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Abstract

With the emerging and continuous develop-001
ment of pre-trained language models, prompt-002
based training has become a well-adopted003
paradigm that drastically improves the exploita-004
tion of models for many NLP tasks. Prompt-005
ing also shows great performance compared to006
traditional fine-tuning when adapted to zero-007
shot or few-shot scenarios where the number008
of annotated data is limited. In this frame-009
work, verbalizers play an important role in010
interpreting masked word distributions pro-011
duced by language models into output pre-012
dictions. In this work, we propose MaVEN,013
a new approach for verbalizer construction014
by enrichment of class labels using neigh-015
borhood relation in the embedding space of016
words. In addition, we elaborate a bench-017
marking procedure to evaluate typical base-018
lines of verbalizers for document classifica-019
tion in few-shot learning contexts. Our model020
achieves state-of-the-art results while using sig-021
nificantly fewer resources. We show that our022
approach is particularly effective in cases with023
extremely limited supervision data. Our code024
is available at https://anonymous.4open.025
science/r/verbalizer_benchmark-66E6.026

1 Introduction027

Fine-tuning PLM (Devlin et al., 2019a; Zhuang028

et al., 2021; Brown et al., 2020) resulted in large029

improvements in various NLP tasks. Classic ap-030

proaches replace the PLM’s output layer with a031

task-specific head and fine-tune the entire model032

(Devlin et al., 2019a; Liu et al., 2019; Raffel et al.,033

2020). However, additional classification layers034

import a great amount of randomly initialized pa-035

rameters that need a sufficient amount of labeled036

data to be trained. Classical fine-tuning, therefore037

becomes inapplicable for few-shot or zero-shot sce-038

narios (Yin et al., 2019; Zhang et al., 2023).039

Motivated by GPT-3 (Brown et al., 2020),040

prompting has become a novel paradigm where041

downstream tasks are transformed to suit the pre- 042

training objective. Prompt-based fine-tuning al- 043

lows to exploit PLMs’ knowledge while reduc- 044

ing the gap between pre-training and fine-tuning 045

(Petroni et al., 2019; Chen et al., 2022). In this 046

framework, templates and verbalizers (Schick and 047

Schütze, 2021a; Gao et al., 2021) are crucial el- 048

ements to map between task-specific inputs and 049

labels, to textual data for the LM. The roles of tem- 050

plates and verbalizers are described as follows. For 051

example, we are given a piece of text: 052

x = “Dollar rises against euro...” 053

and the task is to predict if this text belongs to 054

which class among politics, sports, science, or eco- 055

nomics. A template T first transforms the given 056

text into a cloze-question. For instance, one may 057

choose for this task 058

T (x) = “___ news: Dollar rises against euro...” 059

The task now changes from predicting a label with- 060

out textual meaning to identifying whether the most 061

probable choice for the masked position ___ is 062

“politics”, “sports”, “science” or “economics“. This 063

task, namely masked language modeling aligns 064

coherently with the pre-training of a variety of 065

masked LMs, notebly BERT (Devlin et al., 2019b), 066

RoBERTa (Zhuang et al., 2021). 067

A masked LM takes the wrapped text, marks the 068

missing position with its MASK token, and produces 069

probabilities for the masked token over the vocab- 070

ulary. Ideally in this case, one would expect that 071

the probability of the word “economics” is higher 072

than that of “sports”. In particular, this straightfor- 073

ward approach maps each class to a single word, 074

its textual name. In general, a verbalizer refers to 075

this mapping from the label space to the vocabu- 076

lary space, where each label is mapped to multiple 077

vocabulary tokens. 078

In many cases, verbalizers are defined manu- 079

ally using human knowledge of the downstream 080
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task, to choose words that semantically represent081

the meaning of class labels (Schick and Schütze,082

2021a,b; Gao et al., 2021). There are also other083

constructions of verbalizers such as soft verbalizers084

(Hambardzumyan et al., 2021; Cui et al., 2022).085

Algorithms for automatic label word searching ex-086

ist in the literature. One such example is PETAL087

(Schick et al., 2020), where label words are mined088

based on their likelihood on supervised data. We089

remark that the procedure presented in (Schick and090

Schütze, 2021a; Schick et al., 2020) includes semi-091

supervised learning and therefore additional unla-092

beled data. One another example is KPT (Hu et al.,093

2022) where an external knowledge base such as094

WordNet (Miller, 1994) and ConceptNet (Speer095

and Havasi, 2012) are used to expand label words096

from the class name. Our motivation in this work is097

to propose a method to enrich the manual verbalizer098

without resorting to external resources.099

Our contribution in this paper is summarized as100

follows:101

(i) We propose MaVEN, a new method to en-102

rich the manual verbalizer by neighbors in103

the embedding space. Our method achieves104

improved performance over previous work,105

particularly with an extremely limited amount106

of data.107

(ii) We systematically compare MaVEN to man-108

ual, soft, and automatic verbalizers for the109

text classification task, on three English pub-110

lic datasets previously studied in the literature.111

We also present new results on two French112

datasets.113

2 Related Work114

Prompt-based fine-tuning In this framework,115

the input is wrapped with a task-specific template116

to reformulate the classification task as language117

modeling as described in section 1. The verbal-118

izer then transforms the distribution of the MASK119

token into label prediction (see section 3 for for-120

mal definitions). The choice of textual templates121

and verbalizer, have a significant influence on the122

classification performance (Gao et al., 2021).123

PET and iPET (Schick and Schütze, 2021a,b)124

use task-specific manual templates and verbaliz-125

ers that work efficiently. However, their construc-126

tion requires both domain expertise of downstream127

tasks and understanding of biases in the MASK dis-128

tribution produced by the PLMs. Otherwise, the129

search process for an optimal template and ver- 130

balizers may be computationally exhaustive with 131

a large number of classes. Meanwhile, (Lester 132

et al., 2021; Liu et al., 2022; Li and Liang, 2021) 133

propose to freeze the PLM and instead optimize 134

prompt tokens. Despite being human-independent 135

and storage-saving, continuous prompts have only 136

been studied in data-abundant scenarios, and pro- 137

duce tokens that are hard to interpret. Here, we 138

study textual templates instead and focus on the 139

search for label words for the verbalizer. 140

In section 3, we present in detail the manual, 141

soft, and automatic verbalizers as baselines for 142

comparison with our proposed method. Other than 143

these, many constructions of verbalizers exist in 144

the literature. Prototypical verbalizers (Cui et al., 145

2022) is an improved version of soft verbalizers 146

where contrastive learning helps maximize intra- 147

class similarity and minimize inter-class similarity 148

between embeddings of data instances. PTR (Han 149

et al., 2021) proposes to incorporate logic rules to 150

compose task-specific prompts with several simple 151

sub-prompts. 152

Enrichment of manual verbalizer Previous 153

works also propose methods to improve the seman- 154

tics of label words for a given manual verbalizer. 155

KPT (Hu et al., 2022) incorporates external knowl- 156

edge into the verbalizers, along with multiple steps 157

of refinement and calibration to obtain words with 158

wide coverage of given classes. Still, such knowl- 159

edge bases may not always be available. Therefore, 160

we are motivated to derive a method to improve the 161

manual verbalizer independently from additional 162

resources. On the other hand, NPPrompt (Zhao 163

et al., 2023) searches for cognates of initial manual 164

words using the embedding layer of the same PLM. 165

This approach attains greater coherence in later 166

PLM fine-tuning. However, NPPrompt is designed 167

and optimized exclusively for zero-shot learning, 168

thus our motivation to develop this idea for few- 169

shot learning by enrichment of manual verbalizers. 170

3 Methodology 171

Let M be a language model with vocabulary V . 172

Following (Schick and Schütze, 2021a,b), we de- 173

fine the template - verbalizer pair. Let (x, y) be 174

an example of the classification problem, where x 175

represents one or many sentences and y is its label 176

in the label set Y . A template T maps x into a 177

masked sequence T (x) of tokens in V ∪ {MASK}. 178

A verbalizer v : Y → P(V ) maps each label to a 179
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set of words characterizing the class (called label180

words). The probability of the label conditioned on181

the input is then modeled by the logits of its label182

words conditioned on the masked sequence:183

p(y|x) ∝ exp

 1

|v(y)|
∑

w∈v(y)

M (w|T (x))


(1)

184

Where M(w|T (x)) denotes the logit of MASK be-185

ing predicted as w by the LM conditional on the186

masked sequence T (x).187

3.1 Baseline Verbalizers188

Manual The label words can be predefined man-189

ually. It has been shown that different choices of la-190

bel words can have major importance for the model191

performance (Gao et al., 2021). In this work, the192

manual verbalizers derive directly from the names193

of classes.194

Soft WARP (Hambardzumyan et al., 2021) pro-195

poses to represent each label y by a prototype vec-196

tor vy instead of concrete words, initialized with197

static embeddings of the manual label words and198

optimized alongside the PLM, such that:199

p(y|x) ∝ exp (vy · h) (2)200

With h the embedding of the MASK token in T (x).201

Auto Among automatic methods, PETAL202

(Schick et al., 2020) allows identifying words203

suitable to represent classes from training data204

without additional data or knowledge. Consider205

the classification problem as many one-vs-rest206

binary problems to find label words for each207

class separately. For a label ȳ of support,208

Dȳ = {(x, y) ∈ Dtrain | y = ȳ}, PETAL takes the209

top k words w that maximize the likelihood ratio210

of positive examples and minimize that of negative211

examples:212
213

v(ȳ) = top−k
w

 1

|Dȳ|
∑

(x,y)∈Dȳ

ℓ (w,x)214

− 1

|Dtrain\Dȳ|
∑

(x,y)∈Dtrain\Dȳ

ℓ (w,x)

 (3)215

Where:216

ℓ(w,x) = log
pM (w|T (x))

1− pM (w|T (x))
(4)217

Without specifying differently, for comparison218

analysis, we take k = 15.219

3.2 Proposition: MaVEN 220

In this paper, we propose Manual Verbalizer 221

Enrichment by Nearest Neighbors’ Embeddings 222

(MaVEN). Noting that the probability mass that 223

the LM assigns to a specific topic conditioned on 224

the input text is dispersed over multiple label words, 225

we hypothesize that the manual verbalizer captures 226

only a part of this mass and thus is sensitive to the 227

choice of label words. Our motivation therefore is 228

to automatically extend the verbalizer to capture 229

more probability mass by including semantically 230

related words. 231

In most practical scenarios, a natural manual ver- 232

balizer can often be obtained using the names of 233

classes, as class names naturally encode the seman- 234

tic meaning of texts belonging to the class. We 235

assume that for our classification problem, let v 236

be the initial manual verbalizer. In our case, v(y) 237

includes words extracted directly from the name of 238

the class y. Let E be a word embedding function, 239

the word embedding layer of the LM for exam- 240

ple. For each core word w0 ∈ v(y), we define the 241

neighborhood of w0 as: 242

Nk(w0) = {w0} ∪ top−k
w

[s (w0, w)] (5) 243

Where s is the cosine similarity in this embedding 244

space E: 245

s(w0, w) =
E(w0)

∥E(w0)∥
· E(w)

∥E(w)∥
(6) 246

In case v(y) includes multiple words, we enlarge 247

the verbalizer v(y) as the union of neighborhoods 248

of all initial words: 249

v̂(y) =
⋃

w0∈v(y)

Nk(w0) (7) 250

The hyperparameter k represents the size of the 251

neighborhood in the embedding space around the 252

initial core words. In our experiments, without 253

specifying differently, we take k = 15. 254

The probability of the class y is aggregated over 255

its augmented verbalizer as follows: 256

p(y|x) ∝ exp

(∑
w∈v̂(y) q

y
wM(w|T (x))∑

w∈v̂(y) q
y
w

)
(8) 257

The weights qyw represent the contribution of 258

the word w ∈ Nk(w0) in the class y. Each qyw is 259

initialized by the similarity s (w,w0) of w to its 260

core word w0 and fine-tuned with the parameters 261
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of the PLM. Comparing to equation (1), observe262

that instead of averaging uniformly, we adopt a263

weighted average of the PLM scores, to quantify264

the relevance of each word in v̂(y) to the class y.265

After identifying label words, the PLMs are fine-266

tuned based on the chosen template and verbalizer,267

by minimizing the cross entropy loss between the268

predicted probabilities and the correct labels. Given269

the sensitivity of prompt-based methods in a few-270

shot context, each prompt can be more or less ef-271

fective towards eliciting knowledge from the PLM.272

The ensemble approach provides an efficient way273

to reduce instability across prompts and stronger274

classifiers (Schick and Schütze, 2021a; Jiang et al.,275

2020). In this work, we study the impact of ag-276

gregating strategy on the performance of assem-277

bled models. Following the ensemble methods,278

the logits of individual models trained on different279

templates are aggregated into the final prediction,280

following three aggregation strategies: (vote) ma-281

jority vote from individual predictions, (proba) av-282

eraging individual class probabilities, and (logit)283

averaging individual class logits. For the two latter,284

(Schick et al., 2020) shows that weighted averaging285

does not gain a clear difference. Thus, we perform286

uniform averaging.287

4 Experiments288

4.1 Settings289

Five datasets (section 4.2) are considered context290

for three baselines (section 3) and MaVEN in few-291

shot prompt-based fine-tuning. For each dataset,292

from the original training set, we sample a labeled293

set D, of cardinality N . For each run, split D294

into two equal halves: Dtrain is used for fine-tuning295

with the template - verbalizer pair and Dvalid for296

validation (Zheng et al., 2022). The best checkpoint297

is retained from the score obtained on the validation298

set. Details of hyperparameters can be found in299

appendix A.300

The underlying pre-trained language model301

(PLM) is RoBERTa-large (Liu et al., 2019) as302

in (Schick et al., 2020) for datasets in English,303

or CamemBERT-large (Martin et al., 2020) for304

datasets in French. We report the average and stan-305

dard deviation of accuracy from 3 repetitions with306

different samplings of D, to evaluate the result vari-307

ation with different training data instances. This308

setup allows us to achieve a robust and global eval-309

uation of learning algorithms.310

Our implementation is based on the toolkit Open-311

Prompt (Ding et al., 2022) and the Transformers 312

package (Wolf et al., 2020). Experiments are exe- 313

cuted on two types of GPUs: NVIDIA Tesla V100 314

and NVIDIA Quadro RTX 5000. 315

4.2 Datasets and templates 316

Our experiments are done on three public English 317

datasets and two datasets in French. For each 318

dataset, four textual templates are created, noted 319

T0, T1, T2 and T3. A summary of these datasets 320

can be found in table 1. The manual verbalizers for 321

each dataset can be found in appendix B. 322

Dataset Classes Test set Balanced
AG 4 7600 ✓

DBpedia 14 75000 ✓

Yahoo 10 60000 ✓

FrN 10 536 ✗

MLSUM Fr 10 10585 ✗

Table 1: Dataset details.

AG AG’s News (Zhang et al., 2015) is a news 323

classification dataset. Given a headline x , a news 324

need to be classified into one of 4 categories. We 325

define for this dataset: 326

T0(x) = MASK news: x 327

T1(x) = x This topic is about MASK. 328

T2(x) = [Category: MASK] x 329

T3(x) = [Topic: MASK] x 330

DBpedia The DBpedia ontology classification 331

dataset (Zhang et al., 2015) is constructed by pick- 332

ing 14 non-overlapping classes from DBpedia 2014. 333

Each of these 14 ontology classes contains 40,000 334

training samples and 5,000 testing samples. Given 335

a title x1 and its description x2, the task is to pre- 336

dict the category of the object in the title. 337

T0(x) = x1x2 In this sentence, x1 is MASK. 338

T1(x) = x1x2 x1 is MASK. 339

T2(x) = x1x2 The category of x1 is MASK. 340

T3(x) = x1x2 The type of x1 is MASK. 341

Yahoo Yahoo! Answers (Zhang et al., 2015) is a 342

text classification dataset of questions from Yahoo!. 343

Given a question (title and content) and its answer, 344

one of ten possible categories has to be assigned. 345

For a concatenation x of the question title, question 346
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N Verbalizer AG DBpedia Yahoo FrN MLSUM Fr Average
0 Majority 25.00 7.14 10.00 16.79 22.80 16.36

Manual 72.14 73.17 58.91 69.40 51.45 65.01
Soft 71.89 54.57 52.34 64.74 51.71 59.05
MaVEN 72.75 74.77 56.34 62.69 54.52 64.21

32 Manual 83.96 ± 2.11 91.68 ± 1.58 61.84 ± 1.17 81.16 ± 3.08 58.42 ± 6.44 75.41
Soft 81.82 ± 3.30 85.95 ± 1.12 50.76 ± 2.84 74.63 ± 5.54 60.53 ± 4.86 70.74
Auto 86.44 ± 1.89 79.24 ± 7.98 50.08 ± 4.39 73.63 ± 1.35 56.38 ± 2.82 69.15
MaVEN 83.97 ± 2.70 94.01 ± 1.08 61.58 ± 3.46 91.11 ± 1.68 60.81 ± 1.93 78.30

64 Manual 88.14 ± 0.07 96.75 ± 0.33 65.29 ± 0.98 90.17 ± 2.18 65.79 ± 2.69 81.23
Soft 87.37 ± 0.45 94.62 ± 2.06 64.64 ± 1.10 84.20 ± 0.88 65.73 ± 2.68 79.31
Auto 88.00 ± 0.46 92.01 ± 2.92 56.73 ± 5.05 86.38 ± 3.64 67.17 ± 4.32 78.06
MaVEN 87.57 ± 0.88 97.57 ± 0.29 66.17 ± 1.50 90.49 ± 3.00 65.88 ± 3.76 81.54

128 Manual 88.43 ± 0.33 96.66 ± 1.14 66.71 ± 0.61 94.28 ± 1.32 69.13 ± 0.89 83.04
Soft 87.32 ± 0.56 96.56 ± 2.00 65.93 ± 0.86 93.47 ± 2.44 68.29 ± 0.84 82.31
Auto 88.86 ± 0.10 95.75 ± 1.87 67.42 ± 0.36 93.47 ± 0.56 71.28 ± 2.46 83.36
MaVEN 88.65 ± 0.57 97.85 ± 0.10 69.18 ± 0.66 93.28 ± 0.67 68.22 ± 1.43 83.44

256 Manual 88.95 ± 0.46 98.24 ± 0.14 70.63 ± 0.50 93.84 ± 0.81 71.56 ± 1.54 84.64
Soft 88.51 ± 0.32 98.27 ± 0.17 69.81 ± 0.76 93.66 ± 1.04 70.06 ± 1.09 84.06
Auto 89.64 ± 0.58 98.23 ± 0.28 70.36 ± 1.03 93.16 ± 0.60 71.65 ± 2.37 84.61
MaVEN 89.28 ± 0.55 98.05 ± 0.15 70.29 ± 0.47 95.46 ± 0.60 70.59 ± 1.21 84.73

Table 2: Accuracy of MaVEN compared to other verbalizers. The ensembling strategy is logit averaging. Bold are
the best baselines. The last columns is the average accuracy over five datasets. Our proposed MaVEN achieves
significant performance gain compared to others for N ∈ {32, 64} and best average performance for few-shot
scenarios.

content and the answer, we define:347

T0(x) = MASK question: x.348

T1(x) = x This topic is about MASK.349

T2(x) = [Topic: MASK] x.350

T3(x) = [Category: MASK] x.351

MLSUM Fr Originated from MultiLingual352

SUMmarization dataset (Scialom et al., 2020), a353

large-scale dataset obtained from online newspa-354

pers. From this dataset, the French split is prepro-355

cessed and annotated for the task of topic classifi-356

cation by label grouping, by associating the topic357

tag of each document to one of ten categories1.358

FrN This real-world private dataset in French is359

provided by our collaborator in a private company,360

consisting of press articles. The dataset contains361

over 5 million articles with silver multi-label an-362

notated among 28 sectors by the data aggregator363

Factiva2. Our collaborators have manually anno-364

tated 1,364 articles, of which 1,048 articles belong-365

1We follow the grouping procedure presented by
reciTAL teams at https://huggingface.co/lincoln/
flaubert-mlsum-topic-classification.

2https://www.dowjones.com/professional/
factiva/

ing to the 10 most frequent sectors are used for 366

experiments in this paper. 367

For these two last datasets, let x be the concate- 368

nation of the title, the summary, and the body text, 369

we define: 370

T0(x) = Nouvelle MASK: x 371

T1(x) = Actualité MASK: x 372

T2(x) = MASK: x 373

T3(x) = [Catégorie: MASK] x 374

4.3 Main Results 375

Table 2 shows the result over five datasets and three 376

baselines, for different quantity of data N . 377

For zero-shot learning where no data is avail- 378

able, we observe that MaVEN achieves similar 379

performance to the manual verbalizers, with the 380

exception of FrN. 381

For extremely low-data settings, such as N ∈ 382

{32, 64}, we observe a clear superiority of MaVEN. 383

Compared to the manual verbalizer, MaVEN 384

achieves an improvement of 2.3% on DBpedia, 385

10.0% on FrN, and 2.4% on MLSUM Fr for N = 386

32. In other cases for N ∈ {32, 64}, MaVEN ranks 387

as either the best or the second best among all ver- 388

balizers. For larger values of N , the gap between 389
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Figure 1: Accuracy of MaVEN by number of label words, on three datasets for N ∈ {0, 64}. Dashed colored lines
represent templates T : 0, 1, 2, 3. Solid colored lines each represent the ensemble methods: vote, proba, logit.

MaVEN manual verbalizer declines. As more and390

more training data is provided, the LM learns to391

attribute the probability mass of a certain class only392

to the core word and thus, neighbor words become393

less useful for prediction.394

In summary, MaVEN consistently achieves the395

highest average score across five datasets all few-396

shot learning contexts. It shows an improvement397

of 2.9% in average over the manual verbalizer for398

N = 32. For the zero-shot case, it slightly under-399

performs the manual verbalizer.400

The automatic verbalizer performs poorly for401

cases with extremely low data amounts, such as402

N . With N increasing, the automatic verbalizer403

can perform similarly, if not exceed, the manual404

verbalizer for all datasets (with N ≥ 32 for AG405

and N ≥ 128 for others). The main reason for this406

evolution is that automatic label word searching407

needs supervised training data to mine for label408

words. With very few labeled data, the choice409

of label words based on the evaluation of word410

probabilities may result in errors. Notably, on AG411

and MLSUM Fr, the automatic verbalizer exceeds412

the manual verbalizer and MaVEN, which suggests413

that initial words given by the manual verbalizer414

of these datasets are biased and less accurate than415

words extracted from the data, at least from the416

point of view of the LM.417

N Method AG Yahoo
0 PET 69.5 44.0

Manual 72.14 58.91
MaVEN 72.75 57.43

50 PET 86.3 66.2
Manual 87.26 ± 0.82 66.25 ± 0.37
PETAL 84.2 62.9
Auto 87.54 ± 0.90 65.89 ± 1.15
MaVEN 86.35 ± 1.01 66.59 ± 0.78

1000 PET 86.9 72.7
Manual 90.96 ± 0.37 73.07 ± 0.47
MaVEN 91.08 ± 0.22 74.99 ± 0.28

Table 3: Comparaison of ours verbalizers to extracted
results of PET (manual + unlabeled data + distillation)
and PETAL (auto + unlabeled data + distillation).

4.4 Comparison to PET and PETAL 418

Table 3 compares our implementation of the man- 419

ual and automatic verbalizer to PET (Schick and 420

Schütze, 2021a) and PETAL (Schick et al., 2020). 421

Note that in addition to prompting and ensemble 422

models, PET and PETAL further introduce self- 423

training with a large amount of unsupervised data 424

(up to 20,000), as a way of knowledge distillation 425

from ensembles to sequence classifiers. Here we 426

omit these elements from the pipeline and instead 427

use part of D for early stopping3. Since we could 428

not find details on the unlabeled data used for PET 429

and PETAL, we extract results shown in (Schick 430

3For N = 1000, we split |Dtrain| = 900, |Dvalid| = 100
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Figure 2: MaVEN accuracy using different embedding spaces (LM, word2vec, GloVe) with varying data amount N .

and Schütze, 2021a; Schick et al., 2020), and only431

make the comparison for AG and Yahoo. The re-432

sults show that our implementation allows achiev-433

ing a competitive level of performance while using434

significantly less data.435

We hypothesize that the improvement of our436

manual to PET arises from the usage of a part of437

supervised data for early stopping. Furthermore, in438

the case of our auto versus PETAL, we also use a439

larger value of k and experimentally show that this440

helps raise the accuracy of automatic verbalizers441

(see section 4.5 and appendix D). Overall, table 3442

shows that MaVEN achieves similar or better per-443

formance than manual and automatic verbalizers444

(including PET, PETAL, and our implementation).445

4.5 Impact of the Neighborhood Size k446

Motivated by remarks in appendix C, in this section,447

we inspect the impact of the parameter k for the448

automatic verbalizer and our MaVEN.449

Figure 1 shows the dependence of prediction450

accuracy on k of both individual models and as-451

sembled models. For zero-shot prediction, the per-452

formance depends significantly on k, fluctuating453

within a range of 10% for MLSUM Fr and less than454

5% for other datasets. With the presence of super-455

vised data, fine-tuned models become more robust456

with k, where the variation is confined within a mar-457

gin of about 2% globally, and in particular around458

0.6% for DBpedia. In practice, a fixed value be-459

tween 10 and 15 guarantees a decent level of per-460

formance. We also observe that the dependence461

on k is minor compared to the dependence on the462

textual template.463

For the automatic verbalizers, our analysis in464

appendix D shows that larger k produce stronger465

verbalizers and raises the accuracy, which contra-466

dicts the conclusion in (Schick et al., 2020) that467

negates the impact of k. In some cases, using more468

label words compensates for annotating more data.469

4.6 Effectiveness of Ensemble Models 470

We compare results using individual templates and 471

by assembling the following three methods in fig- 472

ure 1. As observed in most cases, assembled mod- 473

els produce more accurate predictions, even bet- 474

ter than the most efficient template. Ensembles 475

also enhance stability and ease the dependence on 476

prompt selection, usually done by large validation 477

sets (Perez et al., 2021), particularly when different 478

templates perform significantly differently. One 479

other significant advantage is that ensemble mod- 480

els tend to be less sensitive to the variation of the 481

neighborhood size k, as discussed in section 4.5. 482

Comparing the three ensemble methods, voting 483

performs worse than probability and logit averag- 484

ing in general, but the difference is negligible com- 485

pared to the gain between assembling and individ- 486

ual templates. 487

4.7 Effect of the Embedding Space E 488

In this section, we analyze the importance of the 489

embedding space E in MaVEN. The embedding 490

space intervenes in two major manners: the choice 491

of the neighborhood Nk(w0) and the initializa- 492

tion of weights qyw via s(w0, w) (section 3). The 493

vanilla MaVEN utilizes the same embedding layer 494

as the token embedding layer of the fine-tuned LM 495

(RoBERTa-large to be precise). Figure 2 demon- 496

strates the performance of MaVEN using different 497

embedding spaces: LM’s embedding layer, Google 498

word2vec5 (Mikolov et al., 2013b,a) and GloVe6 499

pre-trained on Wikipedia and Gigaword (Penning- 500

ton et al., 2014). 501

In zero-shot context, we observe a significant 502

difference in model performance for the three em- 503

beddings. We remark that the range of variation is 504

positively correlated to the number of classes for 505

5https://code.google.com/archive/p/word2vec/
6https://nlp.stanford.edu/projects/glove/
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Embedding LM4 word2vec GloVe
sports _Sports 0.7727 sport 0.6915 sport 0.7274

_sport 0.7537 sporting 0.6360 sporting 0.5801
_sporting 0.6824 Sports 0.6295 basketball 0.5788
_athletics 0.6536 DeVillers_reports 0.6123 soccer 0.5734
_sports 0.6527 athletics 0.6093 baseball 0.5572
Sports 0.6479 football 0.5927 football 0.5556
Sport 0.6198 sporting_events 0.5816 espn 0.5110
_athletic 0.6132 soccer 0.5805 athletics 0.5071
_athletes 0.6090 al_Sunaidy 0.5768 athletic 0.5070
_SPORTS 0.6086 baseball 0.5658 entertainment 0.5062
_football 0.6076 limited edition_MGTF 0.5636 hockey 0.4972
_soccer 0.5956 OSAA_oversees 0.5610 news 0.4953
_basketball 0.5938 motorsports 0.5515 athletes 0.4897
_tennis 0.5873 athletic 0.5434 golf 0.4781
_baseball 0.5846 writers_Jim_Vertuno 0.5395 tennis 0.4762

science _Science 0.8053 faith_Jezierski 0.6965 sciences 0.6844
_scientific 0.7044 sciences 0.6821 physics 0.6518
_sciences 0.7001 biology 0.6776 scientific 0.6487
science 0.6901 scientific 0.6535 biology 0.6283
_scientists 0.6895 mathematics 0.6301 mathematics 0.6216
_scientist 0.6889 Hilal_Khashan_professor 0.6153 research 0.6128
_physics 0.6700 impeach_USADA 0.6149 technology 0.6056
Science 0.6638 professor_Kent_Redfield 0.6144 fiction 0.5882
_biology 0.6482 physics_astronomy 0.6105 professor 0.5873
_neuroscience 0.6223 bionic_prosthetic_fingers 0.6083 chemistry 0.5856
_astronomy 0.6094 professor_Burdett_Loomis 0.6065 university 0.5850
_mathematics 0.5957 Board_BONU_specialty 0.6063 engineering 0.5757
_scientifically 0.5897 Science 0.6052 psychology 0.5684
_Sciences 0.5796 portal_EurekAlert 0.5958 institute 0.5678
_chemistry 0.5720 Shlomo_Avineri_professor 0.5942 literature 0.5656

Table 4: 15 nearest neighbors of “sports” and “science” constructed from three word embeddings: LM, word2vec,
and GLoVe, with their respective similarities to the corresponding core words.

the considered problem. For example, the magni-506

tude of this range of variation is 1% for AG with507

4 classes, 3% for Yahoo with 10 classes and up to508

15% for DBpedia with 14 classes. We remark that509

using the LM embedding surpasses word2vec and510

GloVe by a large margin on DBpedia, and works511

similarly to others in other cases.512

When supervised data is available for few-shot513

fine-tuning, we observe a convergent trend for the514

three embeddings. As the amount of data increases,515

the difference in performance of models built from516

different embeddings reduces. For N = 128, the517

variation due to embedding space of MaVEN is518

less than 0.5% The role of the embedding space is519

minimized with the quantity of supervised data.520

Table 4 presents the neighborhood of 15 near-521

est tokens provided by three embedding spaces for522

two example core words “sports” and “science”.523

For the LM embeddings, most extracted neigh-524

bor tokens are spelling variants (e.g. “Sport” vs525

“Sports”), case-intensitive variants (e.g. “_Sports”526

vs “_sports”) or morphological variants (e.g.527

“_sports” vs “_sport”) of the given core words.528

In some other cases, the neighborhood also in-529

cludes tokens deriving from the same origin (e.g.530

“science”, “scientific” and “scientist”). This phe- 531

nomenon is observed partly in GloVe and even 532

less in word2vec. Tokens extracted from GloVe 533

space are semantically related to the core words, 534

providing global coverage of the topic of the consid- 535

ered class. Meanwhile, some tokens extracted by 536

word2vec are rare combinations of words, proper 537

nouns, etc., that are less meaningful to the consid- 538

ered class. This could be a potential explanation for 539

the poor performance of word2vec in many cases 540

in figure 2. 541

5 Conclusion 542

In this paper, we propose MaVEN, a novel method 543

to extend the manual verbalizer that is effective for 544

few-shot learning via prompt-based fine-tuning of 545

PLMs. By leveraging the neighborhood relation- 546

ship in the embedding space of PLMs, MaVEN 547

was able to identify words related to the topic ti- 548

tle to construct verbalizers without the need for 549

data or external knowledge. Experiments show 550

that MaVEN outperforms other constructions of 551

verbalizer for extremely few-shot contexts. 552

8



6 Limitations553

As an extension of the manual verbalizer, MaVEN554

requires some initial core words that contain the555

semantics meaning of the class. Our method, there-556

fore is not applicable if class names are not mean-557

ingful description of the classes.558

The formulation and construction of verbalizers559

studied in this work focus on masked LMs, which560

are exploited only in encoder mode. Meanwhile,561

recent released PLMs (GPT Brown et al., 2020,562

LLaMA Touvron et al., 2023, Falcon Almazrouei563

et al., 2023, etc.) are auto-regressive models that564

are more powerful on a variety of benchmarks.565

This leaves the potential to adapt these verbalizer566

constructions for generative fine-tuning, to exploit567

these models in decode mode, with the intention568

to exploit fully the rich knowledge incorporated in569

these large LMs.570

Our work includes datasets and verbalizers in En-571

glish and French only. It is not sure how well our572

conclusions generalize to other languages. Other573

works may need to be carried out in other lan-574

guages, or more research on verbalizers with multi-575

lingual models can be explored.576
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A Hyperparameters822

For simplicity, most choices of hyperparameters823

are based on existing works and practical consid-824

erations. However, these choices could have been825

done using the validation set.826

7The learning rate increases linearly from 0 to its maximal
value for the first 10% steps, then decreases linearly to 0.

Parameter Value
Optimizer AdamW
Learning rate7 1× 10−5

Training epochs 10
Batch size 4
Weight decay 0.01
β1 0.9
β2 0.999
Gradient accumulation 1

Table 5: Hyperparameters for fine-tuning.

B Manual Verbalizers 827

Here, we specify the label words used for the man- 828

ual verbalizers of each dataset in table 6 and table 7. 829

C Preliminary experiments on FrN 830

Figure 3: Study of different sizes for the manual verbal-
izer on the FrN dataset. title means using words in
class names as label words.

We examine the FrN dataset in zero-shot and 831

in few-shot context with N = 64, with the man- 832

ual verbalizer provided by our collaborators of 15 833

words per class. By retaining the k most important 834

words (see table 7), we observe the influence of the 835

number of label words. Figure 3 shows a clear im- 836

provement from 5 label words for zero-shot and 10 837

for few-shot. Moreover, few-shot models are more 838

stable with more label words. This correlation is 839

highly dependent on the ordering of importance 840

of v(y), therefore on human decision. However, 841

the observation motivates us to inspect this phe- 842

nomenon for an automatic search algorithm, such 843

as PETAL or MaVEN. 844

D Effect of Verbalizer Size k on 845

Automatic Verbalizers 846

Figure 4 illustrates the performance of the auto- 847

matic verbalizer while varying the number k for 848

label word searching. In general, increasing k pro- 849

duces more efficient verbalizers and raises the ac- 850

curacy for limited data, where the effect is more 851

visible for small N . This finding is different from 852
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the conclusion in (Schick et al., 2020) that the k853

has no impact on the global accuracy. We also854

remark that k = 15 can push the automatic perfor-855

mance close to the manual verbalizer, which was856

not achieved with k = 3 in the original PETAL.857

It can be concluded that increasing k for the auto-858

matic search can improve the ensemble models but859

has little effect on the distilled model trained on860

unlabeled data.861

In some cases, notice that using more label862

words may compensate for annotating more data as863

a cheaper alternative strategy, from a pragmatic per-864

spective. On AG and DBpedia, using k = 100 for865

N = 64 almost reaches the same level as N = 96.866

On Yahoo, using k = 50 for N = 32 achieves a867

similar result as k = 3 for N = 64.868

Dataset & Classes Label words
AG
World world, politics
Sports sports
Business business
Sci/Tech science, technology
DBpedia
Company company
EducationalInstitution educational, institution
Artist artist
Athlete athlete, sport
OfficeHolder office
MeanOfTransportation transportaion
Building building
NaturalPlace natural, place
Village village
Animal animal
Plant plant
Album album
Film film
WrittenWork written, work
Yahoo
Society & Culture society, culture,
Science & Mathematics science, mathematics
Health health
Education & Reference education, reference
Computers & Internet computers, internet
Sports sports
Business & Finance business, finance
Entertainment & Music entertainment, music
Family & Relationships family, relationships
Politics & Government politics, government
MLSUM Fr
Economie économie
Opinion opinion
Politique politique
Societe société
Culture culture
Sport sport
Environement environement
Technologie technologie
Education éducation
Justice justice

Table 6: Manual verbalizers of AG, DBPedia, Yahoo,
and MLSUM Fr.
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Class Label words
AERONAUTIQUE-
ARMEMENT

aéronautique, armement, flotte, rafale, marine, spatiale, pilote, défense, fusil,
satellites, combat, missiles, militaire, réacteurs, hypersonique

AGRO-
ALIMENTAIRE

agroalimentaire, agriculture, agricole, FAO, viticulture, sécheresse, planta-
tion, biodiversité, alimentation, rurale, récolte, bio, terroir, paysanne, céréaliers

AUTOMOBILE automobile, auto, carrosserie, voiture, motorisation, conduite, diesel, pney,
mécanique, mobilité, Volkswagen, Renault, berline, concessions, SUV

DISTRIBUTION-
COMMERCE

distribution, commerce, boutique, retail, vitrine, caisse, e-commerce, hy-
permarchés, ventes, distributeur, soldes, magasin, supermarchés, commercial,
dropshipping

ELECTRICITE électricité, energie, energy, éolienne, energetique, photovoltaique, nucléaire,
gaz, carbone, combustion, solaire, électronique, generation, centrailes, hy-
drogène

FINANCE finance, banque, bancaire, monétaire, bce, solvabilité, liquidité, bale, financière,
dette, holding, investisseur, investissement, capital, prêts

PETROLE-GAZ pétrole, gaz, energie, pétrolière, combustion, géo, forage, réserves, pipeline,
oléoduc, gazoduc, rafinerie, liquefié, gisement, bitumeux

PIM PIM, immobilier, foncière, gestion, biens, proprieté, location, promotion,
projets, permis, programmes, promoteurs, immeubles, chantiers, aménageurs

TOURISME-
HOTELLERIE-
RESTAURATION

tourisme, hôtellerie, restauration, hotel, restaurant, vacances, vacanciers,
séjour, auberges, camping, attraction, touristique, parc, croisiéristes, réserva-
tions

TRANSPORT transport, avion, bateaux, ferroviaire, douane, circulation, passagers, aérien,
terrestre, maritime, conteneurs, navires, cargos, aéroport, fret

Table 7: Manual verbalizer of FrN, provided by our private company collaborator. Bold words indicates in title
figure 3.
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Figure 4: Accuracy of automatic verbalizers by number of label words, on three datasets for N ∈ {0, 64}. Dashed
colored dashed lines represent templates T : 0, 1, 2, 3. Solid colored lines each represent the ensemble methods:
vote, proba, logit.
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