
A View of Large Language Models in HPC: Challenges and Opportunities

Anonymous EMNLP submission

Abstract

There is a growing interest in using machine001
learning techniques to automate and improve002
the process of generating code. With the rapid003
development of large language models (LLMs),004
various models have been created to help write005
and optimize code. However, they do not006
yet meet the stringent requirements of high-007
performance computing (HPC), where highly008
optimized and efficient code is essential. This009
paper explores the research direction of adapt-010
ing and using LLMs for HPC code generation.011
We present the reasoning behind our position012
and suggest how existing ideas can be adapted013
and enhanced to meet the demands of HPC014
applications.015

1 Introduction016

Large language models (LLMs) represent a sig-017

nificant advancement in natural language process-018

ing (NLP), with one of their most notable applica-019

tions being code generation. Both general-purpose020

LLMs with code ability, like GPT-4 (Achiam et al.,021

2023a), and LLMs specifically designed for code022

generation, such as CodeLlama (Roziere et al.,023

2023), have proven invaluable in software devel-024

opment. Integrating these models into the coding025

workflow helps developers accelerate coding tasks,026

automate repetitive processes, and even debug and027

improve existing code, significantly enhancing pro-028

ductivity and innovation.029

While LLMs have demonstrated significant po-030

tential in general-purpose code generation (Xu031

et al., 2022; Liu et al., 2024; Zhong and Wang,032

2023), there is now a growing interest in apply-033

ing these models to high-performance computing034

(HPC). HPC is a specialized domain that utilizes035

parallel processing techniques on modern multi-036

core and many-core architectures to solve large-037

scale, complex computational problems. It plays038

a crucial role in various important applications039

such as climate modeling, computational chemistry,040

biomedical research, and astrophysical simulations. 041

By providing a framework for scalable processing 042

and analysis of massive datasets, HPC is funda- 043

mental to advancing scientific and technological 044

frontiers (Netto et al., 2018). Consequently, the ap- 045

plication of LLMs to HPC is attracting increasing 046

attention. 047

Despite the recent success of code LLMs in tasks 048

such as code generation and translation, there have 049

been few detailed studies on applying LLMs to 050

HPC tasks. It is essential to explore this applica- 051

tion due to the significance of HPC. Appendix A 052

showcases how LLMs can benefit the HPC domain. 053

However, using LLMs for HPC poses unique chal- 054

lenges because of the distinct characteristics of this 055

domain. HPC code differs from general code by fo- 056

cusing on maximizing computational performance 057

through parallelism, low-level optimization, and 058

efficient resource utilization. Each of these aspects 059

presents unique challenges and requires specialized 060

approaches to effectively leverage LLMs. 061

Position. This paper posits that integrating large 062

language models into HPC parallel code genera- 063

tion holds significant benefits and potential. The 064

distinct characteristics of HPC programs present 065

challenges for current code LLMs to perform ef- 066

fectively. This paper explores how LLMs can be 067

adapted for parallel code generation while address- 068

ing the associated challenges. The proposed re- 069

search directions provide an HPC perspective and 070

advocate for focused research on the development 071

of LLMs for HPC, ultimately contributing to the 072

broader field of machine learning and its applica- 073

tions in scientific computing. 074

2 Background 075

Large language models (LLM) and code LLM. 076

LLMs represent a significant advancement in NLP. 077

These models, trained on extensive textual datasets, 078

excel in understanding and generating human lan- 079

guage, demonstrating capabilities across various 080

1

NLP applications. Code LLMs are LLMs specifi-081

cally designed for programming tasks. Typically,082

code LLMs are trained with both natural language083

(NL) and programming language (PL) corpora.084

Consequently, the knowledge of PL has led to re-085

markable outcomes of these models in various pro-086

gramming language tasks, such as code genera-087

tion (Poldrack et al., 2023; Achiam et al., 2023b),088

code explanation (Khan and Uddin, 2022), and soft-089

ware testing (Schäfer et al., 2023). These achieve-090

ments underscore LLMs’ capabilities in supporting091

a wide range of programming tasks, enhancing092

code completion accuracy, and facilitating interac-093

tions between NL and PL. They have also inspired094

recent attempts (Chen et al., 2023c; Nichols et al.,095

2023; Dai et al., 2024; Chen et al., 2023b) to ap-096

ply LLMs to the HPC domain. These works have097

shown promising potential in utilizing LLMs for098

HPC tasks, including parallel code generation.099

High-Performance Computing Tasks. HPC plays100

a pivotal role in fields such as scientific research101

and data analytics. An HPC ecosystem is a compre-102

hensive HPC environment that encompasses all the103

hardware, software, workflows, networking, and104

storage solutions (Grandinetti et al., 2018). HPC105

tasks refer to challenges and problems addressed106

within the HPC ecosystem. The uniqueness of HPC107

tasks arises from the specific characteristics of the108

HPC field itself. This work focuses on HPC code109

generation, which focuses on generating parallel110

code and ensuring compatibility with parallel com-111

puting frameworks such as OpenMP and MPI. It112

highlights the specialized focus required for HPC-113

related activities.114

3 LLMs for HPC Code Generation:115

Problems and Directions116

Motivation. Various works have applied LLMs to117

HPC parallel code generation. Chen et al. (2023c)118

were pioneers in applying LLMs to HPC tasks,119

including parallelism detection. Their findings in-120

dicated that LLMs can achieve competitive per-121

formance in determining whether sequential code122

can be parallelized. In a subsequent work (Chen123

et al., 2024), they focused on generating OpenMP124

pragmas, where their tailored LLM outperformed125

GPT-4 on this task. Moreover, Nichols et al. (2024)126

examined several existing general-purpose LLMs127

from an HPC perspective, evaluating the speed and128

scalability of the generated parallel code. Their129

findings showed that LLMs are significantly less130

effective at generating parallel code compared to 131

serial code. 132

Previous works have demonstrated the potential 133

of applying LLMs to HPC parallel code generation. 134

However, these studies also highlight the necessity 135

of a specialized approach to effectively harness the 136

capabilities of LLMs for HPC tasks. This section 137

delves into the challenges faced by current LLMs 138

in this area and explores directions for optimizing 139

LLMs for parallel code generation. 140

3.1 Dataset Considerations for HPC-Oriented 141

LLMs 142

Problem 1: As their name suggests, a central as- 143

pect of LLMs’ powerful performance is the size 144

of the dataset it is trained on. However, current 145

LLMs are not specifically designed for HPC, and 146

the datasets they are trained on do not focus on 147

HPC code. 148

Programming language focus. General-purpose 149

LLMs or code LLMs are typically trained on 150

datasets with a diverse set of programming lan- 151

guages, reflecting the wide array of languages used 152

in software development. For example, the widely 153

use Stack dataset (Kocetkov et al., 2022) covers 154

358 programming languages. However, within the 155

HPC community, the dominant languages are C, 156

C++, and Fortran due to their performance capa- 157

bilities. Consequently, an LLM for parallel code 158

generation should prioritize these languages to en- 159

sure relevance and applicability. 160

Beyond the choice of programming languages, 161

it is crucial to include code that utilizes various par- 162

allel programming frameworks such as OpenMP, 163

MPI, and CUDA. These frameworks are integral to 164

HPC as they enable the parallel execution of code 165

across multiple processors or cores, a fundamental 166

aspect of achieving high performance. Therefore, 167

a well-rounded HPC dataset should encompass a 168

wide range of examples from these frameworks to 169

cover the spectrum of parallel programming prac- 170

tices. Kadosh et al. (2023a) proposed an HPC 171

dataset, HPCORPUS, by collecting C, C++, and 172

Fortran codes from GitHub. LLMs developed by 173

Chen et al. (2024) and Kadosh et al. (2023c) are 174

trained on this dataset and outperform GPT-4 in 175

specific HPC tasks. 176

However, directly collecting HPC code from 177

public repositories may not be sufficient. Previ- 178

ous NLP studies (Xie et al., 2023; Lee et al., 2021) 179

have demonstrated the importance of training data 180

2

quality to the model performance. Unlike general-181

purpose code generation, HPC codes are typically182

expected to be compilable and executable. Various183

works (Chen et al., 2023a; Wang et al., 2022) have184

leveraged compiler feedback to improve data qual-185

ity, enhancing both compilability and executability.186

These approaches can significantly improve the187

quality of the training dataset, thereby enhancing188

the performance of LLMs trained on higher-quality189

data.190

Research direction 1: The training dataset for an191

HPC-oriented LLM should focus on the predom-192

inant programming languages used in the HPC193

community and include a diverse range of paral-194

lel programming frameworks. Additionally, the195

quality of the HPC dataset should emphasize its196

compilability and executability.197

3.2 Training Strategies198

Problem 2: Traditional LLM training primarily199

focuses on general-purpose code, which lacks the200

specific considerations required for parallel code201

generation. Additionally, the existing models do not202

fully leverage the rich multimodal data available203

in the HPC ecosystem, which is crucial for under-204

standing the comprehensive performance charac-205

teristics of HPC code.206

Fill-in-the-Middle (FIM). FIM (Bavarian et al.,207

2022) has been widely adopted by code LLMs due208

to its effectiveness in generating coherent and con-209

textually accurate code. Different LLMs use vari-210

ous FIM configurations, either PSM (Prefix-Suffix-211

Middle) or SPM (Suffix-Prefix-Middle), and em-212

ploy different FIM rates. For example, DeepSeek-213

Coder (Guo et al., 2024) adopted a 50% PSM con-214

figuration after conducting an ablation study. The215

FIM strategy is particularly critical for parallel code216

generation in the HPC domain, as parallelism typi-217

cally exists in the middle of the code. Different par-218

allel frameworks have their specific patterns. For219

example, in OpenMP, this involves inserting a sin-220

gle line of OpenMP pragmas at appropriate points221

within the code, while MPI requires adding multi-222

ple lines of MPI function calls to enable commu-223

nication between parallel processes. An effective224

LLM for parallel code generation should determine225

its FIM strategy through experimental validation.226

Multimodal learning and code representation.227

Multimodal learning has recently gained signifi-228

cant attention in foundational model research. This229

approach leverages data from multiple modalities230

to enhance the model’s understanding and genera- 231

tion capabilities. The HPC community has devel- 232

oped numerous tools to provide critical information 233

about HPC code. Information such as runtime data, 234

dependency analysis, and performance reports is 235

crucial for understanding HPC code from both 236

static and dynamic perspectives. Moreover, code 237

representation studies (TehraniJamsaz et al., 2023; 238

Cummins et al., 2021; Chen et al., 2023d) in the 239

HPC domain have shown that different represen- 240

tations of HPC code can offer various levels of in- 241

sight, thereby enhancing the model’s performance 242

on HPC tasks. Previous studies (Chen et al., 2022; 243

Steinert et al., 2023) applying machine learning 244

in the HPC domain have utilized this multimodal 245

information and achieved remarkable results. 246

Research direction 2: To effectively harness the 247

capabilities of LLMs for HPC parallel code gen- 248

eration, future research should focus on develop- 249

ing specialized training strategies that incorporate 250

domain-specific characteristics and leverage multi- 251

modal data. 252

3.3 Fine-Tuning Strategies 253

Problem 3: Most existing LLMs are not fine- 254

tuned for parallel code generation, and no well- 255

recognized dataset exists for this task. 256

Fine-tuning is a critical step in adapting LLMs to 257

specific tasks or domains. By leveraging domain- 258

specific datasets and training techniques, fine- 259

tuning can significantly enhance the performance 260

and applicability of LLMs in specialized fields. 261

Fine-tuning for parallel code generation can benefit 262

from advanced training techniques such as transfer 263

learning and continual learning. Transfer learning 264

involves starting with a pre-trained general-purpose 265

LLM and then fine-tuning it on an HPC-specific 266

dataset. Continual learning, on the other hand, in- 267

volves continuously updating the model with new 268

data as it becomes available. This is particularly 269

useful in the rapidly evolving field of HPC, where 270

new programming techniques and optimizations 271

are constantly being developed. 272

However, no well-recognized dataset exists for 273

fine-tuning LLMs specifically for parallel code 274

generation. Most datasets collect as much pub- 275

lic code as possible without examining the qual- 276

ity of the data. The HPC domain has developed 277

several benchmarks, such as NAS Parallel Bench- 278

marks (Bailey et al., 1993), SPEC (Müller et al., 279

2010), and Polybench (Yuki, 2014), for paralleliza- 280

3

tion studies. Constructing fine-tuning datasets281

based on these benchmarks can help models gener-282

ate efficient and optimized parallel code.283

Research direction 3: To address the lack of well-284

recognized fine-tuning datasets, future research285

should focus on creating high-quality, benchmark-286

based datasets for fine-tuning LLMs in parallel287

code generation. These datasets should be curated288

to include diverse examples from established HPC289

benchmarks, ensuring a comprehensive representa-290

tion of parallel programming challenges.291

3.4 Prompt Engineering292

Problem 4: Effectively using prompt engineering293

techniques to guide LLM to generate optimized par-294

allel code is challenging. They should consider the295

contextual details and domain-specific knowledge296

required for parallel code generation.297

Prompt engineering involves carefully crafting298

input prompts to guide LLMs to generate more ac-299

curate and contextually relevant outputs. In the con-300

text of parallel code generation, prompt engineer-301

ing can be particularly effective when the prompts302

include relevant facts from previous interactions303

or external resources. For example, when convert-304

ing sequential code to parallel code using OpenMP,305

the prompt can include details about the specific306

loops or sections that need parallelization, the de-307

sired level of parallelism, and any hardware con-308

straints. Mahmud et al. (2023) crafted prompts for309

parallel code generation by including paralleliza-310

tion patterns generated by GNNs. Their superior311

performance indicates that LLMs can benefit from312

prompts enriched with external knowledge, which313

can be obtained from previous HPC or ML tools.314

Moreover, this approach can help models lever-315

age external resources such as performance met-316

rics, hardware specifications, and domain-specific317

libraries, further enhancing the accuracy and effi-318

ciency of the generated code.319

Research direction 4: Future research should fo-320

cus on developing advanced prompt engineering321

techniques tailored for HPC parallel code gener-322

ation. This includes integrating domain-specific323

knowledge, performance metrics, and hardware324

constraints into the prompts. Additionally, leverag-325

ing external resources and tools to provide context326

and enhance the prompts can significantly improve327

the quality of the generated code.328

3.5 Evaluation Metrics 329

Problem 5: Current evaluation methods, such as 330

HumanEval (Chen et al., 2021), are mostly de- 331

signed for general-purpose code. Metrics and eval- 332

uation datasets specifically designed for generated 333

HPC parallel code are needed. 334

Evaluating the performance of LLMs in gen- 335

erating parallel code is crucial to ensure their ef- 336

fectiveness and applicability in the HPC domain. 337

Evaluation impacts not only the assessment of the 338

generated code but also other processes, such as 339

fine-tuning. Unlike general code generation tasks, 340

where correctness and readability are primary con- 341

cerns, parallel code generation must also meet strin- 342

gent performance criteria. Nichols et al. (2024) has 343

made the first step in evaluating parallel code gener- 344

ated by LLMs from an HPC perspective. However, 345

there is significant potential in this direction to cre- 346

ate metrics and evaluation datasets for various HPC 347

languages and parallelization frameworks. 348

Research direction 5: Future research should fo- 349

cus on developing comprehensive evaluation meth- 350

ods and datasets specifically for HPC parallel code 351

generation. This includes creating metrics that as- 352

sess not only the correctness and readability of 353

the code but also its performance, scalability, and 354

efficiency in an HPC environment. Additionally, de- 355

signing evaluation datasets that encompass a wide 356

range of HPC languages and parallelization frame- 357

works will provide a more robust and thorough 358

assessment of LLM capabilities. 359

4 Conclusion 360

In this paper, we have explored the potential and 361

challenges of utilizing large language models for 362

high-performance computing parallel code genera- 363

tion. While LLMs have demonstrated remarkable 364

success in various general-purpose code genera- 365

tion tasks, adapting these models to the specific de- 366

mands of HPC requires specialized approaches and 367

considerations. We highlighted several critical ar- 368

eas that need attention for the effective integration 369

of LLMs into parallel code generation from the per- 370

spective of HPC. By addressing these key areas, we 371

believe it is possible to harness the full potential of 372

LLMs for parallel code generation and other HPC 373

tasks, ultimately contributing to advancements in 374

both machine learning and high-performance com- 375

puting. 376

4

5 Limitation377

While our exploration into the potential of large378

language models (LLMs) for high-performance379

computing (HPC) parallel code generation high-380

lights significant opportunities, it is also important381

to acknowledge the limitations and challenges that382

persist in this field. One of the primary limitations383

is the quality and availability of datasets specifi-384

cally tailored for HPC tasks. Current datasets of-385

ten lack the necessary diversity and depth required386

to train models effectively for HPC applications.387

Furthermore, many available datasets do not ade-388

quately address the compilability and executability389

of the generated code, which are critical factors390

for HPC. Second, the use of LLMs in HPC may391

also raise ethical and security concerns. The po-392

tential for biased outputs, data privacy issues, and393

the inadvertent generation of insecure code are sig-394

nificant risks that need to be addressed. Ensuring395

that LLMs adhere to ethical guidelines and security396

best practices is essential to their safe and effective397

deployment.398

References399

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama400
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,401
Diogo Almeida, Janko Altenschmidt, Sam Altman,402
Shyamal Anadkat, et al. 2023a. Gpt-4 technical re-403
port. arXiv preprint arXiv:2303.08774.404

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama405
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,406
Diogo Almeida, Janko Altenschmidt, Sam Altman,407
Shyamal Anadkat, et al. 2023b. Gpt-4 technical re-408
port. arXiv preprint arXiv:2303.08774.409

David H Bailey, Eric Barszcz, Leonardo Dagum, and410
Horst D Simon. 1993. Nas parallel benchmark re-411
sults. IEEE Parallel & Distributed Technology: Sys-412
tems & Applications, 1(1):43–51.413

David H Bailey et al. 1991. The nas parallel bench-414
marks. The International Journal of Supercomputing415
Applications, 5(3):63–73.416

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak,417
John Schulman, Christine McLeavey, Jerry Tworek,418
and Mark Chen. 2022. Efficient training of lan-419
guage models to fill in the middle. arXiv preprint420
arXiv:2207.14255.421

Le Chen, Arijit Bhattacharjee, Nesreen Ahmed, Ni-422
ranjan Hasabnis, Gal Oren, Vy Vo, and Ali Jan-423
nesari. 2024. Ompgpt: A generative pre-trained424
transformer model for openmp. arXiv preprint425
arXiv:2401.16445.426

Le Chen, Arijit Bhattacharjee, Nesreen K Ahmed, Ni- 427
ranjan Hasabnis, Gal Oren, Bin Lei, and Ali Jannesari. 428
2023a. Compcodevet: A compiler-guided validation 429
and enhancement approach for code dataset. arXiv 430
preprint arXiv:2311.06505. 431

Le Chen, Xianzhong Ding, Murali Emani, Tristan Van- 432
derbruggen, Pei-Hung Lin, and Chunhua Liao. 2023b. 433
Data race detection using large language models. In 434
Proceedings of the SC’23 Workshops of The Interna- 435
tional Conference on High Performance Computing, 436
Network, Storage, and Analysis, pages 215–223. 437

Le Chen, Pei-Hung Lin, Tristan Vanderbruggen, Chun- 438
hua Liao, Murali Emani, and Bronis de Supinski. 439
2023c. Lm4hpc: Towards effective language model 440
application in high-performance computing. In In- 441
ternational Workshop on OpenMP, pages 18–33. 442
Springer. 443

Le Chen, Quazi Ishtiaque Mahmud, and Ali Jannesari. 444
2022. Multi-view learning for parallelism discov- 445
ery of sequential programs. In 2022 IEEE Interna- 446
tional Parallel and Distributed Processing Sympo- 447
sium Workshops (IPDPSW), pages 295–303. IEEE. 448

Le Chen, Quazi Ishtiaque Mahmud, Hung Phan, Nes- 449
reen Ahmed, and Ali Jannesari. 2023d. Learning 450
to parallelize with openmp by augmented heteroge- 451
neous ast representation. Proceedings of Machine 452
Learning and Systems, 5. 453

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 454
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 455
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 456
Greg Brockman, et al. 2021. Evaluating large 457
language models trained on code. arXiv preprint 458
arXiv:2107.03374. 459

Béatrice Creusillet et al. 2009. Par4all: Auto- 460
parallelizing c and fortran for the cuda architecture. 461
Computer. 462

Chris Cummins, Zacharias V Fisches, Tal Ben-Nun, 463
Torsten Hoefler, Michael FP O’Boyle, and Hugh 464
Leather. 2021. Programl: A graph-based program 465
representation for data flow analysis and compiler op- 466
timizations. In International Conference on Machine 467
Learning, pages 2244–2253. PMLR. 468

Liuyao Dai, Hao Qi, Weicong Chen, and Xiaoyi Lu. 469
2024. High-speed data communication with ad- 470
vanced networks in large language model training. 471
IEEE Micro. 472

Chirag Dave et al. 2009. Cetus: A source-to-source 473
compiler infrastructure for multicores. Computer, 474
42(12). 475

Michael Dever. 2015. AutoPar: automating the par- 476
allelization of functional programs. Ph.D. thesis, 477
Dublin City University. 478

William Godoy, Pedro Valero-Lara, Keita Teranishi, 479
Prasanna Balaprakash, and Jeffrey Vetter. 2023. Eval- 480
uation of openai codex for hpc parallel programming 481

5

models kernel generation. In Proceedings of the482
52nd International Conference on Parallel Process-483
ing Workshops, pages 136–144.484

Lucio Grandinetti, Seyedeh Leili Mirtaheri, and Reza485
Shahbazian. 2018. Big data and HPC: ecosystem486
and convergence, volume 33. IOS Press.487

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu488
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey489
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-490
bert: Pre-training code representations with data flow.491
arXiv preprint arXiv:2009.08366.492

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai493
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,494
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the495
large language model meets programming–the rise of496
code intelligence. arXiv preprint arXiv:2401.14196.497

Re’em Harel, Yuval Pinter, and Gal Oren. 2023. Learn-498
ing to parallelize in a shared-memory environment499
with transformers. In Proceedings of the 28th ACM500
SIGPLAN Annual Symposium on Principles and501
Practice of Parallel Programming, pages 450–452.502

Re’em Harel et al. 2020. Source-to-source paralleliza-503
tion compilers for scientific shared-memory multi-504
core and accelerated multiprocessing: analysis, pit-505
falls, enhancement and potential. International Jour-506
nal of Parallel Programming, 48(1):1–31.507

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou508
Sun. 2020. Heterogeneous graph transformer. In509
Proceedings of the web conference 2020, pages 2704–510
2710.511

Intel. 2023. New 5th gen Intel® Xeon® processors are512
built with ai acceleration in every core. Retrieved513
from Intel.514

Tal Kadosh, Niranjan Hasabnis, Timothy Mattson,515
Yuval Pinter, and Gal Oren. 2023a. Quantifying516
openmp: Statistical insights into usage and adoption.517
In 2023 IEEE High Performance Extreme Computing518
Conference (HPEC), pages 1–7. IEEE.519

Tal Kadosh, Niranjan Hasabnis, Timothy Mattson, Yu-520
val Pinter, Gal Oren, et al. 2023b. Pragformer: Data-521
driven parallel source code classification with trans-522
formers. Research Square.523

Tal Kadosh, Niranjan Hasabnis, Vy A Vo, Nadav Schnei-524
der, Neva Krien, Mihai Capota, Abdul Wasay, Nes-525
reen Ahmed, Ted Willke, Guy Tamir, et al. 2023c.526
Domain-specific code language models: Unraveling527
the potential for hpc codes and tasks. arXiv preprint528
arXiv:2312.13322.529

Tal Kadosh, Niranjan Hasabnis, Vy A Vo, Nadav Schnei-530
der, Neva Krien, Abdul Wasay, Nesreen Ahmed, Ted531
Willke, Guy Tamir, Yuval Pinter, et al. 2023d. Scope532
is all you need: Transforming llms for hpc code.533
arXiv preprint arXiv:2308.09440.534

Tal Kadosh, Nadav Schneider, Niranjan Hasabnis, Tim- 535
othy Mattson, Yuval Pinter, and Gal Oren. 2023e. 536
Advising openmp parallelization via a graph-based 537
approach with transformers. In International Work- 538
shop on OpenMP, pages 3–17. Springer. 539

Junaed Younus Khan and Gias Uddin. 2022. Automatic 540
code documentation generation using gpt-3. In Pro- 541
ceedings of the 37th IEEE/ACM International Con- 542
ference on Automated Software Engineering, pages 543
1–6. 544

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, 545
Chenghao Mou, Carlos Muñoz Ferrandis, Yacine Jer- 546
nite, Margaret Mitchell, Sean Hughes, Thomas Wolf, 547
et al. 2022. The stack: 3 tb of permissively licensed 548
source code. arXiv preprint arXiv:2211.15533. 549

Katherine Lee, Daphne Ippolito, Andrew Nystrom, 550
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch, 551
and Nicholas Carlini. 2021. Deduplicating training 552
data makes language models better. arXiv preprint 553
arXiv:2107.06499. 554

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling- 555
ming Zhang. 2024. Is your code generated by chatgpt 556
really correct? rigorous evaluation of large language 557
models for code generation. Advances in Neural 558
Information Processing Systems, 36. 559

Quazi Ishtiaque Mahmud, Ali TehraniJamsaz, Hung D 560
Phan, Nesreen K Ahmed, and Ali Jannesari. 2023. 561
Autoparllm: Gnn-guided automatic code paralleliza- 562
tion using large language models. arXiv preprint 563
arXiv:2310.04047. 564

Idan Mosseri, Lee-or Alon, Re’Em Harel, and Gal Oren. 565
2020. Compar: optimized multi-compiler for au- 566
tomatic openmp s2s parallelization. In OpenMP: 567
Portable Multi-Level Parallelism on Modern Systems: 568
16th International Workshop on OpenMP, IWOMP 569
2020, Austin, TX, USA, September 22–24, 2020, Pro- 570
ceedings 16, pages 247–262. Springer. 571

Matthias S Müller, Matthijs Van Waveren, Ron Lieber- 572
man, Brian Whitney, Hideki Saito, Kalyan Kumaran, 573
John Baron, William C Brantley, Chris Parrott, Tom 574
Elken, et al. 2010. Spec mpi2007—an application 575
benchmark suite for parallel systems using mpi. Con- 576
currency and Computation: Practice and Experience, 577
22(2):191–205. 578

Marco AS Netto, Rodrigo N Calheiros, Eduardo R Ro- 579
drigues, Renato LF Cunha, and Rajkumar Buyya. 580
2018. Hpc cloud for scientific and business appli- 581
cations: taxonomy, vision, and research challenges. 582
ACM Computing Surveys (CSUR), 51(1):1–29. 583

Daniel Nichols, Joshua H Davis, Zhaojun Xie, Arjun 584
Rajaram, and Abhinav Bhatele. 2024. Can large 585
language models write parallel code? arXiv preprint 586
arXiv:2401.12554. 587

Daniel Nichols, Aniruddha Marathe, Harshitha Menon, 588
Todd Gamblin, and Abhinav Bhatele. 2023. Model- 589
ing parallel programs using large language models. 590
arXiv preprint arXiv:2306.17281. 591

6

https://www.intel.com/content/www/us/en/newsroom/news/5th-gen-xeon-data-center-news.html#gs.4emehd
https://www.intel.com/content/www/us/en/newsroom/news/5th-gen-xeon-data-center-news.html#gs.4emehd
https://www.intel.com/content/www/us/en/newsroom/news/5th-gen-xeon-data-center-news.html#gs.4emehd

Russell A Poldrack, Thomas Lu, and Gašper Beguš.592
2023. Ai-assisted coding: Experiments with gpt-4.593
arXiv preprint arXiv:2304.13187.594

S Prema et al. 2017. Identifying pitfalls in automatic595
parallelization of nas parallel benchmarks. In Par-596
allel Computing Technologies (PARCOMPTECH),597
2017 National Conference on, pages 1–6. IEEE.598

S Prema et al. 2019. A study on popular auto-599
parallelization frameworks. Concurrency and Com-600
putation: Practice and Experience, 31(17):e5168.601

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten602
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,603
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.604
Code llama: Open foundation models for code. arXiv605
preprint arXiv:2308.12950.606

Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank607
Tip. 2023. An empirical evaluation of using large608
language models for automated unit test generation.609
IEEE Transactions on Software Engineering.610

Nadav Schneider, Tal Kadosh, Niranjan Hasabnis,611
Timothy Mattson, Yuval Pinter, and Gal Oren.612
2023. Mpi-rical: Data-driven mpi distributed par-613
allelism assistance with transformers. arXiv preprint614
arXiv:2305.09438.615

Patrick Steinert, Stefan Wagenpfeil, Paul Mc Kevitt,616
Ingo Frommholz, and Matthias Hemmje. 2023. Par-617
allelization strategies for graph-code-based similarity618
search. Big Data and Cognitive Computing, 7(2):70.619

Ali TehraniJamsaz, Quazi Ishtiaque Mahmud, Le Chen,620
Nasreen K Ahmed, and Ali Jannesari. 2023. Per-621
fograph: A numerical aware program graph repre-622
sentation for performance optimization and program623
analysis. arXiv preprint arXiv:2306.00210.624

Pedro Valero-Lara, Alexis Huante, Mustafa Al Lail,625
William F Godoy, Keita Teranishi, Prasanna Bal-626
aprakash, and Jeffrey S Vetter. 2023. Comparing627
llama-2 and gpt-3 llms for hpc kernels generation.628
arXiv preprint arXiv:2309.07103.629

Xin Wang, Yasheng Wang, Yao Wan, Fei Mi, Yi-630
tong Li, Pingyi Zhou, Jin Liu, Hao Wu, Xin Jiang,631
and Qun Liu. 2022. Compilable neural code gen-632
eration with compiler feedback. arXiv preprint633
arXiv:2203.05132.634

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and635
Percy S Liang. 2023. Data selection for language636
models via importance resampling. Advances in637
Neural Information Processing Systems, 36:34201–638
34227.639

Frank F Xu, Uri Alon, Graham Neubig, and Vincent Jo-640
sua Hellendoorn. 2022. A systematic evaluation of641
large language models of code. In Proceedings of642
the 6th ACM SIGPLAN International Symposium on643
Machine Programming, pages 1–10.644

Tomofumi Yuki. 2014. Understanding polybench/c 3.2 645
kernels. In International workshop on polyhedral 646
compilation techniques (IMPACT), pages 1–5. 647

Li Zhong and Zilong Wang. 2023. A study on robust- 648
ness and reliability of large language model code 649
generation. arXiv preprint arXiv:2308.10335. 650

A Instances of LLMs Enhancing HPC 651

Parallel Code Generation 652

In this section, we discuss an application of LLMs 653

to the HPC problem of automatically generating 654

parallel programs for shared memory systems (us- 655

ing OpenMP pragmas). 656

Shared memory systems are characterized by 657

multiple compute cores (e.g., CPU cores) that share 658

access to common caches (e.g., L3 cache). For in- 659

stance, systems based on the 5th generation Intel 660

Xeon processor (codenamed Emerald Rapids) (In- 661

tel, 2023), contain anywhere between 8 to 64 cores, 662

all of which share access to the last level cache 663

(L3 typically). Getting the best performance out of 664

such systems requires writing parallel code, which 665

divides the problem into subproblems and executes 666

them in parallel on different cores. Writing a paral- 667

lel version of serial code, however, is tricky, cour- 668

tesy of typical multi-threading problems — it re- 669

quires reasoning of data dependence, race condi- 670

tions, deadlocks, etc. Programming standards such 671

as OpenMP simplify this task considerably to the 672

extent that OpenMP is the most popular parallel 673

programming API in open-source (Kadosh et al., 674

2023a). 675

/ / S e r i a l code f o r e lement − wise m u l t i p l y
f o r (i n t i = 0 ; i < a . s i z e () ; i ++) {

a [i] = b [i] * c [i] ;
}

/ / P a r a l l e l v e r s i o n o f t h e above code
pragma omp p a r a l l e l f o r
f o r (i n t i = 0 ; i < a . s i z e () ; i ++) {

a [i] = b [i] * c [i] ;
}

Figure 1: Comparison between serial and parallel im-
plementations of element-wise multiplication.

As an example, the first code snippet in Fig- 676

ure 1 shows a serial version of code that performs 677

element-wise multiplication on two std::vectors, 678

while the following code snippet shows the paral- 679

lel version of the serial code. The #pragma omp 680

parallel for pragma causes the OpenMP run- 681

time to create a team of threads, where each thread 682

7

operates on an individual subset of the iteration683

space, leading to the better utilization of underlying684

multiple compute cores. While standard compilers,685

such as GCC, LLVM, etc., and source-to-source686

translation tools (S2S), such as Cetus (Dave et al.,687

2009), AutoPar (Dever, 2015), Par4All (Creusillet688

et al., 2009), ComPar (Mosseri et al., 2020), etc.,689

can automatically generate parallel versions of se-690

rial code, they, however, had limited success (Harel691

et al., 2020; Prema et al., 2017, 2019), especially692

because of a lack of robustness.693

The limitations of the existing tools in automat-694

ically generating parallel versions of serial code695

have led to the introduction of AI-based tools for696

programming assistance. Instead of relying on for-697

mal program analysis passes (such as loop depen-698

dence analysis in compilers), AI-based tools for699

this problem leverage recent advancements in the700

field of NLP (especially Transformer architecture)701

to accurately determine the parallelization potential702

of code. A simple categorization of these AI-based703

tools could be as follows: (1) OpenMP-specific704

tools, such as PragFormer (Harel et al., 2023; Ka-705

dosh et al., 2023b), OMPify (Kadosh et al., 2023e),706

Graph2Par (Chen et al., 2023d), HPCoder (Nichols707

et al., 2023), AutoParLLM (Mahmud et al., 2023),708

etc., that are solely designed for the OpenMP paral-709

lelization problem, (2) Pre-trained HPC-oriented710

models that are the fine-tuned for OpenMP, such711

as MonoCoder (Kadosh et al., 2023c) and OMP-712

GPT (Chen et al., 2024), and (3) general-purpose713

tools, such as ChatGPT, CodeLLaMa (Roziere714

et al., 2023), etc., that can solve the OpenMP par-715

allelization problem, in addition to several other716

programming related or unrelated tasks (Godoy717

et al., 2023; Valero-Lara et al., 2023; Nichols et al.,718

2024). We will review these tools along with dif-719

ferent design choices. (Since the last category of720

tools are not specifically designed for the OpenMP721

parallelization problem, we will not discuss their722

design choices.)723

• Problem formulation: The problem of automati-724

cally parallelizing serial code using OpenMP can725

be divided into multiple subproblems. To be pre-726

cise, the problem that these approaches attempt727

to solve can be defined as: Given a piece of serial728

code (mostly for loops), determine if the code729

can be parallelized, and if so, suggest appropri-730

ate OpenMP pragma. As the first part of the731

problem statement is a boolean question, tools732

such as PragFormer, OMPify, and Graph2Par733

formulate it as a binary classification problem 734

(this same formulation also applied to other par- 735

allelization strategies, such as MPI (e.g., MPI- 736

rical (Schneider et al., 2023)). Once these ap- 737

proaches determine the parallelization potential 738

of a loop, the next subproblem is to suggest ap- 739

propriate OpenMP pragma as a multi-class classi- 740

fication problem. Specifically, Graph2Par consid- 741

ers four specific items from OpenMP (target, 742

simd, private, reduction) that could apply to 743

a parallel loop. PragFormer and OMPify, on 744

the other hand, consider two additional OpenMP 745

clauses (private and reduction). Given the 746

large number of clauses, library functions, and 747

pragmas in OpenMP (Kadosh et al., 2023a), these 748

approaches have a long way to go before the full 749

range of OpenMP can be applied to HPC pro- 750

gramming problems. 751

• Source code representation: The representation 752

of the input serial code, is an important design 753

decision for this problem as the accurate predic- 754

tions depend upon the ability of the AI model 755

to learn to reason about certain program prop- 756

erties (such as loop-carried dependence) that 757

determine the parallelism potential. Treating 758

source code as text and employing a sequence 759

of tokens representation did not yield satisfac- 760

tory results (Kadosh et al., 2023e), consequently, 761

all of these approaches have leveraged sophisti- 762

cated compiler-based code representations such 763

as abstract-syntax tree (AST), data-flow graph 764

(DFG) (in OMPify), or even specialized ones 765

such as heterogeneous augmented abstract syntax 766

tree (Augmented-AST) in Graph2Par (Chen et al., 767

2023d). Also, some of these approaches have de- 768

vised new tokenization strategies. For instance, 769

Kadosh et. al. have devised TokomPiler (Kadosh 770

et al., 2023d) to address specific requirements of 771

preprocessing HPC code (written mostly in C, 772

C++, and Fortran) and compilation-centric tasks. 773

• Training dataset: The lack of curated, publicly- 774

available datasets has forced teams working on 775

these techniques to synthesize their own train- 776

ing datasets using various sources such as open- 777

source programs containing OpenMP pragmas, 778

parallel programming benchmarks (e.g., NAS 779

parallel benchmark (Bailey et al., 1991)), etc. 780

Specifically, a common approach followed for 781

synthesis is to search C/C++ programs contain- 782

ing for loops that have OpenMP parallel loops 783

8

(e.g., #pragma omp parallel for). The for784

loops are then used as input to the model, while785

their OpenMP pragmas (or their lack of) are786

used to generate appropriate labels. Thank-787

fully, authors of these approaches have released788

their datasets publicly for further research (e.g.,789

OMP_Serial by Graph2Par, Open-OMP by Prag-790

Former). The most comprehensive HPC-oriented791

training dataset to this date is the HPCorpus (Ka-792

dosh et al., 2023a) dataset, containing a total793

of 300K repos, 70 GB, 9M files across C, C++,794

and Fortran code from GitHub, with hundreds795

of thousands of those functions able to compile796

successfully (Chen et al., 2023a). This repo in-797

cludes common parallel programming APIs, such798

as MPI, CUDA, OpenCL, TBB, Cilk, OpenACC,799

and SYCL.800

• Model architecture: These approaches employ801

popular deep learning innovations such as Trans-802

former architecture, graph neural networks (as803

source code can be represented as a graph), etc.,804

to find parallelism opportunities within serial805

code and then generate parallel versions by au-806

tomatically inserting OpenMP pragmas. Specif-807

ically, Graph2Par uses a modified transformer808

model called heterogeneous graph transformer809

(HGT) (Hu et al., 2020), while OMPify builds810

on top of GraphCodeBERT(Guo et al., 2020), a811

pre-trained model for programming languages812

that considers the inherent structure of the code813

by accepting source code along with its dataflow814

graph. Models employed by these approaches815

are typically smaller than LLMs such as CodeL-816

LaMa, GPT-3.5, etc., that can also parallelize817

serial code. In spite of the smaller sizes, these ap-818

proaches have outperformed larger models such819

as ChatGPT on the task of parallelizing serial820

code (Kadosh et al., 2023c; Chen et al., 2024).821

• Results: Overall, better and problem-specific822

code representations have helped these OpenMP-823

specific approaches outperform code LLMs on824

the OpenMP parallelization problem. Specifi-825

cally, PragFormer has shown that it can outper-826

form a formal, source-to-source tool called Com-827

Par on the task of detecting parallelization poten-828

tial of a loop (0.8 vs 0.5 accuracy). Graph2Par,829

on the other hand, has shown that it can out-830

perform PragFormer on the task of predicting831

OpenMP clauses applicable to a parallel loop832

(0.89 vs 0.85 accuracy in predicting the appli-833

cability of private clause). More importantly, 834

both OMPify and PragFormer have shown that 835

they can outperform ChatGPT (GPT-3.5) on de- 836

termining the parallelization potential of a loop 837

(0.4 vs 0.86 accuracy) (Kadosh et al., 2023e). 838

9

