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Abstract

Telling apart the cause and effect between two
random variables with purely observational data
is a challenging problem that finds applications
in various scientific disciplines. A key principle
utilized in this task is the algorithmic Markov
condition, which postulates that the joint distri-
bution, when factorized according to the causal
direction, yields a more succinct codelength com-
pared to the anti-causal direction. Previous ap-
proaches approximate these codelengths by rely-
ing on simple functions or Gaussian processes
(GPs) with easily evaluable complexity, compro-
mising between model fitness and computational
complexity. To overcome these limitations, we
propose leveraging the variational Bayesian learn-
ing of neural networks as an interpretation of the
codelengths. Consequently, we can enhance the
model fitness while promoting the succinctness
of the codelengths, while avoiding the significant
computational complexity of the GP-based ap-
proaches. Extensive experiments on both syn-
thetic and real-world benchmarks in cause-effect
identification demonstrate the effectiveness of our
proposed method, surpassing the overall perfor-
mance of related complexity-based and structural
causal model regression-based approaches.

1. Introduction
Cause-effect identification or bivariate causal discovery—
the task of telling apart the cause and the effect between
two random variables—is a critical task across various sci-
entific disciplines, including biology, economics, and so-
ciology (Pearl, 2009). While randomized controlled tri-
als (RCTs) are considered the most accurate method for
identifying these types of causal relationships, especially in
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medical research (Guyon et al., 2019), they are often imprac-
tical due to resource constraints and ethical considerations.
Studying passive observations offers a viable alternative for
causal inference, despite requiring assumptions on the data
generating process to detect the asymmetry between the
causal and anti-causal directions. One intuitive interpreta-
tion of the causal asymmetry from an information-theoretic
perspective is the independence postulate of algorithmic
Markov kernels (Janzing & Schölkopf, 2010), which states
that the true causal direction must yield the lowest algo-
rithmic Kolmogorov complexity factorization of the joint
distribution.

However, because of the incomputability of the Kolmogorov
complexity (Li & Vitányi, 2019), approximation meth-
ods via the principle of Minimum Description Length
(MDL, Grünwald, 2007; Marx & Vreeken, 2017; 2019a;b)
are proposed to instantiate this complexity empirically. The
two-part MDL aims to find the model that minimize two
criteria: (1) the complexity of the data given that model and
(2) the model complexity of the model used for modeling
the data. The former complexity measures the model fitness,
which is commonly evaluated through the log-likelihood of
the data given the model. The options for estimating the
latter model complexity are more diverse, which usually
involve the number of available models and the parameters
in each model. As these methods attempt to minimize the
total codelength, they are also called compression-based
methods.

While these approaches have shown promising results, the
estimation of the conditional distributions in these methods
relies on traditional regression methods that offer easily
evaluable model complexity. If the ground truth conditional
models are more complex or too distinct from the predefined
ones, this implementation for the model classes can result in
lower fitness and higher complexity of data given the model,
leading to suboptimal approximations for the algorithmic
complexity. Dhir et al. (2024a) overcome this restriction by
leveraging Gaussian processes (GPs), though this involves a
significant trade-off between flexibility and computational
complexity.

To address the limitations of these previous compression-
based methods, we propose the leverage of neural networks
for learning the conditional models, which are considered
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as universal approximators (Hornik et al., 1989). More-
over, the algorithmic complexity of the networks can be
approximated empirically via the concepts of bits-back cod-
ing (Hinton & van Camp, 1993; Wallace, 1990) and varia-
tional Bayesian coding (Honkela & Valpola, 2004; Louizos
et al., 2017; Blier & Ollivier, 2018). In this study, we intro-
duce COMIC—a Bayesian COMpression-based approach to
Identifying the Causal direction—that improves the model
fitness without compromising the computability of model
complexity and avoids the higher computational complex-
ity of GP-based modeling. Correspondingly, through ex-
tensive empirical evaluation on benchmarks for the cause-
effect identification task, our approach not only outperforms
complexity-based methods but also surpasses other related
regression-based ones.

Contributions The key contributions of this work can be
outlined as follows:

1. We propose the utilization of Bayesian neural net-
works for modeling the conditional distributions to
address the challenge of balancing between the flex-
ibility and scalability, which is hindering previous
complexity/compression-based methods. By minimiz-
ing the variational Bayesian codelength, we can approx-
imate the algorithmic complexity of neural networks.

2. From our proposed encoding scheme of the data
given each causal direction, the causal identifiabil-
ity can be proven. In particular, our models are non-
separable-compatible, which implies that given a suffi-
cient amount of data, the causal direction can be iden-
tified via the complexity of our models.

3. The capability of our proposed approach is assessed
on both synthetic and real-world bivariate causal dis-
covery benchmarks. In comparison with related ap-
proaches, our method achieves significant performance
improvements in a majority of the benchmarks, demon-
strating its effectiveness and consistency in evaluating
the empirical complexity of the causal models.

2. Related Works
Despite being a well-defined task, the amount of information
for determining the causal direction in the bivariate setting is
limited, hindering further improvements in both theoretical
and empirical results. In the following section, we provide
an overview of recent related publications about this task,
which includes two popular approaches.

Functional Causal Models The earliest functional causal
model (FCM, Pearl, 2009) being proposed is the additive
noise model (ANM, Shimizu et al., 2006; Hoyer et al., 2008;

Bühlmann et al., 2014; Peters et al., 2014), where the ef-
fect Y is generated from a function of the cause X and
an independent noise EY (X ⊥⊥ EY ) by adding them as
Y := f (X) + EY . In this model, the cause is assumed to
only contribute to the mean, which is can be estimated by
mean regression methods (Shimizu et al., 2006; Hoyer et al.,
2008; Bühlmann et al., 2014; Peters et al., 2014). From
the estimated models, CAM (Bühlmann et al., 2014) de-
termines the causal direction by selecting the one with the
greater maximum likelihood, whereas RESIT (Peters et al.,
2014) quantifies the independence between the cause and
the estimated noise with the Hilbert–Schmidt Independence
Criterion (HSIC, Gretton et al., 2005).

Due to the strict assumption on model classes of ANMs,
generalization approaches for the ANMs have been in-
troduced to allow for more complex functions, including
post nonlinear models (PNLs, Zhang & Hyvärinen, 2009)
and heteroscedastic/location-scale noise models (LSNMs,
Immer et al., 2023). Specifically, LSNMs assume that
the cause not only contributes to the mean but also the
scale through another function g (X), resulting in the effect
Y := f (X)+g (X)×EY . These models are more flexible
than the ANMs due to their ability to also cover multiplica-
tive noise models with the scale functions. LOCI (Immer
et al., 2023) chooses the Gaussian likelihood to estimate the
mean and scale functions, and recovers the noise from the
fitted models. Similar to RESIT, LOCI also consider HSIC
as a criterion in addition to the likelihood for predicting the
causal direction. Since the Gaussian likelihood may not be
robust to epistemic uncertainty, ROCHE (Tran et al., 2024a)
suggested a more robust estimation for LSNMs by replacing
the Gaussian likelihood with a likelihood based on Student’s
t-distribution.

Principle of Independent Causal Mechanisms Beside
the algorithmic complexity, there are other approaches for
interpreting the principle of independent causal mechanisms
(ICMs, Peters et al., 2017, Sec. 2.1), which assumes the
independence between the marginal distribution of the cause
and the conditional distribution of the effect given the cause.
With the assumption of low noise levels and invertible causal
mechanisms, IGCI (Daniušis et al., 2010) formulates this
independence using orthogonality in information space to
distinguish cause and effect, which is implemented by the
relative entropy distances. CDCI (Duong & Nguyen, 2022)
postulates that due to this ICM principle, the shape of the
conditional distributions will be invariant, and compute the
variations in shape to find the causal directions.

The algorithmic complexity-based methods (Marx &
Vreeken, 2019a;b; Tagasovska et al., 2020) do not only
consider the model fitness objective as in FCM-based meth-
ods but also examine the complexity of the model. SLOPE
and SLOPER (Marx & Vreeken, 2017; 2019b) use a set of
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basis functions to regress the data globally and locally to
account for both deterministic and non-deterministic func-
tions, and compute the codelengths for encoding the data
with two-part codes. SLOPPY (Marx & Vreeken, 2019a)
is an improvement of RECI (Blöbaum et al., 2018) that
utilizes regularized regressions of Identifiable Regression-
based Scoring Functions and find the one with the lowest
regularized score to find the minimal model in each direc-
tion. QCCD (Tagasovska et al., 2020) uses non-parametric
conditional quantile regression methods and encodes the
data via each quantile model. Our work—COMIC—also be-
longs to this category where the conditional distributions of
the data are modeled by neural networks and encoded by the
variational Bayesian coding scheme. This approach allows
for more flexibility compared to previous methods while
allowing for the balance between model fitness and model
complexity. Another study by Dhir et al. (2024a) interprets
the principle of ICMs from the view of the Bayesian model
selection and proposes using the marginal likelihoods esti-
mated by latent variable Gaussian processes (GPLVM, Tit-
sias & Lawrence, 2010) for identifying the causal direction.

3. Preliminaries
In this work, the assumption of causal sufficiency is adopted,
which is similar to previous publications (Immer et al., 2023;
Marx & Vreeken, 2017; 2019a;b; Mooij et al., 2016; Peters
et al., 2014; Tagasovska et al., 2020; Tran et al., 2024a). This
means that we assume that there is no hidden confounder
between the two random variables. In other words, given
two variables X and Y , if they are not independent, either
X or Y will be the cause of the other.

As mentioned in Sec. 2, interpreting the principle of indepen-
dent causal mechanisms is one of two major approaches for
determining the direction of a causal relation. The algorith-
mic interpretation of this independence via the Kolmogorov
complexity originates from the postulate about the algorith-
mic independence of conditionals (Janzing & Schölkopf,
2010, Eq. 26) as follows:

Postulate 1 (Algorithmic Independence of Conditionals,
Janzing & Schölkopf, 2010). Let G be causal hypothe-
sis, represented by a directed acyclic graph (DAG), over
a set of d variables X1, . . . , Xd with a joint density
p (X1, . . . , Xd), which is lower semi-computable, that is,
K (p (X1, . . . , Xd)) < ∞. The causal hypothesis is only
acceptable if the shortest description (i.e., the Kolmogorov
complexity) of the joint density K (p (X1, . . . , Xd)) is equal
to a concatenation of the shortest description of the Markov
kernels up to an independent additive constant. This postu-
late can be described formally as

K (p (X1, . . . , Xd))
+
=

d∑
j=1

K (p (Xj | PAG,j)) , (1)

where K (·) is the Kolmogorov complexity, PAG,j denotes
the parents of Xj in the causal hypothesis G, and +

= denotes
equality up to a constant, which is independent of p (·).

In the bivariate setting with two random variables X and Y ,
if X causes Y (denoted as X → Y ), Eq. (1) will become

K (p (X,Y ))
+
= K (p (X)) +K (p (Y | X)) . (2)

Following the algorithmically independent conditionals, the
algorithmic independence of Markov kernels has also been
postulated by Janzing & Schölkopf (2010); Mooij et al.
(2010) as follows

Postulate 2 (Algorithmic Independence of Markov Kernels,
Janzing & Schölkopf, 2010). If X → Y , the marginal dis-
tribution of the cause p (X) and the conditional distribution
of the effect given the cause p (Y | X) are algorithmically
independent of each other. In other words, their algorith-
mic mutual information (IA) will be equal to zero up to an
additive constant,

IA (p (X) : p (Y | X))
+
= 0, (3)

and this independence does not hold in the other direction.

From these postulates, Mooij et al. (2010, Thm. 1) induce a
rule for identifying the causal direction.

Theorem 3.1 (Asymmetry in Complexities of Markov Ker-
nels, Mooij et al., 2010). If X is the cause of Y and Pos. 2
holds, the description of the joint distribution K (p (X,Y ))
via the description of the marginal distribution of the cause
K (p (X)) and the description of the conditional distribu-
tion of the effect given the cause K (p (Y | X)) is the most
succinct one, or formally,

K (p (X)) +K (p (Y | X))
+
≤ K (p (Y )) +K (p (X | Y )) .

(4)

As a consequence of this rule, a causal indicator score can
be obtained for the assumed causal directions of X → Y as
follows

∆X→Y := K (p (X)) +K (p (Y | X)) , (5)

and vice versa for the remaining direction of Y → X . From
these indicator scores, we can infer that X → Y if ∆Y→X−
∆X→Y > 0 and Y → X if ∆Y→X −∆X→Y < 0.

The Kolmogorov complexity is not computable in prac-
tice (Li & Vitányi, 2019). Hence, the causal indicators
in the previous section are substituted by approximating
approaches such as Minimum Message Length (MML, Wal-
lace & Freeman, 1987) or Minimum Description Length
(MDL, Rissanen, 1978) in previous information-theoretic
methods (Mooij et al., 2010; Marx & Vreeken, 2017;
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2019b;a). MML and MDL share a two-part coding principle
where the complexity or codelength1 L2-p of the data D is
computed via a model M ∈M by combining the complex-
ity (fitness) of the data given that model L1 (D |M) and
the complexity of the model L2 (M) as

L2-p
M (D) := L1 (D |M) + L2 (M) . (6)

The codelength with a model M∗ that minimizes this equa-
tion is appointed as an instantiation for the algorithmic com-
plexity. If there are multiple solutions for M∗, the one with
the smallest model complexity L1 is selected to model the
data. From this two-part code, we can attain an approxima-
tion for the causal indicator score in Eq. (5) as follows

∆̂2-p
X→Y := L2-p

M∗
X
(X) + L2-p

M∗
Y |X

(Y | X) , (7)

where M∗
X and M∗

Y |X are models that minimize L2-p
M∗

X
(X)

and L2-p
M∗

Y |X
(Y | X), respectively.

The definitions of Kolmogorov complexity and algorith-
mic mutual information, as well as the discussion of the
MDL-based instantiation of Kolmogorov complexity in the
context of causal discovery, as referenced in this section, are
provided in App. A.

4. COMIC: Bayesian Compression for
Identifying Causal Direction

4.1. Classes of Models for the Conditionals

For the conditional distribution, most previous MDL-related
studies choose the setM of candidate functions by predefin-
ing a list of basis functions (Marx & Vreeken, 2017; 2019b)
or using more advanced regression methods such as cubic
spline regression (Marx & Vreeken, 2019a). Although these
classes of functions have the model codelengths that are
easily computable (e.g., through the number of bits of linear
parameters in polynomial regressions), the fitness can be
compromised when the ground truth models are more com-
plex, leading to suboptimal codelengths. Dhir et al. (2024a)
utilize GPLVM (Titsias & Lawrence, 2010) to improve the
fitness; however, this substantially increases the computa-
tional complexity due to the poor scalability of GPs.

Neural networks are one class of models that can overcome
these limitations thanks to their universality in approxima-
tions (Hornik et al., 1989) and better scalability. Addi-
tionally, the complexity of neural networks has also been
well studied and implemented with different encoding meth-
ods (Blier & Ollivier, 2018; Louizos et al., 2017; Voita &
Titov, 2020). Hence, neural network can be a viable class of

1Since algorithmic complexity is defined based on the length
of the code, or codelength, we use the terms of “complexity” and
“codelength” interchangeably in this work.

models for computing the codelengths of conditional distri-
butions. Moreover, due to their flexibility and capability of
approximating a wide range of functions, neural networks
allow us to only focus on this class of models where com-
plexity scores are determined solely by their parameters.

The prequential code (Dawid, 1984) and the variational
Bayesian code (Honkela & Valpola, 2004) are two effec-
tive MDL approaches for encoding the conditional distribu-
tion modeled by neural networks (Blier & Ollivier, 2018;
Grünwald, 2007; Voita & Titov, 2020). The former encodes
the model implicitly through sequential data transmission, as
seen in applications such as time series. The latter involves
predefining the priors over the parameters and utilizes vari-
ational inference to learn the posteriors from the samples.
In contrast to the online prequential code, this approach is
aligned with the two-part code. Despite these differences in
coding strategies, both methods yield consistent results, as
noted by Voita & Titov (2020). We opted for the variational
Bayesian code to assess the codelengths because it explicitly
captures the model complexity and does not necessitate a
specific order of data transmission.

4.2. Variational Bayesian Code for Evaluating
Complexity of Neural Networks

The problem of encoding a conditional distribution
p (Y | X) is often defined via a transmitting perspective.
Alice has a dataset DN :=

{(
x(i), y(i)

)}N
i=1

that needs to
be transported to Bob, who has already got the input sam-
ples of this dataset

{
x(i)
}N
i=1

. The most efficient method
is to encode the conditional distribution p (Y | X) so that
Bob can predict the remaining output part

{
y(i)
}N
i=1

of
DN . The variational Bayesian code is a two-part code in
MDL where both Alice and Bob first designate a class of
modelM = {p (y | x,θ) | θ ∈ Θ}, where θ represents the
parameters of the conditional probability density function
p (y | x,θ), and a prior distribution for the parameters with
the probability density function p (θ). The corresponding
two-part codelength2 for this setting can be computed as

L2-p
p(θ)

(
y(1:N) | x(1:N)

)
:=− log p

(
y(1:N) | x(1:N),θ

)
− log p (θ) , (8)

where the former term corresponds to L1, the latter cor-
responds L2 in Eq. (6), and p

(
y(1:N) | x(1:N),θ

)
:=∏N

i=1 p
(
y(i) | x(i),θ

)
. The variational Bayesian code is

2In most information-theoretic literature, the amount of infor-
mation is measured in bits. As a result, the logarithm with the base
of 2 is commonly chosen. In this work, for convenience, we will
use the natural logarithm and measure the amount of information in
nats (natural units of information, Grünwald, 2007). The amount
in nats can easily be converted to the corresponding value in bits
by dividing it by log 2.

4



Identifying Causal Direction via Variational Bayesian Compression

based on the bits-back coding scheme (Wallace, 1990; Hin-
ton & van Camp, 1993). In this scheme, Alice employs
a codelength with redundant code and computes the code-
length with respect to that auxiliary information (i.e., the
redundant code). After that, Bob will perform the same
learning process and observe the choice made by this pro-
cess to retrieve the auxiliary information and the transmitted
data (Honkela & Valpola, 2004).

By applying this scheme, instead of finding a point estimate
of the parameters θ∗ that minimize Eq. (8), we introduce re-
dundant code by choosing the parameters from a variational
distribution qϕ (θ) and compute the expected codelength
on this distribution. In this scenario, the amount of redun-
dant code to encode qϕ (θ) is its entropy H (qϕ (θ)) =
Eqϕ(θ) [− log qϕ (θ)] (Honkela & Valpola, 2004). We can
obtain the amount of original information being transmit-
ted by deducting the excessive entropy H (qϕ (θ)) from the
expectation codelength as follows

Lvar
qϕ(θ)

(
y(1:N) | x(1:N)

)
:= Eqϕ(w)

[
L2-p

(
y(1:N) | x(1:N),θ

)]
−H (qϕ (θ)) (9)

:= −Eqϕ(w)

[
log p

(
y(1:N) | x(1:N),θ

)]
+KL (qϕ (θ) || p (θ)) , (10)

where the first term corresponds to the fitness of the
data given the model and the second term corresponds to
the complexity of the model of the two-part MDL prin-
ciple (Honkela & Valpola, 2004; Louizos et al., 2017).
−Lvar

qϕ(θ)

(
y(1:N) | x(1:N)

)
is known as the evidence lower

bound (ELBO) in the variational inference problem (Blei
et al., 2017). From this perspective, by minimizing Eq. (10),
we can expect to achieve the negative logarithm of the
evidence in the Bayesian inference problem, which is
also known as the Bayesian codelength in MDL cod-
ing (Grünwald, 2007) as follows

LBayes
p(θ)

(
y(1:N) | x(1:N)

)
:= − log

∫
p
(
y(1:N) | x(1:N),θ

)
p (θ) dθ. (11)

The gap between the optimal codelength
LBayes
p(θ)

(
y(1:N) | x(1:N)

)
and its upper bound

Lvar
qϕ(θ)

(
y(1:N) | x(1:N)

)
can also be formulated from

the variational perspective as follows

Lvar
qϕ(θ)

(
y(1:N) | x(1:N)

)
− LBayes

p(θ)

(
y(1:N) | x(1:N)

)
= KL

(
qϕ (θ) || p

(
θ | x(1:N), y(1:N)

))
, (12)

where p
(
θ | x(1:N), y(1:N)

)
is the posterior distribution of

the parameters given the observed samples. From this for-
mulation, it is obvious that we can retrieve the Bayesian
codelength iff. qϕ (θ) converges to p

(
θ | x(1:N), y(1:N)

)
.

The selection of the priors p (θ) and the variational dis-
tributions qϕ (θ) over the parameters is a necessary step
in Bayesian learning. In this work, we employ Gaussian
distributions as the family for both the priors p (θ) and
the mean-field variational posteriors qϕ (θ). The details
on these priors and variational posteriors are provided in
App. B.

4.3. Identifying Causal Direction via the Codelengths

From the formulation of variational Bayesian codelength
of the conditional distribution described in the previous
section, we can approximate the conditional codelength
for the assumed causal direction X → Y using Eq. (10)
with the chosen likelihood distribution being the Gaussian
distribution as

p
(
y(1:N) | x(1:N),θ

)
:=

N∏
i=1

N
(
y(i) | µ

(
x(i);θ

)
, σ2

(
x(i);θ

))
, (13)

where µ (·;θ) and σ (·;θ) are modeled via a neural network
fY : R ×Θ → R2 with parameters θ ∈ Θ. In particular,
we implement a neural network with one hidden layer and
two output nodes fY,1 (·;θ) and fY,2 (·;θ), and compute
the parameters of the likelihood as follows

µ (·;θ) = fY,1 (·;θ) and σ (·;θ) = ζ (fY,2 (·;θ)) , (14)

where ζ (·) is a positive link function, such as the exponen-
tial or softplus function, for ensuring the standard deviation
values being positive.

Both x(1:N) and y(1:N) are standardized with respect to
their corresponding sample means and standard deviations
to avoid the scale-based bias on the identifiability (Reisach
et al., 2021). Regarding the codelength of the assumed cause
X , we adopt standard Gaussian distribution N (x | 0, 1) to
encode the data using the marginal codelength, which is a
common choice in previous methods (Mooij et al., 2016;
Immer et al., 2023). We denote this marginal codelength
LN

(
x(1:N)

)
.

The approximated causal indicator score for this direction
is the sum of the two codelengths

∆̂var
X→Y

(
DN
)
:= LN

(
x(1:N)

)
+ Lvar

qϕ∗ (θ)

(
y(1:N) | x(1:N)

)
, (15)

where qϕ∗(θ) is the model that minimizes the variational
Bayesian codelength. The corresponding score ∆̂Y→X for
the reversed direction Y → X is estimated by a similar
procedure. Once the scores in both directions are obtained,
the difference between them provides a final score:

∆̂var (DN
)
:= ∆̂var

Y→X

(
DN
)
− ∆̂var

X→Y

(
DN
)
, (16)
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which indicates the inferred causal direction with its abso-
lute value reflecting the confidence of the inference.

If the optimized variational distribution qϕ∗ (θ) converges to
the posterior distribution p

(
θ | x(1:N), y(1:N)

)
andN (0, 1)

is the ground truth distribution of p (X), we can expect
∆̂X→Y to converge to the Bayesian causal indicator score

∆Bayes
X→Y

(
DN
)
:= LN

(
x(1:N)

)
+ LBayes

p(θ)

(
y(1:N) | x(1:N)

)
(17)

:= − log p
(
DN |MX→Y

)
, (18)

where p
(
DN |MX→Y

)
is the marginal likelihood of the

dataset DN factorized in accordance with the causal model
MX→Y . Conversely, ∆Bayes

Y→X

(
DN
)

can be achieved if Y ∼
N (0, 1) and the minimized variational codelength in this
case also converges to the Bayesian codelength.

4.4. Causal Identifiability

The identifiability of our approach is closely related to the
identifiability of Bayesian causal models via marginal like-
lihoods. First, we introduce the definition of separable-
compatibility by Dhir et al. (2024a), which is a necessary
condition of two Bayesian causal models being unidentifi-
able via their marginal likelihoods, regardless of the dataset
DN .

Definition 4.1 (Separable-Compatibility of Bayesian Causal
Models, informally restated from Dhir et al., 2024a).
Two causal models MX→Y and MY→X are separable-
compatible if the anti-causal factorizations of MX→Y and
MY→X respectively belong to the same classes of distri-
butions as MY→X and MX→Y , and the priors of these
anti-causal factorizations can also be factorized with respect
to the priors of MY→X and MX→Y .

In this definition, the anti-causal factorization of the causal
model MX→Y refers to the factorization of the joint dis-
tribution p (X,Y ) into p (Y ) and p (X | Y ) with respect
to MX→Y . Similarly, the anti-causal factorization of the
causal model MY→X involves factorizing p (X,Y ) into
p (X) and p (Y | X) according to MY→X . If the anti-
causal factorization the causal model MX→Y results in the
same distributions as the causal factorization o f MY→X , or
vice versa, the two causal models are said to be separable-
compatible.

As a result of our Bayesian coding scheme, the identifi-
ability of our method is verifiable through an orthogonal
perspective of marginal likelihoods (Dhir et al., 2024a). Let
us assume that the approximated scores in Eq. (15) would
converge to the Bayesian scores in Eq. (17), our results on
the non-separable-compatibility of Bayesian causal models
employed in our method can be presented as follows:

Proposition 4.2 (Non-Separable-Compatibility of Our
Causal Models). Let the two Bayesian causal models
MX→Y and MY→X respectively be factorized into the
marginal densities—p (x |MX→Y ) and p (y |MY→X)—
and the conditional densities—p (y | x,θY ,MX→Y ) and
p (x | y,θX ,MY→X). The marginal densities are standard
Gaussian N (· | 0, 1). The conditional densities are Gaus-
sian likelihoods N

(
· | µ (·;θ) , σ2 (·;θ)

)
, where µ (·;θ)

and σ (·;θ) are parametrized by neural networks as de-
scribed in Eq. (14), Sec. 4.3, and the parameters θ follow
Gaussian priors specified in App. B. Under these conditions,
the Bayesian causal models are not separable-compatible.

Corollary 4.3 (Causal Identifiability of Our Causal Mod-
els). Let p (· |MX→Y ) and p (· |MY→X) respectively be
the marginal likelihoods of the data given the causal mod-
els MX→Y and MY→X . Because of the non-separable-
compatibility in Prop. 4.2, there exists a dataset DN whose
causal direction is identifiable via the difference between
Bayesian indicator scores:

∆Bayes (DN
)
:= ∆Bayes

Y→X

(
DN
)
−∆Bayes

X→Y

(
DN
)
. (19)

Cor. 4.3 implies that in a large sample limit, the Bayesian
causal indicator scores defined in Eq. (17) can distinguish
the cause and effect from observational data. Details on the
causal identifiability via marginal likelihoods and the proof
of Prop. 4.2 are further discussed in App. C.

5. Experiments
Throughout this section, the empirical performance of our
COMIC approach3 is evaluated in comparison with state-
of-the-art complexity-based and regression-based methods
for bivariate causal discovery. Implementation details, de-
scriptions of the benchmarks, and detailed results related
to this section are provided in App. D, E, and F, respec-
tively. In addition, we conduct a series of ablation studies
to assess the contribution of location-scale estimation, the
importance of considering model complexity, the effects of
varying layer widths and numbers of layers of the neural
networks, the impact of employing a sparsity-inducing prior,
and alternative modeling choices for encoding the cause, as
presented in App. G.

5.1. Experimental Settings

Benchmarks Following previous works (Immer et al.,
2023; Marx & Vreeken, 2019a; Tagasovska et al., 2020;
Tran et al., 2024a), the experiments in this section utilizes
both synthetic and real-world data for evaluation. The
synthetic data consists of 12 common benchmarks. The
first collection of synthetic datasets, including AN, AN-s,

3The Python implementation of our method is available at
https://github.com/quangdzuytran/COMIC.
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Figure 1. Performance on synthetic and real-world benchmarks. Higher accuracy and bidirectional AUROC (Bi-AUROC) values are
preferable. Our COMIC method is compared against SLOPPY (with the AIC and BIC variants, Marx & Vreeken, 2019a), SLOPER (Marx
& Vreeken, 2019b) and SLOPE (Marx & Vreeken, 2017), QCCD (Tagasovska et al., 2020), IGCI (with uniform and Gaussian reference
measures, Daniušis et al., 2010), GPLVM (Dhir et al., 2024a), LOCI (with HSIC and maximum likelihood, Immer et al., 2023),
CAM (Bühlmann et al., 2014), and RESIT (Peters et al., 2014). COMIC achieves significantly better and more consistent results across all
datasets, with a nearly ideal Bi-AUROC on every benchmark. Our promising Bi-AUROC scores suggest strong probabilities that COMIC
can correctly determine causal directions on both synthetic and real-world data. In contrast, the baseline methods cannot accomplish
satisfactory results when their assumptions are not fulfilled.
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LS, LS-s, and MN-U, are proposed by Tagasovska et al.
(2020). The next group of simulated benchmarks, compris-
ing SIM, SIM-c, SIM-G, and SIM-ln, is introduced by Mooij
et al. (2016). The remaining synthetic benchmarks consist
of the CE-Multi, CE-Net, and CE-Cha datasets described
by Goudet et al. (2018). For real-world data, we choose the
Tübingen cause-effect pairs (Mooij et al., 2016).

Baselines We compare our work against various base-
line ICM-based and FCM-based methods. Methods based
on the principle of ICMs include SLOPPY (Marx &
Vreeken, 2019a), SLOPE (Marx & Vreeken, 2017; 2019b),
QCCD (Tagasovska et al., 2020), and IGCI (Daniušis et al.,
2010), and GPLVM (Dhir et al., 2024a). For FCM-based
methods, we choose CAM (Bühlmann et al., 2014) and
RESIT (Peters et al., 2014) as representatives for ANM-
based methods, and LOCI (Immer et al., 2023) to represent
LSNM-based methods. Some of these methods have differ-
ent variants of scoring approaches, which we also include
in the evaluations.

Evaluation Metrics The identification result of each pair
in a dataset is considered as a sample in a binary classifi-
cation problem of that dataset. Hence, the accuracy score
and the area under receiver operating characteristic curve
(AUROC) are commonly utilized as evaluation metrics for
the task of bivariate causal discovery. As the ground truth
directions in the benchmarks are imbalanced, we compute
the bidirectional AUROC (Bi-AUROC, Guyon et al., 2019,
Sec. 2.4.3), which is the average of the forward AUROC
and the backward AUROC corresponding to X → Y and
Y → X , respectively.

5.2. Results & Discussion

The experimental results for all aforementioned benchmarks
are visualized in Fig. 1.

Performance on Synthetic Benchmarks In general, our
COMIC approach surpasses the baseline methods on most
synthetic benchmarks. Notably, our acquired Bi-AUROC
scores are approaching the ideal scores. Higher Bi-AUROC
values when compared to corresponding accuracy values
can be due to higher confidence scores in correctly pre-
dicted cases and very low confidence scores in incorrectly
predicted cases.

On the simpler synthetic benchmarks—AN, AN-s, LS, LS-s,
and MN-U—COMIC can perfectly determine the causal di-
rections in every case. This favorable outcome may be
attributed to the location-scale modeling in Eq. (13), as
QCCD, GPLVM and LOCI also achieve comparable scores
in accuracy and Bi-AUROC. IGCI with Gaussian refer-
ence measure is another method that excels in this group
of datasets. However, since the remaining approaches are

not designed for data with heteroscedastic noises, they do
not perform as well on the more challenging LS, LS-s, and
MN-U sets. Particularly, the predictions of SLOPER, SLOPE,
IGCI with uniform reference measure, CAM, and RESIT on
these datasets are suboptimal compared to other baselines.

Our approach also demonstrates more enhanced and consis-
tent performance on more complicated datasets. On SIM
and, especially, SIM-c, FCM-based methods with post-hoc
independence testing, such as LOCI with HSIC and RESIT,
attain decently high prediction scores. Although COMIC is
not explicitly designed for pairs with hidden confounders,
our approach demonstrates its potential on SIM-c, which
involves a hidden confounder in each pair. Most methods
perform decently on SIM-G and SIM-ln, which are more
manageable compared to the previous two sets. One notable
outlier among the baseline models is IGCI, which exhibits
the lowest accuracy and Bi-AUROC on SIM-ln, despite its
intended focus on telling apart causal directions in low-noise
scenarios. Because the Gaussian noises emerge in assump-
tions of various methods, including Gaussian-referenced
IGCI, LOCI, CAM, and RESIT, they benefit from the con-
figuration of the SIM-G set and exhibit better predictions.

The diverse causal modeling of CE-Multi leads to the diver-
gence in results from different benchmarks. Information-
theoretic approaches, including COMIC, SLOPPY with BIC,
SLOPER, SLOPE, IGCI with Gaussian reference measure,
and GPLVM, tend to perform well on this benchmark.
QCCD and uniform-referenced IGCI, while also belonging
to this category, do not perform as effectively. FCM-based
methods designed for additive noise models, such as CAM
and RESIT, also exhibit inefficacious performance on this
dataset. A majority of methods featuring regressions in the
learning process can adequately predict causal relations of
the CE-Net benchmark. IGCI is the only baseline tested
that underperforms on this benchmark. Due to the difficulty
of CE-Cha, the results on this set are quite similar to SIM,
where most baselines struggle, except for COMIC, GPLVM,
LOCI with HSIC, and RESIT. This discrepancy highlights
the advantage of the greater modeling flexibility offered by
advanced regression techniques in COMIC and GPLVM in
comparison to other complexity-based approaches.

Performance on Real-World Benchmark On the
Tübingen benchmark, it is obvious that the identification
ability of COMIC is considerably preferable compared to
the chosen baselines. Similar to the synthetic benchmarks,
the Bi-AUROC in this real-world dataset is also approxi-
mating the ideal value, indicating the high probability of
correctly predicting the causal relation when the confidence
is high. As noted by Marx & Vreeken (2019a), SLOPPY
with AIC offers greater flexibility for more complex datasets,
such as this dataset, and performs better than the BIC vari-
ant. This behavior also appears in IGCI where the variant
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with the uniform reference measure obtains higher accuracy
and Bi-AUROC on this dataset. Although SLOPER and
LOCI with HSIC are better than their respective variants
on previous benchmarks, SLOPE and LOCI with maximum
likelihood, they are outperformed by these variants on this
benchmark. GPLVM, leveraging its latent variable mod-
eling, acquires a comparable Bi-AUROC score to other
compression-based methods including SLOPPY with AIC,
SLOPE, and QCCD on this dataset. This also showcases the
effectiveness of these compression-based methods, whose
Bi-AUROC scores are notably higher than the remaining
baseline methods. Besides our COMIC approach, QCCD is
the method with the second-highest accuracy score.

6. Conclusion
In this work, we have proposed COMIC—a neural network
compression-based approach for determining the cause and
effect via the variational Bayesian code—where a more
universal and scalable class of neural networks is utilized
for modeling the conditionals to improve fitness and in-
duce better codelengths. With the variational Bayesian
coding scheme, the algorithmic complexity of these net-
works can be assessed empirically to approximate the the-
oretical Kolmogorov complexity, whose identifiability can
also be scrutinized in relation to the marginal likelihood-
based perspective. The effectiveness of COMIC has been
validated through comprehensive experiments across vari-
ous benchmark datasets, delivering promising results and
demonstrating superior performance compared to related
methods based on the compression and FCM regression
objectives.

Limitations & Future Work One persistent limitation of
our current work is the non-convexity of the learning objec-
tive, which may require further investigation into the con-
vergence and consistency. Additionally, the use of standard
Gaussian codelength to encode the marginal distribution
of the cause can introduce a bias toward “more Gaussian”
causes, potentially posing a hindrance in intricate settings.
In future work, we plan to adapt our approach to multivari-
ate settings, explore alternative priors and likelihoods, and
consider other marginal likelihood estimation techniques
for neural networks, such as Laplace approximation, to en-
hance its applicability. Regarding the multivariate extension,
we also provide a brief discussion in App. H on potential
adaptations of the bivariate methods, including ours, to mul-
tivariate data.
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Deleu, T., Góis, A., Emezue, C., Rankawat, M., Lacoste-
Julien, S., Bauer, S., and Bengio, Y. Bayesian structure
learning with generative flow networks. In Proceedings
of the Conference on Uncertainty in Artificial Intelligence
(UAI), volume 180 of Proceedings of Machine Learning
Research, pp. 518–528, 2022.

Dhir, A., Power, S., and van der Wilk, M. Bivariate causal
discovery using Bayesian model selection. In Proceed-
ings of the International Conference on Machine Learn-
ing (ICML), volume 235 of Proceedings of Machine
Learning Research, pp. 10710–10735, 2024a.

Dhir, A., Sedgwick, R., Kori, A., Glocker, B., and
van der Wilk, M. Continuous Bayesian model selec-
tion for multivariate causal discovery. arXiv preprint
arXiv:2411.10154, 2024b.

Dhir, A., Ashman, M., Requeima, J., and van der Wilk, M. A
meta-learning approach to Bayesian causal discovery. In
Proceedings of the International Conference on Learning
Representations (ICLR), 2025.

Duong, B. and Nguyen, T. Bivariate causal discovery via
conditional divergence. In Proceedings of the Conference
on Causal Learning and Reasoning (CLeaR), volume
177 of Proceedings of Machine Learning Research, pp.
236–252, 2022.

Duong, B. and Nguyen, T. Heteroscedastic causal structure
learning. In Proceedings of the European Conference on
Artificial Intelligence (ECAI), volume 372 of Frontiers
in Artificial Intelligence and Applications, pp. 598–605,
2023.

Goudet, O., Kalainathan, D., Caillou, P., Guyon, I., Lopez-
Paz, D., and Sebag, M. Learning functional causal mod-
els with generative neural networks. Explainable and
Interpretable Models in Computer Vision and Machine
Learning, pp. 39–80, 2018.

Gretton, A., Bousquet, O., Smola, A., and Schölkopf, B.
Measuring statistical dependence with Hilbert-Schmidt
norms. In Proceedings of the International Conference
on Algorithmic Learning Theory (ALT), pp. 63–77, 2005.

Grünwald, P. D. The minimum description length principle.
Adaptive Computation and Machine Learning. The MIT
Press, 2007.

Guyon, I., Statnikov, A., and Batu, B. B. Cause effect pairs
in machine learning. Springer, 2019.

Hinton, G. E. and van Camp, D. Keeping the neural net-
works simple by minimizing the description length of the
weights. In Proceedings of the Annual Conference on
Computational Learning Theory (COLT), pp. 5–13, 1993.

Honkela, A. and Valpola, H. Variational learning and bits-
back coding: An information-theoretic view to Bayesian
learning. IEEE Transactions on Neural Networks, 15(4):
800–810, 2004.

Hornik, K., Stinchcombe, M., and White, H. Multilayer
feedforward networks are universal approximators. Neu-
ral Networks, 2(5):359–366, 1989.

Hoyer, P., Janzing, D., Mooij, J. M., Peters, J., and
Schölkopf, B. Nonlinear causal discovery with addi-
tive noise models. In Advances in Neural Information
Processing Systems (NIPS), volume 21, 2008.

Immer, A., Schultheiss, C., Vogt, J. E., Schölkopf, B.,
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A. Kolmogorov Complexity, Algorithmic Mutual Information, & Minimum Description Length
Kolmogorov Complexity In this section, we will introduce some related definitions and notations regarding the algorithmic
complexity, which is also known as the Kolmogorov complexity. This complexity represents the length of the ultimate
lossless compression of the data (Marx & Vreeken, 2019b).

Definition A.1 (Kolmogorov Complexity, Kolmogorov, 1963; Li & Vitányi, 2019). With a universal Turing machine U ,
for every program p ∈ {0, 1}∗ that generates x and halts from an input y, the Kolmogorov complexity is the length of the
shortest program. Formally, the Kolmogorov complexity is defined as

K (x | y) := min
p
{length (p) | U (⟨y, p⟩) = x} . (20)

When the input y is an empty string ϵ, we have K (x) = K (x | ϵ).

In various causal discovery literature, it is necessary to evaluate the complexity of a distribution with a probability density
function. As a consequence, we consider the Kolmogorov complexity of a function f (x).

Definition A.2 (Kolmogorov Complexity of a Function, Li & Vitányi, 2019). To compute the complexity of a function
f (x), we need to find the shortest program p that generates f (x) from x with precision q as follows

K (p (x)) := min
p

{
length (p) | |U (⟨x, ⟨q, p⟩⟩)− f (x)| < 1

q

}
. (21)

Algorithmic Mutual Information From the Kolmogorov complexity, the algorithmic mutual information between two
binary strings is also defined to quantify the amount of overlapping information.

Definition A.3 (Algorithmic Mutual Information, Li & Vitányi, 2019). The algorithmic mutual information between two
binary strings x and y is

IA (x : y) := K (y)−K (y | x∗)
+
= K (x) +K (y)−K (x, y) , (22)

where x∗ is the shortest description of the string x and +
= denotes equality up to an additive constant, which only depends on

U and is independent of x and y.

Minimum Description Length in Causal Discovery Literature In the context of causal discovery task, there are two
major hindrances (Kaltenpoth & Vreeken, 2023) when estimating the Kolmogorov complexity K (p (X)) of a distribution
p (X) from the data samples x: (1) there is no knowledge about the true underlying distribution p (X), and (2) the
Kolmogorov complexity is incomputable. The former problem can be resolved by estimating the model through the
joint complexity K (x, p (X)), which on expectation over p (X) will yield K (p (X)) + H (p (X)) up to an additive
constant (Marx & Vreeken, 2022). The latter problem requires an approximating codelength L (x, p (X)) that mirrors
K (x, p (X)), commonly selected according to the minimum description length (MDL, Grünwald, 2007) principles.

The MDL codelengths are computed by limiting the finding of the shortest program/model that generate the data and halt
from a predefined set instead of the universal Solomonoff prior (Grünwald, 2007; Li & Vitányi, 2019; Solomonoff, 1964a;b).
By employing a sufficiently broad class of models, designed to maintain independence from their conditioning variables,
and using a large enough number of samples, the gap between the approximated codelength and the Kolmogorov complexity
can be expected to decrease (Kaltenpoth, 2024; Marx & Vreeken, 2022). While approximation gaps may still exist in
our method, they should not affect the identifiability result, which is assessed through marginal likelihoods and remains
independent of the Kolmogorov complexity-based postulates in Sec. 3.

B. Prior and Variational Distributions
Let us consider a fully-connected layer with the weight matrix W = [wij ] and the bias vector b = [bj ]. The parameters W
and b in each layer form the set of parameters θ in Sec. 4.

Priors over Parameters As the parameters are continuous, we consider Gaussian priors with zero means and variances as
hyperparameters. For simplicity, we utilize the standard Gaussian distribution for the biases. The priors of the weights and
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biases can be formulated as

p (W) =
∏
i,j

p (wij) , p (wij) = N
(
wij | 0, z2ij

)
, (23)

p (b) =
∏
j

p (bj) , p (bj) = N (bj | 0, 1) . (24)

Hyperparameters Selection Let z = [zij ] denote the scale hyperparameters of the priors of the weight matrices as in
Eq. (23). The marginal likelihood can be acquired by marginalizing over z as

log p
(
y(1:N) | x(1:N)

)
= log

∫
z

p
(
y(1:N) | x(1:N), z

)
p (z) dz, (25)

where p (z) is the prior over the hyperparameters z. Following previous work by Dhir et al. (2024a), the integral in the
marginal likelihood above is approximated with Laplace approximation (LA, MacKay, 1999). In this approximation method,
we assume a Gaussian distribution around the maximum a posteriori (MAP) solution and consider the marginal likelihood
as the normalizing constant of this Gaussian distribution. The formulation of the normalizing constant computed around the
MAP solution in LA is as follows

log p
(
y(1:N) | x(1:N)

)
≈ log

[
p
(
y(1:N) | x(1:N), ẑ

)
p (ẑ)

∣∣∣∣ 12πΛz

∣∣∣∣− 1
2

]
, (26)

where ẑ := argmax
z

[
log p

(
y(1:N), z | x(1:N)

)]
, and (27)

Λz := − ∇2
z log p

(
y(1:N), z | x(1:N)

)∣∣∣
ẑ
. (28)

We also follow Dhir et al. (2024a) by choosing a uniform hyperprior over the hyperparameters z and assuming a sufficient
amount of samples so that the distribution concentrates around a single point. Given these conditions, we can simply
approximate log p

(
y(1:N) | x(1:N)

)
≈ log p

(
y(1:N) | x(1:N), ẑ

)
. From an implementation perspective, this means that we

can regard the priors z as additional parameters to be optimized in conjunction with the following variational parameters.

Variational Posteriors over Parameters To evaluate the posteriors of W and b, we employ mean-field variational
inference (MF-VI, Blei et al., 2017) where the posterior of each weight and bias is assumed to be independent. The posterior
distribution of each weight and bias is modeled as a Gaussian distribution, given by

qϕ (W) =
∏
ij

qϕ (wij) , qϕ (wij) = N
(
wij | µW,ij , σ

2
W,ij

)
, (29)

qϕ (b) =
∏
j

qϕ (bj) , qϕ (bj) = N
(
bj | µb,j , σ

2
b,j

)
. (30)

Forward Pass With Gaussian Variational Posteriors The forward pass of a fully-connected Bayesian layer with the
Gaussian variational posteriors is presented in Alg. 1. Hin ∈ RN×A where N is the number of samples and A is the
input dimension. Let MW = [µW,ij ] and VW =

[
σ2
W,ij

]
represent the means and variances of the weight matrix W,

µb = [µb,j ] and σ2
b =

[
σ2
b,j

]
be the means and variances of the bias vector b, ⊙ be the Hadamard (element-wise) product,

and ◦2 and ◦ 1
2 respectively denote the Hadamard (element-wise) square and square root. Corresponding to this algorithm, the

output matrix will include N samples of B nodes. Given that the cost of sampling one instance from the standard Gaussian
distribution N (0, 1) is O (1), the computational complexity of forwarding through one layer using local reparametrization
is O (NAB).

C. Causal Identification via Bayesian Model Selection
C.1. Bayesian Model Selection Criterion

Let X and Y not be independent of each other, and assume there are no hidden confounders between these two random
variables (i.e., the assumption of causal sufficiency). Dhir et al. (2024a) have introduced a Bayesian framework for inferring
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Algorithm 1 Forward pass of fully-connected Bayesian layer with Gaussian variational posteriors

Require: input: Hin ∈ RN×A; parameters: MW ∈ RA×B ,VW ∈ RA×B
+ ,µb ∈ RB ,σ2

b ∈ RB
+

1: Mout ← HinMW + µb

2: Vout ← H◦2
in VW + σ2

b

3: E ∼ N (0, 1) {dims: N ×B}
4: Hout ←Mout +V

◦ 1
2

out ⊙E
5: return Hout

the causal direction between two possible choices MX→Y and MY→X from an observational dataset DN with N samples
via the posterior

p
(
Mi | DN

)
=

p
(
DN |Mi

)
p (Mi)

p (DN )
, (31)

where Mi ∈ M := {MX→Y ,MY→X} and p
(
DN
)
=
∑

Mi∈M p
(
DN |Mi

)
p (Mi). The likelihood p

(
DN |Mi

)
has a

prior π ∼ p (π |Mi) and can be retrieved by marginalizing p
(
DN | π,Mi

)
over π. Hence, this likelihood is also referred

as the “marginal likelihood”. As we do not possess any knowledge about each causal direction, the prior probabilities are set
uniformly to p (Mi) = |M|−1

= 0.5.

With this prior, the log-ratio between two posteriors of the causal directions are then computed to balance the evidence p (D)
and achieve the following equations

log
p
(
MX→Y | DN

)
p (MY→X | DN )

= log
p
(
DN |MX→Y

)
p (MX→Y )

p (DN |MY→X) p (MY→X)
(32)

= log
p
(
DN |MX→Y

)
p (DN |MY→X)

. (as p (MX→Y ) = p (MY→X) = 0.5) (33)

Eq. (33) shows that choosing a model Mi so that log p
(
Mi | DN

)
> log p

(
Mī | DN

)
is equivalent to log p

(
DN |Mi

)
>

log p
(
DN |Mī

)
, where Mī is the inverse direction of Mi; therefore, we can select the causal direction depending on the

log-ratio of the marginal likelihoods as follows

M∗ =


MX→Y if log p

(
DN |MX→Y

)
− log p

(
DN |MY→X

)
> 0,

MY→X if log p
(
DN |MX→Y

)
− log p

(
DN |MY→X

)
< 0,

indecisive if log p
(
DN |MX→Y

)
− log p

(
DN |MY→X

)
= 0.

(34)

C.2. Causal Identifiability of Marginal Likelihoods

From Eq. (34), Dhir et al. (2024a) study the causal identifiability based on the separability of the two marginal likelihoods
of the data given the models. First, the distribution-equivalent causal models and Bayesian distribution-equivalent causal
models are defined, which are the cases where the causal direction can not be determined.

Definition C.1 (Distribution-Equivalence of Causal Models, restated from Def. 2.2 of Dhir et al., 2024a). Let two causal
models MX→Y and MY→X respectively have

(
mX , cY |X

)
∈ CX × CY |X and

(
mY , cX|Y

)
∈ CY × CX|Y , where CX and

CY denote the sets of marginal distributions of X and Y , and CY |X and CX|Y denote the sets of conditional distributions
of Y given X and X given Y . If MX→Y and MY→X are distribution-equivalent, there exists a unique bijective map
γ : CX × CY |X → CY × CX|Y such that for every

(
mX , cY |X

)
∈ CX × CY |X , there holds an equality of joint likelihoods

mX (x) ·mY |X (y | x) = mY (y) · cX|Y (x | y) , ∀x, y, (35)

where
(
mY , cX|Y

)
= γ

(
mX , cY |X

)
.

If the two causal models are distribution-equivalent, the maximum likelihoods cannot distinguish the causal direction.
Otherwise, there exists some dataset DN (N sufficiently large) such that the maximum likelihood can determine the cause
direction. For Bayesian causal models, which include auxiliary prior distributions over the marginal distributions (CX and
CY ) and the conditional distributions (CY |X and CX|Y ), we have a definition of Bayesian distribution-equivalent causal
models as follows:
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Definition C.2 (Bayesian Distribution-Equivalence of Causal Models, restated from Def. 4.4 of Dhir et al., 2024a). Given
two Bayesian causal models MX→Y and MY→X , they are Bayesian distribution-equivalent if for all N ∈ N and for all DN ,
the marginal likelihoods of the data given the models are equal, i.e., p

(
DN |MX→Y

)
= p

(
DN |MY→X

)
.

If two possible causal models MX→Y and MY→X are Bayesian distribution-equivalent according to this definition,
regardless of the observational dataset DN , the log-ratio of marginal likelihoods cannot be utilized as criterion for
distinguishing the causal direction (third case in Eq. (34)). Bayesian distribution-equivalence is a more specific case of
distribution-equivalence since it not only implies the equality of maximum likelihoods but also imposes the equality of
marginal likelihoods, which is the expectations of the likelihoods over their prior distributions. Hence, if two causal models
are not distribution-equivalent (i.e., identifiable via maximum likelihoods), they are not Bayesian distribution-equivalent
(i.e., identifiable via marginal likelihoods). In cases of distribution-equivalent causal models, these models need a necessary
condition of separable-compatibility for them to be Bayesian distribution-equivalence, which is also proposed by Dhir et al.
(2024a) to determine the set of distributions C that can be utilized for modeling the marginal likelihoods. The definition of
this condition is as follows:

Definition C.3 (Separable-Compatibility of Bayesian Causal Models, restated from Def. 4.6 of Dhir et al., 2024a).
Let two Bayesian causal models MX→Y and MY→X include

(
mX , cY |X

)
∈ CX × CY |X and

(
mY , cX|Y

)
∈ CY ×

CX|Y with their corresponding priors being πX→Y

(
mX , cY |X

)
= πX (mX)πY |X

(
cY |X

)
and πY→X

(
mY , cX|Y

)
=

πY (mY )πX|Y
(
cX|Y

)
, respectively. Let us denote γ as in Def. C.1, if the push-forward γ♯πX→Y is separable with

respect to CY × CX|Y , i.e., πY→X

(
γ
(
mX ,mY |X

))
= πY (mY )πX|Y

(
cX|Y

)
, and γ−1

♯ πY→X is separable with respect
to CX × CY |X , then the two causal models are separable-compatible.

This definition is similar to the principle of independent causal mechanisms where the joint density can only be factorized
(separable) with respect to the causal direction and the anti-causal factorization do not satisfy separability. This means that
even the prior of the anti-causal models can be represented as the product of two priors of distributions, these two priors
are not independent of each other. As the separable-compatibility is the necessary condition of the Bayesian distribution-
equivalence, if the two causal models are not separable-compatible, they are not Bayesian distribution-equivalent, implying
that they are identifiable via the marginal likelihoods.

C.3. Analysis of Our Models (Proof of Prop. 4.2, Sec. 4.4)

To validate the identifiability of the causal models of COMIC, we need to analyze their separable-compatibility. Let us
recall the non-separable-compatibility of our proposed causal models in Prop. 4.2 as follows:

Proposition 4.2 (Non-Separable-Compatibility of Our Causal Models). Let the two Bayesian causal models MX→Y and
MY→X respectively be factorized into the marginal densities—p (x |MX→Y ) and p (y |MY→X)—and the conditional
densities—p (y | x,θY ,MX→Y ) and p (x | y,θX ,MY→X). The marginal densities are standard Gaussian N (· | 0, 1).
The conditional densities are Gaussian likelihoods N

(
· | µ (·;θ) , σ2 (·;θ)

)
, where µ (·;θ) and σ (·;θ) are parametrized

by neural networks as described in Eq. (14), Sec. 4.3, and the parameters θ follow Gaussian priors specified in App. B.
Under these conditions, the Bayesian causal models are not separable-compatible.

The proof of this non-separable-compatibility is provided below. For ease of proof, neural networks with one hidden
layer can be considered as Gaussian processes under Central Limit Theorem when the number of hidden units is large
enough (Neal, 1996; Williams, 1996).

Additive Noise Models (ANMs) First, we study the case of an ANM where the mean of y is modeled by a neural network
fY : R→ R with one hidden layer. With an input x, the hidden layer is computed as follows:

hY = hY (x) = σ
(
w⊤

hY
x+ bhY

)
, (36)

where whY
= [whY ,ih ] ∈ R1×Dh , whY ,ih is sampled from a Gaussian prior N

(
0, z2hY ,ih

)
, bhY

= [bhY ,ih ] ∈ RDh ,
bhY ,ih ∼ N (0, 1), and σ (·) is an activation function such as the hyperbolic tangent (tanh). From the features hY in the
hidden layer, the output function fY is then linearly represented as

fY (x) = w⊤
fY h (x) + bfY , (37)
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where wfY = [wfY ,ih ] ∈ RDh×1, wfY ,ih is also sampled from a Gaussian distribution N
(
0, z2fY ,ih

)
, and bfY ∼ N (0, 1).

Let us denote that θfY = (wfY , bfY ), θhY
= (whY

,bhY
), z2fY =

[
z2fY ,ih

]
, and z2hY

=
[
z2hY ,ih

]
, the Gaussian process of

fY is GP (mfY (x) ,KfY (x, x′)) where

mfY (x) = EθfY
,θhY

[fY (x)] = 0, (38)

and

KfY (x, x′) = EθfY
,θhY

[fY (x) fY (x′)]

= EθfY
,θhY

[(
w⊤

fY hY + bfY
) (

w⊤
fY h

′
Y + bfY

)]
(h′

Y = hY (x′))

= EθfY
,θhY

[(
w⊤

fY hY

) (
w⊤

fY h
′
Y

)
+w⊤

fY hY bfY + bfY w
⊤
fY h

′
Y + b2fY

]
= EwfY

,θhY

[(
w⊤

fY hY

) (
w⊤

fY h
′
Y

)]
+ EbfY

[
b2fY
]

= EwfY
,θhY

[(
Dh∑
ih

wfY ,ihhY,ih

)(
Dh∑
ih

wfY ,ihh
′
Y,ih

)]
+ EbfY

[
b2fY
]

= EwfY
,θhY

Dh∑
ih

Dh∑
jh

wfY ,ihwfY ,jhhY,ihh
′
Y,jh

+ EbfY

[
b2fY
]

= EwfY
,θhY

[
Dh∑
ih

w2
fY ,ih

hY,ihh
′
Y,ih

]
+ EbfY

[
b2fY
]

= EθhY

[
Dh∑
ih

z2fY ,ih
hY,ihh

′
Y,ih

]
+ EbfY

[
b2fY
]

= EθhY

[
h⊤
Y diag

(
z2fY
)
h′
Y

]
+ 1

= EθhY

[
hY (x)

⊤
diag

(
z2fY
)
hY (x′)

]
+ 1. (39)

With y = fY (x) + εY and εY ∼ N
(
0, σ2

εY

)
, the generative processes are

fY | x, z2fY , z
2
hY
∼ N (0,KfY (x, x)) , (40)

y | fY ∼ N
(
fY , σ

2
εY

)
, (41)

=⇒ y | x, z2fY , z
2
hY
∼ N

(
0,KfY (x, x) + σ2

εY

)
. (42)

For the causal model MX→Y , the marginal distribution p (x) and the conditional distribution p (y | x) with respect to the
Gaussian process above are as follows

p (x |MX→Y ) = N (x | 0, 1) , (43)

p
(
y | x, z2fY , z

2
hY

,MX→Y

)
= N

(
y | 0,KfY (x, x) + σ2

εY

)
, (44)

where z2fY and z2hY
are hyperparameters. The selection method for these hyperparameters is discussed in App. B. The

corresponding distributions for the causal model MY→X are

p (y |MY→X) = N (y | 0, 1) , (45)

p
(
x | y, z2fX , z2hX

,MY→X

)
= N

(
x | 0,KfX (y, y) + σ2

εX

)
. (46)

To analyze the separable-compatible, we need to compare the causal factorization of MX→Y with the anti-causal factorization
of MY→Y , which is formulated as

p
(
x | z2fX , z2hX

,MY→X

)
=

∫
p
(
x | y, z2fX , z2hX

,MY→X

)
(y |MY→X) dy (47)
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p
(
y | x, z2fX , z2hX

,MY→X

)
=

p
(
x | y, z2fX , z2hX

,MY→X

)
(y |MY→X)

p
(
x | z2fX , z2hX

,MY→X

) . (48)

As KfX (y, y) is non-linearly dependent on y, the marginal distribution of x | z2fX , z2hX
,MY→X is non-Gaussian, which

makes it not belong to the same class of distribution as p (x |MX→Y ). Moreover, because the Gaussian distribution
is not a conjugate prior if the likelihood is a variance-parametrized Gaussian distribution, the posterior distribution
y | x, z2fX , z2hX

,MY→X will not be Gaussian. Hence, these distributions are not in the same classes of distributions as those
of MX→Y . In addition, let us examine the variance x with respect to the anti-causal marginal

E
p
(
x|z2

fX
,z2

hX
,MY →X

) [x2
]
=

∫
N (y | 0, 1)

(∫
x2N

(
x | 0,KfX (y, y) + σ2

εX

)
dx

)
dy (49)

=

∫
N (y | 0, 1)

(
KfX (y, y) + σ2

εX

)
dy. (50)

Although this integral does not have a closed form, it is to be expected that the variance of x | z2fX , z2hX
,MY→X is dependent

on z2fX and z2hX
, which should also be the case for the variance of y | x, z2fX , z2hX

,MY→X . Hence, the distributions in the
anti-causal factorization share identical priors, which make them not independent of each other and violate the principle of
independent causal mechanisms (ICMs, Peters et al., 2017, Sec. 2.1). From these aspects, we can accept that the models
MX→Y and MY→X are not separable-compatible.

Location-Scale Noise Models (LSNMs) In a LSNM, not only the mean but also the scale of the noise is parametrized. As
mentioned in Eq. (14), Sec. 4.3, we consider the case where y is generated from x via a neural network fY : R→ R2 with
two output nodes fY,1 and fY,2. The generating process of y can be presented as follows

y | fY ∼ N
(
fY,1, ζ

2 (fY,2)
)
, (51)

where ζ (·) is a positive link function, such as exponential or softplus function. In our work, as fY,1 and fY,2 are two output
nodes of the same network, the Gaussian processes of fY,1 and fY,2 from x can be described as

fY,i | x, z2fY,i
, z2hY

∼ N
(
0,KfY,i

(x, x)
)
, (52)

where KfY,i
(x, x′) = EθhY

[
hY (x)

⊤
diag

(
z2fY,i

)
hY (x′)

]
+ 1 and i ∈ {1, 2}.

The conditional distributions p
(
y | x, z2fY,1

, z2fY,2
, z2hY

,MX→Y

)
and p

(
x | y, z2fX,1

, z2fX,2
, z2hX

,MY→X

)
will be more

complicated in this setting, however, we can expect similar separable-compatibility as in the location-only setting above.

Since the property of separable-compatibility does not hold in our causal models, following the definition of separable-
compatibility in Def. C.3 and Bayesian distribution-equivalence in Def. C.2, our causal models are not distribution-equivalent,
which indicates that there exists a dataset where the causal direction is identifiable via marginal likelihoods. As a result, we
propose Cor. 4.3, which is recalled as follows

Corollary 4.3 (Causal Identifiability of Our Causal Models). Let p (· |MX→Y ) and p (· |MY→X) respectively be the
marginal likelihoods of the data given the causal models MX→Y and MY→X . Because of the non-separable-compatibility
in Prop. 4.2, there exists a dataset DN whose causal direction is identifiable via the difference between Bayesian indicator
scores:

∆Bayes (DN
)
:= ∆Bayes

Y→X

(
DN
)
−∆Bayes

X→Y

(
DN
)
. (19)

D. Implementations & Hyperparameters
All the experiments are conducted on a workstation with an Intel® Core™ i7 processor, 64 GB of memory, and 3 TB of
storage, except for those involving GPLVM, which are executed on NVIDIA® Tesla® V100 GPUs. Since there are no
significant differences in results when performing the experiments on the baselines and our approach repeatedly, we do not
include the error bars in the reported results.
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D.1. COMIC

Our proposed method—COMIC—is implemented in Python with the PyTorch library (Paszke et al., 2019). The implemen-
tation of the fully-connected Bayesian layers with Gaussian priors is adapted from the publicly available code4 of Louizos
et al. (2017). As mentioned in App. C, Bayesian neural networks are employed to model the mean and the standard deviation
of each assumed direction, i.e., X → Y and Y → X . Each neural network includes one hidden layer with Dh = 20 nodes
with the hyperbolic tangent (tanh) as the activation function and a fully-connected output layer. The softplus function
is chosen as the positive link function for ensuring the positivity of the predicted standard deviation values. The neural
networks of COMIC are optimized to minimize the variational Bayesian objective with the Adam optimizer (Kingma
& Ba, 2015), a learning rate of 10−2, and T = 1, 000 training epochs. To avoid the bad local optima of the variational
objective, Louizos et al. (2017) suggest the adoption of the “warm-up” scheme from Sønderby et al. (2016), where the
model complexity term KL (qϕ (w) || pW (w)) is weighted by a hyperparameter β annealed linearly from 0 to 1 for the first
TWU training epochs. In our implementation, we choose TWU = 100. All samples of each pair are utilized in the training
process, i.e., we set the batch size to be equal to the number of available samples of each dataset.

D.2. Baselines

For information theory-based methods including SLOPPY5 (Marx & Vreeken, 2019a), SLOPE6 (Marx & Vreeken, 2017;
2019b), and QCCD7 (Tagasovska et al., 2020), we utilize their original repositories in R. The rpy2 interface is employed to
incorporate these methods into our source code. As a Python version of IGCI (Daniušis et al., 2010; Janzing et al., 2012) is
available in the Causal Discovery Toolkit (CDT8, Kalainathan et al., 2020), we employ this version for our experiments. With
GPLVM9, we utilize the Python implementation from the repository of Dhir et al. (2024a). Following to the recommendation
of Dhir et al. (2024a), we choose the closed form GPLVM for all datasets except for the Tübingen dataset where the
stochastic GPLVM is employed.

For regression-based methods, the Python source code of LOCI10 is obtainable from the repository of Immer et al. (2023).
The R version of CAM11 (Bühlmann et al., 2014) can be accessed via the Comprehensive R Archive Network (CRAN).
RESIT12 is implemented in R by Peters et al. (2014), which is available on the website of the author. Both CAM and RESIT
are evaluated with generalized additive models (GAMs) as their regression models.

E. Descriptions of the Benchmarks
In the upcoming descriptions, we denote X as the cause, Y as the effect, and EY as the noise term (EY ⊥⊥ X).

AN, AN-s, LS, LS-s, & MN-U (Tagasovska et al., 2020) As their names are the abbreviations of their generating models,
the AN and AN-s are simulated from additive noise models Y := f (X) + EY . Correspondingly, the LS and LS-s are
generated from the location-scale (heteroscedastic) noise models Y := f (X) + g (X) × EY , and the MN-U pairs are
sampled with the multiplicative noise models Y := f (X)× EY as the data generating processes. Injective sigmoid-type
functions from Bühlmann et al. (2014) are chosen in contrast to Gaussian processes for the model functions f and g in
the MN-U set and the ones with the “-s” suffix to produce more difficult settings. Except for the MN-U benchmark with
uniform noises, other datasets are sampled with the Gaussian distribution for EY . Each dataset contains 100 pairs with
1, 000 samples for each pair.

SIM, SIM-c, SIM-G, & SIM-ln (Mooij et al., 2016) In each dataset, similar to the five benchmarks mentioned above,
there are also 100 pairs where each pair has the number of samples of 1, 000. The cause-and-effect samples are generated
from a more complicated process as X := fX (EX) +MX and Y := fY (X,EY ) +MY , where EX and EY are sampled

4Bayesian layers: https://github.com/KarenUllrich/Tutorial_BayesianCompressionForDL
5SLOPPY: https://eda.rg.cispa.io/prj/sloppy/
6SLOPE: https://eda.rg.cispa.io/prj/slope/
7QCCD: https://github.com/tagas/QCCD
8CDT: https://github.com/FenTechSolutions/CausalDiscoveryToolbox
9GPLVM: https://github.com/Anish144/causal_discovery_bayesian_model_selection

10LOCI: https://github.com/aleximmer/loci
11CAM: https://github.com/cran/CAM
12RESIT: https://staff.fnwi.uva.nl/j.m.mooij/code/codeANM.zip
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from randomly generated distributions P (EX) and P (EY ), fX and fY are drawn from Gaussian processes, and MX and
MY are Gaussian measurement noises. The SIM dataset has this default configuration. In SIM-c, there is a one-dimensional
confounder Z included as an additional input of both fX and fY . The measurement noise levels are reduced in the SIM-ln
pairs to create approximately deterministic relations. The cause X in each SIM-G pair follows a distribution that is close to
the Gaussian distribution and the corresponding effect Y imitates a nonlinear additive noise model with a Gaussian noise.

CE-Multi, CE-Net, & CE-Cha (Goudet et al., 2018) CE-Multi encompasses 300 pairs generated from four families of
noise models: pre-additive noise model Y := f (X + EY ), post-additive noise model Y := f (X) +EY , pre-multiplicative
noise model Y := f (X × EY ), and post-multiplicative noise model Y := f (X)× EY , where f can be both linear and
nonlinear functions. CE-Net also involves 300 pairs, whose causes are sampled from random distributions and analogous
effects synthesized from a neural network with random weights. The CE-Cha set originates from the ChaLearn Cause-Effect
Pairs Challenge (Guyon et al., 2019) where the selected 300 pairs only contain either X → Y or Y → X causal relations
with X and Y being continuous variables. Each pair of these datasets includes 1, 500 samples.

Tübingen Cause-Effect Pairs (Mooij et al., 2016) This real-world benchmark involves 108 cause-effect pairs col-
lected from various domains, such as meteorology, biology, economy, engineering, medicine, etc. As most related
approaches (Bühlmann et al., 2014; Immer et al., 2023; Marx & Vreeken, 2017; 2019a;b; Peters et al., 2014) and COMIC
are designed for univariate numeric cause-effect pairs, we adopt existing experimental setups and consider 99 pairs that have
one-dimensional continuous causes and effects. Every pair in this dataset is weighted to avoid biased results toward related
and similar examples of causal relations.

Accessing the Benchmarks All the benchmarks are available in the repository of LOCI (Immer et al., 2023)13.

F. Detailed Experimental Results
The detailed experimental results in Fig. 1 (Sec. 5) are listed in Tab. 1.

13See Fn. 10
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Table 1. Detailed accuracy and bidirectional AUROC scores of our COMIC approach and baseline methods across all benchmarks. Higher
accuracy and bidirectional AUROC (Bi-AUROC) are preferable. The highest scores of each benchmark are listed in bold. Our COMIC
method is compared against SLOPPY (including the AIC and BIC variants, Marx & Vreeken, 2019a), SLOPER (Marx & Vreeken, 2019b)
and SLOPE (Marx & Vreeken, 2017), QCCD (Tagasovska et al., 2020), IGCI (with uniform and Gaussian reference measures, Daniušis
et al., 2010), GPLVM (Dhir et al., 2024a), LOCI (with HSIC and maximum likelihood, Immer et al., 2023), CAM (Bühlmann et al., 2014),
and RESIT (Peters et al., 2014). Our method outperforms the baselines on most benchmarks, except for CE-Multi.

Method AN AN-s LS LS-s MN-U SIM SIM-c SIM-G SIM-ln CE-Multi CE-Net CE-Cha Tübingen

Accuracy↑
COMIC (Ours) 1.00 1.00 1.00 1.00 1.00 0.90 0.93 0.99 1.00 0.89 0.97 0.90 0.87
SLOPPY-AIC 0.75 0.31 0.71 0.12 0.04 0.54 0.64 0.52 0.57 0.90 0.69 0.58 0.71
SLOPPY-BIC 1.00 1.00 1.00 0.56 0.96 0.64 0.62 0.81 0.77 0.46 0.79 0.49 0.61
SLOPER 0.91 0.56 0.80 0.06 0.10 0.57 0.66 0.60 0.81 0.86 0.73 0.59 0.67
SLOPE 0.18 0.28 0.20 0.12 0.07 0.46 0.54 0.46 0.47 0.89 0.62 0.56 0.72
QCCD 1.00 0.85 1.00 0.99 0.99 0.64 0.72 0.66 0.85 0.52 0.82 0.54 0.77
IGCI-Uniform 0.20 0.35 0.46 0.34 0.11 0.37 0.45 0.53 0.51 0.92 0.56 0.55 0.68
IGCI-Gaussian 0.89 0.97 0.95 0.94 0.86 0.36 0.42 0.86 0.59 0.68 0.57 0.55 0.63
GPLVM 1.00 1.00 1.00 1.00 1.00 0.83 0.79 0.92 0.90 0.96 0.96 0.75 0.70
LOCI-HSIC 1.00 1.00 0.94 0.89 1.00 0.78 0.82 0.78 0.73 0.79 0.86 0.73 0.63
LOCI-Likelihood 1.00 1.00 1.00 1.00 1.00 0.49 0.50 0.78 0.79 0.72 0.77 0.43 0.56
CAM 1.00 1.00 0.98 0.52 0.86 0.56 0.62 0.82 0.87 0.35 0.78 0.53 0.52
RESIT 1.00 1.00 0.62 0.04 0.01 0.77 0.83 0.76 0.79 0.37 0.79 0.73 0.62

Bidirectional AUROC↑
COMIC (Ours) 1.00 1.00 1.00 1.00 1.00 0.97 0.99 1.00 1.00 0.98 1.00 0.97 0.97
SLOPPY-AIC 0.84 0.27 0.80 0.03 0.00 0.60 0.68 0.58 0.67 0.97 0.78 0.62 0.79
SLOPPY-BIC 1.00 1.00 1.00 0.58 1.00 0.74 0.74 0.90 0.90 0.59 0.88 0.54 0.59
SLOPER 0.97 0.60 0.87 0.01 0.03 0.67 0.71 0.68 0.93 0.96 0.84 0.62 0.79
SLOPE 0.09 0.23 0.12 0.03 0.01 0.48 0.57 0.45 0.46 0.97 0.68 0.59 0.81
QCCD 1.00 0.90 1.00 1.00 1.00 0.67 0.80 0.71 0.91 0.56 0.91 0.56 0.79
IGCI-Uniform 0.17 0.37 0.51 0.42 0.02 0.38 0.43 0.57 0.51 0.98 0.59 0.58 0.69
IGCI-Gaussian 0.98 1.00 0.99 0.99 0.94 0.32 0.38 0.95 0.66 0.78 0.57 0.56 0.64
GPLVM 1.00 1.00 1.00 1.00 1.00 0.92 0.91 0.99 0.97 0.98 0.99 0.82 0.80
LOCI-HSIC 1.00 1.00 0.99 0.96 1.00 0.86 0.90 0.89 0.82 0.81 0.95 0.74 0.49
LOCI-Likelihood 1.00 1.00 1.00 1.00 1.00 0.53 0.56 0.85 0.91 0.88 0.82 0.45 0.65
CAM 1.00 1.00 1.00 0.35 0.82 0.62 0.65 0.88 0.86 0.38 0.82 0.59 0.38
RESIT 1.00 1.00 0.65 0.03 0.00 0.78 0.81 0.75 0.80 0.55 0.79 0.82 0.68

G. Ablation Studies
In this part, we conduct additional ablation studies to evaluate the contribution of the location-scale estimation and the
additional optimization of the model complexity to the performance of our COMIC approach.

Location-Scale Estimation and Location-Only Estimation In this part of the ablation studies, we compare the location-
scale estimation to the location-only estimation for the Gaussian likelihood. Instead of modeling the location and scale
with the neural network, we only learn the location and fix the scale value to 1.0. The results of the two approaches are
illustrated in Fig. 2. On easier synthetic benchmarks from Tagasovska et al. (2020), comprising AN, AN-s, LS, LS-s, and
MN-U, there is no difference in performance as both approaches attain the ideal results on every set. However, as the
datasets become more complicated, the gaps of performance between them are more noticeable. On the SIM-c set with
hidden confounders, the increase in fitness of the location-scale modeling can allow for better predictions. In particular,
on the CE-Multi and Tübingen benchmarks, the improvements in performance are more significant. On CE-Multi, due
to the diversity in underlying causal models, the flexibility of the location-scale COMIC can be advantageous. With the
more realistic causal relations in the Tübingen cause-effect pairs, the increase in fitness also yields better results with higher
confidences, which are evidenced with close to ideal Bi-AUROC. Hence, although the location-scale estimation introduces
higher model complexity, the enhancement in fitness is more beneficial in this case.
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Figure 2. Performance of COMIC with location-scale (solid lines) and location-only (dashed lines) models across all benchmarks. Higher
accuracy and bidirectional AUROC (Bi-AUROC) are preferable. Despite higher model complexity, the location-scale modeling approach
enables more accurate predictions of causal relations on more complicated datasets.

Importance of Model Complexity Since in the previous ablation study, the increase of fitness can improve the overall
performance, in this part, we study the importance of considering the model complexity in determining the causal direction.
We compare the same network architecture and training hyperparameters with two different objectives, considering both
model fitness and complexity and only considering the model fitness, whose results are depicted in Fig. 3. Analogous to
the previous ablation study, the scores on the first five benchmarks (from AN to MN-U) are comparable. Despite that, the
distinctions are more pronounced on the remaining datasets. When the model complexity is not considered in optimization,
the performance is substantially decreased. Moreover, the greater the divergence between the ground truth causal relations
and the assumed models, such as those in SIM, SIM-c, CE-Cha, and Tübingen, the larger the performance gap between
them will become. From this study, it is obvious that the variational Bayesian approach to optimizing the parameters is more
effective than the point estimation one which only tries to minimize the negative log-likelihoods.
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Figure 3. Performance of COMIC with (solid lines) and without (dotted lines) considering the model complexity across all benchmarks.
Higher accuracy and bidirectional AUROC (Bi-AUROC) are preferable. Considering the model complexity in addition to model fitness
when learning the conditional distributions contributes significantly to the ability of our approach to accurately distinguish the causal
directions.

Layer Width of Bayesian Neural Networks Coker et al. (2022) have indicated that mean-field variational inference
(MF-VI) of wide Bayesian neural networks can cause the network to ignore the data, where the variational posteriors will
collapse to the priors instead of the true posteriors. In this part, we examine the behavior of our models with different
hidden layer widths. The result is depicted in Tab. 2. From these results, there are impacts on performance when the
width of the hidden layer increases. When the width reaches 100 and 200, the reductions in accuracy scores become
noticeable. Nonetheless, the Bi-AUROC scores still remain satisfactory. At 500 hidden nodes, we begin to experience
severer declines in performance. However, it is important to note that such excessively large widths are not recommended in
the bivariate setting, where there is only one input dimension and up to two output dimensions. Thus, our approach will not
be substantially affected by the ignorance of the data (Coker et al., 2022), if the width of the hidden layer stays within an
appropriate range (≤ 50).
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Table 2. The effect of hidden layer width on the performance of COMIC. Higher accuracy and bidirectional AUROC (Bi-AUROC) are
preferable. The impact of the width on the Bi-AUROC is tolerable up until 200 nodes. When the width reaches 500—a discouraged
choice in the bivariate setting—the decline in performance is severe.

Width AN AN-s LS LS-s MN-U SIM SIM-c SIM-G SIM-ln CE-Multi CE-Net CE-Cha Tübingen

Accuracy↑
10 1.00 1.00 1.00 1.00 1.00 0.90 0.93 0.99 1.00 0.89 0.96 0.90 0.86
20 1.00 1.00 1.00 1.00 1.00 0.90 0.93 0.99 1.00 0.89 0.97 0.90 0.87
50 1.00 1.00 1.00 1.00 1.00 0.90 0.91 0.98 1.00 0.90 0.97 0.88 0.87
100 1.00 1.00 1.00 1.00 1.00 0.89 0.90 0.97 1.00 0.89 0.95 0.87 0.78
200 1.00 1.00 1.00 1.00 1.00 0.88 0.90 0.97 1.00 0.88 0.95 0.87 0.78
500 1.00 1.00 0.92 1.00 1.00 0.83 0.74 0.90 0.82 0.82 0.89 0.83 0.64

Bidirectional AUROC↑
10 1.00 1.00 1.00 1.00 1.00 0.97 0.99 1.00 1.00 0.98 1.00 0.97 0.96
20 1.00 1.00 1.00 1.00 1.00 0.97 0.99 1.00 1.00 0.98 1.00 0.97 0.97
50 1.00 1.00 1.00 1.00 1.00 0.97 0.98 1.00 1.00 0.98 1.00 0.96 0.95
100 1.00 1.00 1.00 1.00 1.00 0.97 0.97 0.99 1.00 0.97 0.99 0.95 0.91
200 1.00 1.00 1.00 1.00 1.00 0.97 0.97 0.99 1.00 0.97 0.99 0.95 0.91
500 1.00 1.00 0.99 1.00 1.00 0.93 0.85 0.97 0.93 0.93 0.96 0.93 0.77

Number of Layers of Bayesian Neural Networks We have also studied the effect of adding another hidden layer for the
neural networks with the results presented in Tab. 3. With a two-layer configuration with 10, 5 hidden nodes, the neural
networks have the same number of parameters as the ones with one hidden layer of 20 nodes. The obtained results show no
substantial distinctions in performance when an additional hidden layer is involved. Additionally, the Bi-AUROC scores on
some datasets, such as SIM, SIM-c, and Tübingen, are slightly decreased. The negligible changes in performance indicate
that neural networks with one hidden layer is adequate for the bivariate causal discovery task, and the inclusion of additional
layers should be unnecessary.

Table 3. The effect of adding another hidden layer on the performance of COMIC. Higher accuracy and bidirectional AUROC (Bi-AUROC)
are preferable. The neural networks with 10, 5 hidden nodes have the same number of parameters as the ones with 20 hidden nodes. There
are no significant differences in performance when one more layer is included in the neural networks.

Hidden Nodes AN AN-s LS LS-s MN-U SIM SIM-c SIM-G SIM-ln CE-Multi CE-Net CE-Cha Tübingen

Accuracy↑
20 1.00 1.00 1.00 1.00 1.00 0.90 0.93 0.99 1.00 0.89 0.97 0.90 0.87
10, 5 1.00 1.00 1.00 1.00 1.00 0.87 0.92 0.99 1.00 0.91 0.96 0.91 0.88
10, 10 1.00 1.00 1.00 1.00 1.00 0.89 0.93 0.98 1.00 0.90 0.96 0.91 0.87
20, 5 1.00 1.00 1.00 1.00 1.00 0.88 0.92 0.99 1.00 0.90 0.97 0.89 0.87
20, 10 1.00 1.00 1.00 1.00 1.00 0.87 0.91 0.99 1.00 0.91 0.97 0.90 0.89

Bidirectional AUROC↑
20 1.00 1.00 1.00 1.00 1.00 0.97 0.99 1.00 1.00 0.98 1.00 0.97 0.97
10, 5 1.00 1.00 1.00 1.00 1.00 0.96 0.99 1.00 1.00 0.98 1.00 0.97 0.96
10, 10 1.00 1.00 1.00 1.00 1.00 0.97 0.99 1.00 1.00 0.98 1.00 0.98 0.96
20, 5 1.00 1.00 1.00 1.00 1.00 0.96 0.98 1.00 1.00 0.98 1.00 0.97 0.96
20, 10 1.00 1.00 1.00 1.00 1.00 0.96 0.98 1.00 1.00 0.98 1.00 0.97 0.96

Sparsity-Inducing Priors Besides the MAP approach for selecting the hyperparameters in App. B, the sparsity-inducing
prior proposed by Louizos et al. (2017) can be considered as an alternative option for the hyperprior. In this prior, the scale
hyperparameters follow the non-informative Jeffreys hyperprior p (z) ∝ |z|−1 instead of a uniform hyperprior. With this
choice of prior, the posteriors of the hyperparameters are inferred using MF-VI with Gaussian distributions adopted as the
variational posteriors (Louizos et al., 2017). The Gaussian posteriors of the hyperparameters enable a pruning mechanism
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where the weights with log σ2
z − log µ2

z exceeding a threshold t are pruned from the network. We compare the results
between these two hyperpriors in Tab. 4. The results indicate that there is no significant difference in result exhibited on
synthetic datasets. On the Tübingen benchmark, slight divergences are observed in the accuracy scores. However, the
variations in Bi-AUROC scores remain negligible.

Table 4. Performance of COMIC with uniform and Jeffreys hyperpriors (with and without the post-hoc pruning, Louizos et al., 2017).
Higher accuracy and bidirectional AUROC (Bi-AUROC) are preferable. There are no substantial differences in accuracy and Bi-AUROC
scores, except for the Tübingen benchmark.

Hyperprior AN AN-s LS LS-s MN-U SIM SIM-c SIM-G SIM-ln CE-Multi CE-Net CE-Cha Tübingen

Accuracy↑
Uniform 1.00 1.00 1.00 1.00 1.00 0.90 0.93 0.99 1.00 0.89 0.97 0.90 0.87
Jeffreys w/o Pruning 1.00 1.00 1.00 1.00 1.00 0.90 0.93 0.98 1.00 0.90 0.97 0.90 0.84
Jeffreys w/ Pruning 1.00 1.00 1.00 1.00 1.00 0.89 0.93 0.98 1.00 0.90 0.96 0.89 0.91

Bidirectional AUROC↑
Uniform 1.00 1.00 1.00 1.00 1.00 0.97 0.99 1.00 1.00 0.98 1.00 0.97 0.97
Jeffreys w/o Pruning 1.00 1.00 1.00 1.00 1.00 0.97 0.99 1.00 1.00 0.97 1.00 0.97 0.96
Jeffreys w/ Pruning 1.00 1.00 1.00 1.00 1.00 0.97 0.99 1.00 1.00 0.97 1.00 0.97 0.97

Choices for Encoding the Causes While the standard Gaussian distribution is a common choice in previous methods
for encoding the marginal distributions of the causes, as discussed in Sec. 4.3, we also explore alternative approaches.
Specifically, we compare our choice against other models for computing codelengths including the uniform prior based on the
data range, the uniform prior based on the data resolution as proposed by Marx & Vreeken (2017; 2019b), and the variational
Bayesian Gaussian mixture model (VB-GMM, Blei & Jordan, 2006) with a maximum of 50 components as in Mooij et al.
(2010). As shown in the results in Tab. 5, using uniform codelengths generally degrades performance across most datasets.
While VB-GMM codelengths offer improvements on the SIM, CE-Multi, and CE-Net synthetic benchmarks, they also lead
to noticeable performance drops on SIM-G, SIM-ln, and CE-Cha. For the real-world Tübingen dataset, although VB-GMM
yields a notable increase in prediction accuracy, it also results in a substantial decrease in Bi-AUROC. Overall, these results
support the use of the standard Gaussian as a reasonable choice for our method. Furthermore, adopting more flexible models
for encoding the marginals could also hinder the theoretical analysis of separable-compatibility. However, using the standard
Gaussian codelength can introduce an inductive bias toward “more Gaussian” causes, which should be carefully considered
in more complex scenarios, such as multivariate settings or those involving hidden confounders.

Table 5. The effect of different cause encoding choices on the performance of COMIC. Higher accuracy and bidirectional AUROC
(Bi-AUROC) are preferable. Our usage of the standard Gaussian codelength is compared against several alternative encoding methods for
the causes: the uniform prior based on the data range, the uniform prior based on the data resolution (Marx & Vreeken, 2017; 2019b), and
the variational Bayesian Gaussian mixture model (VB-GMM, Blei & Jordan, 2006). The uniform and VB-GMM codelengths introduce
varied performance changes, with VB-GMM showing improved performance on some synthetic benchmarks but reduced performance on
others, and notably decreasing Bi-AUROC on the Tübingen dataset despite higher accuracy.

Cause Encoding AN AN-s LS LS-s MN-U SIM SIM-c SIM-G SIM-ln CE-Multi CE-Net CE-Cha Tübingen

Accuracy↑
Standard Gaussian 1.00 1.00 1.00 1.00 1.00 0.90 0.93 0.99 1.00 0.89 0.97 0.90 0.87
Uniform (Range) 1.00 0.93 1.00 1.00 1.00 0.88 0.84 0.83 0.99 0.94 0.94 0.80 0.86
Uniform (Resolution) 0.94 0.75 0.97 0.95 0.79 0.59 0.68 0.64 0.98 0.86 0.75 0.79 0.80
VB-GMM 1.00 1.00 1.00 1.00 1.00 0.98 0.94 0.93 1.00 0.97 1.00 0.85 0.91

Bidirectional AUROC↑
Standard Gaussian 1.00 1.00 1.00 1.00 1.00 0.97 0.99 1.00 1.00 0.98 1.00 0.97 0.97
Uniform (Range) 1.00 0.98 1.00 1.00 1.00 0.95 0.91 0.93 1.00 0.99 0.98 0.89 0.95
Uniform (Resolution) 0.99 0.81 0.99 1.00 0.87 0.66 0.74 0.75 1.00 0.95 0.84 0.88 0.81
VB-GMM 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.98 1.00 1.00 1.00 0.90 0.90
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H. From Bivariate to Multivariate Settings
There are some probable approaches to adapting this work to multivariate settings, which we will explore in this section.

Order-Based Causal Discovery The order-based approach is applied by FCM-based methods (Zhang & Hyvärinen,
2009; Peters et al., 2014; Duong & Nguyen, 2023; Lin et al., 2025), which includes choosing a criterion for discovering
the topological order of the variables to construct a corresponding full directed acyclic graph (DAG) and then pruning the
excessive edges from this full DAG. For example, the multivariate version of RESIT by Peters et al. (2014) utilizes the
HSIC (Gretton et al., 2005) score between each variable with the remaining one as a sorting criterion, whose value will be
highest in a sink node (the last node in a topological order). In HOST by Duong & Nguyen (2023), with the assumption
of standard Gaussian noise in heteroscedastic noise models (HNMs), the normality of the residuals is evaluated with the
Shapiro–Wilk test after regression, which is expected to be the highest in sink nodes. Lin et al. (2025) present a more
generalized criterion based on minimal skewness in sink nodes, which enables the identification of HNMs with symmetric
noise distributions.

As the joint distribution of a sink node Xj and its set of non-descendants NDG (Xj) in the causal graph G can be factorized
as p (Xj ,NDG (Xj)) = p (Xj | NDG (Xj)) p (NDG (Xj)) under the principle of independent causal mechanisms, the
Kolmogorov complexity can be computed from the Postulate of Algorithmic Independence of Conditionals (Pos. 1, Sec. 3)
as K (p (Xj ,NDG,j))

+
= K (p (Xj | NDG,j)) + K (p (NDG,j)). We can expect the factorization of the codelengths

corresponding to the sink node as the most succinct. As a consequence, we can choose a node yielding the shortest sum of
codelengths as the sink node.

Score-Based Causal Discovery MDL-based scores have also appeared in score-based causal discovery literature (Born-
schein et al., 2021; Mian et al., 2021) as evaluation metrics for candidate causal graphs. GLOBE from Mian et al. (2021) is an
extension of SLOPE (Marx & Vreeken, 2017), which employs the algorithm of greedy equivalence search (GES, Chickering,
2002) for searching in the graph space. Bornschein et al. (2021) also propose a prequential MDL-based score for ranking
graphs via their conditional probability distributions of a causal graph. In these approaches, the graphs maximizing the
criteria are chosen as the causal graphs. Following this learning scheme, an extension of GPLVM (Dhir et al., 2024a)
have also been introduced by Dhir et al. (2024b), which adapt the posterior-based model selection criterion in App. C to
multivariate formulation.

In addition to these point-estimation approaches, a Bayesian causal discovery approach can also be utilized to infer the full
posterior distribution over the causal graphs given the data p (G | D). This posterior is proportional to the product of the
marginal likelihood p (D | G) =

∫
p (D | G,θ) p (θ) dθ and a prior over the structures p (G). The posterior p (G | D) can

either be estimated in an unsupervised manner, such as those proposed by Cundy et al. (2021); Lorch et al. (2021); Deleu
et al. (2022); Tran et al. (2023; 2024b), or learned via supervised training, as demonstrated by Lorch et al. (2022); Dhir
et al. (2025). Since the marginal likelihood p (D | G) is equivalent to the Bayesian codelength, which can be effectively
evaluated via the variational Bayesian framework. Hence, our approach is naturally well-suited for this Bayesian approach
to multivariate causal discovery.
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