
Conditionally Tractable Density Estimation using Neural Networks

Abstract

Tractable models such as cutset networks and sum-
product networks (SPNs) have become increas-
ingly popular as they admit polynomial time infer-
ence in some cases. Among them, cutset networks,
which model the mechanics of Pearl’s cutset con-
ditioning algorithm, demonstrate great scalability
and prediction accuracy. Existing research on cut-
set networks has mainly focused on discrete do-
mains, and the best mechanism to extend cutset
networks to continuous domains is unclear. We
propose one possible alternative to cutset networks
that models the full joint distribution as the prod-
uct of a general, complex distribution over a small
subset of variables and a fully tractable conditional
distribution whose parameters are controlled by
a neural network. This model admits exact infer-
ence when all variables in the general distribution
are observed, and although the model is not fully
tractable in general, we show that “cutset” sam-
pling can be employed to efficiently generate ac-
curate predictions in practice. We show that our
model performs comparably or better than existing
competitors on a variety of real datasets.

1 INTRODUCTION

Tractable probabilistic models such as cutset networks Rah-
man et al. [2014], sum-product networks Poon and Domin-
gos [2011], arithmetic circuits Darwiche [2003] and proba-
bilistic sentential decision diagrams Kisa et al. [2014] have
gained popularity in recent years, primarily because of their
ability to accurately answer various reasoning queries in
linear time in the size of the model while maintaining other
desirable properties such as high expressivity and flexibility.
However, to date, with a few exceptions Poon and Domingos
[2011], Molina et al. [2018], Uria et al. [2013], a majority of

work on learning tractable models has focused on discrete
random variables and not on continuous variables. This is
primarily due to the fact that, unlike discrete domains, guar-
anteeing tractability of models in continuous domains while
also maintaining their high expressivity and flexibility is
very challenging.

Existing tractable models for continuous variables operate
under the assumption that the underlying data can be mod-
eled using a Gaussian mixture. For instance, sum-product
networks Poon and Domingos [2011], Molina et al. [2018],
Uria et al. [2013] use latent discrete (variable) architectures
distributed over sum and product nodes via the distribu-
tive law to efficiently represent a Gaussian mixture. Unfor-
tunately, these architectures often exhibit poor predictive
performance despite the fact that their average test set log-
likelihood scores can be quite high. This is a well-known
phenomena in continuous models where test set likelihood
scores are unable to discriminate low-performing models
from high-performing ones. This is because unlike discrete
likelihood which always lies between 0 and 1, the continu-
ous likelihood can be potentially infinite or close to it, and
thus even one test point that has high likelihood may skew
the numbers.

Our aim then, in this work, is to design a tractable model
for continuous domains that is flexible enough to be broadly
applicable while also yielding good predictive performance
in practice. To this end, we propose a novel tractable
model for continuous domains motivated by cutset networks
(CNs) Rahman et al. [2014]. CNs and their subsequent
extensions Roy et al. [2021], Rahman and Gogate [2016]
make use of cutset conditioning Pearl [2014]: select a set
of variables to condition on (namely cutset variables), such
that the distribution over the rest of the variables (leaf vari-
ables) can be well-represented by tractable tree structured
Bayesian Networks (BNs) Chow and Liu [1968]. Cutset
networks are expressive and have shown great scalability
and predictive accuracy in high-dimensional discrete do-
mains. A natural extension of cutset networks to continuous
domains is to condition each cutset variable over a finite
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number of ranges, similar to decision tree regressors, and
then model the leaf distributions using conditional linear
Gaussian (CLGs) Bayesian networksGrzegorczyk [2010].
Although simple and appealing, in this representation it is
hard to ensure that the number of cutset variables is bounded
by a small number in order to guarantee tractability without
incurring a significant loss in expressive power, and parti-
tioning the space into rectangular blocks is not natural in
many practical applications.

To overcome these limitations of cutset networks in continu-
ous domains, and motivated by the work of Rahman et al.
[2019] on cutset Bayesian networks, we propose to model
the joint distribution as a product of two distributions: (1)
a general, complex unconditional distribution defined over
a small subset X of variables and (2) a fully tractable con-
ditional distribution defined over the remaining variables Y
whose parameters are controlled by a neural network. Like
cutset Bayesian networks, this model admits exact inference
when all variables in the set X are observed, and although the
model is not fully tractable, we show that “cutset” sampling
can be employed to efficiently generate accurate predictions
in practice. We demonstrate the competitive performance
of our approach against two well-known models in the lit-
erature: SPNs Lorenzo [2020], Molina et al. [2019], which
use latent discrete sum-product architectures and RNADE
Uria et al. [2013], which uses neural density estimators, on
a prediction task generated from real datasets.

To summarize our contributions, we present (1) a novel
tractable architecture, inspired by cutset networks, (2) a
novel neural network architecture for choosing the parame-
ters of a conditional linear Gaussian, (3) and an extensive
study (90 different experiments) to evaluate the (marginal
MAP) prediction accuracy of our model, SPNs, and RNADE
on a variety of real datasets.

2 CONDITIONALLY TRACTABLE
DENSITY ESTIMATION

In this section, we describe our approach to building
tractable models for continuous domains. Note that we use
bold uppercase letters for a set of random variables, e.g.,X ,
while a single random variable is denoted using uppercase
letters, e.g., A. The instantiation (configuration) of random
variables are denoted as lowercase letters. For example, x
is one possible configuration for all variables in X and a
is a possible value that the random variable A can take. All
random variables considered in this paper are assumed to be
defined over the real domain R unless otherwise noted.

Given a set of random variables Z, we model the full joint
distribution over Z as the product of a general, complex
distribution p(X) over a small subset of variablesX ⊂ Z
and a fully tractable conditional distribution p(Y |X) over
variables Y = Z\X whose parameters are controlled by

a neural network. Specifically, we use a mixture of multi-
variate Gaussian (MixMG) distribution to model p(X), and
a fully connected Gaussian Bayesian network (fGBN) to
model the distribution p(Y |X). In addition, we assume
that the parameters of the fGBN are given by a neural
network (NN) that takes the values of X as input and
outputs all the parameters inside the fGBN model, i.e.,
p(Y |X = x) ∼ fGBN(Y ; θ) where θ = NN(x). Note
that any GBN can be converted into an equivalent Multi-
variate Gaussian (MG) distribution with full covariance ma-
trix Koller and Friedman [2009]. Therefore, the conditional
distribution p(Y |X) is fully tractable, which means our
model admits tractable inference when all variables in the
general distribution p(X) are observed. In the cases where
X is not fully observed, cutset sampling can be employed
to efficiently generate accurate predictions in practice.

In the following sections, we will first introduce the detailed
architecture of our model, this includes how we select the
conditional variablesX from Z, as well as the architecture
of the NN, and then we will discuss learning and inference
algorithms.

2.1 DESIGN OF PARAMETER GENERATION
NEURAL NETWORK

In this work, we propose a neural network architecture that
we dub parameter generation neural networks (PGNNs) that
can be used to generate the parameters for other models
(specifically GBNs), see Figure 1. PGNNs are composed
of a series of building blocks that are used to extract a
shared feature vector stage by stage and a collection of
headers that are used to compute the parameters based on the
feature vector. The architecture consists of a basic building
block (BBlock) that is used to extract non-linear features. It
consists of three layers: (1) a (fully connected) linear layer
that produces linear features, (2) a one-dimension batch
normal layer, and (3) finally a ReLU layer. The Header
blocks are used to refine the shared features and include a
linear layer that is used to compute the parameters. We stack
s + 1 building blocks to extract a feature vector of size k
that is shared by all Headers. Given n raw input features,
the first building block creates a large and expressive feature
vector of size k · rs, and the following s building blocks
compress the large vector stage by stage until we reach a
feature vector with size k. The size of the feature vector
is reduced by a factor of r each time it passes through a
building block.

Once the final feature vector is built, the individual headers
(output layers) generate the parameters for the underlying
model. Note that we do not use a single giant header for
all parameters to encourage diversity among the different
types of generated parameters. Similarly, the model does not
include a header for each parameter as, due to the large num-
ber of parameters, the computation complexity can be pro-
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Figure 1: Structure of Parameter Generation Neural Network (PGNN), n is the size of input feature, k is the size of extracted
feature, r is the compress ratio and s controls number of stages.

hibitive and this could lead to overfitting. The compromise,
which we adopt here, is to use multiple smaller headers,
one for each group of parameters. Note that the grouping
of parameters is highly dependent on the underlying model.
Here, we are generating the parameters of a fully connected
GBN over m variables and the conditional distribution of
Xj given its parents X1..j−1 is characterized by a condi-
tional linear Gaussian (CLG), i.e.,

p(Xj |X1..j−1 = x1..j−1) ∼ N(Xj ;µ = wT
j · x1..j−1 + bj , σ

2
j ).

The mean of the normal distribution over Xj is a linear
function of its parents controlled by the weight vectorwT

j

and a bias term bj and σj to denotes the conditional standard
deviation, which must be greater than zero. We first create
a group {σi|i = 1..m} and use a single header to predict
all standard deviations. Then, we do the same for all bias
terms {bi|i = 1..m}. And finally, we construct one header
for each of the weight vectors wi. Note that there is no w1

since X1 has no parents and the µ is determined solely by
the bias term b1. In addition, the output of the σ header
clipped to a predefined threshold t > 0 in order to guarantee
validity of σ as well as to ensure numerical stability.

2.2 VARIABLE SELECTION METHODS

As was the case for cutset networks, the selection of the
conditional variables, X , can have a significant impact on

the quality of the final model. We need to determine both
the number of conditional variables to select as well as
which specific variables. In general, the expressiveness of
the model increases as the number of conditional variables
and the number of mixture components in p(X) increases.
As picking too many or too few random variables to con-
dition on can lead to overfitting or underfitting, we use a
validation set to automatically determine the best number of
variables to condition on.

Once the size ofX is fixed, we also need to determine which
variables to pick in order to achieve the the best practical
performance. Exhaustive search is prohibitive as there are(
n
k

)
possible choices if we want to choose k < n variables

out of a total of n variables. Conversely, randomly select-
ing k variables to be the conditional variables is efficient,
but some random variables may not be informative for the
prediction task. In some settings domain expertise can be
used to select the conditional variables, but this expertise is
not always available in practice. Consequently, we propose
two sets of heuristic methods for selecting the conditional
variablesX .

The first set of heuristic methods select the variables based
on the amount of variance explained by each features in the
dataset. Specifically, we use Principal Components Anal-
ysis (PCA) as a feature selection method to determine the
amount of variance explained by each feature (variable).
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After that, we rank those features based on how much vari-
ance they explain from highest to lowest. Intuitively, the
more variance a feature explains, the more informative it
is. One reasonable heuristic would be select variables that
have the largest amount of information, which gives us the
first heuristic method MostVar that selects the first k vari-
ables based on the rank. Note that different variables might
share some similar information, especially among variables
that explain the most variance. Hence, we also consider an
alternative heuristic method called MixVar that selects k
evenly spaced variables based on the rank order. Compared
to MostVar, MixVar produces a more diverse set of vari-
ables that have both high and low variance, but the total
useful information might be higher than that of MostVar.
Another alternative to MixVar is to randomly select k vari-
ables proportional to their contribution to the total variance.

The second set of heuristic methods selects conditional
variables based on the correlations between each pair of
variables. Recall that, the parameters of the distribution
p(Y |X) are controlled by a neural network that takes x
as input. If the X random variables have no correlation
with the Y variables, the neural network will be unable
to produce an appropriate guess for the model parameters.
In other words, we want all Yi ∈ Y to be highly corre-
lated to some or all variables in the set X . With this idea
in mind, we designed our third variable selection heuris-
tic MaxMincorrHard. This heuristic initializesX as an
empty set ∅ and initializes Y = Z. Then it iteratively se-
lects a variable A ∈ Y and adds it into X such that the
minimum correlation between those two sets is maximized.
Specifically, the algorithm first calculates the Pearson corre-
lation coefficient RA,B to measure the degree of correlation
between each pair of random variables A and B. Then, for
each variable V ∈ Y , it calculates the minimal correlation
of all variable Yi ∈ {Y \V } to the set S = X ∪ V . Note
that the correlation of a single variable Yi to a set of vari-
ables S is defined as RYi,S =

∑
Si∈S RY,Si

. After that, the
variable A that maximizes the minimal correlation will be
picked as conditional the variable and added into the setX
before the next iteration starts, i.e.,

A ∈ argmax
V

(
min

Yi∈{Y \V }
RYi,X∪V

)
.

Finally, we also consider another variable picking strat-
egy named MaxMincorrSoft. It follows the same iter-
ative strategy as MaxMincorrHard but uses a slightly
different criteria to select conditional variables. Specifi-
cally, in addition to maximizing the minimum correlation,
MaxMincorrSoft also takes the correlation of V to all
variables Yi ∈ {Y \V } into consideration. Obviously, if
RV,Y \V is high, it means V contains a lot of useful informa-
tion about other variables in Y , and this should encourage
the algorithm to select V as the next conditional variable.
In short, MaxMincorrSoft selects variable B to be the

conditional variable where

B ∈ argmax
V

{
RV,Y \V ∗

(
min

Yi∈{Y \V }
RYi,X∪V

)}
.

We have introduced four heuristic methods for selecting the
conditional variablesX . Again, as the best strategy may be
dataset dependent, we make it a tunable hyperparameter and
use a validation set to automatically determine the variable
picking method.

2.3 INFERENCE

In this paper, we focus on marginal Max-A-Posterior
(MMAP) inference, which reflects the model’s predictive
performance in the case of missing values. Given evi-
dence Ze = ze, variables of interest (query variables)
Zq and missing variables Zm, MMAP inference aims
to find the best assignment z∗q such that p(Zq|ze) =∫
Zm

p(Zq,Zm|ze)dZm is maximized. As our model has
partitioned the variables into two sets, we denote the query,
missing, and evidence variables from the general distribu-
tion as Xq,Xm,Xe and those in the conditional part as
Yq,Ym,Ye. The inference task can be formulated as finding
x∗q and y∗q such that

x∗q ,y
∗
q ∈ argmax

xq,yq

∫
xm

∫
ym

p(xq,m,yq,m|xe,ye)dymdxm

∈ argmax
xq,yq

∫
xm

∫
ym

p(xq,m,e,yq,m,e)dymdxm

∈ argmax
xq,yq

∫
xm

∫
ym

pX(xq,m,e)pY (yq,m,e|xq,m,e)dymdxm

∈ argmax
xq,yq

∫
xm

pX(xq,m,e)p
′
Y (yq,e|xq,m,e)dxm

where P ′Y is the marginal distribution obtained by integrat-
ing out Ym from distribution PY and xq,m denotes the
union of xq and xm.

The difficulty of the above MMAP problem varies depends
on whetherXq andXm are empty sets.
Case 1: All X variables are observed. This means
Xq,Xm = ∅, and the distribution over the remaining vari-
ables Y is an fGBN with parameters θ = NN(x). In this
case, we can do exact MMAP inference by converting the
fGBN into a multivariate Gaussian distribution.

Case 2: Xq 6= ∅ while Xm = ∅. In this case, since the
joint distribution is not tractable, strategy similar to cutset
sampling can be employed to efficiently answer the above
query. Compared to standard sampling techniques that sam-
ple all the variables, cutset sampling only samples a subset
of variables and does exact inference over the remaining
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variables, which makes the prediction more accurate Rah-
man et al. [2019]. In our case, we can first generate n sam-
ples x(1)

q , ...,x
(n)
q for Xq from the distribution pX given

evidence xe. After that, for each x(i)
q , we do exact MMAP

inference on p′Y to find the best assignment y(i)
q for Yq such

that P ′Y (y
(i)
q ,ye|x(i)

q ,xe) is maximized. Finally, we eval-
uate the joint density for each pair (x(i)

q ,y
(i)
q ) along with

the evidence and treat the one with maximum density as the
MMAP result. Note that the size of X is usually small in
our case. Therefore, the number of variables being sampled
is small, which enables the cutset sampling inference to
generate high quality approximations in practice.

Case 3: There are missing variables in X , which means
Xm 6= ∅. In this case, we treat those missing variables
as part of the query variables and use the cutset sampling
method described in Case 2 to find best assignment x∗q,m
for both Xq and Xm. Then we simply discard x∗m and
return x∗q as the MMAP result for Xq. This is a popular
method in practice used for approximating MMAP by using
the partial assignment from the MAP results Liu and Ihler
[2013], Poon and Domingos [2011].

2.4 LEARNING

Our model can be learned with two steps given a dataset D
over variables Z and conditional variables X ⊂ Z. First,
we learn a mixture of Gaussians over just the X variables
(using the expectation maximization algorithm), where the
number of components can be a fixed number or automat-
ically determined through simple tuning. Then, we train
a PGNN for generating the parameters of the underlying
fGBN model defined over random variables Y = Z\X ,
using the negative log-likelihood of the datasetD as the loss
function.

3 EXPERIMENTS

We evaluated our model’s MMAP inference prediction per-
formance, as measured with respect to root mean square
error (RMSE), on ten publicly available datasets from the
UCI Machine Learning Repository Dua and Graff [2017].
Following Uria et al. [2013], we pre-process the datasets by
eliminating discrete valued features and one of the attributes
from every pair of attributes whose Pearson correlation co-
efficient is greater than 0.98. The number of instances and
features for each dataset after pre-processing are shown
in Table 1. The number of instances range from 5,875 to
150,000 while the number of features range from 12 to 117.
All datasets were normalized by subtracting the mean and
dividing by the standard deviation.

We consider four competitors in our experiments.

Chow-Liu GBNs (CLGBNs) are GBNs where the under-
lying structure is a tree learned using the Chow-Liu algo-
rithm. This is considered as a baseline model.

Multivariate Gaussians (MGs) with full covariance ma-
trix. Another baseline that is equivalent to a fully connected
GBN.

Real-valued Neural Autoregressive Density Estimators
(RNADEs) Uria et al. [2013, 2016] are equivalent to a
fully connected Bayesian Network where each of the con-
ditional distributions that define the model are given by a
mixture of multivariate Gaussians whose parameters are
controlled by neural networks. For MMAP inference, we
used two approximate inference algorithms for RNADE.
The first one is based on sampling, where we employ like-
lihood weighted sampling to generate N samples for both
the query and the missing variables given the evidence,
and then return the sample that achieves the highest like-
lihood as the prediction result. We denote this algorithm
as RNADE-LW. The second algorithm is based on gradi-
ent ascent, which is denoted as RNADE-GA. It initializes
all query and missing variables to a fixed value, iteratively
optimizes the assignment through gradient ascent with the
log-likelihood as the objective function, and returns the itera-
tion with the highest log-likelihood. Note that the gradient is
approximated using numerical methods since a closed form
gradient is not available for RNADE. In addition, back-
tracking line search is used to determine an appropriate
step size in each iteration. For the tuning of hyperparame-
ters, we follow the same strategy as Uria et al. [2013]: we
tune the number of components, {2, 5, 10, 20}; the weight-
decay, {2.0, 1.0, 0.1, 0.01, 0.001, 0}; and the learning rate
{0.1, 0.05, 0.025, 0.0125}. The remaining hyperparameters,
where possible, are set using the discussion in Uria et al.
[2013], left at the default value determined by existing code,
or set to a value that is equivalent to our method if we have
the same hyperparameter. For example, both our model and
RNADE use the same number of pre-trainings.

Sum-Product Networks (SPNs) Poon and Domingos
[2011], Molina et al. [2018] admit tractable MAP in-
ference (under certain constraints). However for MMAP
inference, SPNs are not tractable, but MMAP can be
approximated by first approximately marginalizing out
the missing variables and then applying MAP infer-
ence over the marginalized SPN. We also consider an-
other inference method called SPN-S to estimate the
MMAP results using the same sampling technique as de-
scribed above for RNADE. We implement SPNs using
existing libraries Molina [2019], Molina et al. [2019],
Lorenzo [2020], and tune three different hyperparam-
eters: the instance threshold for creating leaf nodes,
{50, 100, 200, 300, 500, 1000}; the row splitting method,
{kmeans, gmm, rdc}; and the column splitting method,
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Table 1: Datasets information

Name #instance #feature

airquality 9357 12
cropmapping 50000 117

energy 19735 24
hepmass 150000 21

miniboone 36488 43
onlinenews 39644 32
parkinson 5875 15

sdd 58509 29
superconduct 21263 68
wec-sydney 72000 49

Table 2: One-to-One comparison of win/tie/lose achieved by one model (row)
over the other (column).

CLGBN MG RNADE SPN OURS

CLGBN - 00/13/77 65/08/17 10/13/67 00/04/86
MG 77/13/00 - 90/00/00 45/07/38 00/11/79

RNADE 17/08/65 00/00/90 - 01/10/79 00/00/90
SPN 67/13/10 38/07/45 79/10/01 - 15/09/66

OURS 86/04/00 79/11/00 90/00/00 66/09/15 -

{rdc, gvs}. Note that we restrict the leaf nodes in SPNs to
univariate Gaussian distributions and thus we do not need
to tune the feature threshold for creating product nodes.

PGNNs (our model) is trained using the Adam optimizer
from pyTorch Paszke et al. [2019] with fixed batch size
100, and weight decay 1e−6 for 150 epochs. For each of
the experiments, the number of stages s = 3, the reduc-
tion factor r = 2.5, and the standard deviation threshold
t =
√
5e−3 are fixed. As for the parameter k, which is the

size of the feature vector generated by the building blocks,
we make it 2 times the size of the input, i.e., k = 2n. The
learning rate update is scheduled using a linear warm up
of 5 epochs starting from 1% of the maximum learning
rate, followed by cosine decay. Note that the complexity
of the PGNN varies depending on the parameter k, and
we decided to scale the max learning rate to encourage the
convergence of training when k is relatively large 1. Given
a base max learning rate α, we scale it to β = 2α/1+

√
k,

and use β as the maximum learning rate in the training of
the PGNN. At last, following Uria et al. [2013, 2016], we
pre-train 4 times for 15 epochs each and select the model
that achieves best loss for subsequent training. For hyperpa-
rameter tuning, we considered base maximum learning rate,
{0.3, 0.16, 0.08, 0.04}; maximum number of conditional
variables, {10%, 20%, 30%, 40%, 50%}; and the variable
selection method from the four heuristics we discussed in
Section 2.2.

For each dataset, we randomly selected 200 instances for
both validation and test sets and the remaining instances
are used as the training split. All models (SPN, RNADE,
OURS) are tuned based on the best RMSE achieved on the
validation set. In addition, for sample based approximate
inference schemes, the sample size is based on the number
of query and missing variables during inference, with a
minimum number of 200 samples.

1Learning rate tuning can also be used to guarantee the conver-
gence of training. However, the range of LR being tuned is usually
roughly divided and is not appropriate for every case.

All experiments were conducted on a workstation with a
16-core Intel Xeon Gold 6130 CPU and two Quadro P5000
GPUs. Note that running on a GPU is not required for our
model as the PGNNs are typically small compared to mod-
ern deep neural networks. For a small dataset like parkinson,
CPU only performance is 2x faster than using GPUs. For
larger datasets like cropmapping, running our model on
GPUs can achieve a 3x to 5x speedup over CPUs. All code
will be made publicly available on Github post acceptance.

3.1 PREDICTIVE PERFORMANCE

We conducted a comprehensive experiment using nine dif-
ferent settings of the query and missing variables where
the percentage of query and missing variables is chosen
from the set {10%, 20%, 30%}. For each setting, we ran-
domly assign query and missing variables for each of the
instances in test set and we report the mean RMSE over
all query variables averaged across all instances in test set.
Table 3 shows the average RMSE of our model along with
the other four competitors on the ten different datasets under
the above nine settings. Numbers in bold denote the lowest
RMSE, we consider two RMSEs within 5% difference as a
tie. In addition, Table 2 presents a one-to-one comparison
of win/tie/lose for one model (row) over another (column)
based on the results in Table 3.

From the above results, we have the following observations.
(1) Our model achieves the lowest average RMSE over all
datasets, regardless of the setting of the query and miss-
ing variables. Further, it achieves the best or a comparable
RMSE on seven of the datasets for all nine settings. For the
other three datasets (airquality, energy and sdd), we lose
2, 5, and 8 out of 9 settings respectively, to only the SPN
model. The poorer performance on the sdd dataset is likely
the result of overfitting. (2) SPNs are the second best model
in terms of the average RMSE over all datasets. However,
their predictive performance is not stable across datasets:
they produce very accurate predictions for some datasets
(sdd) while the predictions on other datasets can be worse
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Table 3: Average prediction RMSE of ten real datasets under nine query and missing settings.

Models
Datasets

Averageairquality cropmapping energy hepmass miniboone onlinenews parkinson sdd superconduct wec-sydney

Query: 10% Missing: 10%

CLGBN 0.3622 0.4040 0.3924 0.8249 0.5810 0.5466 0.3769 0.5058 0.4061 0.7729 0.5173
MG 0.2407 0.2546 0.2810 0.8146 0.4165 0.3875 0.3495 0.4744 0.1529 0.5586 0.3930

RNADE-LW 0.5696 1.1820 0.3416 0.9014 0.5376 1.0871 0.4495 0.6939 0.5369 0.8246 0.7124
RNADE-GA 0.4394 0.9755 0.3799 0.9265 0.4935 0.7387 0.4841 0.6624 0.6968 0.8200 0.6617

SPN 0.1666 0.3245 0.1926 0.9019 0.4987 0.4970 0.3957 0.3469 0.2076 0.5709 0.4102
SPN-S 0.1679 0.3555 0.1815 0.9237 0.5101 0.4842 0.3830 0.3355 0.2222 0.6542 0.4218
OURS 0.1607 0.2173 0.1523 0.7600 0.3594 0.3325 0.2786 0.4362 0.0849 0.4656 0.3247

Query: 10% Missing: 20%

CLGBN 0.4146 0.4018 0.4350 0.8013 0.6522 0.6143 0.4476 0.5015 0.4316 0.7996 0.5500
MG 0.2879 0.2556 0.3251 0.7875 0.4598 0.4963 0.4126 0.4508 0.1929 0.5961 0.4265

RNADE-LW 0.5764 1.1881 0.3860 0.8457 0.6059 1.0052 0.5453 0.7064 0.6264 0.8277 0.7313
RNADE-GA 0.5342 0.9257 0.4109 0.8810 0.5259 0.7354 0.5556 0.6350 0.7562 0.7967 0.6756

SPN 0.1585 0.3399 0.1921 0.8496 0.5479 0.5367 0.4437 0.3245 0.2119 0.5622 0.4167
SPN-S 0.2147 0.3786 0.1898 0.9061 0.6076 0.5582 0.4669 0.3185 0.2378 0.6462 0.4524
OURS 0.1747 0.2153 0.1775 0.7078 0.3631 0.4364 0.3938 0.3858 0.1010 0.4824 0.3438

Query: 10% Missing: 30%

CLGBN 0.4369 0.4336 0.4748 0.8136 0.6623 0.6231 0.4219 0.5278 0.4328 0.7828 0.5610
MG 0.3677 0.2890 0.3581 0.7840 0.4744 0.5286 0.3842 0.4977 0.1975 0.6175 0.4499

RNADE-LW 0.6512 1.2668 0.3918 0.9214 0.6445 1.0219 0.5557 0.7558 0.5887 0.8450 0.7643
RNADE-GA 0.6167 0.9624 0.4065 0.9120 0.5462 0.7793 0.5168 0.6654 0.7125 0.8047 0.6923

SPN 0.2463 0.3351 0.1960 0.8598 0.5547 0.5367 0.4265 0.3996 0.1944 0.5644 0.4313
SPN-S 0.3014 0.3940 0.2088 0.9033 0.6316 0.6183 0.4137 0.3725 0.2341 0.6574 0.4735
OURS 0.2345 0.2381 0.2037 0.7373 0.3913 0.4925 0.3420 0.4514 0.1166 0.5042 0.3712

Query: 20% Missing: 10%

CLGBN 0.4346 0.4461 0.4804 0.8714 0.6463 0.6153 0.4545 0.5559 0.4339 0.8007 0.5739
MG 0.3192 0.2975 0.3723 0.8573 0.4655 0.4895 0.4237 0.5266 0.1940 0.6087 0.4554

RNADE-LW 0.7073 1.2279 0.4641 1.0131 0.6084 1.1404 0.6089 0.7821 0.5810 0.8463 0.7979
RNADE-GA 0.7443 0.9861 0.4531 1.0091 0.5553 0.7482 0.5779 0.7113 0.7262 0.8314 0.7343

SPN 0.1942 0.3472 0.2047 0.9412 0.5296 0.5848 0.4520 0.4072 0.2209 0.5676 0.4449
SPN-S 0.2849 0.3950 0.2079 0.9823 0.5762 0.5680 0.4581 0.3858 0.2558 0.6533 0.4767
OURS 0.2082 0.2430 0.2129 0.7991 0.4027 0.4388 0.3854 0.4780 0.1152 0.4851 0.3768

Query: 20% Missing: 20%

CLGBN 0.4728 0.4445 0.5496 0.8879 0.7033 0.6911 0.4688 0.5473 0.4615 0.8194 0.6046
MG 0.3400 0.2877 0.4359 0.8744 0.5023 0.5878 0.4219 0.5089 0.2091 0.6526 0.4821

RNADE-LW 0.7446 1.2752 0.5010 1.0413 0.6759 1.1328 0.5995 0.7711 0.6181 0.8759 0.8235
RNADE-GA 0.8407 0.9658 0.4979 1.0174 0.5914 0.8278 0.5772 0.6963 0.7480 0.8599 0.7622

SPN 0.2864 0.3257 0.2082 0.9682 0.5705 0.6587 0.4617 0.4224 0.2118 0.6091 0.4723
SPN-S 0.3152 0.3902 0.2283 0.9850 0.6216 0.7176 0.4609 0.4124 0.2410 0.7068 0.5079
OURS 0.2624 0.2406 0.2724 0.8539 0.4381 0.5398 0.4145 0.4703 0.1247 0.5295 0.4146

Query: 20% Missing: 30%

CLGBN 0.4759 0.4418 0.5497 0.8446 0.6871 0.6970 0.4558 0.5673 0.4778 0.8259 0.6023
MG 0.3879 0.2850 0.4355 0.8285 0.5154 0.6271 0.4111 0.5405 0.2425 0.6754 0.4949

RNADE-LW 0.7501 1.3056 0.4952 0.9787 0.6596 1.1117 0.6167 0.7803 0.6306 0.8682 0.8197
RNADE-GA 0.9083 0.9389 0.5145 1.0012 0.5888 0.8160 0.6007 0.6870 0.7736 0.9285 0.7757

SPN 0.2935 0.3330 0.2119 0.8901 0.5670 0.6957 0.4536 0.4698 0.2175 0.6053 0.4737
SPN-S 0.3602 0.3908 0.2304 0.9871 0.6338 0.7407 0.4423 0.4504 0.2611 0.7096 0.5206
OURS 0.3041 0.2401 0.3004 0.7991 0.4533 0.6344 0.3753 0.4886 0.1435 0.5390 0.4278

Query: 30% Missing: 10%

CLGBN 0.4740 0.4709 0.5253 0.8958 0.6796 0.6332 0.5025 0.5865 0.4580 0.8476 0.6073
MG 0.3607 0.3140 0.4178 0.8805 0.4871 0.5288 0.4584 0.5443 0.2151 0.6640 0.4871

RNADE-LW 0.9037 1.2967 0.4909 1.0222 0.6702 1.1271 0.6770 0.8089 0.6029 0.8865 0.8486
RNADE-GA 0.9686 0.9791 0.5074 1.0061 0.5749 0.7843 0.6260 0.7427 0.7538 0.8538 0.7797

SPN 0.2837 0.3420 0.2298 0.9710 0.5389 0.6137 0.4878 0.4946 0.2160 0.6196 0.4797
SPN-S 0.4138 0.4166 0.2371 1.0145 0.6086 0.6606 0.4983 0.4746 0.2502 0.7184 0.5293
OURS 0.2874 0.2643 0.2700 0.8597 0.4090 0.5002 0.4323 0.5236 0.1210 0.5430 0.4210

Query: 30% Missing: 20%

CLGBN 0.5203 0.4713 0.5375 0.9041 0.7035 0.6931 0.5317 0.5898 0.5025 0.8580 0.6312
MG 0.4232 0.3040 0.4234 0.8978 0.5293 0.6120 0.4942 0.5623 0.2564 0.7001 0.5203

RNADE-LW 0.9098 1.3372 0.5079 1.0684 0.6933 1.1058 0.6826 0.8114 0.6452 0.8763 0.8638
RNADE-GA 1.1027 0.9676 0.5265 1.0267 0.6063 0.8151 0.6532 0.7242 0.7948 0.9439 0.8161

SPN 0.3332 0.3372 0.2415 0.9733 0.5579 0.6852 0.5065 0.5110 0.2173 0.6250 0.4988
SPN-S 0.4599 0.4075 0.2385 1.0351 0.6299 0.7228 0.5114 0.5027 0.2619 0.7384 0.5508
OURS 0.3292 0.2625 0.3103 0.8936 0.4675 0.5942 0.4570 0.5184 0.1513 0.5936 0.4578

Query: 30% Missing: 30%

CLGBN 0.5736 0.5044 0.5504 0.8963 0.7415 0.7505 0.5095 0.5996 0.5261 0.8894 0.6541
MG 0.4928 0.3362 0.4390 0.8857 0.5758 0.7050 0.4864 0.5776 0.2893 0.7503 0.5538

RNADE-LW 0.9009 1.3642 0.5675 1.0708 0.7618 1.0816 0.6531 0.8351 0.6915 0.9264 0.8853
RNADE-GA 1.2655 0.9623 0.5697 1.0226 0.6621 0.8354 0.6385 0.7242 0.8214 1.0205 0.8522

SPN 0.4191 0.3590 0.2384 0.9928 0.6087 0.8815 0.5016 0.5105 0.2282 0.6479 0.5388
SPN-S 0.6605 0.4350 0.2589 1.0471 0.6829 0.9594 0.5241 0.5163 0.2757 0.7630 0.6123
OURS 0.4029 0.2832 0.3559 0.9175 0.5020 0.7095 0.4612 0.5363 0.1840 0.6239 0.4976
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than that of the multivariate Gaussian baseline (cropmap-
ping), which it fails to outperform in roughly half of the
cases. Our model, on the the hand, is only outperformed by
SPNs and only in roughly 17% of the cases. (3) RNADE,
somewhat surprisingly, seems to be the worst model among
all models tested. For example, it fails to beat the baseline
CLGBN model in over 70% of the cases. We believe there
are two likely reasons for this. First, RNADE is a compli-
cated model and is intractable everywhere (even the gradient
is numerically approximated). This might results in worse
performance of the approximate MMAP procedures used in
this case. Further, these MMAP techniques are quite general,
i.e., they are not specifically hand-tailored to the RNADE
model. Second, the number of hyperparameters that need to
be tuned in RNADE is extensive, Uria et al. [2013] manu-
ally tuned RNADE on relatively large dataset. In our case,
we only tuned a fraction of the possible hyperparameters
as otherwise the search would have been computationally
expensive. As such, with additional tuning, the performance
of RNADE would likely be improved (though the same
could be said of more extensive hyperparameter tuning for
SPNs and our model as well). (4) MG produces acceptable
or even very good results in many of the cases. This is not
surprising as MGs admit exact MMAP inference, so no
approximations are necessary.

We also evaluated the log-likelihood of each model on the
respective test sets (see Appendix A of the supplementary
material). In summary, SPNs achieve the highest average
log-likelihood on six out of the ten datasets while our model
achieves the highest log-likelihood on the remaining four.
However, given the observations in Table 3, it does not ap-
pear that the highest test set log-likelihood translates into
the best predictive performance (at least not on the MMAP
task). In addition, if the hyperparameter tuning was done
in order to maximize the log-likelihood score on the valida-
tion data instead of minimizing RMSE, then the predictive
performance of all of the non-baseline models would likely
decrease significantly.

4 CONCLUSION AND FUTURE WORK

We described a flexible family of tractable models for
marginal MAP prediction tasks in continuous domains. Ex-
perimentally, we verified that our approach outperforms
existing approaches such as SPNs and RNADE on a variety
of real-world prediction tasks. In particular, we found that
(1) although SPNs typically produced models with higher
test set log-likelihoods, our model typically resulted in the
best performance on the prediction task and (2) the num-
ber of hyperparameters required to fit RNADE in practice
was computationally prohibitive and/or much more careful
hand-tuning may be required, which likely limits it practical
utility.

We focused primarily on relatively low dimensional datasets

in this work, and more detailed studies need to be conducted
to assess performance differences between these models
on high dimensional datasets. We are also interested in ex-
ploring applications of this approach to temporal data or
more generally in situations where there may be additional
graphical structure that can be exploited. In addition, many
more neural network structures are possible for parameter
selection, and in different applications, it may be of interest
to explore different function characterizations of both gen-
eral distribution p(X) and conditional distribution p(Y |X).
We leave these extensions for future work.
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A TEST SET LOG-LIKELIHOOD

Table 4 shows the train and test loglikelihood for all of the
models compared in the paper. In addition to the average
loglikelihood, we also show the 25%, 50% (median) and
75% percentile of train/test loglikelihood over all train/test
instances.
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Table 4: Train (marked in grey)/test Loglikelihood, and best test LL is marked in bold.

Models
Datasets

airquality cropmapping energy hepmass miniboone onlinenews parkinson sdd superconduct wec sydney

25 percentile

CLGBN
-11.383 -72.587 -22.489 -29.888 -50.113 -37.358 -10.935 -31.542 -55.350 -65.904
-12.460 -70.940 -21.627 -30.428 -51.549 -37.241 -11.026 -31.109 -60.863 -64.181

MG
-8.613 -21.946 -16.294 -29.642 -38.912 -26.496 -9.778 -28.944 -11.033 -58.507
-9.012 -20.699 -15.314 -30.254 -40.705 -26.453 -9.727 -28.511 -15.001 -56.181

RNADE
8.110 -151.363 -12.605 -27.548 -32.791 -24.116 -8.871 -17.871 -46.538 -65.660
7.738 -148.388 -11.969 -28.100 -32.791 -25.218 -8.913 -16.645 -43.908 -64.999

SPN
17.239 15.530 -0.160 -28.887 -35.789 37.651 -7.683 12.295 1.841 -54.269
17.314 10.884 -2.745 -29.640 -35.580 29.474 -8.694 12.100 -3.045 -54.230

OURS
-1.331 63.827 0.342 -26.729 -24.271 -9.646 -4.999 -12.213 26.403 -58.135
-1.524 64.601 -0.218 -27.119 -28.240 -10.994 -6.011 -11.579 25.645 -57.579

Median

CLGBN
-8.741 -55.268 -18.906 -27.457 -42.106 -32.656 -8.800 -27.351 -38.429 -60.996
-8.875 -54.845 -18.505 -27.861 -42.877 -32.500 -8.791 -26.955 -40.621 -61.379

MG
-5.871 -13.910 -12.642 -27.195 -30.665 -21.348 -7.634 -24.708 7.662 -47.397
-5.949 -14.178 -12.554 -27.726 -31.127 -21.057 -7.657 -24.075 5.400 -48.223

RNADE
17.277 269.283 5.637 -23.267 -13.650 5.278 -0.151 -19.875 125.006 -30.385
17.416 266.802 4.548 -23.774 -16.033 4.874 -0.269 -20.079 113.721 -33.907

SPN
20.433 53.421 9.641 -26.342 -27.436 63.851 -3.355 17.940 86.134 -37.666
20.403 50.126 8.028 -27.249 -28.500 61.093 -4.259 17.043 84.018 -38.811

OURS
0.876 82.298 5.487 -23.972 -15.288 -0.939 -1.546 -7.190 62.223 -39.593
1.057 82.919 4.791 -24.701 -17.369 -2.318 -2.041 -6.892 50.711 -41.495

75 percentile

CLGBN
-7.093 -43.213 -16.626 -25.571 -37.537 -29.948 -7.390 -25.052 -26.318 -57.738
-7.359 -43.092 -16.141 -25.999 -38.651 -29.691 -7.449 -25.260 -27.085 -58.090

MG
-4.444 -8.425 -10.331 -25.312 -26.020 -18.561 -6.269 -22.397 19.288 -38.185
-4.583 -8.217 -10.285 -25.731 -27.158 -18.082 -6.280 -22.439 19.122 -38.550

RNADE
13.070 -105.694 -4.115 -22.049 -16.695 -9.410 -1.611 -7.520 48.924 -15.120
13.127 -104.361 -4.336 -22.232 -17.689 -9.010 -1.869 -7.167 47.275 -15.219

SPN
25.283 92.417 20.264 -24.278 -19.996 90.897 0.045 24.068 255.095 1.171
27.054 92.352 18.648 -24.539 -21.470 87.679 -0.722 23.833 290.550 6.218

OURS
2.812 94.529 10.769 -21.590 -7.345 5.259 1.366 -3.372 91.351 2.496
3.021 95.279 9.513 -22.133 -8.480 5.284 1.196 -2.729 88.547 5.954

Average

CLGBN
-10.156 -63.346 -20.252 -28.178 -47.836 -36.688 -11.614 -30.517 -46.466 -62.348
-10.596 -62.214 -19.564 -28.584 -48.657 -37.501 -11.713 -29.021 -49.418 -62.054

MG
-7.454 -20.564 -14.210 -27.925 -37.167 -27.551 -10.650 -31.893 -2.042 -49.815
-7.639 -17.089 -13.627 -28.348 -37.182 -27.195 -10.566 -26.362 -4.764 -48.627

RNADE
10.484 -131.016 -8.591 -25.089 -25.942 -17.803 -5.938 -13.537 2.619 -39.457
10.242 -128.895 -8.370 -25.583 -27.512 -18.257 -6.371 -12.555 2.560 -38.361

SPN
27.953 51.723 11.080 -27.003 -28.953 65.680 -4.634 18.856 180.669 -24.174
29.579 46.459 8.657 -27.562 -30.970 59.444 -5.543 18.526 184.080 -23.590

OURS
0.746 73.029 5.312 -24.498 -17.023 -3.078 -2.634 -10.124 55.991 -26.813
0.763 74.106 4.455 -25.466 -19.347 -4.174 -4.169 -7.427 52.627 -26.559

11


	Introduction
	Conditionally Tractable Density Estimation
	Design of Parameter Generation Neural Network
	Variable Selection Methods
	Inference
	Learning

	Experiments
	Predictive Performance

	Conclusion and Future Work
	Test Set Log-likelihood

