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Abstract

Both transduction and rejection have emerged as key techniques to enable stronger
defenses against adversarial perturbations, but existing work has not investigated
the combination of transduction and rejection. Our theoretical analysis shows that
combining the two can potentially lead to better guarantees than using transduction
or rejection alone. Based on the analysis, we propose a defense algorithm that
learns a transductive classifier with the rejection option and also propose a strong
adaptive attack for evaluating our defense. The experimental results on MNIST
and CIFAR-10 show that it has strong robustness, outperforming existing baselines,
including those using only transduction or rejection.

1 Introduction

While machine learning has made significant progress, the brittleness of learning systems to adver-
sarial inputs is a significant challenge in real-world deployments. Robust learning systems become
crucial, especially for security-sensitive applications. However, even for medium magnitudes of
adversarial perturbations to the inputs, the robustness of existing defense methods is not satisfactory.

Recent studies have suggested new alternatives for improving robustness. Two promising new settings
are transduction and rejection. With rejection, the learning model is allowed to reject perturbed inputs.
Existing theoretical analysis (e.g., [Tra21]) shows that there exist classifiers with the rejection option
(a.k.a. selective classifiers) that can tolerate twice the magnitude of adversarial perturbations than
traditional classifiers without rejection. With transduction,2 the unlabeled test input data are available
to the training algorithm and the model is only required to correctly classify these given test inputs.
Existing theoretical analysis (e.g., [MHS21]) shows transduction can improve the sample complexity
to get generalization guarantees from potentially exponential size to polynomial size, though may
reduce the tolerance of the magnitude by half. See Appendix A for more discussion on related work.

This work investigates the potential benefit of combining both transduction and rejection. We
provide a novel theoretical analysis showing the combination can enjoy the best of both worlds: it
can guarantee generalization with a polynomial sample size without reducing the tolerance of the
perturbation magnitude. Based on the analysis, we propose an algorithm for transductively learning
selective classifiers and also design a strong adaptive attack for evaluating the method. We then
perform experiments on synthetic and real data comparing our proposed method to existing baselines.
The experimental results show that our method can achieve better robustness than existing baselines.
In particular, it outperforms the methods using only transduction or only rejection, empirically
confirming the benefit of combining the two techniques.

∗Equal contribution.
2Robust learning with transduction is also called dynamic defense, test-time adaptive defense, etc.
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Robust Risk Robust Risk (with Rejection)

Inductive RU(h;D) = E
(x,y)∼D

[
supz∈U(x) 1{h(z) , y}

]
RU,rej(h;D) = E

(x,y)∼D

[
supz∈U(x) 1{h(z) < {y,⊥} ∨ h(x) , y}

]
Transductive Rtrans

U
(h;D) = E

(x,y)∼Dn
(x̃,ỹ)∼Dm

[
sup z̃∈U(x̃)

1
m

∑m
i=1 1 {h (z̃i) , ỹi}

]
Rtrans
U,rej(h;D) = E

(x,y)∼Dn
(x̃,ỹ)∼Dm

sup z̃∈U(x̃)
1
m

∑m
i=1 1


(A(x, y, z̃) (z̃i) < {ỹi} ∧ z̃i = x̃i)

∨

(
A(x, y, z̃) (z̃i) < {ỹi,⊥}
∧z̃i , x̃i

) 


Table 1: Summary of the robust risk in all settings.

Realizable Agnostic Generalization BoundCondition Generalization Bound

Inductive [MHS19] OPTU = 0 O

(
2VC(H) log(n)+log(1/δ)

n

)
OPTU + O

(√
2VC(H)+log(1/δ)

n

)
Transduction [MHS21] OPTU2 = 0 O

(
VC(H) log(n)+log(1/δ)

n

)
2OPTU2 + O

(√
VC(H)+log(1/δ)

n

)
Rejection (Theorem 1)4 OPTU,rej = 0 O

(
2VC(T (H)) log(n)+log(1/δ)

n

)
OPTU,rej + O

(√
2VC(T (H))+log(1/δ)

n

)
Transduction + Rejection (Theorem 2) OPTU = 0 O

(
VC(H) log(n)+log(1/δ)

n

)
4OPTU + O

(√
VC(H)+log(1/δ)

n

)
Table 2: Summary of generalization bounds for the four settings. VC(T (H)) ≤ (VC(H r) +
VC(Hc)) log(VC(H r) + VC(Hc)), whereHc,H r, represents the hypothesis class of classifier and
rejector for the selective classifier respectively.

2 Summary of Results

Preliminary. Let X denote the input space, Y the label space,D the clean data distribution over
X×Y. Let U(x) denote the set of possible perturbations of an input x, e.g., the ℓp ball of radius
ϵ: U(x) = {z : ∥z − x∥p ≤ ϵ}. We restrict the class of U to those for which ∀x ∈ X x ∈ U(x).
In the traditional robust classification setting (also called the inductive setting), given a classifier
h : X 7→ Y, the adversary aims to find a perturbation for each clean data point (x, y) to incur the
maximum error, i.e., the error is supz∈U(x) 1{h(z) , y}. In the new setting with rejection, the selective
classifier can output rejection (denoted by ⊥), i.e., h : X 7→ Y∪{⊥}. An error occurs only when h
rejects a clean input or accepts and misclassifies, i.e., the error is supz∈U(x) 1{h(z) < {y,⊥} ∨ h(x) , y}.
In the new setting with transduction, the learning algorithm (the transductive learner) has access
to the unlabeled test input data and the goal is to predict labels for these given test inputs (need
not for other test inputs). Formally, there are n i.i.d. training sample (x, y) ∼ Dn and m i.i.d. test
samples (x̃, ỹ) ∼ Dm, and the adversary can perturb x̃ to z̃ ∈ U(x̃).3 The learner A is given (x, y) and
z̃ and it outputs m labels as predictions for z̃ (denoted as h( z̃) = (h(z̃i))m

i=1). That is, it is a function
A : (X×Y)n × Xm 7→ (Y∪{⊥})m. An error occurs when the prediction is not correct on some test
input, i.e., the error is sup z̃∈U(x̃)

1
m

∑m
i=1 1 {h (z̃i) , ỹi} where h( z̃) = A(x, y, z̃).

This work considers the new setting combining transduction and rejection. A transductive learner for
selective classifiers is a function A′ : (X×Y)n × Xm 7→ (Y∪{⊥})m. An error occurs when it rejects a
clean test input or accepts and misclassifies, i.e., the error is sup z̃∈U(x̃) errrej

x̃, z̃,ỹ(h) where errrej
x̃, z̃,ỹ(h) =

1
m

∑m
i=1 1 {(h (z̃i) < {ỹi} ∧ z̃i = x̃i) ∨ (h (z̃i) < {ỹi,⊥} ∧ z̃i , x̃i)} and h( z̃) = A′(x, y, z̃). The definitions

of robust risks in different settings are summarized in Table 1. And we define the optimal risk without
rejection as OPTU := infh∈H RU(h;D) and with rejection as OPTU,rej := infh∈H RU,rej(h;D).

Main Results. We provide generalization bounds for the setting with rejection alone and that with
both transduction and rejection. The bounds, together with known results for the other two settings,
are summarized in Table 2 (formal statements/proofs in Section 3 and the appendix). We can see that
in both realizable (i.e., there exist 0 robust risk models) and agnostic cases, combining transduction
and rejection leads to the best bounds.

Section 4 presents our novel defense method utilizing transduction and rejection. Section 5 presents
experimental results showing its strong empirical performance on CIFAR-10 and MNIST, e.g., on

3Here x = (xi)n
i=1 and similarly with y, x̃, ỹ, etc. We overload the notation: U(x̃) := {u ∈ Xm : ui ∈ U(x̃i)}.

4T in the bound refers to a transformation on the hypothesis class given by Equation 10 in the appendix.
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CIFAR-10, we achieve 72.5% transductive robust accuracy with rejection, a significant improvement
on the current state-of-the-art result of robust accuracy 66.56% [CAS+20] for the perturbation
considered (l∞ with budget ϵ = 8/255).

3 Theoretical Analysis

Here we present the theorems for the realizable case in two settings: rejection only, and combining
transduction with rejection. The proofs and the results for the agnostic case are in the Appendix E.

Rejection Only. We view the selective classifier h ∈ H as a composition of a classifier hc ∈ Hc

and a rejector hr ∈ H r, where h(x) =
{

hc(x) hr(x) ≠⊥
⊥ hr(x) =⊥

.

Theorem 1. For any n ∈ N, δ ∈ (0, 1/2), class H = Hc ×H r, perturbation set U, and any
ϵ, δ ∈ (0, 1/2) and distribution D over X×Y satisfying OPTU,rej = 0, there exists an algorithm

A : (X×Y)n 7→ H satisfying for ϵ = 2VC(T (H)) log(n)+log(1/δ)
n ,

Pr
(x,y)∼Dn

[
RU,rej(A(x, y);D) ≤ ϵ

]
≥ 1 − δ.

The key strategy is to construct a compression scheme on the transformed hypothesis class T (H).
We obtain a similar guarantee to the inductive setting without rejection [MHS19] (see Table 2), but
with dependence on VC(T (H)) than VC(H). So while [Tra21] shows rejection may double the
perturbation magnitude tolerated, the sample complexity can be still exponentially large.

Transduction + Rejection. Following [MHS21], define the set of robust hypotheses ∆U
H

(z, y, z̃) as:

∆U
H

(z, y, z̃) =
{
RU−1 (h; z, y) = 0 ∧ RU−1 (h; z̃) = 0

}
(1)

where H is a binary hypothesis class and where RU(h; z, y) = supx̃∈U(z)
1
n
∑n

i=1 1{h(x̃i) , yi} and
RU(h; z) = RU(h; z, h(z)). Following Tramèr [Tra21], we can define a transformation FU that maps
a classifier without rejection, c, to the selective classifier c′ = FU(c):

FU(c)(x) =
{

c(x) if ∀x′ ∈ U−1(x) c(x′) = c(x)
⊥ otherwise

. (2)

We will use FU1/2 for the following result. For example, for ℓp-norm perturbation with an adversarial
budget ϵ,U is an ℓp ball of radius ϵ, andU1/2 is one of radius ϵ/2.

Theorem 2. For any n ∈ N, δ > 0, classH , perturbation setU such thatU = U−1, and distribution
D over X×Y satisfying OPTU = 0, for ϵ = VC(H) log(2n)+log(1/δ)

n :

Pr
(x,y)∼Dn

(x̃,ỹ)∼Dn

[
∀ z ∈ U(x),∀ z̃ ∈ U(x̃),∀ĥ ∈ FU1/2 (∆U

H
(z, y, z̃)) : errrej

x̃, z̃,ỹ(ĥ) ≤ ϵ
]
≥ 1 − δ.

ForU satisfying our conditions (including lp balls), we obtain a stronger guarantee than is possible
without rejection [MHS21]. Compared to the guarantee for transduction without rejection [MHS21]
(see Table 2), our result requires weaker assumptions on the hypothesis classH : we need OPTU = 0
rather than OPTU2 = 0, tolerating twice the adversarial budget. Compared to the result for rejection
only, this bound has a linear sample complexity rather than exponential. Therefore, combining
transduction and rejection has the advantage of both techniques.

4 Defense Methods with Transduction and Rejection

Theorem 2 suggests we should first obtain a classifier h ∈ ∆U
H

(z, y, z̃), and then apply transformation
FU1/2 in Equation 2 to get a selective classifier ĥ = FU1/2 (h) to predict on the test inputs. We describe
the resulting defense, which we refer to as TLDR (Transductive Learning via Defense with Rejection).

To get h, we perform adversarial training on both the training set and the test set, using a robust
cross-entropy objective. As in TADV [CGW+21] we train with private randomness. As labels are not
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present on the test set, we drop the base loss term on the test set and use robust loss only. Specifically,
given the labeled training data T and the test inputs E, we optimize the following objective:

min
h

1
n

∑
(x,y)∈T

[
LCE(hso f tmax(x), y) + max

x′∈U(x)
LCE

(
hso f tmax(x′), y

)]
+
λ

m

∑
x∈E

[
max

x′∈U(x)
LCE

(
hso f tmax(x′), h(x)

)]
(3)

where LCE is the cross-entropy loss and h = g ◦ hso f tmax. hso f tmax returns the softmax activation for
the model h, and g is an argmax function.

Having trained h, we now discuss how to implement FU1/2 in our experiments. We only need to
determine for each test input x, if FU1/2 (h) needs to reject x. Hence, we can use a standard inductive
attack, e.g., PGD, to check if there exists x′ such that x ∈U1/2(x′) and h(x′) , h(x). Specifically, we
find x′ to maximize LCE(hso f tmax(x′), h(x)) subject to x ∈U1/2(x′), and reject x if h(x′) , h(x).

5 Experiments

Evaluation Methods. For inductive classifiers, we use the classic PGD on cross-entropy. For
classifiers with rejection, we design a loss LREJ that takes into account the rejection option. For
inductive classifiers with rejection, we use PGD on LREJ. For transductive classifiers, we use GMSA
on cross-entropy, which has been shown to be a strong adaptive attack on transduction [CGW+21].
Finally, for transductive classifiers with rejection, we use GMSA on LREJ.

We perform experiments on MNIST and CIFAR-10. All models are adversarially trained via a robust
cross-entropy objective, discussed above, with the inductive models dropping the second transductive
regularization term in Equation 3. On MNIST, we use a LeNet architecture, with a full adversarial
budget of ϵ = 0.3 in l∞; on CIFAR-10, we use a ResNet-20 architecture, with a budget of ϵ = 8/255
in l∞. We use ADAM with a learning rate of 0.001 with 40 epochs. The PGD attacks use 200 steps for
MNIST and 100 for CIFAR-10. We use 10 iterations of GMSA; we report the stronger of GMSAMIN
and GMSAAVG. See Appendix C for the experimental details and Appendix B for ablation studies.

Baselines. We compare our method to standard adversarial training (AT) [GSS15] [MMS+19],
with and without rejection, as well as existing transductive defenses: runtime masking and cleans-
ing (RMC) [WYW20a], domain adversarial neural network (DANN) [AGL+15], and transductive
adversarial training (TADV) [CGW+21].

Defense Attacker MNIST CIFAR-10
pREJ Robust accuracy pREJ Robust accuracy

AT PGD (LCE) – 0.920 – 0.587
AT (with rejection) PGD (LREJ) 0.736 0.970 0.384 0.634

RMC GMSA (LCE) – 0.588 – 0.396
DANN GMSA (LCE) – 0.062 – 0.055
TADV GMSA (LCE) – 0.943 – 0.541

TLDR (ours) (no rejection) GMSA (LCE) – 0.900 – 0.516
TLDR (ours) (with rejection) GMSA (LREJ) 0.588 0.967 0.208 0.739

Table 3: Results on MNIST and CIFAR-10. Robust accuracy is 1 - robust error; see section 2. pREJ
is the percentage of inputs rejected. The baseline results are from [CGW+21]. The strongest attack
against each defense is shown; for DANN, the strongest attack against the strongest base model is
shown.

Results. Table 4 shows that transduction and rejection both increase performance independently,
while combining both techniques leads to the best results. In particular, our defense outperforms
existing transductive defenses such as RMC and DANN. It also outperforms the strongest existing
baseline of 66.56% robust accuracy on CIFAR-10 [CAS+20] (note that 66.56% is for the classic
inductive setting without rejection and transduction). These results provide positive support for the
benefit of combining transduction and rejection to improve adversarial robustness.
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Supplementary Material

A Related Work

In recent years, there have been extensive studies on adversarial robustness in the classical in-
ductive learning setting, where the model is fixed during the evaluation phase [CW17, GSS14,
MDFF16]. Most popular and effective methods are adversarial training, such as PGD [MMS+17],
TRADES [ZYJ+19]. These methods are effective against adversaries on small dataset like MNIST,
but still ineffective on complex dataset like CIFAR-10 or ImageNet [CAS+20]. Researchers have
proposed defense mechanisms beyond adversarial training but most defenses broke down under
strong adaptive attacks [CH20, TCBM20].

To break this robust bottleneck in the classical inductive setting, people have proposed alternative
settings with relaxed yet realistic assumptions, particularly by allowing rejection and transduction. In
robust learning with rejection option, we allow rejection of adversarial examples instead of correctly
classifying all of them [Tra21]. People have considered different variants of adversarial training with
rejection option [LF19, PZH+22, CRC+21, KCF20, SDM+20], also different generalizations such as
[SHS20](unseen attacks), [SLK20](certified robustness).

The other approach is to define alternative notion of adversarial robustness via the transductive
learning, i.e. "dynamically" ensuring robustness on the particular given test samples than on all
test samples. Previously, researchers consider the similar setting, but under the view of "dynamic
defense" [Goo19, WJS+21, WYW20b]. [GKKM20] is the first paper to formalize transductive
learning for robust learning. It proposes Rejectron, a selective transductive classifier, to handle
general adversaries on test data, and presents novel theoretical guarantees. In comparison, our paper
focuses on small-perturbation adversary as a more realistic robust learning setup. [CGW+21] formally
defines the notion of transductive robustness as a maximin problem and presents a principled adaptive
attack, GMSA. [MHS21] discusses robust transductive learning against small perturbation from a
learning theory perspective and obtains corresponding sample complexity.

B Ablation Studies

As an effective adaptive attack for Tramèr-transform based detectors does not exist to our knowledge,
we present an ablation of the adversarial loss.

Due to the computational cost, ablations are performed on synthetic data unless specified. We
generate the data with 100 Gaussians (one per class) equally spaced in l∞ with a separation of 3 units
between means. The adversarial budget is 2 units, and we ensure that the data is sparse by generating
10 samples per class. The models are 10 layer feedforward networks with skip connections.

In each table of results, the row used in our later experiments is shown in bold.

B.1 LREJ

Loss Rejection Rate Robust Rejection Accuracy
Cross-Entropy 0.852 0.153
LREJ 0.526 0.134

While using cross-entropy directly is ideal for finding label-flipping perturbations, this approach does
not take the rejection layer into account. The results shown above bear this out – cross-entropy finds
more examples in the rejected region.

A successful attack needs to find samples which are distant from the decision boundary to avoid
rejection: hence we directly penalize the nearness of the perturbed point to the decision boundary,
motivating the decision-boundary loss as the the attack loss L′ used by the inner PGD step.
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B.2 Attack Algorithm

Attack Defense Rejection Rate Robust Rejection Accuracy
GMSA Transduction + Rejection 0.531 0.177
PGD Transduction + Rejection 0.792 0.349
PGD Rejection 0.680 0.145

All attacks are rejection-aware and optimize LREJ. Here, we can see that GMSA significantly
outperforms even a rejection-aware transfer attack. While PGD is very strong against a fixed
inductive model, it performs poorly compared to GMSA against a transductive defender.

B.3 Warm Start

Warm start (epochs) Rejection Rate Robust Rejection Accuracy
0 0.813 0.153
500 0.531 0.177
1000 0.830 0.171

The synthetic models are trained for 1000 epochs total; we see the best performance when the model
has transductive regularization but is allowed to learn an initial baseline model before transductive
regularization is used in training. Doing so reduces the risk of the regularization term harming
performance.

B.4 Attack Radius

The theory suggests that incorporating rejection can allow a transductive learner to tolerate perturba-
tions twice as large; we investigate how transduction and rejection affects the robustness as ϵ grows
(models are adversarially trained with the corresponding ϵ and the detectors use a rejection radius
of ϵ/2). The results are shown for the natural choice of adversary, as in the experiment section (e.g.
GMSA with LREJ for the transduction+rejection). For detectors, the rejection rate scaling is shown.

We see that the combination of rejection and transduction does indeed maintain high accuracy for
larger ϵ; at ϵ = 0.6, it has 96.2% of the robust accuracy that transduction alone had for ϵ = 0.3. This
aligns with the theory, given the increased constant factors of OPTU2 in Corollary 1 compared to the
results for classifiers in [MHS21].

Note also the behavior of the inductive classifier: accuracy improves past ϵ = 0.6. To see why,
note that a model adversarially trained for ϵ ≥ 1 will return near-uniform predictions for all classes
(resulting in a robust accuracy of approximately 10%, as seen), making finding adversarial examples
slightly more difficult than for smaller ϵ where this does not occur. The decline in rejection rate for
very large ϵ is a similar phenomenon.

Figure 1: Robustness Scaling with ϵ: MNIST
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Figure 2: Rejection Rate Scaling with ϵ: MNIST

B.5 Rejection Radius

The natural approach given the theory is to reject samples where the model f is not robust with radius
ϵ/2; however, this may not be the strongest approach in practice. Below, we see that ϵ/5 performs
best on MNIST. If we consider a natural extension of Corollary 1 to variable rejection radius, the
best choice may depend on the growth of OPTU2

ϵ
with ϵ, and hence dataset-specific tuning may be

required for the best possible results. As expected, rejection rates rise steadily with the rejection
radius, particularly adversarial rejection rates. In all cases, far more perturbed samples are rejected
than clean samples.

Figure 3: Effects of Rejection Radius on Robustness and Rejection Rates: MNIST

B.6 GMSA Method

We compare the results of GMSAAVG, which optimizes the average loss of past iterations, and
GMSAMIN, which optimizes the worst-case loss. See [CGW+21]. We can see that while the two
perform about the same on the transductive detectors (GMSAMIN performs slightly better), GMSAAVG
is much stronger for the classifiers.

Defense Attacker MNIST CIFAR-10
pREJ Robust accuracy pREJ Robust accuracy

TLDR (no rejection) GMSAAVG (LCE) – 0.900 – 0.516
TLDR (with rejection) GMSAAVG (LREJ) 0.796 0.968 0.195 0.744
TLDR (no rejection) GMSAMIN (LCE) – 0.914 – 0.601
TLDR (with rejection) GMSAMIN (LREJ) 0.588 0.967 0.208 0.739

Table 4: Results for GMSAAVG and GMSAMIN targeting TLDR
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C Adaptive Attacks for Defenses with Transduction and Rejection

As a strong attacker for transductively learned detectors does not exist to our knowledge, we present
one here. We base the attack on GMSA [CGW+21]; our contribution is a novel loss function which,
when maximized by GMSA, allows the attacker to avoid select perturbed points which are less
likely to be rejected. Note furthermore that this attack, without GMSA, is effective against selective
classifiers based on the transformation F (and via Tramèr’s equivalency, selective classifiers in
general). Our attack on a fixed model is described in 1.

Algorithm 1 Inductive Rejection-Aware Attack
Require: A model h, and a clean labelled test point (x, y), an adversarial budget of ϵ, and a radius used for

rejection ϵdefense.
1: Search for a perturbation x̃ of x for which h predicts ŷ , y robustly.

x̃ = arg max
∥ x̃−x∥≤ϵ

[
LCE(hso f tmax(x̃), y) + λ

∥∥∥∥∥x̃− arg max
∥x′−x̃ ∥≤ϵdefense

LDB,h(x′)
∣∣∣∣∣ ]

where LCE is the cross-entropy loss, hso f tmax returns the softmax activations of h and where
LDB,h(x′) = rank2hso f tmax(x′) −max hso f tmax(x′)

2: return x̃

Attacking the detector F(h) forces an adversary to solve a more difficult problem: that of finding
adversarial examples which fool h but which are not rejected (i.e. where h is robustly fooled).

IfU is defined by a maximum perturbation of ϵ in some metric, then this can be done by solving

arg max
x̃∈U(x)

LCE(hso f tmax(x̃), y)

such that x̃ is at least ϵ from the decison boundary.

While the constraint
min

h(x′),h(x̃)
∥ x̃−x′∥ ≥ ϵ

is most natural, it is equivalent to the condition that the point within ϵ of x̃ closest to the decision
boundary is ϵ from x̃.

Now, we let LDB,h(x′) be the surrogate loss function on the closeness to the decision boundary. The
loss increases for x′ nears the decision boundary of h, and the condition is equivalent to∥∥∥∥∥x̃− arg max

∥x′−x̃ ∥≤ϵ
LDB,h(x′)

∥∥∥∥∥ = ϵ
We discuss our choice of LDB,h in subsection C.1. b

We can then solve the optimization by solving the Lagrangian

arg max
x̃∈U(x)

LCE(hsoftmax(x̃), y) + λ
∥∥∥∥∥x̃− arg max

∥x′−x̃ ∥≤ϵ
LDB,h(x′)

∥∥∥∥∥
Thus, we define the rejection loss to be

LREJ(x̃, y) := LCE(hsoftmax(x̃), y) + λ
∥∥∥∥∥x̃− arg max

∥x′−x̃ ∥≤ϵ
LDB,h(x′)

∥∥∥∥∥ . (4)

By maximizing LREJ via PGD can find examples x̃ which evade our defense.

C.1 LDB,h

It remains to find some LDB,h which is maximized at the decision boundary.

As all models we considered use a softmax layer for their final predictions, the decision boundary is
defined by those points for which the top-two logits are equal. This suggest a natural loss function
which satisfies the requirements:

LDB,h(x′) = rank2hso f tmax(x′) −max hso f tmax(x′)

where hso f tmax returns the softmax activations of the model h.
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C.2 Handling transductive rejection loss

To handle the clean branch of the robust risk, we apply a simple post-processing step after solving for
x̃: if the model does not robustly fail at x̃, we replace x̃ with x, allowing the model to be penalized
for incorrect predictions or rejections at the clean points. To improve stability for the transductive
attacks, we furthermore restrict the set of x̃ replaced by clean points to those where F(h)(x) , y (i.e.
those where the attack x̃ = x would succeed).

C.3 Transductive Attack Details

We present two rejection-aware transductive attacks: a stronger but more computationally intensive
rejection-aware GMSA (Algorithm 2) and a weaker but faster rejection-aware transfer attack which
takes the transductive robust rejection risk into account (Algorithm 3).

Algorithm 2 Rejection-Aware GMSA
Require: A clean training set T , a clean test set E, a transductive learning algorithm for classifiers A, an

adversarial budget of ϵ, mode either MIN or AVG, a radius used for rejection ϵdefense, and a maximum
number of iterations N ≥ 1.

1: Search for a perturbation of the test set which fools the model space induced by (T,U(E)).
2: E′ = E
3: Ê = E
4: errmax = − inf
5: for i=0,. . . ,N-1 do
6: Train a transductive model on the perturbed data.
7: h(i) = A(T, πx(E′))
8:

err =
1
|E′|

|E′ |∑
i=1

1
{(

F(h(i)) (x̃i) < {ỹi} ∧ x̃i = xi

)
∨

(
F(h(i)) (x̃i) < {ỹi,⊥} ∧ x̃i , xi

)}
{The x̃i and the xi are the ith datapoints of E′ and E, repectively; yi is the true label.}

9: if errmax < err then
10: Ê = E′
11: end if
12: for j = 1, . . . , |E| do
13: if mode = MIN then
14:

x̃ j = arg max
∥ x̃−x j∥≤ϵ

min
1≤k≤i
LREJh(k) (x̃, y j)

15: else
16:

x̃ j = arg max
∥ x̃−x j∥≤ϵ

1
i

i∑
k=1

LREJh(k) (x̃, y j)

17: end if
{Select whether to perturb by comparing success rates on the clean and perturbed samples.}

18:
errclean =

1
i

∑
0≤k≤i

1
[
F

(
h(k)

)
(x j) , y j

]
19:

errperturbed =
1
i

∑
0≤k≤i

1
[
F

(
h(k)

)
(x̃ j) < {y j,⊥}

]
{Do not perturb if the perturbation reduces robust rejection accuracy less on average than leaving the
points unchanged.}

20: if errperturbed < errclean then
21: x̃ j = x j
22: end if
23: E′j = x̃ j, yi

24: end for
25: end for
26: return Ê
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Algorithm 3 Transductive Rejection-Aware Transfer
Require: A model h, a clean labelled test point (x, y), an adversarial budget of ϵ, and a radius used for rejection
ϵdefense.
Search for a perturbation x̃ of x for which h predicts ŷ , y robustly.

1:

x̃ = arg max
∥ x̃−x∥≤ϵ

[
LCE(hsoftmax(x̃), y) + λ

∥∥∥∥∥x̃− arg max
∥x′−x̃ ∥≤ϵdefense

LDB,h(x′)
∣∣∣∣∣ ]

where LCE is the cross-entropy loss, hsoftmax returns the softmax activations of h and where
LDB,h(x) = rank2hsoftmax(x) −max hsoftmax(x).
If the attack did not succeed vs h (h does not robustly predict ŷ , y), check whether to leave x unperturbed.

2:
x′ = arg max

∥x′−x̃ ∥≤ϵdefense
LCE( f (x′), h(x̃))

3: if h(x′) , h(x̃) ∨ h(x̃) = y then
4: Leave x unperturbed if F(h) rejects it, or if h(x) , y.
5:

x′′ = arg max
∥x′′−x∥≤ϵdefense

LCE( f (x′′), h(x))

6: if h(x) , y ∨ h(x′′) , h(x) then
7: x̃ = x
8: end if
9: end if

10: return x̃

D Appendix: Implementation Details

D.1 Defense

In our implementation, we begin to incorporate the transductive term in our objective (see Equation 3)
after initially training the model with the inductive loss term only; this allows learning a better
baseline before we begin to enforce robustness about the test points. In our experiments, we use the
transductive loss in the final half of the training epochs, and put 85% of the weight on the inductive
term afterwards.

D.2 Adaptive Attack

Solving for the perturbation x̃ by iteratively optimizing LREJ poses several difficulties.

First, the rejection-avoidance term
∥∥∥x̃− arg max||x′−x̃ ||≤ϵ LDB,h(x′)

∥∥∥ is not differentiable with respect to
x̃. While it is possible to approximate the derivative with the derivative of a proxy (e.g. differentiating
though some fixed number of PGD steps, necessitating second-order optimization), this is extremely
expensive and does not improve results in our experiments (see below).

Intuitively, we might see that this would be the case: if the decision boundary is smooth, we might
expect the maximizers inU(x + ∆) andU(x) to be the same for small ∆ unless x′ is near the border
ofU(x) given thatU(x + ∆) ≈ U(x). In this case, approximating x′ as constant with respect to x is
reasonable.

In addition, note that if h(x) = y, the adversary must find a x̃ where h(x̃) , y which is not rejected: if
maximizing LREJ with PGD, the rejection-avoidance term penalizes moving x̃ towards the decision
boundary. As this is necessary to find a valid attack (when h(x̃) = y at initialization), we adjust λ
adaptively during optimization by setting it to zero or negating it when h(x̃) = y.

E Proof Details

Before introducing the proof for the generalization results, we first need to make some additional
definitions. We define the empirical robust risk as

R̂U(h; S ) =
∑

(x,y)∈S

 sup
z∈U(x)

1{h(z) , y}

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And we can define the empirical robust risk under rejection accordingly:

R̂U,rej(h; S ) =
∑

(x,y)∈S

 sup
z∈U(x)

1{h(x) , y ∨ h(z) < {y,⊥}}


And we can define the corresponding robust empirical risk minimization procedure (under rejection)
as follows:

RERMH (S ) := argmin
h∈H

R̂U(h; S )

RERMH ,rej(S ) := argmin
h∈H

R̂U,rej(h; S )

E.1 Inductive Realizable Case

Definition 1 (Realizable Robust PAC Learnability under Rejection). For Y = {0, 1}, ∀ϵ, δ ∈
(0, 1),H = Hc ×H r, the sample complexity of realizable robust (ϵ, δ) - PAC learning ofH with re-
spect adversaryU under rejection, denoted asMRE(ϵ, δ;H ,U), is defined as the smallest m ∈ N∪{0}
for which there exists a learning rule A : (X×Y)m 7−→ (Y∪{⊥})X s.t. for every data distribu-
tion D over (X×Y)m where there exists a predictor with rejection option h∗ ∈ H with 0 risk,
RU,rej(h∗;D) = 0 with probability at least 1 − δ over S ∼ Dm,

RU,rej(A(S );D) ≤ ϵ

If no such m exists,MRE(ϵ, δ;H ,U) = ∞. We say thatH is robustly PAC learnable under rejection
in the realizable setting with respect to adversaryU if ∀ϵ, δ ∈ (0, 1),MRE(ϵ, δ;H ,U) is finite.

Theorem 3 (Sample Complexity for Realizable Robust PAC Learning under Rejection). In the
realizable setting, for anyH = Hc ×H r andU, and any ϵ, δ ∈ (0, 1/2),

MRE(ϵ, δ;H ,U) = 2O((dr+dc) log(dr+dc)) 1
ε

log
(

1
ε

)
+ O

(
1
ε

log
(

1
δ

))
(5)

where dr = VC(H r), dc = VC(Hc).

The idea of the proof is to adapt the classical sample compression argument [LW86] with improve-
ments based on [MHS19, HKS19, MY16]. The generalization result in the inductive case (Theorem 1)
directly comes from Equation 30.

Proof. First, we define the concept of sample compression scheme and sample compression algorithm.

Definition 2 (Sample Compression Scheme). Given ∀m ∈ N samples, S ∼ Dm, a sample compression
scheme of size k is defined by the following pair of functions:

1. Compression function κ : (X×Y)m 7→ (X×Y)≤k.

2. Reconstruction function: ρ : (X×Y)≤k 7→ H .

An algorithmA is a sample compression algorithm if ∃κ, ρ s.t. A(S ) = (κ ◦ ρ)(S ).

Fix ϵ, δ ∈ (0, 1), m > 2(dr + dc) log(dr + dc). Let the compression parameter, n =
O

(
(dr + dc) log (dr + dc)

)
. Let D be any distribution, then by realizability of the learner,

infh∈H RU,rej(h;D) = 0. Thus, ∀S sampled fromD, we have R̂U,rej(RERMH ,rej(S ); S ) = 0.

Compression First, we define a compression function κ as through the following inflation and
discretization procedure. Given the training data S := {(xi, yi)}i∈[m], we define the following index
mapping:

I(x) = min{i ∈ [m] : x ∈ U(xi)}, ∀x ∈
⋃
i∈[m]

U(xi). (6)
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In another word, this index function outputs the first indexed training sample to include x in its
neighborhood.

Then, we consider the set of RERM mapping learned by a size n subset of the training data:
Ĥ = {RERMH ,rej(L) : L ⊆ S , |L| = n}. (7)

Note that

|Ĥ | ≤ |{L : L ⊆ S , |L| = n}| =
(

m
n

)
≤

(em
n

)n
. (8)

Then, we inflate the data in the following way:

SU =
⋃
i∈[m]

{(
xI(x), x, yI(x)

)
: x ∈ U (xi)

}
. (9)

Note that xI(x) can be different from xi.

Let’s define the following transformation T :
T (h)(x, x′, y) := 1{h(x) , y ∨ h(x′) < {y,⊥}}, h ∈ H . (10)

And we can obtain the transformed hypothesis class T (H) := {T (h)|h ∈ H}.

Now, we proceed to define the dual space G of T (H) as the following set of functions.
G := {g(x,x′,y)|g(x,x′,y)(t) = t(x, x′, y), t ∈ T (H)}. (11)

We denote the VC dimension of the dual space as VC∗(T (H)) := VC(G).

By Lemma section E.1,
VC(T (H)) = O

(
(dr + dc) log (dr + dc)

)
. (12)

By the classic result in [Ass83], the VC dimension of the dual space satisfies the following inequality:
VC∗(T (H)) < 2VC(T (H))+1. (13)

Now, we can construct the compressed dataset ŜU as the following. For each (x, x′, y) ∈ SU ,
{g(x,x′,y)(t)}t∈T (Ĥ) gives a labeling. When ranging over (x, x′, y) ∈ SU , the labeling may not be unique.
So for each unique labeling, we choose a representative (x, x′, y) ∈ SU , and let ŜU be the set of the
representatives. That is:

ŜU =
{
(x, x′, y) ∈ SU

∣∣∣∣∣ {g(x,x′,y)(t)}t∈T (Ĥ) provides a unique labeling
}
. (14)

Intuitively, ŜU split the infinite size dataset SU into finite size according to the labeling of T (Û) on
the dual space. Thus, ŜU is not necessarily unique but always exists. And |ŜU | equals the number of
possible labeling for T (Ĥ).

Let d∗ := VC(G) = VC∗(T (H)) denote the VC-dimension of G, the dual hypothesis class of
T (Ĥ) [Ass83]. By applying Sauer’s Lemma, we obtain that for |T (Ĥ)| > d∗,

|ŜU | ≤
e|T (Ĥ)|

d∗

d∗

. (15)

Let n = Θ (VC (T (H))). For m ≥ n, we have

|ŜU | ≤
(
e|T (Ĥ)|

)d∗
(16)

≤
(
e|Ĥ |

)d∗
(17)

≤

(
e
(em

n

)n)d∗
(18)

≤

(
e2m

n

)nd∗

(19)

=

(
e2m

VC(T (H))

)Θ(VC(T (H))·VC(T (H∗)))

. (20)

Now we have obtain the compression map: κ(S ) = ŜU .
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Reconstruction Now, we want to reconstruct a hypothesis from ŜU . First, suppose we have a
data distribution over ŜU , denoted as P. This distribution P over samples will be later used in the
α−boosting procedure.

Then, we sample the set of n i.i.d. samples from P and obtain S ′ ∈ ŜU . By classic PAC learning
guarantee [BEHW89], for n = Θ(VC(T (H))) = Θ(dr + dc) log(dr + dc), we have with non-zero
probability ∀t ∈ T (H) with

∑
(x,x′,y)∈S ′ t(x, x′, y) = 0 implies E(x,x′,y)∼Pt(x, x′, y) < 1/9. Let L =

{(x, y) : (x, x′, y) ∈ S ′} ⊆ S , and tP = T (RERMH ,rej(L)). Since R̂U,rej(RERMH ,rej(L); L) = 0,
∀(x, x′, y) ∈ S ′, tP(x, x′, y) = 0. Thus, ∀P over ŜU , there exists a weak learner tP ∈ T (Ĥ), s.t.
E(x,x′,y)∼P tP(x, x′, y) < 1/9.

Now, we use tP as a weak hypothesis in a boosting algorithm, specifically α−boost algorithm
from [SF12] with ŜU as the dataset and Pk generated at each round of the algorithm. Then with
appropriate choice of α, running α−boosting for K = O(log(|ŜU |)) rounds gives a sequence of
hypothesis h1, . . . , hK ∈ Ĥ and the corresponding ti = T (hi) such that ∀(x, x′, y) ∈ ŜU ,

1
K

K∑
k=1

1{hk(x) , y ∨ hk(x′) < {y,⊥}} (21)

=
1
K

K∑
k=1

tk(x, x′, y) (22)

<
2
9
<

1
3
. (23)

Since ŜU includes all the unique labellings, 1
K

∑K
k=1 tk(x, x′, y) < 1

3 , ∀(x, x′, y) ∈ ŜU implies

1
K

K∑
k=1

tk(x, x′, y) <
1
3
, ∀(x, x′, y) ∈ SU . (24)

Let h̄ := Majority(h1, . . . , hK), i.e., h̄ outputs the prediction in Y∪{⊥} that receives the most votes
from {h1, . . . , hK}. Then ∀(x, x′, y) ∈ ŜU ,

1{h̄(x) , y ∨ h̄(x′) < {y,⊥}} = 0. (25)

This is because: (1) on x, less than 1/3 of hi’s do not output y, so h̄(x) = y; (2) on x′, less than 1/3 of
hi’s do not output y or ⊥, so the majority vote must be in y or ⊥, i.e., h̄(x) ∈ {y,⊥}.

In summary, given the same m training samples, we can simply find a h̄ with 0 robust error on S :

R̂U,rej(h̄;D) =
m∑

i=1

 sup
z∈U(x)

1{h̄(x) , y ∨ h̄(z) < {y,⊥}}
 = 0. (26)

Now we have the compression set with size:

nK = O(VC(T (H)) log(|ŜU |)) = O(VC(T (H))2 VC∗(T (H)) log(m/VC(T (H))))

Then, we apply Lemma 11 of [MHS19] (Replacing RU with RU,rej still holds), we obtain for
sufficiently large m, with probability at least 1 − δ,

RU,rej(h̄;D) ≤ O
(
VC(T (H))2 VC∗(T (H))

1
m

log(m/VC(T (H))) log(m) +
1
m

log(1/δ)
)
. (27)

We then can extend the sparsification procedure from [MY16, MHS19] to the rejection scenario.
Since t1, . . . , tK ∈ T (Ĥ), the classic uniform convergence results [SSBD14] implies that we can
sample N = O(VC∗(T (H))) i.i.d. indices i1, . . . , iN ∼ Uniform([K]) and obtain:

sup
(x,x′,y)∈SU

∣∣∣∣∣∣∣∣ 1
N

N∑
j=1

ti j (x, x′, y) −
1
K

T∑
i=1

ti(x, x′, y)

∣∣∣∣∣∣∣∣ < 1
18

(28)
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And thus, we can combine Equation 21 with Equation 28 and obtain:

∀(x, x′, y) ∈ SU ,
1
N

N∑
j=1

ti j (x, x′, y) ≤ −
1

18
+

1
K

K∑
i=1

tk(x, x′, y) < −
1
18
+

4
9
=

1
2

we can further obtain an improved hypothesis t̄′ := Majority(ti1 , . . . tiN ) with

t̄′(x, x′, y) = 0,∀(x, x′, y) ∈ SU

Thus, the compression set has a reduced size:

nN = O(VC(T (H)) · VC∗(T (H)))

Now, we apply Lemma 11 of [MHS19] and can obtain the following improved bound. Applying
similar strategy from Equation 25, we can obtain

h̄
′

:= Majority(hi1 , . . . hiN ) = ρ(ŜU) = A(S ) (29)

which is our full reconstruction map.

Then, for large sample size m ≥ c VC(T (H)) VC∗(T (H)) (c is a sufficiently large constant), with
probability at least 1 − δ,

RU,rej(h̄′;D) ≤ O
(
VC(T (H)) VC∗(H)

1
m

log(m) +
1
m

log(1/δ)
)

(30)

Plugging in Lemma section E.1 and solving for m gives

MRE(ϵ, δ;H ,U) = 2O(VC(T (H))) 1
ε

log
(

1
ε

)
+ O

(
1
ε

log
(

1
δ

))
(31)

= 2O((dr+dc) log(dr+dc)) 1
ε

log
(

1
ε

)
+ O

(
1
ε

log
(

1
δ

))
(32)

□

Lemma [VC dimension of robust loss with rejection] Let VC(Hc) = dc, and VC(H r) = dr. Then,
VC(T (H)) = O

(
(dr + dc) log (dr + dc)

)
.

Proof. Suppose d > dr + dc.

By definition of VC dimension, the max number of labeling of d points is 2d on h ∈ T (H). And since
the label of h is a deterministic function of hc and hr, by Sauer’s Lemma, the number of labeling of h
is at most O(ddr ) × O(ddc ) = O(ddr+dc ).

Thus, 2d = O(ddr+dc ). And d = O((dr + dc) log(dr + dc)).

If d < dr + dc, d = O(dr + dc) log(dr + dc) by definition.

□

E.2 Inductive Agnostic Case

Now, we define notion of PAC learnability in the agnostic case under rejection setting as the follows:

Definition 3 (Robust PAC Learnability under Rejection). ForY = {0, 1}, ∀ϵ, δ ∈ (0, 1),H = Hc ×H r,
the sample complexity of robust (ϵ, δ) - PAC learning of H with respect to perturbation U under
rejection, denoted asMAG(ϵ, δ;H ,U), is defined as the smallest m ∈ N ∪ {0} for which there exists a
learning ruleA : (X×Y)m 7−→ (Y∪{⊥})X s.t. for every data distributionD over (X×Y)m,

RU,rej(A(S );D) ≤ OPTU,rej + ϵ

with probability at least 1 − δ over S ∼ Dm. If no such m exists,MAG(ϵ, δ;H ,U) = ∞. We say that
H is robustly PAC learnable under rejection ifMAG(ϵ, δ;H ,U) is finite for all ϵ, δ ∈ (0, 1).
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Lemma 1. LetMRE =MRE(1/3, 1/3;H ,U). Then,

MAG(ϵ, δ;H ,U) = O
(
MRE

ϵ2
log2

(
MRE

ϵ

)
+

1
ϵ2

log
(

1
δ

))
(33)

Proof. The proof detail follows exactly the same from the Proof of Theorem 8 from [MHS19] with
the loss replaced. □

Theorem 4 (Sample Complexity for Agnostic Robust PAC Learning under Rejection). In the agnostic
setting, for anyH = Hc ×H r andU, and any ϵ, δ ∈ (0, 1/2),

MAG(ϵ, δ;H ,U) = O
(
VC(T (H)) VC∗(T (H)) log (VC(T (H)) VC∗(T (H))) (34)

1
ε2 log2

(
VC(T (H)) VC∗(T (H))

ε

)
+

1
ε2 log

(
1
δ

))
(35)

= 2O(VC(H)) 1
ε2 log2

(
1
ε

)
+ O

(
1
ε2 log

(
1
δ

))
(36)

= 2O((dr+dc) log(dr+dc)) 1
ε2 log2

(
1
ε

)
+ O

(
1
ε2 log

(
1
δ

))
(37)

where dr = VC(H r), dc = VC(Hc).

Proof. Combining results from Lemma 1 and Theorem 3 gives the complexity result.

Solving Equation 36 gives the following generalization result given in Table 2

Pr
(x,y)∼Dn

[
RU,rej(A(x, y);D) ≤ ϵ

]
≥ 1 − δ

where ϵ = O
(√

2VC(T (H))+log(1/δ)
n

)
. □

E.3 Transductive Realizable Case

In general the set of optimally learned classifiers ∆ is defined as follows [MHS21]:

∆U
H

(z, y, z̃) =

{h ∈ H : RU−1 (h; z, y) = 0 ∧ RU−1 (h; z̃) = 0} (Realizable Case)
arg min

h∈H
max {RU−1 (h; z, y),RU−1 (h; z̃)} (Agnostic Case)

where

RU(h; z, y) = sup
x̃∈U(z)

1
n

n∑
i=1

1{h(x̃i) , yi}

and
RU(h; z) = RU(h; z, h(z)).

Then, we define the relaxed robust shattering dimension following [MHS21]:
Definition 4 (Relaxed Robust Shattering Dimension). A sequence z1, . . . , zk ∈ X is relaxed U-
robustly shattered by H , if ∀y1, . . . , yk ∈ {±1}: ∃xy1

1 , . . . , x
yk
k ∈ X and ∃h ∈ H such that zi ∈ U(xyi

i )
and h(U(xyi

i )) = yi, ∀1 ≤ i ≤ k. The relaxedU-robust shattering dimension rdimU(H) is defined as
the largest k for which there exist k points that are relaxedU-robustly shattered byH .
Theorem 5. For any n ∈ N, δ > 0, class H , perturbation set U, and distribution D over X×Y
satisfying OPTU−1U = 0:

Pr
(x,y)∼Dn

(x̃,ỹ)∼Dn

[
∀ z0 ∈ U(x),∀ z̃0 ∈ U(x̃),∀ z ∈ U(z0),∀ z̃ ∈ U( z̃0),
∀ĥ ∈ F

(
∆U
H

(z0, y, z̃0) ∩ ∆U
H

(z, y, z̃)
)

: errrej
x̃, z̃,ỹ(ĥ) ≤ ϵ

]
≥ 1 − δ

where ϵ = rdim
U−1 (H) log(2n)+log(1/δ)

n ≤
VC(H) log(2n)+log(1/δ)

n .
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Proof. We adapt the strategy of Tramèr’s Theorem 5 for the rejection scenario.

By setting z = z0, z̃ = z̃0 and applying Theorem 1 of [MHS21], we obtain the following

Pr
(x,y)∼Dn

(x̃,ỹ)∼Dn

[
∀ z0 ∈ U(x),∀ z̃0 ∈ U(x̃),∀h ∈ ∆U

H
(z0, y, z̃0) : err z̃0,ỹ(h) ≤ ϵ

]
≥ 1 − δ (38)

as OPTU−1(U) = 0.

Suppose (x, y), (x̃, ỹ) ∼ Dn. Now, let z0 ∈ U(x), z ∈ U(z0), z̃0 ∈ U(x̃), z̃ ∈ U( z̃0), and ĥ ∈
F

(
∆U
H

(z0, y, z̃0) ∩ ∆U
H

(z, y, z̃)
)
.

Write ĥ = F(h) for some h ∈ ∆U
H

(z0, y, z̃0) ∩ ∆U
H

(z, y, z̃).

From Equation 38 (replacing z with z0 and z̃ with z̃0), it is enough to show that

errrej
x̃, z̃,ỹ(ĥ) ≤ err z̃0,ỹ(h).

Suppose that ĥ incurs an error under rejection at point z̃i; it is enough to show that h incurs an error
at z̃0i . Furthermore, note that because h ∈ ∆U

H
(z0, y, z̃0), we have that h(U−1(z̃0i )) = {h(z̃0i )} as z̃0i ∈

U−1(z̃0i ). Write h(z̃0i ) = ŷi. Hence, ĥ does not reject z̃0i and ĥ(z̃0i ) = ŷi. Similarly, as h ∈ ∆U
H

(z, y, z̃),
ĥ does not reject z̃i, and as z̃i ∈ U(z̃0i ) and so z̃0i ∈ U−1(z̃i), we have ĥ(z̃i) = ŷi = h(z̃0i ).

We have one of the following:

1. ĥ(z̃i) , ỹi and z̃i = x̃i

2. ĥ(z̃i) < {ỹi,⊥} and z̃i , x̃i

In either case, we have that h(z̃0i ) = ĥ(z̃i) , ỹi and so h makes an error at z̃0i .

Consider Case 2 further. If we assume thatU = U−1 as well, then as z̃ ∈ U( z̃0) we have z̃ ∈ U−1( z̃0),
so h(z̃i) = h(z̃0i ) since ĥ(z̃i) ,⊥, and so we must have ĥ(z̃i) = h(z̃i) = h(z̃0i ), so h makes an error at z̃0i .
Hence, only case (1) requires h(U−1(z̃i)) = {h(z̃i)}, so the requirement h ∈ ∆U

H
(z0, y, z̃0)∩∆U

H
(z, y, z̃′)

(where z̃′ is the subset of z̃ where zi = xi) rather than h ∈ ∆U
H

(z0, y, z̃0) ∩ ∆U
H

(z, y, z̃) would be
sufficient, as would h ∈ ∆U

H
(z0, y, z̃0) ∩ ∆U

H
(x, y, x̃). □

Remark: The OPT requirement is only needed to apply the result from [MHS21]; it does also
show that there exists a consistent hypothesis, but this is not required to show the result. To see this,
note that we can assume without loss of generality that ∆U

H
(z0, y, z̃0) ∩ ∆U

H
(z, y, z̃) is nonempty, as if

it were empty, there would be no ĥ ∈ F
(
∆U
H

(z0, y, z̃0) ∩ ∆U
H

(z, y, z̃)
)

with errrej
x̃, z̃,ỹ(ĥ) > ϵ.

Sample Complexity Given ϵ and δ, we need

rdimU−1 (H) log(2n) + log(1/δ)
n

≤ ϵ

for the result to hold.

Now, noting that log(2n) = 1 + log n ≤ 1 +
√

n for n ≥ 16; hence we need to solve for the n such that

rdimU−1 (H)(1 +
√

n) + log(1/δ)
n

= ϵ

or, equivalently
rdimU-1 (H)+ log( 1

δ
)+
√

n

n
= ϵ

or
√

n = nϵ − rdimU-1 (H)− log(
1
δ

)
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or

n = n2ϵ2 − 2ϵ
(
rdimU-1 (H)+ log(

1
δ

)
)

n +
(
rdimU-1 (H)+ log(

1
δ

)
)2

or

n2ϵ2 −

(
2ϵ

(
rdimU-1 (H)+ log(

1
δ

)
)
+ 1

)
n +

(
rdimU-1 (H)+ log(

1
δ

)
)2

= 0.

Solving, the result holds if

n ≥
2ϵ

(
rdimU-1 (H)+ log( 1

δ
)
)
+ 1 +

√
(2ϵ

(
rdimU-1 (H)+ log( 1

δ
)
)
+ 1)2 − 4

(
rdimU-1 (H)+ log( 1

δ
)
)2
ϵ2

2ϵ2

= O

 rdimU-1 (H)+ log( 1
δ
)

ϵ
+

√
rdimU-1 (H)+ log( 1

δ
)

ϵ
3
2


and, similarly, using

rdimU−1 (H) log(2n) + log(1/δ)
n

≤
VC(H) log(2n) + log(1/δ)

n
we have the result if

n = O

VC(H) + log( 1
δ
)

ϵ
+

√
VC(H) + log( 1

δ
)

ϵ
3
2


Simplified Result To obtain a bound which does not involve an intermediate perturbation step, we
may let

∆Urej,H (z, y, z̃) =
⋂

z′∈U−1(z)∪{z}, z̃′∈U−1( z̃)∪{ z̃}

∆U
H

(z′, y, z̃′)

Note that for common classes of perturbations, we can simplify the definition of ∆rej. Note that the
conditions of the theorem hold for perturbations defined via ϵ-balls in a metric.
Lemma 2. In the realizable case, ifU =U−1,

∆Urej,H (z, y, z̃) = ∆U
2

H
(z, y, z̃)

Proof. As x ∈ U(x) for all x, note thatU−1(z) ∪ {z} = U−1(z) andU−1( z̃) ∪ { z̃} = U−1( z̃); we will
use this simplification of the definition of ∆rej below.

Suppose h ∈ ∆Urej,H (z, y, z̃). Then by the definitions of ∆rej and ∆, for any z′ ∈ U−1(z), z̃′ ∈ U−1( z̃),

we have that, for any x ∈ U−1(z′) and x̃ ∈ U−1( z̃′), h(xi) = h(z′i) and h(x̃i) = h(z̃′i). But sinceU =
U−1, z ∈ U−1(z′) and z̃ ∈ U−1( z̃′), so h(z′i ) = h(zi) and h(z̃′i ) = h(z̃i) for all z′ ∈ U−1(z), z̃′ ∈ U−1( z̃).
Hence, for any x ∈ U−2(z) and x̃ ∈ U−2( z̃), we have that h(xi) = h(zi) and h(x̃i) = h(z̃i), and so

∆Urej,H (z, y, z̃) ⊆ ∆U
2

H
(z, y, z̃)

Now, if h ∈ ∆U
2

H
(z, y, z̃), we have that, for any x ∈ U−2(z) and x̃ ∈ U−2( z̃), h(xi) = h(zi) and h(x̃i) =

h(z̃i). Now, suppose z′ ∈ U−1(z), z̃′ ∈ U−1( z̃). Since x ∈ U(x) for all x, z′ ∈ U−2(z), z̃′ ∈ U−2( z̃)
as well. Hence, h(z′i) = h(zi) and h(z̃′i) = h(z̃i). Now, if x ∈ U−1(z′) and x̃ ∈ U−1( z̃′), we have
x ∈ U−2(z) and x̃ ∈ U−2( z̃) and so h(xi) = h(zi) and h(x̃i) = h(z̃i). But then h(xi) = h(z′i) and
h(x̃i) = h(z̃′i). Hence, we have that

∆U
2

H
(z, y, z̃) ⊆ ∆Urej,H (z, y, z̃)

and the result follows. □

Now, by the above and from Theorem 5 we may immediately derive Theorem 2 by noting that
if U = U−1, U−1U = U2, and if ĥ ∈ F(∆U

2

H
(z, y, z̃)) = F(∆Urej,H (z, y, z̃)) then we have ĥ ∈

F
(
∆U
H

(z0, y, z̃0) ∩ ∆U
H

(z, y, z̃)
)

for some z0 ∈ U(x) ∩U−1(z) and z̃0 ∈ U(x̃) ∩U−1( z̃).
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E.4 Transductive Agnostic Case

While the constant factors on OPTU2 do increase compared to the result without rejection [MHS21],
note that, ifU can be decomposed into a formU = (U1/2)2 whereU1/2 = U−1/2 (as with standard
perturbations in lp), we obtain a bound which depends on OPTU rather than OPTU2 , enabling much
stronger guarantees if OPTU << OPTU2 . Note that as ∀x x ∈ U(x), ∀x U(x) ⊆ U2(x), and so
OPTU ≤ OPTU2 .
Theorem 6. For any n ∈ N, δ > 0, classH , perturbation setU, and distributionD over X×Y:

Pr
(x,y)∼Dn

(x̃,ỹ)∼Dn

[
∀ z0 ∈ U(x),∀ z̃0 ∈ U(x̃),∀ z ∈ U(z0),∀ z̃ ∈ U( z̃0),
∀ĥ ∈ F(∆U

H
(z0, y, z̃0) ∩ ∆U

H
(z, y, z̃)) : errrej

x̃, z̃,ỹ(ĥ) ≤ ϵ

]
≥ 1 − δ

where ϵ = min
{

4OPTU−1U + O
(√

VC(H)+log(1/δ)
n

)
, 5OPTU−1U + O

(√
rdimU(H) ln(2n)+ln(1/δ)

n

)}
.

Proof. Suppose (x, y), (x̃, ỹ) ∼ Dn. Now, let z0 ∈ U(x), z ∈ U(z0), z̃0 ∈ U(x̃), z̃ ∈ U( z̃0), and
ĥ ∈ F(∆U

H
(z0, y, z̃0)).

Write ĥ = F(h) for some h ∈ ∆U
H

(z0, y, z̃0). First, by a proof similar to that in Theorem 5 we can show
that

errrej
x̃,ỹ, z̃(ĥ) ≤ err z̃0,ỹ(h) + RU(h; z̃0) + RU(h; x̃).

To see this, note that the same argument as before holds for i such that ĥ does not reject z̃0i or z̃i such
that z̃i = xi, so we have that

errrej
x̃′,ỹ′, z̃′ (ĥ) ≤ err z̃′0,ỹ

′ (h)
where x̃′, ỹ′, z̃′, . . . correspond to the points not rejected; now, as RU(h; z̃0) is the fraction of z̃0i

rejected by h and similarly for RU(h; x̃), the result follows as the indicator for error is ≤ 1.

Now, we consider two intermediate results from the proof of Theorem 2 of [MHS21].

VC Dimension Bound We have

Pr
(x,y)∼Dn

(x̃,ỹ)∼Dn

[
∀ z ∈ U(x),∀ z̃ ∈ U(x̃),∀h ∈ ∆U

H
(z, y, z̃) :

max {RU(h; z, y),RU(h; z̃)} ≤ OPTU−1U + ϵ ∧
∣∣∣errx̃,ỹ(h) − errx̃,ỹ(h)

∣∣∣ ≤ ϵ
]
≥ 1 − 2δ

where

ϵ = O


√

VC(H) + log(1/δ)
n


from which it is shown that

Pr
(x,y)∼Dn

(x̃,ỹ)∼Dn

[
∀ z ∈ U(x),∀ z̃ ∈ U(x̃),∀h ∈ ∆U

H
(z, y, z̃) :

max {RU(h; z, y),RU(h; z̃)} ≤ OPTU−1U + ϵ ∧ err z̃,ỹ(h) ≤ 2OPTU−1U + 3ϵ

]
≥ 1 − 2δ

Now, recall that, by the above, for any (x, y), (x̃, ỹ) ∼ Dn, z0 ∈ U(x), z ∈ U(z0), z̃0 ∈ U(x̃),
z̃ ∈ U( z̃0), and ĥ = F(h) ∈ F(∆U

H
(z0, y, z̃0)), we have

errrej
x̃,ỹ, z̃(ĥ) ≤ err z̃0,ỹ(h) + RU(h; z̃0) + RU(h; x̃)

and so, if RU(h; z̃0) ≤ OPTU−1U + ϵ, RU(h; x̃) ≤ OPTU−1U + ϵ, and err z̃0,ỹ(h) ≤ 2OPTU−1U + 3ϵ we
have
errrej

x̃,ỹ, z̃(ĥ) ≤ err z̃0,ỹ(h)+RU(h; z̃0)+RU(h; x̃) ≤ OPTU−1U+ϵ+OPTU−1U+ϵ+2OPTU−1U+3ϵ = 4OPTU−1U+5ϵ

and hence

Pr
(x,y)∼Dn

(x̃,ỹ)∼Dn

 ∀ z0 ∈ U(x),∀ z̃0 ∈ U(x̃),∀ z ∈ U(z0),∀ z̃ ∈ U( z̃0),∀ĥ ∈ F(∆U
H

(z0, y, z̃0)) :
errrej

x̃,ỹ, z̃(ĥ) ≤ 4OPTU−1U + 5ϵ

 ≥ 1 − 2δ.

noting that x̃ ∈ U(x̃) by assumption.
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Relaxed Robust Shattering Dimension Bound We have

Pr
(x,y)∼Dn

(x̃,ỹ)∼Dn

[
∀ z ∈ U(x),∀ z̃ ∈ U(x̃),∀h ∈ ∆U

H
(z, y, z̃) :

max {RU(h; z, y),RU(h; z̃)} ≤ OPTU−1U + ϵ̃ ∧
∣∣∣errx̃,ỹ(h) − errx̃,ỹ(h)

∣∣∣ ≤ ϵ̃
]
≥ 1 − δ

where

ϵ̃ ≤ OPTU−1U + ϵ0 +

√
rdimU(H) ln(2n) + ln(1/δ)

n
and

ϵ0 =

√
ln( 2
δ
)

2n
from which it is shown that

Pr
(x,y)∼Dn

(x̃,ỹ)∼Dn

 ∀ z ∈ U(x),∀ z̃ ∈ U(x̃),∀h ∈ ∆U
H

(z, y, z̃) :

max {RU(h; z, y),RU(h; z̃)} ≤ OPTU−1U + ϵ̃ ∧ err z̃,ỹ(h) ≤ 3OPTU−1U + 3ϵ0 +
√

rdimU(H) ln(2n)+ln(1/δ)
n

 ≥ 1−δ

and so we have (by an argument similar to that for the VC bound)

Pr
(x,y)∼Dn

(x̃,ỹ)∼Dn

 ∀ z0 ∈ U(x),∀ z̃0 ∈ U(x̃),∀ z ∈ U(z0),∀ z̃ ∈ U( z̃0),∀ĥ ∈ F(∆U
H

(z0, y, z̃0)) :

errrej
x̃,ỹ, z̃(ĥ) ≤ 5OPTU−1U + 5ϵ0 + 2

√
rdimU(H) ln(2n)+ln(1/δ)

n

 ≥ 1 − δ.

rBy combining these results and simplifying, we are done. □

As in the realizable case, we can immediately derive the following corollary. However, we cannot
simplify the definition of ∆rej as before; see Lemma 3.

Corollary 1. For any n ∈ N, δ > 0, classH , perturbation setU whereU = U−1, and distribution
D over X×Y:

Pr
(x,y)∼Dn

(x̃,ỹ)∼Dn

[
∀ z ∈ U2(x),∀ z̃ ∈ U2(x̃),∀ĥ ∈ F(∆Urej,H (z, y, z̃)) : errrej

x̃, z̃,ỹ(ĥ) ≤ ϵ
]
≥ 1 − δ

where ϵ = min
{

4OPTU2 + O
(√

VC(H)+log(1/δ)
n

)
, 5OPTU2 + O

(√
rdimU(H) ln(2n)+ln(1/δ)

n

)}
.

Lemma 3. In the agnostic case, we have that ifU = U−1,

∆Urej,H (z, y, z̃) ⊆ ∆U
2

H
(z, y, z̃)

Proof. As in Lemma 2, since x ∈ U(x) for all x we have thatU−1(z)∪{z} = U−1(z) andU−1( z̃)∪{ z̃} =
U−1( z̃), and we will use this simplification of the definition of ∆rej below.

Recalling the following definitions:

RU−2 (h; z, y) = max
z′∈U−1(z)

RU−1 (h; z′, y)

and
RU−2 (h; z̃) = max

z̃′∈U−1( z̃)
RU−1 (h; z̃′),

note that

RU−2 (h; z̃) =
1
n

n∑
i=1

1
{
∃x̃i ∈ U

−2 (z̃i) : h (x̃i) , h (z̃i)
}
=

1
n

n∑
i=1

1
{
∃z̃′i ∈ U

−1 (z̃i)∃x̃i ∈ U
−1 (

z̃′i
)

: h (x̃i) , h (z̃i)
}

= max
z̃′i∈U

−1(z̃i)

1
n

n∑
i=1

1
{
∃x̃i ∈ U

−1 (
z̃′i
)

: h (x̃i) , h (z̃i)
}

= max
z̃′i∈U

−1(z̃i)
RU−1 (h; z̃′)
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where the last equality holds as z̃ ∈ U−1( z̃) and asU = U−1, which together show that if for some
z̃i and z̃′i ∈ U

−1(z̃i) we have that h(z̃′i) , h(z̃i), that (since we must have {z̃i, z̃′i} ∈ U
−1(z̃′i)) both

∃x̃i ∈ U
−1(z̃′i) : h(x̃i) , h(z̃i) and ∃x̃i ∈ U

−1(z̃′i) : h(x̃i) , h(z̃′i).

We can derive a result for RU−2 (h; z, y) similarly.

Suppose h ∈ ∆Urej,H (z, y, z̃). Then, h minimizes max {RU−1 (h; z′, y),RU−1 (h; z̃′)} for all z′ ∈
U−1(z), z̃′ ∈ U−1( z̃), so by the above, h must also minimize

max
z′∈U−1(z), z̃′∈U−1( z̃)

max
{
RU−1 (h; z′, y),RU−1 (h; z̃′)

}
= max

{
max

z′∈U−1(z)
RU−1 (h; z′, y), max

z̃′∈U−1( z̃)
RU−1 (h; z̃′)

}
= max {RU−2 (h; z̃),RU−2 (h; z, y)}

and so h ∈ ∆U
−1U
H

(z, y, z̃).

However, minimizing max
z′∈U−1(z), z̃′∈U−1( z̃)

max {RU−1 (h; z′, y),RU−1 (h; z̃′)} does not necessarily imply

that h minimizes max {RU−1 (h; z′, y),RU−1 (h; z̃′)} for all z′ ∈ U−1(z), z̃′ ∈ U−1( z̃), so the reverse may
not hold. □

F Extension to Unbalanced Data

We provide a sketch of a proof that allows extending Theorem 1 of [MHS21] to unbalanced training
and test sets; however, for simplicity, we will work with the original form. The assumptions are the
same, except that we have n training points and m test points.

The proof is exactly as before up to the "Finite robust labelings" portion (which points are and are
not labelled don’t matter up to then and the symmetry arguments still apply). The basic idea of
determining the probability of zero loss on the training and test sets and error > ϵ on the test examples
with permutation still applies. Let Eσ,x be the event that there exists a labelling ĥ(xσ(1:n+m)) in the
allowable set where this occurs.1

We have

Prσ
[
Eσ,x

]
≤ Pr
σ

[
∃ ĥ ∈ ΠU

H
(x1, . . . , xn+m) : errxσ(1:n),yσ(1:n)

(ĥ) = 0 ∧ errxσ(n:n+m),yσ(n:n+m)
(ĥ) > ϵ

]
and, as in [MHS21], note the probability of choosing such a perturbation σ for a fixed ĥ is at most( m

n +m

)s
≤

( m
n +m

)⌈ϵm⌉
=

(n +m
m

)−⌈ϵm⌉
≤

(n +m
m

)⌈−ϵm⌉
if we assume the number of total errors s ≥ ⌈ϵm⌉ without loss of generality (otherwise, err > ϵ would
be impossible).

Hence, by a union bound,

Prσ
[
Eσ,x

]
≤

∣∣∣ΠU
H

(x1, . . . , xn+m)
∣∣∣ (n +m

m

)⌈−ϵm⌉
and so

Prσ
[
Eσ,x

]
≤ (n + m)rdim

U−1 (H)
(n +m

m

)⌈−ϵm⌉
by Sauer’s Lemma (in the form of Lemma 3 of [MHS21]).

Now, we to bound the probability by δ, we need

(n + m)rdim
U−1 (H)

(n +m
m

)⌈−ϵm⌉
≤ δ

which, solving, gives us

ϵ ≥
rdimU−1 (H) log n+m

m
(n + m) + log n+m

m

1
δ

m
=

rdimU−1 (H) log(n + m) + log 1
δ

m log
(
1 + m

n

)
Which reduces to the original result if n = m (note that the logarithms are base-2).
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Corollary If we fix n + m,H , and δ, the guarantee is strongest (i.e. we minimize ϵ) when n = m.
To see this, consider the denominator. Write α = m

n . Then, we wish to maximize nα log(1 + α) (or
equivalently f (α) = α log(1 + α) subject to α ≥ 0. Now, note that f ′(α) = log(1 + α) − 1 = 0 when
α = 1, i.e. when m = n.

Also, we can see from the result above, that if we fix m and δ, then the minimum value of ϵ tends
towards ∞ as n → ∞, so there does not necessarily exist a labelled training set sampled from D
which provides a guarantee with high probability of arbitrarily low error on a fixed test set.
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