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Abstract

With the emerging and continuous develop-
ment of pre-trained language models, prompt-
based training has become a well-adopted
paradigm that drastically improves the exploita-
tion of models for many NLP tasks. Prompt-
ing also shows great performance compared to
traditional fine-tuning when adapted to zero-
shot or few-shot scenarios where the number
of annotated data is limited. In this frame-
work, verbalizers play an important role in
interpreting masked word distributions pro-
duced by language models into output pre-
dictions. In this work, we propose MaVEN,
a new approach for verbalizer construction
by enrichment of class labels using neigh-
borhood relation in the embedding space of
words. In addition, we elaborate a bench-
marking procedure to evaluate typical base-
lines of verbalizers for document classifica-
tion in few-shot learning contexts. Our model
achieves state-of-the-art results while using sig-
nificantly fewer resources. We show that our
approach is particularly effective in cases with
extremely limited supervision data. Our code
is available at https://anonymous.4open.
science/r/verbalizer_benchmark-66E6.

1 Introduction

Fine-tuning PLM (Devlin et al., 2019a; Zhuang
et al., 2021; Brown et al., 2020) resulted in large
improvements in various NLP tasks. Classic ap-
proaches replace the PLM’s output layer with a
task-specific head and fine-tune the entire model
(Devlin et al., 2019a; Liu et al., 2019; Raffel et al.,
2020). However, additional classification layers
import a great amount of randomly initialized pa-
rameters that need a sufficient amount of labeled
data to be trained. Classical fine-tuning, therefore
becomes inapplicable for few-shot or zero-shot sce-
narios (Yin et al., 2019; Zhang et al., 2023).
Motivated by GPT-3 (Brown et al., 2020),
prompting has become a novel paradigm where

downstream tasks are transformed to suit the pre-
training objective. Prompt-based fine-tuning al-
lows to exploit PLMs’ knowledge while reduc-
ing the gap between pre-training and fine-tuning
(Petroni et al., 2019; Chen et al., 2022). In this
framework, templates and verbalizers (Schick and
Schiitze, 2021a; Gao et al., 2021) are crucial el-
ements to map between task-specific inputs and
labels, to textual data for the LM. The roles of tem-
plates and verbalizers are described as follows. For
example, we are given a piece of text:

x = “Dollar rises against euro...”

and the task is to predict if this text belongs to
which class among politics, sports, science, or eco-
nomics. A template T' first transforms the given
text into a cloze-question. For instance, one may
choose for this task

T(x) =“___news: Dollar rises against euro...”

The task now changes from predicting a label with-
out textual meaning to identifying whether the most
probable choice for the masked position ___ is
“politics”, “sports”, “science” or “economics®. This
task, namely masked language modeling aligns
coherently with the pre-training of a variety of
masked LMs, notebly BERT (Devlin et al., 2019b),
RoBERTa (Zhuang et al., 2021).

A masked LM takes the wrapped text, marks the
missing position with its MASK token, and produces
probabilities for the masked token over the vocab-
ulary. Ideally in this case, one would expect that
the probability of the word “economics” is higher
than that of “sports”. In particular, this straightfor-
ward approach maps each class to a single word,
its textual name. In general, a verbalizer refers to
this mapping from the label space to the vocabu-
lary space, where each label is mapped to multiple
vocabulary tokens.

In many cases, verbalizers are defined manu-
ally using human knowledge of the downstream
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task, to choose words that semantically represent
the meaning of class labels (Schick and Schiitze,
2021a,b; Gao et al., 2021). There are also other
constructions of verbalizers such as soft verbalizers
(Hambardzumyan et al., 2021; Cui et al., 2022).
Algorithms for automatic label word searching ex-
ist in the literature. One such example is PETAL
(Schick et al., 2020), where label words are mined
based on their likelihood on supervised data. We
remark that the procedure presented in (Schick and
Schiitze, 2021a; Schick et al., 2020) includes semi-
supervised learning and therefore additional unla-
beled data. One another example is KPT (Hu et al.,
2022) where an external knowledge base such as
WordNet (Miller, 1994) and ConceptNet (Speer
and Havasi, 2012) are used to expand label words
from the class name. Our motivation in this work is
to propose a method to enrich the manual verbalizer
without resorting to external resources.

Our contribution in this paper is summarized as
follows:

(i) We propose MaVEN, a new method to en-
rich the manual verbalizer by neighbors in
the embedding space. Our method achieves
improved performance over previous work,
particularly with an extremely limited amount
of data.

(i) We systematically compare MaVEN to man-
ual, soft, and automatic verbalizers for the
text classification task, on three English pub-
lic datasets previously studied in the literature.
We also present new results on two French
datasets.

2 Related Work

Prompt-based fine-tuning In this framework,
the input is wrapped with a task-specific template
to reformulate the classification task as language
modeling as described in section 1. The verbal-
izer then transforms the distribution of the MASK
token into label prediction (see section 3 for for-
mal definitions). The choice of textual templates
and verbalizer, have a significant influence on the
classification performance (Gao et al., 2021).

PET and iPET (Schick and Schiitze, 2021a,b)
use task-specific manual templates and verbaliz-
ers that work efficiently. However, their construc-
tion requires both domain expertise of downstream
tasks and understanding of biases in the MASK dis-
tribution produced by the PLMs. Otherwise, the

search process for an optimal template and ver-
balizers may be computationally exhaustive with
a large number of classes. Meanwhile, (Lester
et al., 2021; Liu et al., 2022; Li and Liang, 2021)
propose to freeze the PLM and instead optimize
prompt tokens. Despite being human-independent
and storage-saving, continuous prompts have only
been studied in data-abundant scenarios, and pro-
duce tokens that are hard to interpret. Here, we
study textual templates instead and focus on the
search for label words for the verbalizer.

In section 3, we present in detail the manual,
soft, and automatic verbalizers as baselines for
comparison with our proposed method. Other than
these, many constructions of verbalizers exist in
the literature. Prototypical verbalizers (Cui et al.,
2022) is an improved version of soft verbalizers
where contrastive learning helps maximize intra-
class similarity and minimize inter-class similarity
between embeddings of data instances. PTR (Han
et al., 2021) proposes to incorporate logic rules to
compose task-specific prompts with several simple
sub-prompts.

Enrichment of manual verbalizer Previous
works also propose methods to improve the seman-
tics of label words for a given manual verbalizer.
KPT (Hu et al., 2022) incorporates external knowl-
edge into the verbalizers, along with multiple steps
of refinement and calibration to obtain words with
wide coverage of given classes. Still, such knowl-
edge bases may not always be available. Therefore,
we are motivated to derive a method to improve the
manual verbalizer independently from additional
resources. On the other hand, NPPrompt (Zhao
et al., 2023) searches for cognates of initial manual
words using the embedding layer of the same PLM.
This approach attains greater coherence in later
PLM fine-tuning. However, NPPrompt is designed
and optimized exclusively for zero-shot learning,
thus our motivation to develop this idea for few-
shot learning by enrichment of manual verbalizers.

3 Methodology

Let M be a language model with vocabulary V.
Following (Schick and Schiitze, 2021a,b), we de-
fine the template - verbalizer pair. Let (x,y) be
an example of the classification problem, where x
represents one or many sentences and y is its label
in the label set ). A template 7" maps x into a
masked sequence 7'(x) of tokens in V' U {MASK}.
A verbalizer v : Y — P (V') maps each label to a



set of words characterizing the class (called label
words). The probability of the label conditioned on
the input is then modeled by the logits of its label
words conditioned on the masked sequence:
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Where M(w|T'(x)) denotes the logit of MASK be-
ing predicted as w by the LM conditional on the
masked sequence 7T'(x).

3.1 Baseline Verbalizers

Manual The label words can be predefined man-
ually. It has been shown that different choices of la-
bel words can have major importance for the model
performance (Gao et al., 2021). In this work, the
manual verbalizers derive directly from the names
of classes.

Soft WARP (Hambardzumyan et al., 2021) pro-
poses to represent each label y by a prototype vec-
tor v, instead of concrete words, initialized with
static embeddings of the manual label words and
optimized alongside the PLM, such that:

p(y[x) ocexp (v, - h) 2)
With A the embedding of the MASK token in 7'(x).

Auto Among automatic methods, PETAL
(Schick et al., 2020) allows identifying words
suitable to represent classes from training data
without additional data or knowledge. Consider
the classification problem as many one-vs-rest
binary problems to find label words for each
class separately. For a label ¢ of support,
Dy = {(xX,y) € Dyain | y = y}, PETAL takes the
top k£ words w that maximize the likelihood ratio
of positive examples and minimize that of negative
examples:
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Without specifying differently, for comparison
analysis, we take k = 15.

3.2 Proposition: MaVEN

In this paper, we propose Manual Verbalizer
Enrichment by Nearest Neighbors’ Embeddings
(MaVEN). Noting that the probability mass that
the LM assigns to a specific topic conditioned on
the input text is dispersed over multiple label words,
we hypothesize that the manual verbalizer captures
only a part of this mass and thus is sensitive to the
choice of label words. Our motivation therefore is
to automatically extend the verbalizer to capture
more probability mass by including semantically
related words.

In most practical scenarios, a natural manual ver-
balizer can often be obtained using the names of
classes, as class names naturally encode the seman-
tic meaning of texts belonging to the class. We
assume that for our classification problem, let v
be the initial manual verbalizer. In our case, v(y)
includes words extracted directly from the name of
the class y. Let E be a word embedding function,
the word embedding layer of the LM for exam-
ple. For each core word wg € v(y), we define the
neighborhood of wy as:

Ni(wo) = {wo} U tOI:U—k [s (wo,w)]  (5)

Where s is the cosine similarity in this embedding
space I

E(wy) = E(w)

S Ew)] TE@]  ©

s(wo, w)

In case v(y) includes multiple words, we enlarge
the verbalizer v(y) as the union of neighborhoods
of all initial words:

U Nilwo) (7

wo€v(y)

The hyperparameter k represents the size of the
neighborhood in the embedding space around the
initial core words. In our experiments, without
specifying differently, we take k£ = 15.

The probability of the class y is aggregated over
its augmented verbalizer as follows:

D weily) @M w|T(x)) ®
Zwef}(y) qg}
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The weights g, represent the contribution of
the word w € N (wp) in the class y. Each g, is
initialized by the similarity s (w, wp) of w to its
core word wq and fine-tuned with the parameters



of the PLM. Comparing to equation (1), observe
that instead of averaging uniformly, we adopt a
weighted average of the PLM scores, to quantify
the relevance of each word in (y) to the class y.

After identifying label words, the PLMs are fine-
tuned based on the chosen template and verbalizer,
by minimizing the cross entropy loss between the
predicted probabilities and the correct labels. Given
the sensitivity of prompt-based methods in a few-
shot context, each prompt can be more or less ef-
fective towards eliciting knowledge from the PLM.
The ensemble approach provides an efficient way
to reduce instability across prompts and stronger
classifiers (Schick and Schiitze, 2021a; Jiang et al.,
2020). In this work, we study the impact of ag-
gregating strategy on the performance of assem-
bled models. Following the ensemble methods,
the logits of individual models trained on different
templates are aggregated into the final prediction,
following three aggregation strategies: (vote) ma-
jority vote from individual predictions, (proba) av-
eraging individual class probabilities, and (logit)
averaging individual class logits. For the two latter,
(Schick et al., 2020) shows that weighted averaging
does not gain a clear difference. Thus, we perform
uniform averaging.

4 Experiments

4.1 Settings

Five datasets (section 4.2) are considered context
for three baselines (section 3) and MaVEN in few-
shot prompt-based fine-tuning. For each dataset,
from the original training set, we sample a labeled
set D, of cardinality N. For each run, split D
into two equal halves: D,y is used for fine-tuning
with the template - verbalizer pair and Dy,q for
validation (Zheng et al., 2022). The best checkpoint
is retained from the score obtained on the validation
set. Details of hyperparameters can be found in
appendix A.

The underlying pre-trained language model
(PLM) is RoBERTa-large (Liu et al., 2019) as
in (Schick et al., 2020) for datasets in English,
or CamemBERT-large (Martin et al., 2020) for
datasets in French. We report the average and stan-
dard deviation of accuracy from 3 repetitions with
different samplings of D, to evaluate the result vari-
ation with different training data instances. This
setup allows us to achieve a robust and global eval-
uation of learning algorithms.

Our implementation is based on the toolkit Open-

Prompt (Ding et al., 2022) and the Transformers
package (Wolf et al., 2020). Experiments are exe-
cuted on two types of GPUs: NVIDIA Tesla V100
and NVIDIA Quadro RTX 5000.

4.2 Datasets and templates

Our experiments are done on three public English
datasets and two datasets in French. For each
dataset, four textual templates are created, noted
Ty, T1,T> and T3. A summary of these datasets
can be found in table 1. The manual verbalizers for
each dataset can be found in appendix B.

Dataset Classes Test set Balanced
AG 4 7600 v
DBpedia 14 75000 v
Yahoo 10 60000 v
FrN 10 536 X
MLSUM Fr 10 10585 X

Table 1: Dataset details.

AG AG’s News (Zhang et al., 2015) is a news
classification dataset. Given a headline x , a news
need to be classified into one of 4 categories. We
define for this dataset:

To(x) = MASK news: x
T1(x) = x This topic is about MASK.
T5(x) = [Category: MASK] x

(%)

Ts3(x [Topic: MASK] x

X

DBpedia The DBpedia ontology classification
dataset (Zhang et al., 2015) is constructed by pick-
ing 14 non-overlapping classes from DBpedia 2014.
Each of these 14 ontology classes contains 40,000
training samples and 5,000 testing samples. Given
a title x; and its description X2, the task is to pre-
dict the category of the object in the title.

To(x) = x1x2 In this sentence, x; is MASK.
T1(x) = x1x2 X is MASK.

T5(x) = x1x2 The category of x; is MASK.
T3(x) = x1x2 The type of x; is MASK.

Yahoo Yahoo! Answers (Zhang et al., 2015) is a
text classification dataset of questions from Yahoo!.
Given a question (title and content) and its answer,
one of ten possible categories has to be assigned.
For a concatenation x of the question title, question



N Verbalizer AG DBpedia Yahoo FrN MLSUM Fr Average
0  Majority 25.00 7.14 10.00 16.79 22.80 16.36
Manual 72.14 73.17 58.91 69.40 51.45 65.01
Soft 71.89 54.57 52.34 64.74 51.71 59.05
MaVEN 72.75 74.77 56.34 62.69 54.52 64.21
32 Manual 83.96+2.11 91.68+1.58 61.84+1.17 81.16+3.08 5842+6.44 7541
Soft 81.82+3.30 8595+1.12 50.76 £2.84 74.63+£5.54 60.53+4.86 70.74
Auto 86.44+1.89 79.24+798 50.08+4.39 73.63+135 5638+2.82 69.15
MaVEN 83.97+2.70 94.01+£1.08 61.58+3.46 91.11+1.68 60.81+1.93 78.30
64  Manual 88.14+£0.07 96.75+0.33 6529+0.98 90.17+2.18 65.79+£2.69  81.23
Soft 87.37+0.45 94.62+2.06 64.64+1.10 84.20+0.88 65.73+2.68 79.31
Auto 88.00+0.46 92.01£2.92 56.73+5.05 8638+3.64 67.17+x4.32 78.06
MaVEN 87.57+£0.88 97.57+0.29 66.17+1.50 90.49+3.00 6588+3.76 81.54
128 Manual 88.43+£033 96.66+1.14 66.71+£0.61 94.28+1.32 69.13+0.89 83.04
Soft 87.32+0.56 96.56+2.00 6593+0.86 9347+2.44 68.29+0.84  82.31
Auto 88.86 +0.10 9575+1.87 6742+036 93.47+0.56 71.28+246 83.36
MaVEN 88.65+0.57 97.85+0.10 69.18+0.66 93.28+0.67 6822+143 83.44
256 Manual 88.95+0.46 98.24+0.14 70.63+0.50 93.84+0.81 71.56+154 84.64
Soft 88.51+0.32 98.27+0.17 69.81+£0.76 93.66+1.04 70.06x1.09 84.06
Auto 89.64+0.58 98.23+0.28 70.36+1.03 93.16+£0.60 71.65+2.37 84.61
MaVEN 89.28+0.55 98.05+£0.15 70.29+047 9546+0.60 70.59+1.21 84.73

Table 2: Accuracy of MaVEN compared to other verbalizers. The ensembling strategy is logit averaging. Bold are
the best baselines. The last columns is the average accuracy over five datasets. Our proposed MaVEN achieves
significant performance gain compared to others for N € {32,64} and best average performance for few-shot

scenarios.

content and the answer, we define:

To(x) = MASK question: x.

T (x) = x This topic is about MASK.
T»(x) = [Topic: MASK] x.

T3(x) = [Category: MASK] x.

MLSUM Fr Originated from MultiLingual
SUMmarization dataset (Scialom et al., 2020), a
large-scale dataset obtained from online newspa-
pers. From this dataset, the French split is prepro-
cessed and annotated for the task of topic classifi-
cation by label grouping, by associating the topic

tag of each document to one of ten categories'.

FrN This real-world private dataset in French is
provided by our collaborator in a private company,
consisting of press articles. The dataset contains
over 5 million articles with silver multi-label an-
notated among 28 sectors by the data aggregator
Factiva®. Our collaborators have manually anno-
tated 1,364 articles, of which 1,048 articles belong-
'We follow the grouping procedure presented by
reciTAL teams at https://huggingface.co/lincoln/
flaubert-mlsum-topic-classification.

2https://www.dowjones.com/professional/
factiva/

ing to the 10 most frequent sectors are used for
experiments in this paper.

For these two last datasets, let x be the concate-
nation of the title, the summary, and the body text,
we define:

To(x) = Nouvelle MASK: x
T (x) = Actualité MASK: x
T5(x) = MASK: x

T3(x) = [Catégorie: MASK] x
4.3 Main Results

Table 2 shows the result over five datasets and three
baselines, for different quantity of data V.

For zero-shot learning where no data is avail-
able, we observe that MaVEN achieves similar
performance to the manual verbalizers, with the
exception of FrN.

For extremely low-data settings, such as N €
{32, 64}, we observe a clear superiority of MaVEN.
Compared to the manual verbalizer, MaVEN
achieves an improvement of 2.3% on DBpedia,
10.0% on FrN, and 2.4% on MLSUM Fr for N =
32. In other cases for N € {32, 64}, MaVEN ranks
as either the best or the second best among all ver-
balizers. For larger values of N, the gap between
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Figure 1: Accuracy of MaVEN by number of label words, on three datasets for N € {0, 64}. Dashed colored lines

represent templates 7" :

MaVEN manual verbalizer declines. As more and
more training data is provided, the LM learns to
attribute the probability mass of a certain class only
to the core word and thus, neighbor words become
less useful for prediction.

In summary, MaVEN consistently achieves the
highest average score across five datasets all few-
shot learning contexts. It shows an improvement
of 2.9% in average over the manual verbalizer for
N = 32. For the zero-shot case, it slightly under-
performs the manual verbalizer.

The automatic verbalizer performs poorly for
cases with extremely low data amounts, such as
N. With N increasing, the automatic verbalizer
can perform similarly, if not exceed, the manual
verbalizer for all datasets (with N > 32 for AG
and N > 128 for others). The main reason for this
evolution is that automatic label word searching
needs supervised training data to mine for label
words. With very few labeled data, the choice
of label words based on the evaluation of word
probabilities may result in errors. Notably, on AG
and MLSUM Fr, the automatic verbalizer exceeds
the manual verbalizer and MaVEN, which suggests
that initial words given by the manual verbalizer
of these datasets are biased and less accurate than
words extracted from the data, at least from the
point of view of the LM.

, |, 2, 3. Solid colored lines each represent the ensemble methods: vote, proba,

N Method AG Yahoo
0 PET 69.5 44.0
Manual 72.14 58.91
MaVEN 72.75 57.43
50 PET 86.3 66.2
Manual 87.26+0.82 66.25+0.37
PETAL 84.2 62.9
Auto 87.54+090 6589+1.15
MaVEN 86.35+1.01 66.59 +0.78
1000 PET 86.9 72.7
Manual 90.96 +0.37 73.07+0.47
MaVEN 91.08 £0.22 74.99 +0.28

Table 3: Comparaison of ours verbalizers to extracted
results of PET (manual + unlabeled data + distillation)
and PETAL (auto + unlabeled data + distillation).

4.4 Comparison to PET and PETAL

Table 3 compares our implementation of the man-
ual and automatic verbalizer to PET (Schick and
Schiitze, 2021a) and PETAL (Schick et al., 2020).
Note that in addition to prompting and ensemble
models, PET and PETAL further introduce self-
training with a large amount of unsupervised data
(up to 20,000), as a way of knowledge distillation
from ensembles to sequence classifiers. Here we
omit these elements from the pipeline and instead
use part of D for early stopping>. Since we could
not find details on the unlabeled data used for PET
and PETAL, we extract results shown in (Schick

3For N = 1000, we split | Dyain| = 900, |Dyatia| = 100
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Figure 2: MaVEN accuracy using different embedding spaces (LM, word2vec, GloVe) with varying data amount N.

and Schiitze, 2021a; Schick et al., 2020), and only
make the comparison for AG and Yahoo. The re-
sults show that our implementation allows achiev-
ing a competitive level of performance while using
significantly less data.

We hypothesize that the improvement of our
manual to PET arises from the usage of a part of
supervised data for early stopping. Furthermore, in
the case of our auto versus PETAL, we also use a
larger value of k£ and experimentally show that this
helps raise the accuracy of automatic verbalizers
(see section 4.5 and appendix D). Overall, table 3
shows that MaVEN achieves similar or better per-
formance than manual and automatic verbalizers
(including PET, PETAL, and our implementation).

4.5 Impact of the Neighborhood Size &

Motivated by remarks in appendix C, in this section,
we inspect the impact of the parameter k for the
automatic verbalizer and our MaVEN.

Figure 1 shows the dependence of prediction
accuracy on k of both individual models and as-
sembled models. For zero-shot prediction, the per-
formance depends significantly on k, fluctuating
within a range of 10% for MLSUM Fr and less than
5% for other datasets. With the presence of super-
vised data, fine-tuned models become more robust
with k, where the variation is confined within a mar-
gin of about 2% globally, and in particular around
0.6% for DBpedia. In practice, a fixed value be-
tween 10 and 15 guarantees a decent level of per-
formance. We also observe that the dependence
on k is minor compared to the dependence on the
textual template.

For the automatic verbalizers, our analysis in
appendix D shows that larger k£ produce stronger
verbalizers and raises the accuracy, which contra-
dicts the conclusion in (Schick et al., 2020) that
negates the impact of k. In some cases, using more
label words compensates for annotating more data.

4.6 Effectiveness of Ensemble Models

We compare results using individual templates and
by assembling the following three methods in fig-
ure 1. As observed in most cases, assembled mod-
els produce more accurate predictions, even bet-
ter than the most efficient template. Ensembles
also enhance stability and ease the dependence on
prompt selection, usually done by large validation
sets (Perez et al., 2021), particularly when different
templates perform significantly differently. One
other significant advantage is that ensemble mod-
els tend to be less sensitive to the variation of the
neighborhood size k, as discussed in section 4.5.

Comparing the three ensemble methods, voting
performs worse than probability and logit averag-
ing in general, but the difference is negligible com-
pared to the gain between assembling and individ-
ual templates.

4.7 Effect of the Embedding Space E

In this section, we analyze the importance of the
embedding space £ in MaVEN. The embedding
space intervenes in two major manners: the choice
of the neighborhood N (wg) and the initializa-
tion of weights ¢i, via s(wp, w) (section 3). The
vanilla MaVEN utilizes the same embedding layer
as the token embedding layer of the fine-tuned LM
(RoBERTa-1large to be precise). Figure 2 demon-
strates the performance of MaVEN using different
embedding spaces: LM’s embedding layer, Google
word2vec® (Mikolov et al., 2013b,a) and GloVe®
pre-trained on Wikipedia and Gigaword (Penning-
ton et al., 2014).

In zero-shot context, we observe a significant
difference in model performance for the three em-
beddings. We remark that the range of variation is
positively correlated to the number of classes for

5https: //code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
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Embedding LM? word2vec GloVe

sports _Sports 0.7727 | sport 0.6915 | sport 0.7274
_sport 0.7537 | sporting 0.6360 | sporting 0.5801
_sporting 0.6824 | Sports 0.6295 | basketball 0.5788
_athletics 0.6536 | DeVillers_reports 0.6123 | soccer 0.5734
_sports 0.6527 | athletics 0.6093 | baseball 0.5572
Sports 0.6479 | football 0.5927 | football 0.5556
Sport 0.6198 | sporting_events 0.5816 | espn 0.5110
_athletic 0.6132 | soccer 0.5805 | athletics 0.5071
_athletes 0.6090 | al_Sunaidy 0.5768 | athletic 0.5070
_SPORTS 0.6086 | baseball 0.5658 | entertainment 0.5062
_football 0.6076 | limited edition_ MGTF 0.5636 | hockey 0.4972
_soccer 0.5956 | OSAA_oversees 0.5610 | news 0.4953
_basketball 0.5938 | motorsports 0.5515 | athletes 0.4897
_tennis 0.5873 | athletic 0.5434 | golf 0.4781
_baseball 0.5846 | writers_Jim_Vertuno 0.5395 | tennis 0.4762

science _Science 0.8053 | faith_Jezierski 0.6965 | sciences 0.6844
_scientific 0.7044 | sciences 0.6821 | physics 0.6518
_sciences 0.7001 | biology 0.6776 | scientific 0.6487
science 0.6901 | scientific 0.6535 | biology 0.6283
_scientists 0.6895 | mathematics 0.6301 | mathematics 0.6216
_scientist 0.6889 | Hilal_Khashan_professor 0.6153 | research 0.6128
_physics 0.6700 | impeach_USADA 0.6149 | technology 0.6056
Science 0.6638 | professor_Kent_Redfield 0.6144 | fiction 0.5882
_biology 0.6482 | physics_astronomy 0.6105 | professor 0.5873
_neuroscience 0.6223 | bionic_prosthetic_fingers 0.6083 | chemistry 0.5856
_astronomy 0.6094 | professor_Burdett_Loomis 0.6065 | university 0.5850
_mathematics 0.5957 | Board_BONU_specialty 0.6063 | engineering 0.5757
_scientifically 0.5897 | Science 0.6052 | psychology 0.5684
_Sciences 0.5796 | portal_EurekAlert 0.5958 | institute 0.5678
_chemistry 0.5720 | Shlomo_Avineri_professor 0.5942 | literature 0.5656

Table 4: 15 nearest neighbors of “sports” and “science” constructed from three word embeddings: LM, word2vec,
and GLoVe, with their respective similarities to the corresponding core words.

the considered problem. For example, the magni-
tude of this range of variation is 1% for AG with
4 classes, 3% for Yahoo with 10 classes and up to
15% for DBpedia with 14 classes. We remark that
using the LM embedding surpasses word2vec and
GloVe by a large margin on DBpedia, and works
similarly to others in other cases.

When supervised data is available for few-shot
fine-tuning, we observe a convergent trend for the
three embeddings. As the amount of data increases,
the difference in performance of models built from
different embeddings reduces. For N = 128, the
variation due to embedding space of MaVEN is
less than 0.5% The role of the embedding space is
minimized with the quantity of supervised data.

Table 4 presents the neighborhood of 15 near-
est tokens provided by three embedding spaces for
two example core words “sports” and “science”.
For the LM embeddings, most extracted neigh-
bor tokens are spelling variants (e.g. “Sport” vs
“Sports”), case-intensitive variants (e.g. “_Sports”
vs “_sports”) or morphological variants (e.g.
“_sports” vs “_sport”) of the given core words.
In some other cases, the neighborhood also in-
cludes tokens deriving from the same origin (e.g.
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“science”, “scientific” and “scientist””). This phe-
nomenon is observed partly in GloVe and even
less in word2vec. Tokens extracted from GloVe
space are semantically related to the core words,
providing global coverage of the topic of the consid-
ered class. Meanwhile, some tokens extracted by
word2vec are rare combinations of words, proper
nouns, etc., that are less meaningful to the consid-
ered class. This could be a potential explanation for
the poor performance of word2vec in many cases
in figure 2.

5 Conclusion

In this paper, we propose MaVEN, a novel method
to extend the manual verbalizer that is effective for
few-shot learning via prompt-based fine-tuning of
PLMs. By leveraging the neighborhood relation-
ship in the embedding space of PLMs, MaVEN
was able to identify words related to the topic ti-
tle to construct verbalizers without the need for
data or external knowledge. Experiments show
that MaVEN outperforms other constructions of
verbalizer for extremely few-shot contexts.



6 Limitations

As an extension of the manual verbalizer, MaVEN
requires some initial core words that contain the
semantics meaning of the class. Our method, there-
fore is not applicable if class names are not mean-
ingful description of the classes.

The formulation and construction of verbalizers
studied in this work focus on masked LMs, which
are exploited only in encoder mode. Meanwhile,
recent released PLMs (GPT Brown et al., 2020,
LLaMA Touvron et al., 2023, Falcon Almazrouei
et al., 2023, etc.) are auto-regressive models that
are more powerful on a variety of benchmarks.
This leaves the potential to adapt these verbalizer
constructions for generative fine-tuning, to exploit
these models in decode mode, with the intention
to exploit fully the rich knowledge incorporated in
these large LMs.

Our work includes datasets and verbalizers in En-
glish and French only. It is not sure how well our
conclusions generalize to other languages. Other
works may need to be carried out in other lan-
guages, or more research on verbalizers with multi-
lingual models can be explored.
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A Hyperparameters

For simplicity, most choices of hyperparameters
are based on existing works and practical consid-
erations. However, these choices could have been
done using the validation set.

"The learning rate increases linearly from 0 to its maximal
value for the first 10% steps, then decreases linearly to 0.
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Parameter Value
Optimizer AdamW
Learning rate’ 1x107°
Training epochs 10
Batch size 4
Weight decay 0.01
51 0.9
Bo 0.999
Gradient accumulation 1

Table 5: Hyperparameters for fine-tuning.

B Manual Verbalizers

Here, we specify the label words used for the man-
ual verbalizers of each dataset in table 6 and table 7.

C Preliminary experiments on FrN

0 labeled examples 64 labeled examples

0.93

0.92
0.91
0.90

0.89
0.88
0.87

Figure 3: Study of different sizes for the manual verbal-
izer on the FrN dataset. title means using words in
class names as label words.

We examine the FrN dataset in zero-shot and
in few-shot context with N = 64, with the man-
ual verbalizer provided by our collaborators of 15
words per class. By retaining the £ most important
words (see table 7), we observe the influence of the
number of label words. Figure 3 shows a clear im-
provement from 5 label words for zero-shot and 10
for few-shot. Moreover, few-shot models are more
stable with more label words. This correlation is
highly dependent on the ordering of importance
of v(y), therefore on human decision. However,
the observation motivates us to inspect this phe-
nomenon for an automatic search algorithm, such
as PETAL or MaVEN.

D Effect of Verbalizer Size £ on
Automatic Verbalizers

Figure 4 illustrates the performance of the auto-
matic verbalizer while varying the number k for
label word searching. In general, increasing k pro-
duces more efficient verbalizers and raises the ac-
curacy for limited data, where the effect is more
visible for small V. This finding is different from


https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/D19-1404
https://doi.org/10.18653/v1/D19-1404
https://doi.org/10.18653/v1/D19-1404
https://doi.org/10.18653/v1/D19-1404
https://doi.org/10.18653/v1/D19-1404
https://doi.org/10.18653/v1/2023.findings-acl.706
https://doi.org/10.18653/v1/2023.findings-acl.706
https://doi.org/10.18653/v1/2023.findings-acl.706
https://doi.org/10.18653/v1/2023.findings-acl.706
https://doi.org/10.18653/v1/2023.findings-acl.706
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://doi.org/10.18653/v1/2023.acl-long.869
https://doi.org/10.18653/v1/2023.acl-long.869
https://doi.org/10.18653/v1/2023.acl-long.869
https://doi.org/10.18653/v1/2022.acl-long.38
https://doi.org/10.18653/v1/2022.acl-long.38
https://doi.org/10.18653/v1/2022.acl-long.38
https://aclanthology.org/2021.ccl-1.108
https://aclanthology.org/2021.ccl-1.108
https://aclanthology.org/2021.ccl-1.108
https://aclanthology.org/2021.ccl-1.108
https://aclanthology.org/2021.ccl-1.108

the conclusion in (Schick et al., 2020) that the &
has no impact on the global accuracy. We also
remark that £ = 15 can push the automatic perfor-
mance close to the manual verbalizer, which was
not achieved with £ = 3 in the original PETAL.
It can be concluded that increasing k for the auto-
matic search can improve the ensemble models but
has little effect on the distilled model trained on
unlabeled data.

In some cases, notice that using more label
words may compensate for annotating more data as
a cheaper alternative strategy, from a pragmatic per-
spective. On AG and DBpedia, using £ = 100 for
N = 64 almost reaches the same level as N = 96.
On Yahoo, using k = 50 for N = 32 achieves a
similar result as k = 3 for N = 64.

Dataset & Classes Label words

AG

World world, politics
Sports sports

Business business

Sci/Tech science, technology
DBpedia

Company company

Educationallnstitution
Artist

educational, institution
artist

Athlete athlete, sport
OfficeHolder office
MeanOfTransportation  transportaion
Building building
NaturalPlace natural, place
Village village
Animal animal

Plant plant

Album album

Film film
WrittenWork written, work
Yahoo

Society & Culture
Science & Mathematics
Health

Education & Reference
Computers & Internet
Sports

Business & Finance
Entertainment & Music
Family & Relationships
Politics & Government

society, culture,
science, mathematics
health

education, reference
computers, internet
sports

business, finance
entertainment, music
family, relationships
politics, government

MLSUM Fr
Economie
Opinion
Politique
Societe
Culture
Sport
Environement
Technologie
Education
Justice

économie
opinion
politique
société
culture

sport
environement
technologie
éducation
justice

Table 6: Manual verbalizers of AG, DBPedia, Yahoo,

and MLSUM Fr.



Class

Label words

AERONAUTIQUE-
ARMEMENT
AGRO-
ALIMENTAIRE
AUTOMOBILE

DISTRIBUTION-
COMMERCE

ELECTRICITE

FINANCE
PETROLE-GAZ
PIM
TOURISME-
HOTELLERIE-

RESTAURATION
TRANSPORT

aéronautique, armement, flotte, rafale, marine, spatiale, pilote, défense, fusil,
satellites, combat, missiles, militaire, réacteurs, hypersonique
agroalimentaire, agriculture, agricole, FAO, viticulture, sécheresse, planta-
tion, biodiversité, alimentation, rurale, récolte, bio, terroir, paysanne, céréaliers
automobile, auto, carrosserie, voiture, motorisation, conduite, diesel, pney,
mécanique, mobilité, Volkswagen, Renault, berline, concessions, SUV
distribution, commerce, boutique, retail, vitrine, caisse, e-commerce, hy-
permarchés, ventes, distributeur, soldes, magasin, supermarchés, commercial,
dropshipping

électricité, energie, energy, éolienne, energetique, photovoltaique, nucléaire,
gaz, carbone, combustion, solaire, électronique, generation, centrailes, hy-
drogene

finance, banque, bancaire, monétaire, bce, solvabilité, liquidité, bale, financiere,
dette, holding, investisseur, investissement, capital, préts

pétrole, gaz, energie, pétroliere, combustion, géo, forage, réserves, pipeline,
oléoduc, gazoduc, rafinerie, liquefié, gisement, bitumeux

PIM, immobilier, fonciere, gestion, biens, proprieté, location, promotion,
projets, permis, programmes, promoteurs, immeubles, chantiers, aménageurs
tourisme, hotellerie, restauration, hotel, restaurant, vacances, vacanciers,
séjour, auberges, camping, attraction, touristique, parc, croisiéristes, réserva-
tions

transport, avion, bateaux, ferroviaire, douane, circulation, passagers, aérien,
terrestre, maritime, conteneurs, navires, cargos, aéroport, fret

Table 7: Manual verbalizer of FrN, provided by our private company collaborator. Bold words indicates in title

figure 3.

13



AG, N =32

0.88
0.86 0"/:-=§3::
0.84 :/

v
0.82

1 35 15 3050 100

k
Yahoo, N =32

0.6

0.5 T /s_ﬁ{é@\s

0.4 °
0.3
1 3 5 15 30 50 100
k
DBpedia, N =32

0.95

0.90

0.85

0.80 p———

]
0.75 /‘
[ }

0.70

k

15 30 50 100

AG, N =64
U
’.‘v
® !‘g%s
o\:/'
1 35 15 3050 100
k
Yahoo, N =64
=t e—
1 3 5 15 30 50 100
k
DBpedia, N =64
=t
9/
o
1 3 5 15 30 50 100
k

1 3 5 15 3050 100

k

Yahoo, N =128

1 3 5 15 30 50 100
k

DBpedia, N =96

{(

o/-

1 3 5 15 30 50 100

k

Figure 4: Accuracy of automatic verbalizers by number of label words, on three datasets for N € {0, 64}. Dashed

colored dashed lines represent templates 7" :

vote, proba, logit.
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