autoparllm: Gnn-guided automatic code paralleliza-
tion using large language models. arXiv preprint
arXiv:2310.04047.

Idan Mosseri, Lee-or Alon, Re’Em Harel, and Gal Oren.
2020. Compar: optimized multi-compiler for au-
tomatic openmp s2s parallelization. In OpenMP:
Portable Multi-Level Parallelism on Modern Systems:
16th International Workshop on OpenMP, INOMP
2020, Austin, TX, USA, September 22-24, 2020, Pro-
ceedings 16, pages 247-262. Springer.

Matthias S Miiller, Matthijs Van Waveren, Ron Lieber-
man, Brian Whitney, Hideki Saito, Kalyan Kumaran,
John Baron, William C Brantley, Chris Parrott, Tom
Elken, et al. 2010. Spec mpi2007—an application
benchmark suite for parallel systems using mpi. Con-
currency and Computation: Practice and Experience,

22(2):191-205.

Marco AS Netto, Rodrigo N Calheiros, Eduardo R Ro-
drigues, Renato LF Cunha, and Rajkumar Buyya.
2018. Hpc cloud for scientific and business appli-
cations: taxonomy, vision, and research challenges.
ACM Computing Surveys (CSUR), 51(1):1-29.

Daniel Nichols, Joshua H Davis, Zhaojun Xie, Arjun
Rajaram, and Abhinav Bhatele. 2024. Can large
language models write parallel code? arXiv preprint
arXiv:2401.12554.

Daniel Nichols, Aniruddha Marathe, Harshitha Menon,
Todd Gamblin, and Abhinav Bhatele. 2023. Model-
ing parallel programs using large language models.
arXiv preprint arXiv:2306.17281.


https://www.intel.com/content/www/us/en/newsroom/news/5th-gen-xeon-data-center-news.html#gs.4emehd
https://www.intel.com/content/www/us/en/newsroom/news/5th-gen-xeon-data-center-news.html#gs.4emehd
https://www.intel.com/content/www/us/en/newsroom/news/5th-gen-xeon-data-center-news.html#gs.4emehd

Russell A Poldrack, Thomas Lu, and GaSper Begus.
2023. Ai-assisted coding: Experiments with gpt-4.
arXiv preprint arXiv:2304.13187.

S Prema et al. 2017. Identifying pitfalls in automatic
parallelization of nas parallel benchmarks. In Par-
allel Computing Technologies (PARCOMPTECH),
2017 National Conference on, pages 1-6. IEEE.

S Prema et al. 2019. A study on popular auto-
parallelization frameworks. Concurrency and Com-
putation: Practice and Experience, 31(17):e5168.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Max Schifer, Sarah Nadi, Aryaz Eghbali, and Frank
Tip. 2023. An empirical evaluation of using large
language models for automated unit test generation.
IEEE Transactions on Software Engineering.

Nadav Schneider, Tal Kadosh, Niranjan Hasabnis,
Timothy Mattson, Yuval Pinter, and Gal Oren.
2023. Mpi-rical: Data-driven mpi distributed par-
allelism assistance with transformers. arXiv preprint
arXiv:2305.09438.

Patrick Steinert, Stefan Wagenpfeil, Paul Mc Kevitt,
Ingo Frommholz, and Matthias Hemmje. 2023. Par-
allelization strategies for graph-code-based similarity
search. Big Data and Cognitive Computing, 7(2):70.

Ali TehraniJamsaz, Quazi Ishtiaque Mahmud, Le Chen,
Nasreen K Ahmed, and Ali Jannesari. 2023. Per-
fograph: A numerical aware program graph repre-
sentation for performance optimization and program
analysis. arXiv preprint arXiv:2306.00210.

Pedro Valero-Lara, Alexis Huante, Mustafa Al Lail,
William F Godoy, Keita Teranishi, Prasanna Bal-
aprakash, and Jeffrey S Vetter. 2023. Comparing
llama-2 and gpt-3 llms for hpc kernels generation.
arXiv preprint arXiv:2309.07103.

Xin Wang, Yasheng Wang, Yao Wan, Fei Mi, Yi-
tong Li, Pingyi Zhou, Jin Liu, Hao Wu, Xin Jiang,
and Qun Liu. 2022. Compilable neural code gen-
eration with compiler feedback. arXiv preprint
arXiv:2203.05132.

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and
Percy S Liang. 2023. Data selection for language
models via importance resampling. Advances in
Neural Information Processing Systems, 36:34201—
34227.

Frank F Xu, Uri Alon, Graham Neubig, and Vincent Jo-
sua Hellendoorn. 2022. A systematic evaluation of
large language models of code. In Proceedings of
the 6th ACM SIGPLAN International Symposium on
Machine Programming, pages 1-10.

Tomofumi Yuki. 2014. Understanding polybench/c 3.2
kernels. In International workshop on polyhedral
compilation techniques (IMPACT), pages 1-5.

Li Zhong and Zilong Wang. 2023. A study on robust-
ness and reliability of large language model code
generation. arXiv preprint arXiv:2308.10335.

A Instances of LLMs Enhancing HPC
Parallel Code Generation

In this section, we discuss an application of LLMs
to the HPC problem of automatically generating
parallel programs for shared memory systems (us-
ing OpenMP pragmas).

Shared memory systems are characterized by
multiple compute cores (e.g., CPU cores) that share
access to common caches (e.g., L3 cache). For in-
stance, systems based on the 5th generation Intel
Xeon processor (codenamed Emerald Rapids) (In-
tel, 2023), contain anywhere between 8 to 64 cores,
all of which share access to the last level cache
(L3 typically). Getting the best performance out of
such systems requires writing parallel code, which
divides the problem into subproblems and executes
them in parallel on different cores. Writing a paral-
lel version of serial code, however, is tricky, cour-
tesy of typical multi-threading problems — it re-
quires reasoning of data dependence, race condi-
tions, deadlocks, etc. Programming standards such
as OpenMP simplify this task considerably to the
extent that OpenMP is the most popular parallel
programming API in open-source (Kadosh et al.,
2023a).

// Serial code for element—wise multiply

for (int i = 0; i < a.size(); i++) {
al[i] = b[i] =% c[i];

}

// Parallel version of the above code

#pragma omp parallel for

for (int i = 0; i < a.size();
a[i] = b[i] * c[i];

}

i++) {

Figure 1: Comparison between serial and parallel im-
plementations of element-wise multiplication.

As an example, the first code snippet in Fig-
ure 1 shows a serial version of code that performs
element-wise multiplication on two std: : vectors,
while the following code snippet shows the paral-
lel version of the serial code. The #pragma omp
parallel for pragma causes the OpenMP run-
time to create a team of threads, where each thread



operates on an individual subset of the iteration
space, leading to the better utilization of underlying
multiple compute cores. While standard compilers,
such as GCC, LLVM, etc., and source-to-source
translation tools (S2S), such as Cetus (Dave et al.,
2009), AutoPar (Dever, 2015), Par4All (Creusillet
et al., 2009), ComPar (Mosseri et al., 2020), etc.,
can automatically generate parallel versions of se-
rial code, they, however, had limited success (Harel
et al., 2020; Prema et al., 2017, 2019), especially
because of a lack of robustness.

The limitations of the existing tools in automat-
ically generating parallel versions of serial code
have led to the introduction of Al-based tools for
programming assistance. Instead of relying on for-
mal program analysis passes (such as loop depen-
dence analysis in compilers), Al-based tools for
this problem leverage recent advancements in the
field of NLP (especially Transformer architecture)
to accurately determine the parallelization potential
of code. A simple categorization of these Al-based
tools could be as follows: (1) OpenMP-specific
tools, such as PragFormer (Harel et al., 2023; Ka-
dosh et al., 2023b), OMPify (Kadosh et al., 2023e),
Graph2Par (Chen et al., 2023d), HPCoder (Nichols
et al., 2023), AutoParLLM (Mahmud et al., 2023),
etc., that are solely designed for the OpenMP paral-
lelization problem, (2) Pre-trained HPC-oriented
models that are the fine-tuned for OpenMP, such
as MonoCoder (Kadosh et al., 2023¢) and OMP-
GPT (Chen et al., 2024), and (3) general-purpose
tools, such as ChatGPT, CodeLLaMa (Roziere
et al., 2023), etc., that can solve the OpenMP par-
allelization problem, in addition to several other
programming related or unrelated tasks (Godoy
et al., 2023; Valero-Lara et al., 2023; Nichols et al.,
2024). We will review these tools along with dif-
ferent design choices. (Since the last category of
tools are not specifically designed for the OpenMP
parallelization problem, we will not discuss their
design choices.)

* Problem formulation: The problem of automati-
cally parallelizing serial code using OpenMP can
be divided into multiple subproblems. To be pre-
cise, the problem that these approaches attempt
to solve can be defined as: Given a piece of serial
code (mostly for loops), determine if the code
can be parallelized, and if so, suggest appropri-
ate OpenMP pragma. As the first part of the
problem statement is a boolean question, tools
such as PragFormer, OMPify, and Graph2Par

formulate it as a binary classification problem
(this same formulation also applied to other par-
allelization strategies, such as MPI (e.g., MPI-
rical (Schneider et al., 2023)). Once these ap-
proaches determine the parallelization potential
of a loop, the next subproblem is to suggest ap-
propriate OpenMP pragma as a multi-class classi-
fication problem. Specifically, Graph2Par consid-
ers four specific items from OpenMP (target,
simd, private, reduction) that could apply to
a parallel loop. PragFormer and OMPify, on
the other hand, consider two additional OpenMP
clauses (private and reduction). Given the
large number of clauses, library functions, and
pragmas in OpenMP (Kadosh et al., 2023a), these
approaches have a long way to go before the full
range of OpenMP can be applied to HPC pro-
gramming problems.

Source code representation: The representation
of the input serial code, is an important design
decision for this problem as the accurate predic-
tions depend upon the ability of the Al model
to learn to reason about certain program prop-
erties (such as loop-carried dependence) that
determine the parallelism potential. Treating
source code as text and employing a sequence
of tokens representation did not yield satisfac-
tory results (Kadosh et al., 2023e), consequently,
all of these approaches have leveraged sophisti-
cated compiler-based code representations such
as abstract-syntax tree (AST), data-flow graph
(DFG) (in OMPity), or even specialized ones
such as heterogeneous augmented abstract syntax
tree (Augmented-AST) in Graph2Par (Chen et al.,
2023d). Also, some of these approaches have de-
vised new tokenization strategies. For instance,
Kadosh et. al. have devised TokomPiler (Kadosh
et al., 2023d) to address specific requirements of
preprocessing HPC code (written mostly in C,
C++, and Fortran) and compilation-centric tasks.

Training dataset: The lack of curated, publicly-
available datasets has forced teams working on
these techniques to synthesize their own train-
ing datasets using various sources such as open-
source programs containing OpenMP pragmas,
parallel programming benchmarks (e.g., NAS
parallel benchmark (Bailey et al., 1991)), etc.
Specifically, a common approach followed for
synthesis is to search C/C++ programs contain-
ing for loops that have OpenMP parallel loops



(e.g., #pragma omp parallel for). The for
loops are then used as input to the model, while
their OpenMP pragmas (or their lack of) are
used to generate appropriate labels. Thank-
fully, authors of these approaches have released
their datasets publicly for further research (e.g.,
OMP_Serial by Graph2Par, Open-OMP by Prag-
Former). The most comprehensive HPC-oriented
training dataset to this date is the HPCorpus (Ka-
dosh et al., 2023a) dataset, containing a total
of 300K repos, 70 GB, 9M files across C, C++,
and Fortran code from GitHub, with hundreds
of thousands of those functions able to compile
successfully (Chen et al., 2023a). This repo in-
cludes common parallel programming APIs, such
as MPI, CUDA, OpenCL, TBB, Cilk, OpenACC,
and SYCL.

Model architecture: These approaches employ
popular deep learning innovations such as Trans-
former architecture, graph neural networks (as
source code can be represented as a graph), etc.,
to find parallelism opportunities within serial
code and then generate parallel versions by au-
tomatically inserting OpenMP pragmas. Specif-
ically, Graph2Par uses a modified transformer
model called heterogeneous graph transformer
(HGT) (Hu et al., 2020), while OMPify builds
on top of GraphCodeBERT(Guo et al., 2020), a
pre-trained model for programming languages
that considers the inherent structure of the code
by accepting source code along with its dataflow
graph. Models employed by these approaches
are typically smaller than LLMs such as CodeL-
LaMa, GPT-3.5, etc., that can also parallelize
serial code. In spite of the smaller sizes, these ap-
proaches have outperformed larger models such
as ChatGPT on the task of parallelizing serial
code (Kadosh et al., 2023c; Chen et al., 2024).

Results: Overall, better and problem-specific
code representations have helped these OpenMP-
specific approaches outperform code LLMs on
the OpenMP parallelization problem. Specifi-
cally, PragFormer has shown that it can outper-
form a formal, source-to-source tool called Com-
Par on the task of detecting parallelization poten-
tial of a loop (0.8 vs 0.5 accuracy). Graph2Par,
on the other hand, has shown that it can out-
perform PragFormer on the task of predicting
OpenMP clauses applicable to a parallel loop
(0.89 vs 0.85 accuracy in predicting the appli-

cability of private clause). More importantly,
both OMPify and PragFormer have shown that
they can outperform ChatGPT (GPT-3.5) on de-
termining the parallelization potential of a loop
(0.4 vs 0.86 accuracy) (Kadosh et al., 2023e).



