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Abstract

Decision tree, despite its unmatched interpretability and lightweight structure,
faces two key issues that limit its broader applicability: non-differentiability and
low testing accuracy. This study addresses these issues by developing a differen-
tiable oblique tree that optimizes the entire tree using gradient-based optimization.
We propose an exact reformulation of hard-split trees based on “ReLU+Argmin”
mechanism, and then cast the reformulated tree training as an unconstrained op-
timization task. The ReLU-based sample branching, expressed as exact-zero or
non-zero values, preserve a unique decision path, in contrast to soft decision trees
with probabilistic routing. The subsequent Argmin operation identifies the unique
zero-violation path, enabling deterministic predictions. For effective gradient flow,
we approximate Argmin behaviors by scaling softmin function. To ameliorate nu-
merical instability, we propose a warm-start annealing scheme that solves multiple
optimization tasks with increasingly accurate approximations. This reformulation
alongside distributed GPU parallelism offers strong scalability, supporting 12-depth
tree even on million-scale datasets where most baselines fail. Extensive experi-
ments demonstrate that our optimized tree achieves a superior testing accuracy
against 14 baselines, including an average improvement of 7.54% over CART.

1 Introduction

Decision trees have attracted significant attention in machine learning primarily due to their inter-
pretability and lightweight structures. Their strength lies in transparent “IF-THEN” rules, making
them ideal for tasks requiring clear decision-making processes. However, their practical use is often
limited by the lower test accuracy, forcing a shift towards other models that sacrifice interpretability
advantages. Another limitation is the non-differentiability, which severely restricts their gradient-
based applications, especially when embedded in optimization tasks. For instance, in reinforcement
learning, decision trees offer an interpretable alternative to neural networks for policy representation;
yet, non-differentiability remains a major barrier [Vos and Verwer, 2024, Marton et al., 2025].

Aiming for higher accuracy and fewer parameters, oblique decision tree, a pivot extension of classic
orthogonal tree, holds great potential. Oblique tree uses linear feature combination for hyperplane
splits. When data distribution follows hyperplane boundaries, it tends to generate smaller trees with
higher accuracy [Costa and Pedreira, 2023]. Nevertheless, inducing oblique trees is challenging,
owing to innumerable linear combinations at each node [Zhu et al., 2020]. Earlier works focus on
optimizing splits at an individual node using greedy algorithms like CART-LC [Breiman et al., 1984]
and OC1 [Murthy et al., 1994]. Alternative methods rely on greedy orthogonal CART to induce oblique
trees by rotating feature space, exemplified by HHCART [Wickramarachchi et al., 2015] and RandCART
[Blaser and Fryzlewicz, 2016]. Despite their advancements, such greedy methods may be suboptimal
due to weaker splits at subsequent nodes. To avoid this, non-greedy approach TAO [Zharmagambetov
and Carreira-Perpinan, 2020] optimizes a subset of nodes at each step. Considering optimizing all
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nodes, Bertsimas and Dunn [2017] presents optimal tree to formulate tree training as a mixed-integer
programming (MIP). Besides, sparse optimal trees [Lin et al., 2022] complements MIP-based work
by considering sparsity. However, these methods often face scalability issues, especially for oblique
tree with expanded search space. Recent efforts in optimal oblique tree [Boutilier et al., 2023, Zhu
et al., 2020] have been confined to classification tasks with limited categorical predictions. In contrast,
regression tasks with infinite continuous outputs remain challenging. In response, the originators of
MIP-based work propose a local search alternative ORT-LS [Dunn, 2018] for tasks that are unsolvable
by MIP. However, ORT-LS still suffers from high computational cost and suboptimal accuracy.

To significantly improve computational tractability compared to those MIP formulations, in this work,
we reformulate entire tree training as an unconstrained optimization task. Our reformulation makes
it easily solvable via gradient-based tools and also facilitates adapting it into a differentiable tree.
The classic tree’s non-differentiability mainly arises from two sources of hard decisions: hard splits
at branch nodes that determine sample branching, and the unique decision path that assign each
sample to a specific leaf node for sample prediction. Given the non-differentiability of hard decisions,
two intuitive solutions have been used: treating the gradient via straight-through estimators (STE)
like DGT [Karthikeyan et al., 2022], GradTree [Marton et al., 2023] and DTSemNet regression tree
[Panda et al., 2024], and approximating binary decisions (0 or 1) with continuous probabilities in
(0,1) using soft approximations like sigmoid function in soft trees [İrsoy et al., 2012, Wan et al., 2021,
Frosst and Hinton, 2017] and other soft variants like smooth-step functions in TEL [Hazimeh et al.,
2020]. However, STE may neglect critical gradient information, resulting in suboptimal learning,
as evidenced by results reported in the original work of [Marton et al., 2023], where their method
underperforms CART on 17 of 36 datasets (their Tables 1 and 2), as well as in our own experiments.
Regarding soft approximations, previous efforts predominantly construct “soft” decision trees with
soft splits, probabilistic path and predictions. Nonetheless, there do exist scenarios where a hard split
or decision is not only appropriate but also imperative, as in Appendix A. Besides, other gradient-
based trees exist, but they might not preserve classic tree structures or be exact reformulations, such
as DNDT [Yang et al., 2018] which uses Kronecker products for class predictions, and the method by
Norouzi et al. [2015] which uses a surrogate loss. Due to their differences in structure, formulation
and optimization, we consider them complementary work suited for distinct application scenarios.

To retain the two sources of hard decisions, we propose a “ReLU+Argmin”-based exact reformulation.
ReLU functions enforce hard decisions to direct samples left or right, and quantify violations of
the correct directions that a sample must follow to reach its unique leaf. Our ReLU-based splits, in
sharp contrast to soft splits with left-right probability, yield hard (exact-zero or non-zero) decisions
for sample branching. This leverages ReLU’s property of producing distinct zero and non-zero
values at True-False decision boundaries. Such a property has ever been used to implicitly mimic a
decision tree using neural networks [Lee and Jaakkola, 2020], in contrast to our direct application
for reformulating and optimizing a tree. Next, the correct decision path is identified as the unique
path with zero cumulative violations. This can be easily formulated via Argmin operation over
zero and non-zero (positive) values. To avoid undefined gradient in Argmin, we approximate it
with a scaled softmin function. Noticeably, two clarifications are necessary: first, our Argmin is a
mathematical operation over a discrete set, and it should not be confused with “Argmin Differentiation”
or “Implicit Differentiation” [Gould et al., 2016]. The latter is used in LatenTree [Zantedeschi et al.,
2021], which frames tree training as a relaxed MIP problem within a bilevel optimization setting.
However, their work is not directly related to our unconstrained task, and unrelated to approximate
the Argmin operation itself. Second, our softmin approximation is introduced purely to facilitate
gradient backpropagation during training; at the inference phase, our method reverts to using Argmin
for deterministic behavior. This technique of using approximation during training while reverting to
original function during inference was previously used in the work of [Mao and Cao, 2024].

Our Contributions: First, we propose a “ReLU+Argmin”-based exact reformulation for hard-
split trees, avoiding softness introduced in sample branching and predictions. Second, we cast the
entire tree training as an unconstrained optimization task, introducing a scaled softmin function to
approximate Argmin behaviors for effective gradient flow. Third, to balance approximation degree
with numerical instabilities, we present a strategy of multi-run warm start annealing to progressively
refine solutions. Fourth, our implementation supports multi-GPU acceleration, significantly enhancing
scalability. Finally, we provide an extensible “ReLU+Argmin”-based Differentiable Decision Tree
optimization framework (termed RADDT) for inducing both regression trees and classification trees.
The source code is available in https://github.com/YankaiGroup/RADDT.
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Performance: Experiments mainly focus on regression tasks across 17 medium-scale datasets and
7 million-scale datasets, showing our competitive testing accuracy as well as strong scalability. To
enable a more convincing comparison, additional evaluations on the same datasets used in the original
work of certain compared baselines further highlight the superiority of our method.

• Our optimized trees outperform the compared decision trees in testing accuracy. Notably, it
outperforms CART by 7.54%, local search ORT-LS by 3.72%, and gradient-based LatentTree by
6.24%, and DGT by 2.66% on average.

• Our trees with linear predictions impressively outperforms tree ensembles, including random forest
by 2.01%, XGBoost by 1.12% and gradient-based TEL by 0.76%.

• Our method successfully scales to 12-depth deep tree on million-scale datasets, where existing
gradient-based trees like GradTree, SoftDt, DGT and LatentTree fail.

2 Foundations of Oblique Decision Tree

We explore oblique decision trees from an optimization perspective by formulating tree training as
an optimization problem for both regression and classification tasks. For ease of understanding, we
follow the notation for optimal binary trees as used in the original work of Bertsimas and Dunn
[2017]. Consider a dataset {xi, yi}ni=1 with input xi ∈ [0, 1]p, and output values yi ∈ [0, 1] for
regression and yi ∈ {1, · · · , c} for classification with c classes. A binary tree of depth D comprises
T = 2D+1 − 1 nodes, where each node is indexed by t ∈ T = {1, · · · , T} in a breadth-first order.
The nodes can be categorized into two types: branch nodes, which execute branching tests and are
denoted by t ∈ TB = {1, · · · , ⌊T/2⌋}, and leaf nodes denoted by t ∈ TL = {⌊T/2⌋+ 1, · · · , T},
responsible for leaf predictions. Each branch node comprises a split weight at ∈ Rp and a split
threshold bt ∈ R to conduct a branching test (aT

t xi ≤ bt) for samples allocated to that particular
branch node. If a sample xi passes the branching test, it is directed to the left child node at index 2t;
otherwise, to the right at index 2t+1. Each leaf node contains θt to provide a prediction value specific
to the current leaf, which varies depending on the task. For classification, θt = {ht ∈ Rc}, and the
prediction for a sample xi assigned to leaf t is ŷi = ht. For regression, θt = {kt ∈ Rp, ht ∈ R},
which considers two types of leaf prediction: linear and constant prediction. Specifically, tree with
linear predictions involves a linear feature combination [Quinlan, 1998], with a general form of
ŷi = kT

t xi + ht. Tree with constant predictions is a special case of linear predictions, where K
remains zero. It is the most commonly used type in existing decision tree methods, with ŷi = ht. The
training of oblique trees involves solving the following optimization problem:

min
A,b,θ

ℓ (yi, ŷi) (1a)

s.t. ŷi = ftree(A, b, θ,xi), i ∈ {1, · · · , n}, (1b)

where ftree is the decision tree model, ℓ (·) is square error loss for regression and cross entropy
loss for classification. A = {a1, · · · ,a⌊T/2⌋} and b = {b1, · · · , b⌊T/2⌋} are tree split parameters,
θ = {θ⌊T/2⌋+1, · · · , θT } is leaf prediction parameter.

3 Unconstrained Optimization Reformulation for Oblique Tree Training

We first propose an exact reformulation of decision trees and further cast the training as an uncon-
strained task, allowing for gradient-based optimization for improved solvability and accuracy.

3.1 “ReLU+Argmin”-based exact reformulation for hard-split decision trees

ReLU-based hard splits and correctly-directed path formulation (no softness at branch nodes for
sample branching): A sample xi is correctly assigned to a leaf node t by following a sequence of
left-right decisions at its ancestor nodes. The ancestor nodes set At consists of left Al

t and right Ar
t

ancestors, traversed via left and right branch, respectively, such that At = Al
t ∪ Ar

t . For left ancestor
node j ∈ Al

t, xi must pass the branching test aT
j xi ≤ bj to be directed to the left, whereas for right

j ∈ Ar
t , it must fail the test to proceed right. To formulate these left-right hard decisions for xi, we

use ReLU functions to characterize the violation of correct direction at each node j, termed vi,j :

vi,j =

{
ReLU

(
aT
j xi − bj

)
, j ∈ Al

t

ReLU
(
bj − aT

j xi

)
, j ∈ Ar

t ,
(2)
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where vi,j = 0 indicates that xi follows the correct direction, i.e. left for Al
t and right for Ar

t , while
vi,j ̸= 0 is a violation of correct direction. These deterministic ReLU-based zero and non-zero
values eliminate the softness in sample branching, as opposed to soft approximations with continuous
probabilities in (0,1) at each branch node. The cumulative violations across all branch nodes are:

Ui,t =
∑

j∈Al
t

vi,j +
∑

j∈Ar
t

vi,j , (3)

where Ui,t = 0 indicates xi follows all correct directions to leaf node t; otherwise Ui,t ̸= 0(> 0)
corresponds to the overall violations of correct sample assignments.

Unique decision path formulation using Argmin (no softness at leaf nodes for sample prediction):
Since xi follows a unique decision path to a specific leaf node, only one leaf node holds a violation-
free path. Such a unique zero Ui,t removes the softness in sample assignment and prediction, in
contrast to soft approximations with probabilistic paths for predictions. The unique path can be easily
formulated by Argmin function (more concretely, one-hot encoded Argmin M) applied to Ui,t:

M (Ui,t) = 1 (t = (Argmin(Ui) + ⌈T/2⌉)) , (4)
where Ui = {Ui,⌊T/2⌋+1, · · · , Ui,T }. M (·) is the one-hot encoding of the result of Argmin operation,
only outputting one at leaf node t with Ui,t = 0; otherwise outputting zero.

For a clearer understanding of our reformulations, a 2-depth tree example is provided in Figure 1.
To be correctly assigned to leaf node 5, the sample must pass the branching test at nodes 1 with
aT
1 xi ≤ b1 to be directed to left, which implies that ReLU

(
aT
1 xi − b1

)
= 0. The sample also needs

to fail at node 2 to be directed to right with aT
2 xi > b2, which implies that ReLU

(
b2 − aT

2 xi

)
= 0.

The corresponding violations are vi,1 = 0 and vi,2 = 0, leading to a unique zero-violation path with
Ui,5 = vi,1 + vi,2. For other leaf nodes, the total violations are non-zero (positive). The unique
M (Ui,5) = 1 indicates xi is correctly assigned to leaf 5.
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Figure 1: Illustrative example for a unique path 1 → 2 → 5 of “ReLU+Argmin”-based hard tree.

3.2 Unconstrained optimization for “ReLU+Argmin”-based tree training

Next, we cast reformulated-tree training as an unconstrained optimization task with objective L as:

L =

n∑

i=1

∑

t∈TL

M (Ui,t) ℓ (yi, ŷi) . (5)

Differentiability analysis of ReLU and Argmin: The trainable variables A, b, θ are expressed in
vi,j and Ui,t, where ReLU and Argmin are involved. The gradient behavior at ReLU(0) has been
extensively studied and is considered theoretically negligible, though numerical effects may arise
due to float-point precision [Bertoin et al., 2021]. Consistent with this, we treat it as inconsequential
for gradient-based optimization, as evidenced by the success of ReLU networks [Leonardi and
Spallanzani, 2020]. Regarding Argmin, to avoid undefined gradient flow at certain points, we use a
scaled softmin function to approximate Argmin behaviors in Equation (4).

Scaled softmin to approximate Argmin: Scaled softmin S (·) is applied to Ui,t by Equation (6).
Under extreme scaling, softmin ensures that zero-valued Ui,t approaches one; otherwise to zero. The
scale factor α plays a critical balance between approximation accuracy and optimization stability.
Regarding α selection, a larger α yields a closer approximation, but may cause numerical insta-
bility, potentially compromising optimization capabilities. Further empirical analyses are given in
Appendix B. Identifying optimal α that balances approximation degree and differentiability remains
a challenge. To mitigate this, we propose an annealing strategy in Section 4.1 for a better trade-off.

S (Ui,t) =
eα(−Ui,t)

∑
t∈TL

eα(−Ui,t)
. (6)
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Notably, this softmin operation is used only during training to facilitate gradient backpropagation. In
inference, θ is deterministically recalculated for ŷi, as described in Appendix C. More importantly, it
does not introduce softness into sample branching and prediction, as the zero-valued ReLU outputs
and violation-free path described in Section 3.1 are established prior to the approximation step.

Following Equation (6), we redefine the optimization task L in Equation (7).

L =

n∑

i=1

∑

t∈TL

S (Ui,t) ℓ (yi, ŷi) . (7)

4 Differentiable Tree Training via Gradient-based Entire Tree Optimization

Our reformulated task in Equation (7) closely approximates non-differentiable tree training problem,
which can be efficiently solved by our proposed entire tree optimization framework.

4.1 Multi-run warm start annealing strategy for scaling softmin operations

Regarding the challenge of selecting an optimal α as earlier discussed for Equation (6), we propose a
strategy of multi-run warm start annealing to refine solutions through multiple optimization tasks with
increasingly accurate approximations. The annealing has been ever used [Hehn and Hamprecht, 2017,
Karthikeyan et al., 2022, Lee and Jaakkola, 2020] to balance the trade-off, though not specifically
for our application to softmin. However, their annealing is typically applied within a single training
run, such as changing α every few epochs, which may affect stable gradient updates. In contrast, our
annealing operates across multiple runs. The solution from an optimization task with a smaller α is
used to warm-start the next task with a larger α. By starting with a smaller α and gradually increasing
it, this enhances approximation accuracy, while mitigating numerical instability associated with larger
α. Detailed steps including sampling of scaled factors {α1, · · · , αn} are given in Appendix D, and
the implementation is integrated within our tree optimization framework, Appendix G, Algorithm 1.
For the α selection, although binary search provides a structured way to explore different α values by
evaluating the performance at the midpoint and adjusting α boundaries accordingly, it still involves
testing isolated α values without leveraging the solutions from previous α trials. Our subsequent
ablation study shows that gradually increasing α, rather than a fixed large value, leads to better
training outcomes. We detail binary search comparison in Appendix D.

4.2 Influence of initial values and their adjustments for gradient-based optimization

A good initialization is crucial. Since softmin operates on Ui,t, which summarizes ReLU-based
violations that are either zero or non-zero, samples near decision boundaries (aT

j xi − bj = 0) may
yield non-zero but near-zero violations. An illustration is given in Appendix E. While such near-zero
violations do not affect Argmin behaviors, which only select the unique path with Ui,t = 0, they
can sensitively affect softmin. Specifically, softmin may fail to ideally produce a value close to one,
reducing approximation accuracy. A bad initial solution for A and b can result in a poor optimization
outcome. To mitigate this, A and b can be adjusted to maximize the margin between the decision
boundary and nearest samples, without altering existing sample assignments as illustrated by green
line in Appendix E, Figure 3. This adjustment can be easily achieved either by calculating the median
of aT

j xi for the closest samples on both sides of the boundary, or using support vector machine to
treat sample assignments as a binary classification task with explanations in Appendix E.

Noticeably, this strategy mainly handles cases where aT
j xi−bj ≈ 0. However, it becomes ineffective

in the corner case where aj = 0 and bj = 0 with same violations for all leaves. This limitation can
impair optimization. To mitigate this, we typically incorporate this strategy with multiple random
initializations. Fortunately, our extensive experiments show that such corner cases appear to be
extremely rare in practice, and we have not observed noticeable performance degradation.

4.3 Differentiable decision tree optimization framework

Unlike greedy methods that optimize each node sequentially, our approach concurrently optimizes
the entire tree, including A and b at all branch nodes and θ at all leaf nodes. Our “ReLU+Argmin”-
based Differentiable Decision Tree (termed RADDT), outlined in Appendix G, Algorithm 1, begins at
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multiple random initialization (Line 4 - 5). This increases the chance of finding better solutions. Each
initialization is adjusted to achieve the maximum margin (Line 4). For each start, the optimization
with our annealing is conducted to produce a tree candidate (Line 6 - 15). The final optimal tree
is selected by comparing candidates from multiple starts, with each evaluated using deterministic
leaf predictions and exact loss calculations without approximation (Line 11 - 13). This framework
is readily implementable using existing tools like PyTorch. Despite the introduction of additional
hyperparameters in gradient-based optimization, tuning them is not typically necessary because their
effects are straightforward. More empirical analyses are detailed in Appendix F.

5 Numerical Experiments and Discussions

We mainly evaluate regression tasks, but also include the same classification datasets used by certain
baselines for a more convincing comparison. Our tree with constant or linear predictions, termed the
respective RADDT and RADDT-Linear, is compared against a broad range of trees in testing accuracy,
training optimality and training time. The 14 baselines include: (a) greedy CART, HHCART, RandCART,
and OC1; (b) non-greedy TAO [Zharmagambetov and Carreira-Perpinan, 2020]; (c) gradient-based
trees using STE like GradTree [Marton et al., 2023], DGT [Karthikeyan et al., 2022] and DTSemNet
[Panda et al., 2024]; (d) sigmoid-based soft tree SoftDT [Frosst and Hinton, 2017]; (e) relaxed
MIP-based tree solved via implicit differentiation LatentTree [Zantedeschi et al., 2021]; (f) local
search ORT-LS [Dunn, 2018]; (g) soft tree variant using smooth-step function TEL [Hazimeh et al.,
2020] (Tree ensemble); (h) other ensembles like random forest RF and XGBoost. Our primary focus
is on comparing oblique trees. The inclusion of orthogonal CART serves as a foundational work,
aligning with prior work on oblique trees, such as TAO, DGT, DTSemNet and TEL, which also use
CART for comparison. Although outperforming CART is an expected outcome, its inclusion helps
quantify the amount of improvements achievable by oblique tree. GradTree is included to enable
a fair comparison against other STE-based oblique trees like DGT and DTSemNet. Since it remains
uncertain whether oblique trees can match tree ensemble’s accuracy, we include RF and XGBoost as
a commonly used and strong ensemble baselines, and TEL as the oblique ensemble counterpart.

These 14 baseline comparisons are conducted across four groups of datasets: (i) 17 medium-sized
regression datasets with fewer than 41k samples (primary focus); (ii) 27 classification and 9 regression
datasets used in the papers of certain baselines (for a more credible comparison); (iii) 4 real-world
datasets with about 100 samples, and 3 synthetic datasets with 5000 samples (for comparing global
optimality with global tree ORT-MIP [Bertsimas and Dunn, 2017] and known ground truth); (iv) 7
large-scale datasets each with at least 1 million samples (for evaluating scalability).

Detailed dataset information and usage are given in Appendix H. Comparisons focus on accuracy
in Coefficient of Determination (usually denoted as R2), and computational time in seconds. The
Friedman Rank [Sheskin, 2020] is also used to statistically sort the compared methods according to
their testing accuracy, with a lower value indicating better performance. Comprehensive details on
the implementation for each compared method, and computing facilities are given in Appendix I.

5.1 Testing accuracy comparison

To evaluate the testing accuracy of our optimized tree, we compare it against diverse decision trees
and 3 tree ensembles with different tree induction methods. For a fair comparison, we conduct depth
tuning for all tree methods to select the optimal tree depth from 1 to 12 (except for CART from 1 to
100 due to its tendency to rely on deeper depth for higher accuracy).

Comparison against other decision trees: In Table 1, our RADDT consistently outperforms compared
trees in test accuracy across Group (i) 17 datasets. Specifically, RADDT surpasses the foundational
CART by 7.54%, greedy HHCART by 5.64%, and ORT-LS by 3.72%. These results underscore the
effectiveness of our tree optimization. Besides, Friedman rank comparisons reinforce these findings,
with RADDT attaining the highest rank. Detailed results for each dataset are provided in Appendix K.1.

Regarding existing gradient-based trees, since DGT and LatentTree fail to scale to depth 12, we
evaluate them under another fixed-depth setting in Section 5.2. GradTree, as observed in Table 1,
performs poorly in our experiments. This result is within our expectations, as their original paper
reports that GradTree underperforms CART on 17 out of 36 datasets (see their Table 1 and 2 in
[Marton et al., 2023]). Nonetheless, to ensure a more credible comparison, we further evaluate our
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Table 1: Test accuracy for compared decision trees on 17 medium-sized datasets in Group (i).

Greedy Methods Gradient-based1, 2 Local Search Ours
CART RandCART HHCART OC1 GradTree SoftDT ORT-LS RADDT

Testing Accuracy (R2, %) 74.85 71.20 76.75 73.31 64.30 72.72 78.67 82.39
Tree Depth 10.24 8.12 8.29 8.12 10.29 10.29 6.24 7.29

Friedman Rank 4.65 5.88 3.65 5.06 7.00 4.76 3.24 1.76
1 Other two gradient-based DGT and LatentTree are compared in Table 3 with fixed depths due to scalability issues at depth 12.
2 More credible results on their originally-used dataset are discussed below, include GradTree, SoftDT, DGT, and DTSemNet.

method on the same classification datasets used in their study. Similar same-dataset comparisons are
also conducted for SoftDT, DGT-Linear, DTSemNet and non-greedy TAO-Linear as below.

A more credible same-dataset comparison on Group (ii) datasets originally used by five baselines:
For a more convincing comparison, we evaluate on the same datasets used in the original works of
five baselines: 27 classification datasets in GradTree, 4 regression datasets in soft tree [İrsoy et al.,
2012], and 5 shared regression datasets among DGT-Linear, TAO-Linear and DTSemNet. Dataset
information is given in Appendix H. Besides using same datasets, we also compare directly with
the results reported in their own papers. For fairness, our method is evaluated using each baseline’s
experimental setup, including same data preprocessing and evaluation metrics. Full implementation
details are given in Appendix K.2. For GradTree, with detailed results for each dataset given in
Appendix K.3, Table 15, our method outperforms GradTree’s reported testing results by an average
of 4.99%. Regarding soft tree, results in Appendix K.4, Table 16, show that RADDT achieves 6.88%
higher test accuracy, again aligning with prior trends. Regarding DGT-Linear, TAO-Linear and
DTSemNet, the DTSemNet work directly reports TAO-Linear’s original results due to the absence
of open-source code for TAO-Linear. Since DTSemNet itself is a tree with linear predictions, for
consistency, it adapts the original DGT tree with constant predictions to a linear variant DGT-Linear.
Following this comparison from DTSemNet, we extend DTSemNet’s Table 4 by including our results
under same experimental setup. As in Appendix K.5, Table 17, ours outperforms these baselines on 4
out of 5 datasets (except “YearPred”), achieving the best average rank of 1.6, followed by DTSemNet
with 2.4, TAO-Linear with 2.6, and DGT-Linear with 3.2, further supporting our previous findings.

Statistical analysis regarding Table 1: While Table 1 empirically shows that RADDT is superior to
the other compared trees, we further conduct a paired T-test to statistically validate the significant dif-
ference among these tree methods. The null hypothesis asserts that RADDT is not significantly different
from other trees. If calculated p-value is less than tolerance τ , the null hypothesis can be rejected,
indicating statistical significance. The t-statistic (black point), p-value and 95% confidence are shown
in Figure 2. The results for all comparisons with p < τ = 0.1 and positive t-statistics consistently
indicate that RADDT is superior to these compared decision trees with statistical significance.

CART OC1 RandCART HHCART GradTree SoftDT ORT-LS
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Figure 2: Paired T-test comparing RADDT with other trees (setting significance level τ = 0.1).

Comparison against tree ensembles on Group (i) 17 datasets: Following decision tree com-
parison, we proceed to compare our method with RF, XGBoost and TEL to validate its competitive
accuracy. Our RADDT slightly underperforms tree ensembles on average. In contrast, RADDT-Linear
outperforms RF by 2.01%, XGBoost by 1.12% and TEL by 0.76%, as shown in Table 2. The superior-
ity of RADDT-Linear is further supported by Friedman rank, where RADDT-Linear ranks highest,
matching that of XGBoost. Detailed results for each dataset are provided in Appendix K.1. These
findings highlight that our method even performs competitively compared to tree ensembles. For a
fair comparison with tree ensembles, this experiment has performed a hyperparameter tuning with
300-combination search, including depth up to 50 and number of trees up to 500, following guidelines
from [Oshiro et al., 2012, Probst et al., 2019]. Detailed tuning procedures are given in Appendix J. In
addition to this 300-combination parameter tuning for ensembles, we also conduct a more extensive
tuning like 10,000-combination search in Appendix K.6. Despite extensive tuning, our key findings
remain unchanged, and the statistical Friedman rank shows no significant difference. Importantly,
our aim is not to claim superiority over ensembles. Since any base learner can be improved via
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ensembling like bagging, comparing a single tree to ensembles is inherently unfair. Instead, we
provide a reference showing that our tree can match ensemble’s accuracy with far fewer parameters.

Table 2: Test accuracy for our trees and 3 tree ensembles on 17 medium-sized datasets in Group (i).

RF XGBoost TEL RADDT RADDT-Linear
Number of Trees 314.71 352.94 10 1 1

Test Accuracy (R2, %) 82.62 83.51 83.87 82.39 84.63
Friedman Rank 2.88 2.24 3.29 4.35 2.24

5.2 Superior testing accuracy analysis: from training optimality perspective

To figure out the reason behind the superior testing accuracy, we then analyze the optimality of
training. Training trees with different depths correspond to different optimization tasks. To assess
optimality, training trees at fixed depth is a common practice. Fixed depths of D = {2, 4, 8, 12}
are used for comparison. Table 3 shows that our RADDT outperforms ORT-LS by 5.35%, 2.66% and
0.02% in training accuracy for depths of 2, 4, and 8, respectively, while it outperforms CART by
24.83%, 21.02% and 9.48% across various depths. For other gradient-based trees, RADDT significantly
outperforms GradTree and SoftDT on average at all depths. LatentTree and DGT do not scale to
depth 12. On average across these feasible depths, our method outperforms LatentTree by 10.39%
in training and 6.24% in testing accuracy, and surpasses DGT by 7.52% in training and 2.66% in
testing accuracy. Improvements in training accuracy imply that our optimization algorithm achieves
better training optimality. Furthermore, an increase in training accuracy correlates with the improved
test accuracy at depths of 2, 4, and 8, suggesting that an optimized tree with higher training accuracy
can potentially yield better test accuracy before encountering serious overfitting issues. Overfitting,
particularly at a depth of 12, is simply addressed by tuning an optimal tree depth. The overfitting
limitation is further analyzed in Section 5.6.

Table 3: Fixed-depth comparison of training, testing accuracy and training time on Group (i) datasets.

D Greedy Methods Gradient-based Trees Local Search Ours
CART RankCART HHCART OC1 GradTree SoftDT DGT LatenTree ORT-LS RADDT

Train
(R2,%)

2 46.95 32.81 46.20 49.59 39.42 50.59 64.48 66.94 66.43 71.78
4 61.16 54.09 62.65 63.21 53.29 56.83 75.83 72.25 79.52 82.18
8 81.45 77.51 82.26 81.43 64.65 66.81 82.01 74.54 90.91 90.93

12 93.45 93.06 94.74 93.02 66.86 73.03 / / 97.46 96.36

Test
(R2,%)

2 46.14 32.47 45.61 47.95 38.53 49.94 63.81 66.42 64.51 70.07
4 58.92 52.69 61.30 60.22 51.45 56.32 75.16 71.03 75.06 78.98
8 69.77 69.93 74.57 69.08 62.40 66.44 79.99 70.77 74.93 77.89

12 68.28 64.13 68.37 65.57 63.81 72.45 / / 68.25 73.11

Time
(s)

2 0.03 0.70 4.43 3,216 31.32 22.24 2,102 1,624 457.21 542.22
4 0.04 1.56 7.45 4,192 54.74 81.88 2,577 2,194 868.08 478.81
8 0.07 5.08 12.52 4,803 298.92 1,209 4,049 2,381 9,336 602.69

12 0.10 12.61 22.01 5,103 10,417 54,829 / / 210,141 2,643

Training optimality comparison against global optimal solutions on Group (iii) datasets: The
above results reveal that our approach achieves superior training optimality. To provide a reference
for global optimality, we then compare it with global optimal trees ORT-MIP. However, ORT-MIP
fails to find optimal trees for any of the above datasets, even with 128 cores and a two-day time
limit. It can only solve a 2-depth tree on 4 small datasets in Group (iii) to a global optimum with 1%
optimality gap. Despite the existence of sparse optimal trees [Zhang et al., 2023], a direct comparison
is infeasible for some reasons discussed in Appendix K.7. We also detail train accuracy comparison
there. Results show that RADDT nearly reaches global optimum (ORT-MIP) with 2.82% discrepancy.

Training optimality comparison against ground truth on Group (iii) datasets: We further evaluate
RADDT on three synthetic datasets with known ground truth, each with 5000 samples. The procedure
for generating synthetic datasets is detailed in Appendix H. The corresponding ground truths for
training and testing accuracy are 100%. In Appendix K.8, Table 20, our RADDT closely approximates
global optimality in training and testing accuracy, with 0.64% difference over ground truth on
average. These results, together with the previous global solution comparisons, further validate the
effectiveness of our tree optimization.

Ablation study on the optimization strategies: The notable training accuracy of our RADDT method
can be attributed to two key strategies designed to enhance approximation accuracy: the multi-run
warm start annealing strategy, which improves training accuracy by an average of 7.1% across various
depths compared to standard softmin function without any scaling; and the strategy of adjusting
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initial solutions for gradient-based optimization, which contributes an additional 1.8% improvement
on average. Detailed results for the ablation study are provided in Appendix K.9.

5.3 Scalability assessment to 12-depth trees on 7 million-scale datasets in Group (iv)

Previous experiments focus on three different groups of datasets with fewer than 41k samples. To
further evaluate our scalability, we test it on seven large-scale datasets, each containing at least
1 million samples, using the same fixed-depth setting as in Table 3. The Group (iv) dataset is
detailed in Appendix H. As shown in Appendix K.10, Table 22, our RADDT successfully scales to a
12-depth tree, outperforming CART by 4.83% in training and 3.15% in testing across all depths. In
contrast, GradTree and SoftDT fail to output good solutions. At the feasible depths for DGT and
LatentTree, RADDT outperforms DGT by 3.9% in training and 3.74% in testing on average, while
it slightly underperforms LatentTree by 0.03% in training and 0.08% in testing. However, RADDT
takes significantly less training time, and LatentTree is only solvable at depths 2 and 4. These
comparisons effectively showcase RADDT’s scalability on million-scale datasets at depth-12 trees.

GPU acceleration and training time analysis: Our training time is primarily affected by sample
size n, feature number p and depth D. For D-depth tree training, each sample must be evaluated at
all 2D − 1 branch nodes via matrix operation Axi, requiring O(p · (2D − 1)) operations per sample
and O(n · p · (2D − 1)) operations for the full dataset. It indicates that training time increases with
larger n and D. Importantly, our implementation is highly parallelizable and facilitates multi-GPU
acceleration. The specific GPU configurations in our experiments and acceleration analysis are given
in Appendix K.11. In the million-scale comparison Appendix K.10, Table 22, our RADDT achieves a
42-fold speedup over DGT at depth 4. These scalability advantages become even more pronounced
with deeper trees and more samples, where larger matrix operations dominate the computation.
However, in this setting within Table 22, most high-accuracy baselines fail to scale to depth 12,
making direct comparisons at that depth infeasible. To further illustrate the advantage, we refer to
Table 3, where the second-best method ORT-LS scales to depth 12. For instance, on the “ailerons”
dataset, RADDT is 432 times faster than ORT-LS, demonstrating the substantial speedup at deeper
depths. Detailed time comparisons for datasets with more than 10,000 samples used in Table 3 are
given in Appendix K.12. Besides, a training time comparison of our method in GPU versus CPU
settings is provided in Appendix K.13, although the advantages of GPU acceleration are expected.

5.4 Analysis of model complexity and inference time

Alongside tree depth, the number of model parameters also offers a clear view of model complexity.
While oblique tree typically requires more parameters than orthogonal tree at a given depth due to
feature combinations, it often yields better accuracy with much smaller depth. Therefore, for a similar
accuracy, our oblique tree may not require more parameters overall than orthogonal tree.

For a D-depth binary tree with TB = 2D − 1 branch nodes and TL = 2D leaf nodes, and a dataset
with p features, orthogonal tree like CART requires 2 · TB + TL parameters. In contrast, our oblique
tree RADDT requires TB ·p+1+TL parameters, while our RADDT-Linear needs TB ·p+1+TL ·p+1
parameters. Based on these, we compare the number of model parameters for CART, RADDT and
RADDT-Linear in Table 4 by averaging across all Group (i) 17 datasets. As shown in Table 4,
CART achieves 74.85% accuracy with average depth 10.24 and 3,140.94 parameters. Our RADDT and
RADDT-Linear reach 82.39% and 84.63% accuracy at depths 7.29 and 4.82, using 10,503.94 and
4,044.71 parameters, respectively. Notably, if the goal is to match or slightly exceed CART’s accuracy,
our models can do so with much smaller trees. Table 4 shows that RADDT achieves 75.23% at depth
2.82 using only 101.71 parameters, and RADDT-Linear reaches 77.21% at depth 1 with just 40.47
parameters, yielding 31 times and 78 times reductions in parameter count compared to CART. These
results indicate that our methods do not necessarily require more parameters for improved accuracy;
the total parameter cost depends on the desired trade-off between accuracy and model complexity.

Additionally, inference time greatly helps assess model complexity. In the setting of Table 1 and
Table 2, our methods achieves superior accuracy improvements but involves more parameters than
CART, resulting in slightly higher inference time. However, if only aiming to achieve an accuracy
comparable to CART (74.85%), Table 4 shows that the inference time of RADDT becomes comparable
to CART, while RADDT-Linear is even faster. It is important to note that our implements use Python

9



Table 4: Model complexity and inference time comparison with CART on Group (i) 17 datasets.

Method Testing Accuracy (R2, %) Depth Number of
Branch Nodes

Number of
Leaf Nodes

Total Number of
Model Parameters

Inference Time
(Millisecond)

CART 74.85 (reported in Table 1) 10.24 1,046.65 1,047.65 3,140.94 0.44

RADDT 82.39 (reported in Table 3) 7.29 671.94 672.94 10,503.94 1.88
75.23 (only slightly exceed CART’s accuracy) 2.82 6.88 7.88 101.71 0.54

RADDT-Linear 84.63 (reported in Table 3) 4.82 129 130 4,044.71 1.61
77.21 (only slightly exceed CART’s accuracy) 1 1 2 40.47 0.39

and PyTorch, where inference time may not scale strictly with parameter count due to framework
overhead. A pure C++ implementation would likely align more closely with parameter count.

5.5 Interpretability analysis

We fully acknowledge that orthogonal trees like CART, at the same depth, are generally more inter-
pretable than oblique trees. However, as originally analyzed in OC1 [Murthy et al., 1994], oblique trees
could become more interpretable when their depth is substantially smaller. Interpretability depends
on multiple factors including tree depth, feature number, and the accuracy-simplicity trade-off. There
is no interpretability superiority of one approach over the other, as it depends on specific application
scenarios. We evaluate our RADDT’s interpretability from three aspects: tree-based prediction logic,
unique prediction path and the complexity of decision rules. Detailed analysis can be found in
Appendix K.14 with an illustrative example in Figure 7.

5.6 Limitations analysis and future work

While our approach achieves superior accuracy, several limitations remain. The primary limitation
lies in inadequate regularization. In Table 3, while training accuracy for RADDT improves by 5.43%
from depth 8 to 12, testing accuracy conversely drops by 4.78%, indicating a serious overfitting
issue. This issue is more pronounced in trees with linear predictions, as detailed in Appendix K.15.
In response, we apply preliminary L1 regularization to RADDT-Linear for experiments in Table 2,
leading to a modest 0.57% improvement in testing accuracy. Due to the challenges in identifying
optimal regularization strength and potential increases in training time, we just used a small value
of 1e− 4, without extensive tuning. Despite this, further improvements could be achieved through
more dedicated regularization strategies, such as the post-hoc regularization technique, Hierarchical
Shrinkage, proposed for trees by Agarwal et al. [2022]. Second, the effectiveness of our multi-run
warm start annealing strategy is validated by empirical observations; however, a theoretical analysis is
still lacking. Third, our tailored initialization adjustment strategy fails to consider the corner case of
an ill-defined initialization where both aj = 0 and bj = 0. This is also a limitation, despite its rarity
and minimal impact on empirical performance in practice. Fourth, while our current hyperparameter
tuning for tree ensembles is sufficient to support our main claims, especially given that our goal is not
to claim superiority over ensembles, more tuning on regularization parameters could potentially yield
even better results for tree ensembles. Exploring this gap between a single tree and ensembles presents
a promising area for future research. Next interesting future direction is to apply our optimization
strategies, such as initialization and multi-run warm-start annealing, to other gradient-based trees
like SoftDT. Since these strategies are general, they are not limited to our specific tree formulation
and may benefit other models. Another promising alternative to our scaled softmin approximation is
the Entmax function. However, its application requires further investigation, as selecting its sparsity
parameter presents a similar challenge to choosing the scale factor in our softmin method.

6 Conclusion

Our approach addresses two main limitations of classic decision tree: non-differentiability and
low test accuracy, thereby enhancing its practicality. We tackle these issues by first proposing a
“ReLU+Argmin”-based hard split tree with a novel exact reformulation, then significantly improving
its test accuracy through our gradient-based entire tree optimization. The entire tree training problem
is reformulated as an unconstrained optimization task, with a scaled softmin function approximating
Argmin behaviors for effective gradient backpropagation. Our reformulated tree, unlike existing soft
approximation, eliminates the softness at both branch nodes and leaf nodes, thus preserving hard
splits and deterministic predictions. Extensive experiments demonstrate our tree’s superior accuracy
and scalability on million-scale datasets.
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Appendices for:
Differentiable Decision Tree via “ReLU+Argmin” Reformulation

A Certain Scenarios Requiring Decision Trees with Hard-splits

Hard-split decision trees and soft decision trees represent fundamentally different models, each suited
to different application scenarios. Further, there do exist scenarios where the application of hard-split
decision trees is not only more appropriate but also imperative. Below is an illustrative example from
industrial projects that underscores this preference.

Scenario: Piece-wise affine control law in explicit model predictive control.

In explicit model predictive control, the control law is often represented by piece-wise affine functions,
which can be effectively approximated by a hard-split decision tree. The hard decisions at branch
nodes can be used to determine the control action based on the state of the system, which can be
easily implemented in real-time control systems.

Beyond the utility of making clear hard decisions, the optimal decision tree model that offers superior
predictive performance is also crucial for these scenarios. From the perspective of application scenar-
ios, the motivation and necessity for hard-split optimal decision trees are intuitive and compelling.

B Empirical Analysis of Scale Factor Impacts on Scaled Softmin Operation

The scale factor α significantly influences the approximation degree to Argmin function and the
behavior of its gradient in optimization. A larger α leads to a better approximation than standard
softmin function with α = 1, achieving closer proximity to an Argmin function as α approaches
infinity. An illustration for the gap between scaled softmin function and the Argmin function under
varying α is shown in Figure 6. Nonetheless, a larger α also results in a more unstable gradient, which
may adversely affect the optimization process. Consequently, the α represents a critical balance
between achieving high approximation degree and maintaining stability in optimization processes.

To show how the scale factor α impacts the training optimality of the unconstrained optimization
problem (our RADDT method without using the strategy of multi-run warm start annealing), we conduct
comparison experiments across different α values at different depths. Our differentiable decision
tree optimization framework will be introduced in Section 4. The findings, summarized in Table 5,
reveal the relationship between α and training performance, as measured by the average training
accuracy R2. Notably, we observe that the training accuracy at the extremes of α = 1 (standard
softmin function) and α = 1000 are inferior compared to intermediate α values. This observation
underscores two critical insights: first, relying solely on softmin function (α = 1) yields suboptimal
optimization results; second, the high α value may not necessarily lead to better optimality.

Table 5: The impact of α on training accuracy across different depths.

Various α Value Training Accuracy (%)
D = 2 D = 4 D = 8 D = 12

α = 1 (Standard Softmin Function) 60.78 69.97 81.46 93.45
α = 20 70.28 79.43 87.98 94.49
α = 150 68.00 78.31 88.08 94.42
α = 1000 65.05 74.16 83.79 93.45

However, it remains a challenge to identify the optimal scale factor α that balances the trade-off
between approximation degree and differentiability. To mitigate this issue, we propose a multi-run
warm start annealing strategy, detailed in the following Section 4.1, to narrow the gap between the
Argmin behaviors and its differentiable approximation.

C Deterministic Calculations for Leaf Prediction Parameters

As detailed in Section 3.2, our method deterministically calculates the leaf prediction parameters θ
(i.e., the parameters K and h in regression, and the parameters h in classification), instead of directly
using trained values for θ. Given a tree with tree split parameters A and b, the deterministic tree path
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for each sample can be obtained, which allows determining the total number of samples assigned to a
specific leaf node t ∈ TL.

In classification tasks, the value of h at a leaf node t corresponds to the majority class among the
samples assigned to that leaf node. In this case, the leaf value is represented as a class label or the
one-hot vector specific to the class, ht ∈ {0, 1}c, in contrast to the continuous value ht ∈ Rc used
during the training phase.

In regression tasks, we consider two types of leaf prediction: linear prediction and constant prediction.
For decision trees with linear predictions, the prediction at a leaf node is a linear combination of input
features by fitting a linear correlation between all samples assigned to that leaf node. The leaf values
at a leaf node t, kt and ht, are the linear coefficients determined by linear regression. For decision
trees with constant predictions, the value of K remains zero. The value of h at a leaf node t is an
average of the true output values (yi) of the samples assigned to that leaf node t.

D Implementation Details of Multi-run Warm Start Annealing

As discussed in Section 4.1, the key challenge in enhancing the approximation accuracy to Argmin
behaviors lies in the selection of α. A larger α may destabilize optimization process, whereas a
smaller α tends to be easier to solve for gradient-based optimization. The annealing strategy, which
gradually changes α from small to large values, has been ever used to strike such a balance in existing
literature [Hehn and Hamprecht, 2017, Karthikeyan et al., 2022, Lee and Jaakkola, 2020], though not
specifically for our application to scaled softmin. However, their annealing typically adjusts α within
a single training process, such as changing α every few epochs, which may affect stable gradient
updates. Besides, the implementation details in these works are not well-documented. Considering
these, we introduce a detailed description of our annealing strategy.

Our annealing process operates across multiple optimization runs with different α values. The solution
from an optimization task with a smaller α is used to effectively warm-start the next optimization
run with a larger α. By starting with a smaller scale factor and gradually increasing it, this strategy
enhances the approximation accuracy, while mitigating numerical instability typically associated with
larger scale factors.

Specifically, the procedure begins by sampling a set of scale factors within a predetermined range
from the smallest αmin to the largest αmax, ensuring a broad exploration of possible α values. We
adopt log-space sampling to generate these scale factors, {α1, · · · , αn}, evenly on a logarithmic
scale. In this case, these sampled scale factors can be denser in the smaller range, which is beneficial
for the stable optimization process. We initiate the optimization with the smallest sampled scale
factor to generate the initial optimized tree candidate. This candidate then serves as the starting
point for the next optimization run with a slightly larger α. This iterative process is repeated until all
sampled scale factors have been utilized. Detailed implementation steps are integrated within our
systematic optimization framework, Algorithm 1.

D.1 Comparison between our annealing strategy and binary search for scale factor selections

Binary search provides a structured way to explore different α values for scaling the softmin approxi-
mation. Unlike random trials, it narrows the search range by evaluating performance at the midpoint
and adjusting boundaries accordingly. While this is more principled than random guessing, it still
involves testing isolated α values. As earlier discussed, this approach does not match the performance
of our multi-run warm start annealing strategy.

While we agree that a binary search-like approach can be used to identify an effective α, our
empirical results show that gradually increasing α, rather than directly using a large fixed value,
leads to better training outcomes. This is because starting with a smaller α allows the model to
optimize under a smoother case, improving stability. As α increases, it becomes sharper and closer
to the ideal formulation, and the model benefits from being progressively adapted to this more
accurate approximation. Our annealing strategy takes advantage of this effect by warm-starting
each successive optimization task with the solution from previous task with smaller α. This gradual
refinement enhances the approximation accuracy, while mitigating numerical instability typically
associated with larger α.
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The average training accuracy across Group (i) 17 regression datasets for different tree depths is
summarized below. Our annealing strategy consistently outperforms binary search, with an average
improvement of 2.82% across all depths.

Table 6: Training accuracy (optimization capability) comparison with different α selection strategies.

Tree Depth 2 4 8 12
Using Binary Search for α Selections 69.95 77.33 87.69 94.98

Using Our Multi-run Warm Start Annealing Strategy for α Selections 71.78 82.18 90.93 96.36

These results validate the effectiveness of our annealing in practice. However, we acknowledge that
this finding is based on empirical observation, and a theoretical analysis is still lacking.

E An Illustrative Example of The Influence of Initial Solutions and Their
Adjustments for Gradient-based Optimization

As discussed in Section 4.2, a good initial solution is crucial for achieving a better optimality,
especially in our task with softmin operations. This is because our softmin operates on Ui,t, which is
ReLU-based violations with either zero or non-zero values. However, these non-zero violations may
be close to zero, especially for samples around the decision boundary aT

j xi − bj = 0. While such
small discrepancies between exact-zero and near-zero violation do not impact Argmin behaviors,
which select the unique path only when Ui,t = 0, they can sensitively affect softmin. Specifically,
softmin may fail to produce values close to one as ideally expected, potentially compromising
approximation accuracy. Here, we provide an illustrative example to understand the influence of
initial solutions and their adjustments for gradient-based optimization. As shown in Figure 3, the red
sample x∗ lies near the blue decision boundary, resulting in a small positive ReLU output, close to
zero, that is difficult to distinguish from an exact zero.

Samples assigned to right

Adjusted aj and bj with more margin to nearest samples

Samples assigned to left
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Figure 3: Illustration of the influence of initial solutions and the effective adjustments.

To mitigate this, the initial A and b can be adjusted so that the decision boundary achieves the
maximum margin from the nearest samples, without altering the existing sample assignments as
illustrated by the green line in Appendix E, Figure 3. This adjustment does not change sample
assignments but enhances the distinction between exact-zero and near-zero cases.

The adjustment can be easily implemented either by calculating the median of aT
j xi for the closest

samples on both sides of the boundary, or using support vector machine to treat sample assignments
as a binary classification task. To be more specific, Each branch test aT

t xi ≤ bt acts as a binary
classifier, directing samples left or right. A practical adjustment is to slightly shift the decision
boundary (e.g., by modifying the median of aT

j xi) to enlarge the margin without changing sample
assignments. Beyond only adjusting bj , we also refine both aj and bj using an SVM: we treat
left/right assignments as binary labels and fit a linear SVM to maximize margin. The resulting
weights and bias update the split parameters while preserving the original assignment. This procedure
is visualized in Appendix E, Figure 3.
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F Hyperparameters Analysis of Our Differentiable Decision Tree
Optimization Approach

Despite the introduction of additional hyperparameters in gradient-based optimization, tuning them is
not typically necessary because their effects are straightforward. To be more specific, the hyperpa-
rameters in our differentiable decision tree optimization approach are as follows:

(1) The multi-start number Nstart
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Figure 4: The trend of training optimality under different depth setting with different Nstart.

The multi-start number Nstart directly influences training optimality by increasing the chance of
finding the optimal solution, albeit at a higher computational cost. In practice, Nstart is set to balance
acceptable computational expenses with desired training accuracy.

To explore the correlation between Nstart and the training optimality, our “ReLU+Argmin”-based
Differentiable Decision Tree Optimization (RADDT) for regression trees with constant predictions is
performed under different Nstart values as shown in Figure 4. It indicates that increasing Nstart

generally improves training optimality for all various tree depths, especially at lower tree depths.

(2) The epoch number Nepoch

The epoch number Nepoch is another hyperparameter that directly affects training optimality. A
higher Nepoch value increases training accuracy, but it also increases computational costs. In practice,
Nepoch is also set to balance acceptable computational expenses with desired training accuracy.

Our experiment with different Nepoch = {100, 3000, 5000} in Figure 5, shows that increasing Nepoch

generally improves training optimality for all various tree depths.
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Figure 5: The trend of training optimality under different depth setting with various Nepoch.

(3) The range of sampled scale factors [αmin, αmax] for scaled softmin function
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Figure 6: Comparison of scaled softmin function approximating Argmin behaviors under varying α.

This predetermined range is used to sample a set of scaled factors α for the strategy of multi-run warm
start annealing. The principal aim is to explore a broader range of scale factors, ranging from smaller
to larger values. As discussed in Section 3.2, the scaled softmin function applied to Ui,t is used to
approximate the Argmin function (more concretely, the one-hot encoded Argmin function). A larger
α leads to a closer approximation to the Argmin function. As observed in Figure 6, the gap between
scaled softmin function and the Argmin function narrows as α increases. Noticeably, the standard
softmin function with α = 1 exhibits a significant deviation from the Argmin function as depicted in
the black line. With a larger α, such as α ≥ 50, the scaled softmin function closely approximates
the Argmin function, almost overlapping with the Argmin function as shown in the figure. In the
implementation of our experiments, we simply sample α within the range [αmin, αmax] = [2, 200] to
meet our requirements. This range ensures that smaller values maintain a smooth gradient and exhibit
a better approximation than the standard softmin function, while larger values closely approximate
the Argmin function.

(4) The number of sampled scale factors

Within a predetermined range, a set of scaled factors, denoted as {α1, · · · , αn}, are sampled for
subsequent use in multi-run warm start annealing, as detailed in Section 4.1. Larger scale factors
reduce the approximation disparity, whereas smaller ones yield a smoother and more stable gradient.
Including a greater number of scale factors in the set facilitates a more stable approximation process,
enhancing the approximation degree to Argmin behaviors while minimizing the loss of differentiability
typically associated with larger scale factors. Intuitively, including more scale factors in the set
enhances training optimality. However, this leads to increased iterations in the annealing strategy,
thereby raising computational costs. Practically, the number of scale factors is often determined by
balancing training accuracy against computational demands. In our experiments, to avoid excessive
computational costs, we primarily sample 5 scale factors with a log-space distribution within the
range [αmin, αmax].

(5) The learning rate η

The learning rate is a common parameter in gradient-based optimization, and has garnered significant
attention in the literature. To simplify its usage, we adopt the well-established learning rate scheduler,
termed CosineAnnealingWarmRestarts (with initial linear warm up) in PyTorch, which decreases
the learning rate from an initial value of 0.01, thus minimizing the need for additional tuning.

G Algorithm Details of "ReLU+Argmin"-based Differentiable Decision Tree

Alongside the detailed descriptions in Section 4.3, we present the algorithmic implementation of our
“ReLU+Argmin”-based Differentiable Decision Tree Optimization framework, RADDT, in Algorithm 1.
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Algorithm 1 The entire tree optimization framework for RADDT.
1: Input: {xi, yi}ni=1, tree depth D, learning rate η, epoch number Nepoch, multi-start number Nstart.
2: Output: Optimal trainable variables Abest, bbest, θbest.
3: Define Lmin, empty variables Abest, bbest and θbest.
4: for start = 1 to Nstart do
5: Initialize A, b, θ with initial solution adjustments as detailed in Section 4.2. Generate scale factors

{α1, · · · , αn} with log-spacing.
6: for αiter ∈ {α1, · · · , αn} do
7: If iter ̸= 1, initialize trainable variables with the solution of last optimization run by Line 12.
8: for k = 1 to Nepoch do
9: Calculate loss L at step k by Equation (7) and calculate ∂L

∂A
, ∂L

∂b
, ∂L

∂θ
. Then update trainable

variables via gradient decent, such as Ak+1 = Ak − η ∂L
∂A

.
10: end for
11: Deterministically update θ without any approximation, as described in Appendix C.
12: Generate a tree candidate with optimized variables, termed as Aiter , biter , θiter . Specifically,

Aiter = ANepoch and biter = bNepoch , while θiter is derived through a deterministic recalculation
as mentioned in Line 11.

13: Deterministically compute L by Equation (5). IF L < Lmin, update variables like Abest ← Aiter .
14: end for
15: end for

H Detailed Description and Usage of The Four Groups of Datasets

Dataset split ratio and usage

In our experiments, typically, we allocate 75% of the samples for training purposes and the remaining
25% for testing, following the train-test split ratio as used in [Bertsimas and Dunn, 2017]. If an
experiment requires cross validation for hyperparameter tuning like tree depth, we then subdivide the
training datasets into training and validation subsets in a 2:1 ratio. The dataset setting accordingly
changes to 50% samples as training set, 25% samples as validation set, and 25% samples as testing set.
After determining the best hyperparameters, we then retrain the model using the combined training
and validation set, and use the remaining 25% as the testing set to evaluate the final testing accuracy.

Dataset information across four groups

As discussed in Section 5, our baseline comparison experiments are conducted across four groups
of datasets: (i) 17 medium-sized regression datasets with fewer than 41k samples (primary focus);
(ii) 27 same classification and 9 regression datasets used in certain baselines (for more credible
comparison on their used datasets); (iii) 4 real-world datasets with about 100 samples, and 3 synthetic
datasets with 5000 samples (for comparing global optimality with global tree ORT-MIP [Bertsimas
and Dunn, 2017] and known ground truth, respectively); (iv) 7 large-scale datasets with at least 1
million samples (for scalability).

Unless otherwise specified, these real-world datasets used for our regression experiments are collected
from the UCI repository [Dua and Graff, 2019] and OpenML [Vanschoren et al., 2014]. Regarding
the 17 medium-sized datasets in Group (i), detailed information about these datasets is summarized
in Table 7. The dataset size n and the number of features p are provided in the table.

Regarding the same classification datasets used in the original GradTree study [Karthikeyan et al.,
2022] in Group (ii), we include these shared datasets to support a more credible and convincing
comparison. Although we have already compared against GradTree on the Group (i) 17 regression
datasets in Table 7, and their subpar performance aligns with the results reported in their own
Table 1 and 2, where their method underperforms the foundational baseline CART on 17 out of 36
classification datasets, we still further evaluate on the same classification datasets used in their own
work to provide a more credible comparison. Among their 36 classification datasets, we finally
collect 27 and discard 9 datasets, due to one or more of the following issues: unavailable dataset
sources, unusable datasets with substantial missing values (corrupted dataset), or ambiguous dataset
documentation. For example, the “rice” dataset lacks a clear download source. The “annealing”
dataset contains a significantly large number of missing values and is nearly unusable. The “splice”
dataset lacks clear information, such as the definition of features and predictive target, making this
type of dataset unusable. Therefore, to ensure experimental reproducibility and data integrity, we
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Table 7: Group (i) 17 real-world regression datasets from UCI and OpenML Repository.

Dataset Index Dataset Name Dataset Size (n) Feature Number (p)
1 airfoil-self-noise 1,503 5
2 space-ga 3,107 6
3 abalone 4,177 8
4 gas-turbine-co-emission-2015 7,384 9
5 gas-turbine-nox-emission-2015 7,384 9
6 puma8NH 8,192 8
7 cpu-act 8,192 21
8 cpu-small 8,192 12
9 kin8nm 8,192 8
10 delta-elevators 9,517 6
11 combined-cycle-power-plant 9,568 4
12 electrical-grid-stability 10,000 12
13 condition-based-maintenance_compressor 11,934 16
14 condition-based-maintenance_turbine 11,934 16
15 ailerons 13,750 40
16 elevators 16,599 18
17 friedman-artificial 40,768 10

discard 9 datasets in total and perform the same-dataset comparison on the remaining 27 datasets.
Additionally, since their work adopts a 20% test split, different from our default setting, we adopt
their train-test split ratio for this specific comparison to ensure fairness. The final list of datasets,
along with their sample size n, number of features p, and number of classes c, is presented in Table 8.

Table 8: Group (ii) 27 same classification datasets used in the original GradTree study.

Dataset Index Dataset Name Dataset Size (n) Feature Number (p) Class Number (c)
GradTree-1 balance-scale 625 4 3
GradTree-2 banknote-authentication 1,372 4 2
GradTree-3 blood-transfusion 748 4 2
GradTree-4 car-evaluation 1,728 6 4
GradTree-5 congressional-voting-records 232 16 2
GradTree-6 contraceptive-method-choice 1,473 9 3
GradTree-7 dermatology 358 34 6
GradTree-8 echocardiogram 61 11 2
GradTree-9 iris 150 4 3

GradTree-10 spambase 4,601 57 2
GradTree-11 thyroid-disease-ann-thyroid 7,200 21 3
GradTree-12 wine 178 13 3
GradTree-13 adult 32,561 14 2
GradTree-14 bank-marketing 45,211 14 2
GradTree-15 credit-card 30,000 23 2
GradTree-16 german 1,000 20 2
GradTree-17 glass 214 9 6
GradTree-18 heart-failure 299 12 2
GradTree-19 landsat 6,435 36 6
GradTree-20 loan-house 614 11 2
GradTree-21 lymphography 148 18 4
GradTree-22 mushrooms 8,124 22 2
GradTree-23 raisins 900 7 2
GradTree-24 segment 2,310 19 7
GradTree-25 solar-flare 1,389 10 8
GradTree-26 wisconsin-breast-cancer 569 10 2
GradTree-27 zoo 101 16 7

Regarding the same regression datasets used in the work of soft decision trees, no tabular datasets
were used in [Frosst and Hinton, 2017], but we adopt the four tabular regression datasets from the
original soft decision tree study by [İrsoy et al., 2012]. We include these shared datasets to support a
more credible and convincing comparison as well. The shared 4 datasets are given in Table 9.

Regarding the same regression datasets used in DTSemNet, DGT-Linear and TAO-Linear, we also
include these 5 shared datasets. We follow the same comparison setting and experimental setup
as DTSemNet to include these 5 shared datasets for a more credible comparison against DTSemNet,
DGT-Linear and TAO-Linear. Details of the shared 5 datasets are provided in Table 10.

For comparison of training optimality in Section 5.2, four small regression datasets with around 100
samples are also used. These datasets, collected from UCI and listed in Table 11, allow us to compare
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the training optimality of our method against global optimal solutions. The global optimal method
ORT-MIP is computationally solvable for such a small dataset size as observed in our experiments.

Besides, three two-dimensional synthetic regression datasets with 5000 samples each are also used
to showcase the effectiveness of our tree optimization in approaching global training optimality.
Synthetic datasets are advantageous as they hold a known ground truth. Based on tree-based decision
rules with the form of IF-THEN statements, we design 2D decision rules to create a dataset by the
D-depth tree. These decision rules are used to assign samples to the corresponding leaf nodes along
a sequence of branching tests. For instance, when generating a two-dimensional dataset for a 2-depth
tree, one of the decision rules is described as IF xi,1 + xi,2 > 0 and xi,1 − xi,2 > 0, THEN
yi = 0.5. In this setting, we generate 3 synthetic datasets, termed “Syn-2”, "Syn-3" and “Syn-4” .
These datasets are created with varying tree depth settings of 2, 3, and 4, respectively.

Table 9: Group (ii) 4 regression datasets used in original work of soft trees [İrsoy et al., 2012].

Dataset Index Dataset Name Dataset Size (n) Feature Number (p)
SoftTree-1 abalone 4,177 8
SoftTree-2 puma8NH 8,192 8
SoftTree-3 computer 209 7
SoftTree-4 concrete 103 7

Table 10: Group (ii) five shared regression datasets used in original work of DTSemNet, DGT and TAO.

Dataset Index Dataset Name Dataset Size (n) Feature Number (p)
DTSemNet-1 Abalone 4,177 8
DTSemNet-2 Comp-Active 8,192 21
DTSemNet-3 Ailerons 14,308 40
DTSemNet-4 CTSlice 53,500 384
DTSemNet-5 YearPred 515,345 90

Table 11: Group (iii) four small real-world regression datasets with about 100 samples.

Dataset Index Dataset Name Dataset Size (n) Feature Number (p)
Small-1 concrete-slump-test-compressive 103 7
Small-2 concrete-slump-test-flow 103 7
Small-3 hybrid-price 153 4
Small-4 lpga-2008 157 6

Regarding the 7 large-scale regression datasets each with at least 1,000,000 samples in Group (iv),
they are used to evaluate the scalability of our method. These datasets are listed in Table 12. The
dataset size n and the number of features p are provided in the table.

Table 12: Group (iv) seven large-scale regression datasets each with at least 1 million samples.

Dataset Index Dataset Name Dataset Size (n) Feature Number (p)
Million-1 BNG-Ailerons 1,000,000 40
Million-2 BNG-cpu-act 1,000,000 21
Million-3 BNG-cpu-small 1,000,000 12
Million-4 BNG-puma32H 1,000,000 32
Million-5 BNG-wisconsin 1,000,000 32
Million-6 ACSPublicCoverage2018 1,138,289 19
Million-7 BNG-elevator 1,000,000 18

I The implementation Settings for Comparison Studies

To implement our “ReLU+Argmin”-based Differentiable Decision Tree optimization framework
(RADDT), we utilize PyTorch that embeds auto differentiation tools and gradient-based optimizers.
Our method is configured with Nepoch = 3, 000 and Nstart = 10, unless otherwise specified.

For benchmarking, the Scikit-learn library in Python is used to implement CART and random for-
est (RF) methods. XGBoost is implemented via their official package. The parameter values for these
methods are set to default values, unless otherwise specified, such as the specific hyperparameters
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tuning for RF and XGBoost discussed in Section 5.1 and Appendix J. The implementation of HHCART,
RandCART and OC1 is adapted from publicly sourced GitHub repository and programmed in Python.
We modified their classification-oriented loss functions to adapt for regression tasks.

As for the local search method ORT-LS, we reproduce it in Julia due to the absence of open-source
code for ORT-LS. Aiming to provide a reference for global training optimality, we also implement
the MIP-based optimal oblique decision tree, ORT-MIP, in Julia, solving the MIP problem with
Gurobi due to the absence of open-source code for ORT-MIP.

The GradTree, SoftDT, DGT and LatenTree methods are implemented using their respective open-
source GitHub repositories, with adjustments made only to the epoch numbers to align with our
methods. The TEL is implemented using their open-source code with their own default parameter
settings, except for the number of trees and epoch numbers. We modify the epoch number to align
with our experimental setup. Since it is a tree ensemble method, we set the number of trees to 10.

Since no open-source code is available for TAO-Linear, and the DTSemNet work directly uses the
reported results from TAO-linear for comparison, we adopt the same approach to ensure consistency
and credibility. DTSemNet itself is a decision tree with linear predictions. For consistency, it also
adapts the original DGT tree with constant predictions into a linear variant, termed DGT-Linear. The
datasets used in TAO-Linear are shared with DTSemNet and DGT-Linear, and DTSemNet directly
collects the reported results from each method for comparison. Following their experimental setup,
we apply the same data preprocessing, dataset splits and evaluation metric to implement our method
on these five shared datasets. This allows for a fair and direct comparison between our results and the
summarized benchmarks presented in DTSemNet’ Table 4, covering DGT-Linear, TAO-Linear, and
DTSemNet itself. Detailed implementation settings for these baselines can be found in DTSemNet
Panda et al. [2024]. It is important to note that this, same-dataset comparison against TAO-Linear,
DGT-Linear and DTSemNet, is the only experiment in which we directly adopt the reported results
for DGT (DGT-Linear). In our other experiments involving DGT, including Table 3 in Section 5.2 and
Table 22 in Appendix K.10, we implement the experiments using their open-source code software.

Experiments necessitating CPU computation were executed on the HPC Cluster, specifically utilizing
“Dell EMC R440 CPU” configuration. Each CPU job is allocated 32G memory with a Time Limit of
7 days. Experiments for ORT-MIP requiring larger memory resources were carried out on the Oracle
HPC Cluster, specifically with 2T memory and 128 cores. Concurrently, experiments requiring GPU
resources were conducted on the “Narval” server, with an NVIDIA A100 GPU equipped.

J Hyperparameters Tuning for Tree Ensemble Methods

For a fair comparison, comprehensive hyperparameter tuning is also performed for three tree ensemble
methods. Regarding random forest RF, the number of trees in a forest is a critical parameter. It is
well-recognized that testing performance improves with an increase in the number of trees; however,
the marginal gains become less pronounced as additional trees are added [Oshiro et al., 2012, Probst
et al., 2019]. Accordingly, the number of trees is tuned across a set of {50, 100, 200, 300, 400, 500}.
Moreover, the maximum tree depth is tuned over a broader range, from 1 to 50, to potentially capture
optimal depth settings, given that RF empirically benefits from overly-deeper trees for enhanced
testing accuracy. Other hyperparameters, including the number of features per split and the number
of samples per tree, are maintained at default settings. These have been shown to balance the
bias-variance trade-off, typically yielding robust performance with default values [Probst et al., 2019].

For XGBoost, we follow the same hyperparameter tuning schemes, varying the number of trees across
a set {50, 100, 200, 300, 400, 500}, and the maximum tree depth from 1 to 50.

For the gradient-based tree ensemble TEL, no specific hyperparameter tuning is performed; we directly
fix the number of trees to 10 and retain all other parameters at their default settings.

While our current hyperparameter tuning for tree ensembles, including those in Appendix K.6
with more-combination search for hyperparameters, is sufficient to support our main claims, espe-
cially given that our goal is not to claim superiority over ensembles, more tuning on regularization
parameters could potentially yield even better results for tree ensembles.
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K The Complementary Results of Numerical Experiments

K.1 Detailed testing accuracy comparison results on 17 medium-sized datasets in Group (i).

The testing accuracy (R2) comparison for various decision trees on specific 17 medium-sized datasets
in Group (i) is detailed in Table 13.

Table 13: Testing accuracy comparison for diverse decision trees on Group (i) 17 real-world datasets.

Datasets Greedy methods Gradient-based Heurisitc Local Search Our Optimized Tree
CART OC1 RandCART HHCART GradTree SoftDT ORT-LS RADDT RADDT-Linear

1 85.27 86.38 76.79 85.71 56.46 67.06 85.24 90.34 90.65
2 42.14 40.53 50.70 49.05 30.47 47.46 49.51 59.46 61.20
3 47.29 46.15 46.94 54.75 49.68 55.28 54.20 57.03 58.74
4 66.50 55.39 57.24 60.61 64.07 60.80 55.62 62.19 71.62
5 82.19 83.20 83.30 84.43 67.03 80.81 86.39 89.63 88.59
6 62.36 62.71 41.64 66.95 61.53 60.31 63.68 65.21 68.11
7 96.98 97.23 92.06 97.15 95.30 85.36 97.59 97.47 98.25
8 95.89 96.25 95.78 96.25 93.69 88.66 96.65 96.26 97.31
9 42.56 51.53 51.83 56.32 44.22 71.60 69.57 81.26 86.23
10 60.19 59.03 58.42 60.91 54.76 62.76 58.52 61.86 63.58
11 93.33 93.15 93.11 93.55 84.66 93.16 92.84 94.00 94.22
12 71.17 74.72 58.08 68.80 45.01 86.35 80.66 87.22 91.74
13 98.58 94.37 98.45 98.63 85.17 86.83 98.93 97.76 99.99
14 97.34 71.14 96.11 95.23 76.81 48.37 97.78 96.30 99.97
15 75.96 76.55 75.48 77.92 67.49 81.61 78.44 81.46 82.42
16 69.12 72.30 65.03 75.66 49.73 86.57 82.61 89.61 90.57
17 85.51 85.69 69.52 82.75 67.03 73.33 89.18 93.51 95.49

The testing accuracy (R2) comparison for 3 tree ensembles on specific 17 medium-sized datasets in
Group (i) is detailed in Table 14.

Table 14: Testing accuracy comparison for three tree ensembles on Group (i) 17 real-world datasets.

Dataset Index RF XGBoost TEL
1 92.58 93.39 88.76
2 53.22 53.84 69.79
3 57.64 57.40 61.23
4 68.10 65.55 56.55
5 91.00 90.78 88.11
6 68.38 66.79 67.00
7 98.27 98.54 97.78
8 97.63 97.72 97.35
9 70.48 75.29 90.57
10 63.16 64.15 62.31
11 95.92 96.49 94.01
12 89.59 92.80 95.30
13 99.50 99.51 98.31
14 98.74 98.67 92.37
15 83.24 83.39 81.76
16 83.59 90.01 89.88
17 93.41 95.36 94.70

K.2 Implementation details of same-dataset comparisons for certain baselines

For GradTree, we follow their experimental setup: using 20% of the data for testing, macro F1-
score as evaluation metric, and averaging results over 10 runs with different random splits. Despite
adhering to their dataset settings and hyperparameter configurations, we were unable to reproduce
their reported results from Tables 1 and 2 in their paper. Therefore, we directly compare our RADDT
results with their published results.

Regarding soft decision tree, no tabular datasets were used in [Frosst and Hinton, 2017], but we adopt
the four tabular regression datasets from the original Soft Decision Tree study by [İrsoy et al., 2012].
As no specific dataset settings are provided in that work, we use our default experimental setup for
both Soft Decision Tree and RADDT.

Regarding TAO-Linear, DGT-Linear and DTSemNet, since no open-source code is available for
TAO-Linear, and the DTSemNet work directly uses the reported results from TAO-Linear for
comparison, we adopt the same approach to ensure consistency and credibility. DTSemNet itself is a
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decisoin tree with linear predictions. For consistency, it also adapts the original DGT tree with constant
predictions to a linear variant, referred to as DGT-Linear. Following DTSemNet’s experimental setup,
we apply the same data preprocessing, dataset splits (40% of the data for testing, unless otherwise
specified for certain dataset) and evaluation metric (RMSE) to implement our method on the five
shared datasets. This allows for a fair and direct comparison between our results and the summarized
benchmarks presented in DTSemNet’Table 4, covering DGT-Linear, TAO- Linear, and DTSemNet
itself. Detailed implementation settings for these baselines can be found in DTSemNet.

K.3 Detailed results for same-dataset comparison on Group (ii) 27 datasets used by GradTree

Our same-dataset comparison for GradTree is performed on 27 of their original 36 datasets, with 9
excluded due to unavailability or ambiguity. Detailed dataset information is given in Appendix H. The
result for each dataset is given in Table 15, using macro F1-score as the evaluation metric, following
their original study. Our method outperforms GradTree by 4.99% on average in test performance.

Table 15: Testing comparison on 27 shared classification datasets in Group (ii) with GradTree

Dataset Index Dataset Name Originally Reported Results in GradTree Our RADDT
GradTree-1 balance-scale 59.30 90.10
GradTree-2 banknote-authentication 98.70 99.70
GradTree-3 blood-transfusion 62.80 66.00
GradTree-4 car-evaluation 44.00 86.80
GradTree-5 congressional-voting-records 95.00 96.60
GradTree-6 contraceptive-method-choice 49.60 48.40
GradTree-7 dermatology 93.00 94.40
GradTree-8 echocardiogram 65.80 83.30
GradTree-9 iris 93.80 95.10

GradTree-10 spambase 90.30 92.10
GradTree-11 thyroid-disease-ann-thyroid 90.50 95.80
GradTree-12 wine 93.30 97.80
GradTree-13 adult 74.30 76.40
GradTree-14 bank-marketing 64.00 71.90
GradTree-15 credit-card 67.40 68.20
GradTree-16 german 59.20 66.10
GradTree-17 glass 56.00 58.20
GradTree-18 heart-failure 75.00 75.80
GradTree-19 landsat 80.70 86.30
GradTree-20 loan-house 71.40 73.20
GradTree-21 lymphography 61.00 61.20
GradTree-22 mushrooms 100.00 100.00
GradTree-23 raisins 84.00 85.10
GradTree-24 segment 94.10 88.80
GradTree-25 solar-flare 15.10 15.40
GradTree-26 wisconsin-breast-cancer 90.40 94.80
GradTree-27 zoo 87.40 83.30

K.4 Detailed results for same-dataset comparison on Group (ii) 4 datasets used by soft trees

We provide the comparison results for each dataset in Table 16. The results show that RADDT
outperforms the soft decision tree by 6.88% in testing accuracy (R2), again aligning with prior results.

Table 16: Testing comparison on 4 shared regression datasets in Group (ii) with Soft Decision Tree

Dataset Index Dataset Name Soft Decision Tree Our RADDT
SoftTree-1 abalone 55.28 57.03
SoftTree-2 puma8NH 60.31 65.21
SoftTree-3 computer 57.01 56.69
SoftTree-4 concrete 25.93 47.10

K.5 Detailed results for same-dataset comparison on Group (ii) 5 datasets used by
DGT-Linear, TAO-Linear and DTSemNet

As earlier discussed in Section 5.1, we have compared our method with DGT-Linear, TAO-Linear
and DTSemNet on the five shared datasets as used in the original work of DTSemNet. We extend
DTSemNet’s Table 4 by including our results under the same experimental setup in Table 17.
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Table 17: Comparison on Group (ii) five datasets used by TAO-Linear, DGT-Linear and DTSemNet

Datasets Our RADDT-Linear 1 DTSemNet 2 DGT-Linear 2 TAO-Linear 2

RMSE Rank RMSE Rank RMSE Rank RMSE Rank
Abalone 1.984 1 2.135 3 2.144 4 2.07 2

Comp-Active 2.519 1 2.645 3 2.645 3 2.58 2
Ailerons 1.154 1 1.66 2 1.67 3 1.74 4
CTSlice 1.138 1 1.45 3 1.78 4 1.16 2
YearPred 11.934 4 8.99 1 9.02 2 9.08 3

1 Following DTSemNet work, trees with linear prediction are compared. 2 These results are taken directly from DTSemNet’s Table 4.

K.6 More extensive hyperparameter tuning for tree ensembles on Group (i) datasets

As previously indicated in Table 2, the findings of our methods being comparable to tree ensembles
RF and XGBoost are based on 300-combination specific hyperparameter tuning scheme. In that
setting, our method is tuned only over tree depths from 1 to 12 with 12 combinations, ensuring a
much lighter tuning for fairness.

To further support this finding, we extend the parameter search space to 5,400 combinations. This
involves tuning the “tree depth” within a range of {1-50, 55, 60, 70, 80, 90, 100, 150, 200, 250,
300}, “the number of trees” within {5, 10, 50, 100, 200, 300, 400, 500, 600, 700}, and with the
additional tuning for RF on “the minimum samples per leaf and per split” in {1, 2, 4}, and for
XGBoost on “subsample” and “colsample_bytree” in {0.6, 0.8, 1.0}. Additionally, to provide even
stronger evidence, we further use PyCaret automated machine learning tool to perform an extensive
10,000-combination hyperparameter tuning for XGBoost, exploring its whole hyperparameter space
with PyCaret’s default search settings.

As shown in Table 18, the 5,400-combination tuning yields slight improvements in testing accuracy for
both RF and XGBoost, with 0.11% gain for RF and 0.26% gain for XGBoost over the 300-combination
tuning in Table 2. The extensive 10,000-combination tuning for XGBoost via PyCaret leads to just a
1.04% gain. Despite extensive tuning, our key finding remains consistent: our single tree achieves
accuracy comparable to ensemble methods. Notably, our aim is not to claim superiority over tree
ensembles, as any base learner including decision tree can be improved via ensemble techniques.
Comparing a single tree to tree ensembles is inherently unfair. Instead, our goal is to showcase the
potential of a single, optimized tree like ours in achieving high testing accuracy.

Table 18: Accuracy comparison on Group (i) datasets with extensive tuning for tree ensembles.

The Number of Hyperparameter Tuning Combinations Testing Accuracy (R2, %)
RF (300-combination reported in Table 2) 82.62
RF (5400-combination) 82.73
XGBoost (300-combination reported in Table 2) 83.51
XGBoost (5400-combination) 83.77
XGBoost (10000-combination by PyCaret) 84.55

K.7 Detailed comparison against optimal trees on 4 small datasets in Group (iii)

As earlier discussed, ORT-MIP [Bertsimas and Dunn, 2017] is computationally infeasible for
previously-used datasets, even with 128 cores and a two-day time limit. It can only solve the
2-depth tree training problem on 4 small datasets in Group (iii) to a global optimum with 1% gap.
Due to these limitations, only 50% samples are used for training in this experiment. Detailed training
accuracy comparisons against ORT-MIP on these 4 small datasets are presented in Table 19.

Table 19: Train accuracy comparison results on solvable 4 small datasets in Group (iii).

Dataset Sample Feature ORT-MIP RADDT
concrete-slump-test-compressive 103 7 87.79 87.12

concrete-slump-test-flow 103 7 89.89 84.92
hybrid-price 153 4 78.09 73.50
lpga-2008 157 6 86.79 85.73

Average Training Accuracy (R2, %) 85.64 82.82

Regarding the optimal sparse trees [Zhang et al., 2023], it complements earlier work on optimal
trees (ORT-MIP) that fails to consider sparsity. As for experimental comparisons, optimal sparse trees
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may not be directly comparable to our method. First, optimal sparse trees are limited to axis-aligned
splits, which generally yield lower accuracy than oblique trees. Second, they are designed for binary
features, requiring feature discretization that may degrade performance on our continuous-feature
datasets. We therefore choose not to include this in our experiments, as it could unfairly disadvantage
their method under our evaluation setting.

K.8 Detailed comparisons against known ground truth on 3 synthetic datasets in Group (iii)

We provide the detailed comparison results for each synthetic dataset in Table 20. The known ground
truths for both train and test accuracy are 100%. The results show that our RADDT closely approximate
global optimality in train and test accuracy, with 0.64% difference over ground truth on average.
These results, together with previous global solution comparisons, further validate the effectiveness
of our tree optimization.

Table 20: Training and Testing performance on synthetic datasets in Group (iii).

Dataset Fitted Depth Training Accuracy (R2, %) Testing Accuracy (R2, %)
Ground-truth RADDT Ground-truth RADDT Ground-truth RADDT

Syn-2 2 2 100 99.96 100 99.99
Syn-3 3 3 100 98.78 100 98.71
Syn-4 4 4 100 99.35 100 99.39

K.9 Ablation experiments on the strategies used in our tree optimization

The observed superiority in training accuracy of our RADDT method can be attributed to two key
strategies designed to enhance approximation accuracy, as discussed in Section 4: the multi-run warm
start annealing strategy, and the strategy of adjusting initial solution for gradient-based optimization.
The comparative results, presented in Table 21, clearly illustrate the impact of these strategies on
RADDT. It should be noted that our method, which utilizes the multi-run warm start annealing, is
referred to as RADDT in the table. In contrast, when this strategy is not employed, the method is
denoted by specific values of scale factors, such as α = 1 and α = 150. Additionally, the strategy
of adjusting initial solutions is evaluated in the table, with the method labeled as RADDT without
adjustments to initial solution and RADDT with adjustments to initial solution.

Regarding multi-run warm start annealing, we analyze training accuracy with and without this strategy.
Without this strategy, we utilize fixed scale factors for comparison: a standard softmin function with a
small α = 1, and a larger scale factor α = 150. The findings indicate substantial improvements with
the annealing approach: training accuracy increased by 9.7%, 9.32%, 8.46% and 1.07% at tree depths
of 2, 4, 8, and 12, respectively, when compared to the standard softmin function without any scaling.
Moreover, when compared to fixed scale factors larger than 1, the annealing strategy also yields a
higher training accuracy. These results confirm that our multi-run warm start annealing strategy is
effective in enhancing training accuracy, by striking a greater balance between the approximation
accuracy of scaled softmin function and the stability of gradient-based optimization.

The strategy of adjusting the initial solution for gradient-based optimization also contributes to these
improvements. It boosts training accuracy by 1.3%, 2.89%, 1.01% and 1.84% at tree depths of 2,
4, 8, and 12, respectively. Notably, these gains are achieved solely through improved initialization,
without involving in the optimization process.

Table 21: The effectiveness of strategies used in our tree optimization approach on training accuracy.

Item D = 2 D = 4 D = 8 D = 12
without Multi-run Warm Start Annealing

(A fixed Scale Factor)
α = 1 (Standard Softmin Function) 60.78 69.97 81.46 93.45

α = 150 68.00 78.31 88.08 94.42
with Multi-run Warm Start Annealing

(Our RADDT method)
RADDT without adjustments to initial solution 70.48 79.29 89.92 94.52
RADDT with adjustments to initial solution 71.78 82.18 90.93 96.36

K.10 Scalability comparison on 7 million-scale datasets in Group (iv)

In Section 5.3, we analyze the scalability of various methods on 7 million-scale datasets in Group (iv)
under a fixed-depth setting. The detailed results are presented in Table 22.
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Table 22: Scalability comparison under fixed-depth setting on 7 million-scale datasets in Group (iv).

Methods1 Training Accuracy (R2, %) Testing Accuracy (R2, %) Training Time (s)
D2 D4 D8 D12 D2 D4 D8 D12 D2 D4 D8 D12

CART 24.18 35.19 42.06 47.80 23.91 34.99 41.35 41.57 6 9 17 25
RandCART 17.17 22.71 28.35 33.22 17.11 22.57 27.98 29.78 9 16 38 67
HHCART 22.40 27.20 36.40 42.29 22.29 27.07 36.03 38.79 12 24 46 84

GradTree 19.67 26.92 33.36 / 19.48 26.60 33.16 / 1,387 3,058 14,570 /
SoftDT 18.19 27.36 28.36 / 18.13 27.24 28.21 / 29 136 16,263 /
DGT 30.26 35.27 / / 30.10 34.99 / / 202,537 232,574 / /

LatentTree 33.35 40.04 / / 33.00 39.74 / / 73,965 72,130 / /
RADDT 33.93 39.39 43.56 51.67 33.56 39.01 42.27 39.59 8,136 5,596 21,874 80,731

1 OC1 and ORT-LS fail even at depth 2 within 14 days. GradTree, SoftDT, DGT, and LatentTree face out-of-memory issues when scaling,
with GradTree and SoftDT failing at depth 12, and DGT and LatentTree only solvable at depths 2 and 4.

K.11 GPU-accelerated implementation for our RADDT experiments

Our differentiable tree is trained by solving an unconstrained optimization problem, offering substan-
tial scalability benefits via its reformulated structure. Furthermore, by leveraging mature frameworks
like PyTorch, our implementation facilitates GPU acceleration, including distributed data parallel
with multi-GPU. Under ideal full GPU utilization, training can also be distributed across multiple
GPUs, further reducing time in proportion to the number of GPUs used. Concerning the training
time reported in Table 3, our RADDT method achieves superior accuracy without a substantial in-
crease in training time. While single-GPU acceleration is enabled for both our RADDT and other
compared gradient-based trees, Our RADDT attains more efficient acceleration by fully leveraging
matrix operation in computing our designed loss in Equation (7), which integrates unique tree path
formulation. Specifically, by introducing the parameter Ui,t, we store the deterministic sample route
and assignments in a matrix to avoid loop-based calculation at every iteration, enabling efficient
matrix operations for loss and gradient calculations. Additionally, for training 12-depth trees on
Group (i) datasets with more than 10,000 samples, we use 4 GPUs to further accelerate our RADDT.

Regarding scalability experiments on million-scale datasets reported in Table 22, we utilize 4 GPUs
to train our RADDT at depths 2, 4, and 8, and 8 GPUs for depth 12. This distributed data parallelism
is easily implemented using our extensible framework, which supports multi-GPU training through
simple commands without requiring any specialized parallelization design.

K.12 Training time and speedup analysis on Group (i) datasets with over 10,000 samples

As in Table 3, our RADDT achieves superior accuracy without substantial increase in training time
compared to other trees, such as the second-best ORT-LS. These scalability advantages become more
pronounced when dealing with larger matrix operations, particularly involving in deeper trees or
larger datasets with more samples and feature dimensions. To illustrate this, we provide a detailed
comparison of training time and speedup for 12-depth tree training between RADDT and ORT-LS on
the datasets with more than 10,000 samples in Group (i). The results are summarized in Table 23.

Table 23: The speedup of RADDT over ORT-LS for 12-depth tree training on Group (i) datasets with
more than 10,000 samples.

Dataset Index Dataset Name Dataset Size
(n)

Feature Number
(p)

ORT-LS
(Time, s)

RADDT
(Time, s)

Speedup
(ORT-LS/RADDT)

12 electrical-grid-stability 10,000 12 197,361.31 1,691.10 116.71
13 condition-based-maintenance_compressor 11,934 16 232,929.77 2,036.77 114.36
14 condition-based-maintenance_turbine 11,934 16 251,017.34 2,026.15 123.89
15 ailerons 13,750 40 965,968.22 2,236.61 431.89
16 elevators 16,599 18 485,509.64 2,622.17 185.16
17 friedman-artificial 40,768 10 671,460.77 4,331.58 155.02

K.13 Comparison of our method’s training time in GPU versus CPU settings

In this section, we provide a comparison of our method’s training time in GPU versus CPU settings,
although the advantages of GPU acceleration are expected. We use a fixed dataset, “sgemm-product”,
with subsets varying sizes from {100, 1,000, 5,000, 10,000, 50,000} for training 8-depth and 12-depth
trees. As expected, GPU training is significantly faster. For instance, on 50,000 samples with an
8-depth tree, GPU training is 117 times faster than CPU. For a 12-depth tree on 1,000 samples, we
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observe a 107 times speed-up. On larger datasets and deeper trees, the CPU version often fails to
complete within 5 days. This highlights the practical importance of GPU acceleration for scalability.

Table 24: Training time comparison of our RADDT method in GPU versus CPU settings.

Training Time (Second)
8-depth treee 12-depth tree

Datasize One GPU CPU One GPU CPU
100 337 615 769 10,912

1,000 359 2,938 1,043 111,111
5,000 466 22,082 2,799 OOT >5 days
10,000 614 46,132 5,057 OOT >5 days
50,000 2,949 345,992 41,564 OOT >5 days

Additionally, as discussed in Appendix K.10, Appendix K.11 and Appendix K.12, also observed in
this comparison, the GPU advantages become increasingly pronounced with larger matrix operations,
particularly involving deeper trees, larger datasets with more samples and feature dimensions.

K.14 Interpretability analysis of our optimized tree

We fully agree that orthogonal trees like CART are more interpretable at the same, fixed depth.
However, as originally discussed in OC1 [Murthy et al., 1994], oblique trees can become more
interpretable when they require substantially less depth.

Our RADDT’s interpretability can be assessed from three aspects: tree-based prediction logic, unique
prediction path and the complexity of decision rules. First, RF, in Table 2, using an average of 314.71
trees for higher accuracy, almost losing the interpretability for final predictions compared to a single
tree. Second, our tree with ReLU-based hard splits maintains a unique decision path leading to final
predictions. These hard splits preserve the interpretability of True-False decision-making, which is
often compromised in soft trees with a probabilistic path. Third, regarding the complexity of decision
rules, oblique trees tend to generate smaller trees with clear oblique decision boundaries compared to
orthogonal trees like CART. For example, using synthetic dataset “Syn-4” in Table 20, CART achieves
only 85.27% training accuracy for a 4-depth tree, whereas our RADDT attains 99.35% for the same
depth. To achieve a comparable train accuracy, CART requires a deeper 9-depth tree with accuracy
reaching to 99.88%. Detailed results of CART under various depths are given in Table 25. CART with
9-depth tree results in a complex, staircased boundary, shown in Figure 7. Such complexity can make
decision rules difficult to interpret, whereas oblique trees with simpler and fewer splitting rules. It
makes our RADDT more interpretable despite the use of 2-feature combinations in tree splits. Notably,
this example does not imply oblique tree holds better interpretability, but rather to exhibit exclusive
interpretability in certain datasets where underlying data distribution align with oblique boundaries.
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Figure 7: The decision boundary comparison for dataset “Syn-4”.

Table 25: Train and Test accuracy for CART on synthetic dataset “Syn-4” under various tree depths.

Item Various Tree Depth
1 2 3 4 5 6 7 8 9 10

Training Accuracy (R2, %) 27.65 56.86 73.39 85.27 92.41 96.49 98.20 99.61 99.88 99.96
Testing Accuracy (R2, %) 25.91 54.23 71.67 80.65 84.36 87.04 87.93 87.83 87.75 88.19
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When compared to other oblique trees as reported in Table 1 and Table 2, our methods achieve superior
accuracy but also with a lower depth, such as our RADDT with depth of 7.29 and RADDT-Linear with
depth of 4.82. This reduction in depth significantly enhances interpretability with fewer rules. To
illustrate, a 2-depth tree yields 4 decision rules across 2 layers, whereas a 10-depth tree produces
1024 rules across 10 layers. Understanding hundreds of nested IF-THEN rules can be challenging.

Additionally, as in Table 4, our methods can achieve slightly better accuracy than CART with signifi-
cantly smaller trees: average depths of 2.82 (RADDT) and 1 (RADDT-Linear), compared to 10.24 for
CART, leading to 30-80 times fewer parameters. In this case, for example, 1-depth tree consists of
only 2 leaf nodes with 2 rules, which is highly interpretable because we can explain model predictions
as “IF the feature combination is less than a threshold, THEN the prediction is based on the left leaf
node; otherwise, right leaf node.” These results highlight oblique tree’s advantages in higher accuracy
with smaller depth, typically yielding less prediction rules and fewer model parameters.

Therefore, interpretability depends on multiple factors including tree depth, feature number, and the
accuracy-simplicity trade-off. There is no interpretability superiority of one approach over the other,
as it depends on specific application scenarios.

K.15 Overfitting issue and comparison for trees with linear predictions

As discussed in Section 5.6, overfitting issues have been observed with both our RADDT and
RADDT-Linear method. Upon further comparison of our RADDT-Linear with the existing open-
source library linear-tree, it is evident that the overfitting issues are more pronounced in trees
with linear predictions. The open-source software linear-tree exhibits significantly more severe
overfitting issues at depths such as 8 and 12, as detailed in Table 26.

For our RADDT-Linear, although the training accuracy improves by 6.52% from depth 4 to 8, testing
accuracy conversely drops by 9.67%, indicating a serious overfitting issue. To mitigate the overfitting
issues for RADDT-Linear, we preliminarily attempt to apply L1 regularization to trainable variables
A. This approach involves incorporating a regularization term into the loss function L below, serving
to penalize the complexity of the tree structure. The regularized loss is delineated in Equation (8),
where λ denotes the regularization strength and ∥ · ∥1 represents the L1 norm.

However, identifying the appropriate regularization strength λ proves to be challenging during our
experiments, necessitating extensive hyperparameter tuning. This tuning significantly increases
the computational cost and the implementation complexity of our method. Consequently, in our
experiment reported in Table 2, we did not tune this parameter. We just use a very small value
1e− 4 to implement a minimal regularization, aiming to enhance testing accuracy without greatly
compromising the optimization capabilities. With this slight regularization, the testing accuracy
of RADDT-Linear reported in Table 2 is improved by 0.58% compared to the results without
regularization, as shown in Table 27. Despite the slight improvement, the overfitting issues for
RADDT-Linear still exist, and our preliminary regularization is not sufficient to address this issue.
Significant improvements in testing accuracy are achievable through appropriate regularization
strategies; however, this requires further exploration and is limited in this paper.

Table 26: Comparison of training and testing accuracy for RADDT-Linear and linear-tree.

Depth Training Accuracy (R2, %) Testing Accuracy (R2, %)
linear-tree RADDT-Linear linear-tree RADDT-Linear

2 79.85 82.92 79.46 81.74
4 85.47 86.73 73.58 83.10
8 93.33 93.25 -376648.84 (overfitting) 73.43

12 98.31 98.00 -11288345.94 (overfitting) 38.98

Lreg =

n∑

i=1

∑

t∈TL

S (Ui,t)
(
yi − (kT

t xi + ht)
)2

+ λ
∑

t∈Tb

∥at∥1 (8)

Table 27: The comparison for RADDT-Linear with and without regularization across 17 datasets.

Item RADDT-Linear without regularization RADDT-Linear with regularization
Testing Accuracy (R2, %) 84.05 84.63
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction accurately reflect the paper’s
contributions, including the proposal of a novel decision tree formulation with demonstrated
accuracy and scalability benefits, as supported by our experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our work are explicitly discussed in Section 5.6, with
experimental discussions in Appendix K.15.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

30



Answer: [NA]
Justification: This work does not include theoretical proofs and results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide full details of our model architecture with a novel decision tree
reformulation in Section 3, training procedures in Algorithm 1, hyperparameters analysis
in Appendix F, and evaluation metrics. The datasets used are publicly available detailed in
Appendix H, and reproduction scripts are provided in a GitHub repository. Together, these
materials ensure that experimental results can be reproduced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets used are publicly available from UCI and OpenML, as detailed in
Appendix H. We provide open access to the source code of our method via a GitHub reposi-
tory, along with detailed instructions to run the code and reproduce the main experimental
results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All experimental settings are clearly specified in the paper. Dataset usage, data
splits and hyperparameter selections are described in in Appendix H and Appendix F. De-
tailed experimental procedures and algorithm configurations are also provided in Appendix I,
ensuring the results can be fully understood and interpreted.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In addition to reporting performance metrics in comparison tables, we conduct
paired T-tests to assess the statistical significance of our results. This analysis provides
further support for the validity of our comparisons, as given in Section 5.1.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide detailed information about the compute resources used for our
experiments, as detailed in Appendix I.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and confirm that our research
fully complies with its principles.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]
Justification: This work focuses on foundational advances in differentiable decision tree
learning and is not tied to any specific application with immediate societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work does not involve models or datasets with high risk of misuse, and
thus no specific safeguards are necessary.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The datasets used are clearly cited as originating from UCI and OpenML. All
baseline code sources are properly credited and detailed in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We release our reproduction code as a new asset under an open-source license
via a GitHub repository. The code is well documented, with clear instructions and usage
details provided.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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Justification: The work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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