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Abstract
Can the relative performance of a pre-trained large
multimodal model (LMM) be predicted without
access to labels? As LMMs proliferate, it be-
comes increasingly important to develop efficient
ways to choose between them when faced with
new data or tasks. The usual approach does the
equivalent of giving the models an exam and
marking them. We opt to avoid marking and the
associated labor of determining the ground-truth
answers. Instead, we explore other signals elicited
and ascertain how well the models know their own
limits, evaluating the effectiveness of these sig-
nals at unsupervised model ranking. We evaluate
47 state-of-the-art LMMs (e.g., LLaVA) across 9
visual question answering benchmarks, analyzing
how well uncertainty-based metrics can predict
relative model performance. Our findings show
that uncertainty scores derived from softmax dis-
tributions provide a robust and consistent basis
for ranking models across various tasks. This fa-
cilitates the ranking of LMMs on unlabeled data,
providing a practical approach for selecting mod-
els for diverse target domains without requiring
manual annotation.

1. Introduction
Large multimodal models (LMMs), such as LLaVA (Liu
et al., 2024c) and InstructBLIP (Dai et al., 2023), have
demonstrated remarkable capabilities in handling a wide ar-
ray of complex multimodal tasks, proving highly adaptable
across diverse real-world applications (Liu et al., 2024a;
Dai et al., 2023; Wang et al., 2024a; Huang et al., 2024;
2025; Zheng et al., 2025). From addressing scientific chal-
lenges (Lu et al., 2022; Hiippala et al., 2021) and performing
optical character recognition (Mishra et al., 2019; Masry
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Figure 1. Overview of unsupervised ranking for LMMs. In sce-
narios where labeled data is scarce, selecting the best-performing
model can be challenging. Our approach introduces a label-free
proxy ranking score designed to reflect true performance, achiev-
ing a high correlation (ρ = 0.92) with actual metrics. This enables
unsupervised comparison of LMMs, allowing users to identify the
most suitable model without needing labeled data.

et al., 2022; Mathew et al., 2021) to identifying the spatial
position of objects (Tong et al., 2024; x.ai, 2024), LMMs
are increasingly widespread in practical settings. As LMMs
proliferate, the need for rigorous evaluation metrics that
accurately capture their capabilities and limitations has be-
come more urgent. Thus, numerous benchmarks have been
developed (Lu et al., 2022; Hiippala et al., 2021; Masry
et al., 2022; Singh et al., 2019; Mathew et al., 2021; x.ai,
2024; Yue et al., 2024), aiming to provide reliable rankings
and guide users in selecting models best suited for specific
deployment scenarios.

However, these benchmarks are based on carefully curated
datasets that can require substantial resources to develop
and label. For many users who may not have access to these
resources, assessing model performance can be challenging.
Additionally, standard evaluations are often dataset-centric,
depending on fixed, human-labeled metrics that may not
capture the full range of model capabilities necessary for
diverse applications. As LMM tasks continue to diversify
and expand, evaluating them effectively has become increas-
ingly complex, with new applications frequently needing
additional data curation and specialized capabilities.

Addressing the challenge of efficiently evaluating a set of
LMMs is important for their usability and effectiveness
in deployment. As illustrated in Figure 1, selecting the
most suitable LMM from a range of available options is
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challenging in the absence of annotations. To address this,
our work investigates label-free proxy ranking scores that
closely align with the true performance ranking, enabling
effective model comparison in label-scarce settings.

Our first finding is that the naı̈ve approach of using the
model’s performance on an existing benchmark to rank its
performance in a new target environment could be unstable.
We further report that measures of prediction uncertainty
are more effective ranking indicators. LMMs generate an-
swers in an open-ended form by producing token sequences,
with each token selected from the vocabulary based on the
probability. This enables model uncertainty to be assessed
using the logits at each token position.

To this end, we evaluate 45 different LMMs that have dif-
ferent training frameworks, e.g., LLaVA-V1.5 (Liu et al.,
2024a) and InstructBLIP (Dai et al., 2023), different visual
encoders, e.g., CLIP (Radford et al., 2021) and SigLIP (Zhai
et al., 2023), and language models, e.g., Vicuna (Team,
2023) and LLaMA (Touvron et al., 2023). We investigate
three categories of model uncertainty approaches: softmax
probabilities, self-consistency, and labeled proxy sets. We
evaluate the ranking performance on 9 widely-adopted mul-
timodal benchmarks, which span diverse domains, including
reasoning scientific questions, recognizing optical charac-
ters, and identifying objects’ spatial positions. Our main
findings are that

• the performance of models on one dataset may not
accurately reflect the ranking of the same models on a
different dataset (Section 4);

• the effectiveness of ranking methods is influenced by
task characteristics (e.g., closed-form or free-form gen-
eration), but probability-based variants are typically
quite robust and predictive (Section 5); and

• when examining correlations in model performance
across different dataset pairs, we observe that text
prompt similarity better correlates with model perfor-
mance across datasets than image feature similarity
(Section 6).

2. Related Work
Unsupervised Model Ranking. The goal of this task is to
rank and select a best performant models without the access
to the data annotations of target environments. The research
on this task can date back to Forster et al. (Forster, 2000),
and was further investigated in various tasks: (1) outlier
detection (Zhao et al., 2022; 2021); (2) image classifica-
tion (Kotary et al., 2022; Tu et al., 2024a; Zohar et al., 2024;
Baek et al., 2022; Miller et al., 2021; Shi et al., 2024a); (3)
time series anomaly detection (Ying et al., 2020); (4) multi-
variate anomaly detection in manufacturing systems (Eng-
bers & Freitag, 2024), etc.

We discuss the most relevant two lines of research as follows.
Miller et al. (2021) introduce an accuracy-on-the-line (AoL)
phenomenon where strong linear correlation between probit-
scaled in-distribution (ID) accuracy and out-of-distribution
(OOD) accuracy across a variety of ML models. This means
ID accuracy serves as a good indicator of model perfor-
mance for a target domain. Shi et al. (2024a) revisit the
established concept of lowest common ancestor (LCA) dis-
tance, which measures the hierarchical distance between
labels and predictions within a predefined class hierarchy.
By the observed linear correlation between ID LCA dis-
tance and OOD accuracy, it is viable to select a model based
LCA distance of predictions. This work differs from prior
study that we focus on ranking LMMs. This group of mod-
els makes predictions in a significantly different way from
conventional classification models, which also results in
different evaluation protocols.

Uncertainty Estimation for LLMs and LMMs. Uncer-
tainty estimation seeks to quantify an ML model’s confi-
dence in its predictions (Guo et al., 2017). Recent stud-
ies have been dedicated to exploring uncertainty estima-
tion specifically for LLMs (Kuhn et al., 2023; Malinin &
Gales, 2021; Xiao & Wang, 2021; Huang et al., 2023; Lin
et al., 2023; Kadavath et al., 2022; Azaria & Mitchell, 2023;
Gottesman & Geva, 2024). For instance, Xiao et al. (2021)
utilize ensemble methods to evaluate uncertainty in natural
language generation models. Malinin et al. (2021) simi-
larly introduce a unified approach to uncertainty estimation,
leveraging ensemble methods, for autoregressive structured
prediction tasks. To deal with the challenge of capturing “se-
mantic equivalence” in natural language, Kuhn et al. (2023)
propose semantic entropy, a method that utilizes linguistic
invariances derived from shared meanings. Additionally, in-
ternal states of LMMs can be leveraged for uncertainty quan-
tification or error detection by training a classifier (Azaria
& Mitchell, 2023; Gottesman & Geva, 2024). This paper
does not propose a new way to estimate uncertainty. Instead,
it offers the novel insight that the existing uncertainty in
LMM-generated outputs effectively reflects their relative
performance across benchmarks without manual labels.

Evaluation & Benchmarking LMMs. The rapid devel-
opment of LMMs has greatly propelled advancements in
multimodal models, showcasing significant improvements
in their perception and reasoning abilities. This shift has
rendered traditional benchmarks, which focus solely on
isolated task performance (Karpathy & Fei-Fei, 2015; An-
tol et al., 2015). Researchers have introduced new bench-
marks to evaluate LMM in a broad spectrum of multimodal
tasks (Goyal et al., 2017; Lin et al., 2014; Russakovsky
et al., 2015). Recent studies (Yue et al., 2024; x.ai, 2024;
Fu et al., 2023) highlight the need for more comprehen-
sive benchmarks to effectively evaluate the reasoning and
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(a) Correlation study on model performance between benchmarks

Optical Character Recognition Science Vision General

(b) Correlation matrix for 9 benchmarks

Figure 2. Correlation analysis of model performance across benchmarks. (a) Scatter plots illustrating the Spearman’s rank correlation
coefficients (ρ) between performance on selected benchmarks, indicating how well performance on one benchmark predicts performance
on another. Each point represents a model. The straight lines are fit with robust linear regression (Huber, 2011). (b) Heatmap of
the correlation matrix for performance across eight benchmarks, with color intensity representing the strength of correlation. Higher
correlations (closer to 1) appear in red, while weaker correlations approach blue. The varying correlation strength indicates that using
performance on one benchmark to rank LMMs in a target deployment environment may be inconsistent or unreliable.

understanding abilities of LMMs. For instance,

Several benchmarks (x.ai, 2024; Ainslie et al., 2023; Tong
et al., 2024) have been developed to assess multimodal mod-
els’ real-world spatial understanding. Lu et al. (2024) and
Zhang et al. (2024) introduce benchmarks specifically de-
signed to evaluate MLLMs’ mathematical reasoning, focus-
ing on their ability to comprehend and reason about visual
mathematical figures. Yue et al. (2024) carefully curate a di-
verse set of multi-discipline tasks that require college-level
subject knowledge and complex reasoning. Additionally, nu-
merous benchmarks (Mishra et al., 2019; Masry et al., 2022;
Mathew et al., 2021; Liu et al., 2023) assess the performance
of LMMs in optical character recognition.

3. Task Formulation
Task Definition. Let a multimodal task be represented
by a dataset T = {xi,yi}Ni=1, where xi and yi denote
the input prompt and the corresponding answer for the i-th
sample, respectively. We have access to M large multimodal
models (LMMs), denoted as {fm}Mm=1. Each LMM fm,
with pre-trained weights θm, generates a sequence of tokens
{zk}Kk=1 from the input prompt x via a decoding process:
zk = fm([x, z1, z2, . . . , zk−1] | θm), where zk represents
the k-th generated token. To assess the performance of
each LMM, this task employs an evaluation metric (e.g.,
accuracy) that determines the ground-truth performance
{gm}Mm=1 by comparing the generated sequences with the

ground-truth answers yi.

The objective of this paper is to develop methods for com-
puting a score sm for each LMM without requiring access
to task-specific data annotations. Ideally, these computed
scores should closely correlate with ground-truth perfor-
mance, allowing us to rank and select LMMs based on their
performance using only these scores.

Evaluation Metric. We use Spearman’s rank correlation
coefficient ρ (Kendall, 1948) to evaluate the monotonic
relationship between scores and model performance. Addi-
tionally, we calculate Kendall’s weighted rank correlation
τw (Shieh, 1998), which effectively highlights top-ranked
items (You et al., 2021). Both coefficients range from
[−1, 1], with values near −1 or 1 indicating strong nega-
tive or positive correlations, and 0 indicating no correlation.

4. Uncertainty for Ranking LMMs
This section discusses the unique characteristics of rank-
ing various LMMs compared to conventional ML models.
We then introduce three distinct approaches that leverage
uncertainty in model predictions for ranking.

4.1. What Makes Ranking LMMs Interesting?

Unique Challenges for Ranking LMMs. While LMMs
can be considered a subset of machine learning (ML) mod-
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els, ranking them introduces unique challenges not present
in traditional ML models. Below, we discuss the unique
characteristics of LMMs and the challenges they bring to
the model-ranking process. First, LMMs often have bil-
lions of pre-trained parameters, which presents significant
challenges for traditional “white-box” analysis for ranking
various LMMs. Second, these models are typically trained
on large datasets of instruction fine-tuning samples, which
may be proprietary data. As a result, risk assessment meth-
ods that require access to training data are either unsuitable
or should be adjusted. Additionally, although some LMMs
may disclose their final model weights, other information,
such as training loss and intermediate checkpoints, often
remains undisclosed. The lack of the access to training de-
tails limits the use of techniques in unsupervised accuracy
estimation (Deng & Zheng, 2021; Tu et al., 2023).

Does Accuracy-on-the-Line (AoL) Suffice? Given these
challenges, one may consider leveraging the AoL phe-
nomenon (Miller et al., 2021) as a potential method for
ranking LMMs. AoL refers to the strong linear correlation
between probit-scaled in-distribution (ID) accuracy and out-
of-distribution (OOD) accuracy across various ML models.
This suggests that ID accuracy could serve as a reliable pre-
dictor of OOD performance, making AoL suitable for select-
ing LMMs in target testing environments. However, there
are several reasons why this is not the case. First, obtain-
ing ID performance data is often impractical, as LMMs are
typically trained on large, sometimes proprietary datasets,
limiting direct access to ID metrics. Second, while perfor-
mance on existing benchmarks is more readily available,
using this data to rank models for new deployment environ-
ments is problematic. Figure 2 illustrates the correlation
between proxy benchmark performance and target testing
environments, revealing extreme variability in correlation
strength. This highlights the unreliability of using bench-
mark performance as the sole ranking criterion. Third, rely-
ing solely on proxy benchmark performance fails to capture
the unique statistical characteristics of target testing datasets.
AoL tends to rank models identically across different envi-
ronments, regardless of the actual deployment context.

What can we use for ranking LMMs? Our ap-
proach leverages the readily available outputs of
LMMs—specifically, token prediction logits and generated
tokens—without requiring intricate architectural analysis or
complex extraction techniques. Inspired by recent work on
uncertainty scores for classifier ranking (Hu et al., 2024; Tu
et al., 2024b), we introduce a novel adaptation of these tech-
niques tailored to the specific characteristics of LMMs. By
analyzing the distribution of prediction logits and the vari-
ability in generated outputs, we aim to assess each model’s
self-awareness of its limitations. This enables an unsuper-
vised model ranking method, focusing primarily on tech-

stochastic
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Figure 3. An example of running one LMM for a VQA task. We
also present different token positions, methods to compute token-
level uncertainty and the generation of stochastic predictions.

niques that utilize these readily accessible LMM outputs.

4.2. Assessing Uncertainty by Softmax Probabilities

LMMs generate answers in an open-form manner by produc-
ing sequences of tokens. The selection of each token can be
viewed as a classification process, where the model selects
the token with, e.g., the highest probability over its entire vo-
cabulary. This allows us to assess model uncertainty based
on the logits at each token position.

For token-level uncertainty (Huang et al., 2023), we can
focus on two specific positions: the first token and the penul-
timate token (i.e., the token preceding the end-of-sequence
token), as illustrated in Figure 3. The logit of the first to-
ken reflects the model’s initial response to the input prompt,
while the logit of the penultimate token captures the model’s
understanding of both the prompt and the generated re-
sponse. The uncertainty associated with these two positions
may provide insight into the model’s overall confidence in
answering the question. Beyond token-level uncertainty,
sentence-level uncertainty can be calculated by aggregat-
ing uncertainty across all tokens in the sequence (Manakul
et al., 2023; Huang et al., 2023). Specifically, sentence-level
uncertainty can be quantified using the mean or the maxi-
mum negative log-likelihood (NLL) values across the entire
generated sequence:

NLLmax = max
j

(− log pij) (1)

NLLavg = − 1

J

J∑
j=1

log pij (2)

where pij is the likelihood of the word generated by the
LMM at the j-th token of the i-th sentence and J is the
number of tokens generated in the sentence. Equation (1)
quantifies a sentence’s uncertainty via the least likely to-
ken, while Equation (2) uses the average per-token log-
likelihood, allowing for length-independent comparisons
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of uncertainty (Malinin & Gales, 2020; Murray & Chi-
ang, 2018). Moreover, Equation (2) relates to perplexity,
expAvg(− log p) (Jelinek et al., 1977; Manning & Schütze,
1999), a standard measure of model quality.

Alternatively, entropy H can be used instead of the negative
log-likelihood to assess uncertainty. In the context of LMMs
ranking, we adopt normalized entropy to account for varying
vocabulary sizes across models, thus scaling entropy to the
interval [0, 1] and making it comparable across different
models. The normalized entropy is given by:

Hij = − 1

log |W|
∑
w∈W

pij(w) log pij(w) (3)

where pij(w) is the likelihood of the word w being gener-
ated at the j-th token of the i-th sentence, and W is the set
of all possible words in the vocabulary.

There are eight variants of output probability-based methods,
denoted as NLLF, NLLP, NLLmax, NLLavg, EntF, EntP,
Entmax, and Entavg. “NLL” and “Ent” represent negative
log-likelihood and entropy, respectively, while “F” and “P”
refer to the first and penultimate tokens.

4.3. Assessing Uncertainty by Self-Consistency

Another approach involves examining the non-deterministic
generations produced by models. The core intuition is that
a more accurate model will produce predictions closely
aligned with the original answer, while a less accurate model
may yield more divergent responses with each inference. In
the case of LMMs, the temperature parameter t controls
the randomness of predictions: a temperature of zero forces
deterministic predictions, where the model selects only the
token with the highest probability. When t is larger than 0,
the model generates tokens stochastically, selecting tokens
based on probabilities above a threshold. As t increases,
tokens are sampled from an increasingly uniform distribu-
tion (Chen et al., 2023b; Cobbe et al., 2021).

To analyze the consistency in these stochastic predictions,
we explore two common methods: BLEU (Papineni et al.,
2002) and BERTScore (Zhang et al., 2019). BLEU is a n-
gram-based metric that evaluates the similarity of generated
sequences to the reference answer, while BERTScore uses
a pre-trained language model to embed answers and mea-
sures similarity in embedding space. Then, we use the mean
value of similarities to represent the consistency for the in-
put sample, which can be denoted as 1

T

∑T
i=1 sim(Pi, Pori),

where T is the number of stochastic inferences, sim(·) is
the similarity function (e.g., BLEU), and Pi and Pori are
the i-th stochastic prediction and the original answer, re-
spectively. Following the practice outlined in (Chen et al.,
2023b; Cobbe et al., 2021; Huang et al., 2023), we collect
five stochastic inferences per sample and set t = 0.7 to
maintain a relatively high degree of stochasticity in LMM

generation while keeping compute overhead manageable.
We adopt a unigram BLEU and denote the methods using
BLEU and BERTScore as SampleBLEU and SampleBERT,
respectively. Furthermore, BERTScore tends to assign high
similarity scores between single letters, such as “A” and “B”,
which should be considered very different in the contexts
of MCVQ. For example, BERTScore gives a high similar-
ity score of 0.998 for “A” and “B”, making it ineffective
for distinguishing model performance. To address this, we
modified the response to include the full answer text (e.g.,
“A. North America”), denoted as Sample*

BERT.

4.4. Assessing Uncertainty With Labeled Proxy Data

Beyond the uncertainty score calculated directly on the tar-
get dataset, we also explore scores obtained using a proxy
labeled dataset. Garg et al. (2022) proposed average thresh-
olded confidence (ATC), which calculates a threshold δ on a
validation set (e.g., CIFAR-10 (Krizhevsky & Hinton, 2009)
validation set) and considers an image correctly classified
on a new dataset with the same task if its confidence score
exceeds the threshold. With the derived threshold, model
performance on the target domain is estimated by the pro-
portion of samples with confidence scores higher than the
threshold. For LMMs, we use an existing benchmark as a
proxy set to calculate δ. The calculation of ATC is

ATC = Ex∈T [I[u(f(x)) > δ]], (4)

where I is a binary indicator function, and u(·) represents an
uncertainty estimation method, for which we use NLLmax.
ATC provides both a ranking of model performance and an
estimate of the expected performance.

5. Experiments
In this section, we first introduce the experimental setup
including the evaluated datasets and models we considered.
Then, we show the results of ranking different large multi-
modal models (LMMs).

5.1. Experiment Setup

Benchmarks. We choose the task of visual question an-
swering, which is a common way to evaluate LMMs (Liu
et al., 2024a; Dai et al., 2023; Beyer et al., 2024; Lu et al.,
2022; Yue et al., 2024). We evaluate on multiple choice
visual question (MCVQ) and visual question answering
(VQA) benchmarks. MCQ and VQA are both types of
question-answering formats for evaluating LMMs. For
the former, the model is provided with several answer op-
tions, out of which the correct subset is to be selected.
In contrast, the latter is usually open-ended and the mod-
els may generate answers freely. We consider 8 widely-
adopted MCVQ and VQA benchmarks. They are (1) the
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Method

MCVQ VQA

SQA-I AI2D RWQA MMMU GQA ChartQA OCRVQA TextVQA DocVQA Average

ρ τw ρ τw ρ τw ρ τw ρ τw ρ τw ρ τw ρ τw ρ τw ρ τw

AoL 0.52 0.45 0.73 0.61 0.70 0.57 0.54 0.45 0.53 0.32 0.69 0.59 0.30 0.20 0.69 0.57 0.68 0.60 0.60 0.48

NLLF 0.83 0.78 0.84 0.76 0.56 0.58 0.60 0.59 0.71 0.57 0.63 0.41 0.78 0.64 0.74 0.63 0.84 0.74 0.73 0.63

NLLP 0.64 0.60 0.61 0.58 0.25 0.37 0.16 0.18 0.58 0.52 0.79 0.67 0.81 0.68 0.71 0.67 0.88 0.78 0.60 0.56

NLLmax 0.80 0.76 0.91 0.81 0.63 0.63 0.49 0.44 0.72 0.59 0.94 0.80 0.64 0.63 0.83 0.69 0.92 0.82 0.76 0.69

NLLavg 0.72 0.64 0.88 0.73 0.64 0.56 0.50 0.40 0.67 0.55 0.92 0.75 0.81 0.65 0.81 0.72 0.93 0.82 0.76 0.65

EntF 0.59 0.51 0.82 0.59 0.65 0.56 0.64 0.52 0.54 0.20 0.64 0.45 0.69 0.57 0.71 0.56 0.80 0.70 0.68 0.52
EntP 0.49 0.39 0.69 0.48 0.43 0.43 0.34 0.24 0.46 0.21 0.82 0.64 0.80 0.64 0.70 0.54 0.86 0.68 0.62 0.47

Entmax 0.58 0.39 0.82 0.59 0.67 0.60 0.66 0.54 0.54 0.21 0.88 0.66 0.53 0.52 0.76 0.60 0.87 0.73 0.70 0.54
Entavg 0.58 0.33 0.80 0.56 0.62 0.50 0.59 0.41 0.57 0.26 0.91 0.68 0.77 0.62 0.74 0.58 0.88 0.74 0.72 0.52

SampleBLEU 0.65 0.68 0.76 0.59 0.48 0.36 0.37 0.12 0.44 0.41 0.89 0.61 0.47 0.58 0.81 0.60 0.90 0.63 0.64 0.51
SampleBERT 0.46 0.52 0.70 0.55 0.52 0.28 0.45 0.44 0.51 0.47 0.90 0.61 0.75 0.72 0.77 0.59 0.89 0.64 0.66 0.54
Sample*

BERT 0.67 0.56 0.78 0.62 0.67 0.48 0.59 0.39 0.51 0.47 0.90 0.61 0.75 0.72 0.77 0.59 0.89 0.64 0.73 0.56

ATC 0.73 0.74 0.80 0.72 0.51 0.40 0.41 0.35 0.39 0.20 0.95 0.85 0.28 0.21 0.69 0.64 0.89 0.77 0.63 0.54

Table 1. Method comparison across eight multimodal tasks. The table presents a comparison of four groups of methods: accuracy-based,
output-probability-based, sample-based, and unsupervised model evaluation methods. We evaluate these methods using Spearman’s rank
correlation (ρ) and weighted Kendall’s correlation (τw). Both coefficients range from −1 to 1, where values close to −1 or 1 indicate
strong negative or positive correlations, respectively, and 0 indicates no correlation. The AoL and ATC performance is calculated as the
average correlation when using the scores computed on the other seven domains and the model performance on the target domain. The
highest correlation values for each task are highlighted in green , while the second highest values are marked in blue . All methods are
ranked to three decimal places. Note that, we use the absolute value of correlation strength in the table for NLL and Ent. The results
indicate that NLLmax and NLLavg are often preferable, as they show greater stability and stronger correlation with model performance.

subset of ScienceQA (Lu et al., 2022) with images (SQA-
I) and AI2D (Hiippala et al., 2021) which assess LMMs’
scientific knowledge; (2) ChartQA (Masry et al., 2022),
OCRVQA (Mishra et al., 2019), TextVQA (Singh et al.,
2019) and DocVQA (Mathew et al., 2021) to examine their
ability to recognize optical character; (3) RealWorldQA
(RWQA) (x.ai, 2024) and GQA (Ainslie et al., 2023) which
evaluate LMMs’ vision-centric capability; (4) MMMU (Yue
et al., 2024) which assays LMMs on multi-disciplinary tasks
that demand college-level subject knowledge. Note that
SQA-I, AI2D, RWQA and MMMU are MCVQ datasets,
while the others are VQA.

Models. The goal is to choose the best LMM over all
different series of LMMs. We include LLaVA-V1.5 (Liu
et al., 2024a), ShareGPT4V (Chen et al., 2023a), LLaVA-
NeXT (Liu et al., 2024b), InstructBLIP (Dai et al.,
2023), LLaVA-NeXT-Interleave (Li et al., 2024b), LLaVA-
OneVision (Li et al., 2024a), Eagle (Shi et al., 2024b),
mPLUG-Owl (Li et al., 2022), InternVL (Chen et al., 2024),
PaliGemma (Beyer et al., 2024), Mantis (Jiang et al., 2024),
DeepSeek-VL2 (Wu et al., 2024) and Qwen2-VL (Wang
et al., 2024b). In total, we collect 32 different models, which
all can be accessed on Hugging Face (Wolf et al., 2020).

5.2. Key Findings

Accuracy-on-the-Line is unreliable for ranking LMMs in
new domains. Table 1 summarizes the ranking capability
of all methods across eight benchmarks. The AoL perfor-
mance is calculated as the average correlation strength when
using the other seven domains to predict model rankings in
the target domain. We observe that AoL does not achieve

consistently high correlation with model performance in
seven out of the eight benchmarks. Although AoL shows
strong results on RealWorldQA, where it performs best,
uncertainty-based methods also demonstrate high correla-
tion strength. For instance, NLLmax exhibits a Spearman’s
ρ 0.07 lower but a weighted Kendall’s τw 0.06 higher than
AoL. These findings suggest that relying on existing bench-
marks alone to select models for deployment could be risky
and unstable, as they may not well capture the statistical
characteristics of the new target domain.

The choice of token matters for output probability-based
ranking. We studied four ways of using tokens for estimat-
ing model uncertainty. For the two on specific positions, the
first and penultimate tokens, their predictive performance
depends on the task type (i.e., MCVQ vs. VQA). The un-
certainty associated with generating the first token is more
indicative for MCVQ tasks, while the penultimate token
generally proves more predictive for VQA tasks. This dif-
ference is due to the nature of MCVQ tasks, which often
prompt models to generate only a single option letter (e.g.,
“A”), making the first token crucial for evaluating response
accuracy. In contrast, VQA tasks require open-form re-
sponses consisting of multiple tokens, making the penulti-
mate token—reflecting the model’s understanding of both
the question and the answer—more informative.

For the two that consider every token in the generated output,
i.e., NLLmax and NLLavg, we find that they are more stable
and less task-specific compared to variants that consider
individual tokens. While NLLmax and Entmax (reflecting
the least confident token) is more effective for MCVQ tasks,
both methods perform similarly on VQA tasks. The higher
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ranking correlation of using the first token and the least con-
fident token as ranking indicators for MCVQ suggests that
a single token (typically the option letter) holds significant
meaning. Considering all potential tokens can sometimes
result in an unexpectedly higher confidence level, as LMMs
may generate the complete answer alongside the option let-
ter (e.g., “B. Columbia”). The tokens following the option
letter often have high confidence levels, leading to an overall
increase in estimated uncertainty. This tendency results in
models generating entire answers with lower uncertainty
scores, yielding higher ranks. These findings underscore
the importance of further exploration into the optimal token
positions for uncertainty estimation in LMMs. One poten-
tial approach is leveraging a language model to identify the
position of the option letter and use its softmax probability
as the uncertainty measure for the complete response.

The negative log-likelihood (NLL) is more stable and
predictive for LMMs ranking than normalized entropy.
For seven out of eight benchmarks, NLL consistently shows
stronger correlation with model performance than entropy.
Both NLL and entropy make use of the softmax proba-
bility distribution predicted for each token during genera-
tion. However, the NLL-based approaches only consider
the maximum probability in this distribution, while the en-
tropy considers all entries. The lower correlation strength
of normalized entropy may therefore stem from the signif-
icantly different vocabulary sizes of various LMMs. For
instance, LLaVA-V1.5-7B has a vocabulary of 32k tokens,
while PaliGemma-3B-mix has a much larger vocabulary
of 257k tokens. Despite being normalized by vocabulary
size, entropy may still be more susceptible to noise than
NLL. Future work could include applying dimension reduc-
tion techniques or limiting consideration to the top-k most
probable tokens or a pre-defined set of tokens.

Sample-based methods are strong candidates for model
ranking without intrinsic access to LMMs. The corre-
lation strength of sample-based methods is influenced by
the nature of the task. They yield higher correlation scores
on VQA tasks compared to MCVQ tasks. In VQA, models
typically produce more varied responses, making BLEU and
BERTScore effective for capturing uncertainty. However,
MCVQ tasks constrain models to select from a pre-defined
set of answers. While non-zero temperature introduces some
randomness, the variation between stochastic inferences is
limited. Additionally, we also find that Sample*

BERT has
higher correlation scores than SampleBERT on four MCVQ
benchmarks and suggests that developing more advanced
algorithms to capture uncertainty from multiple stochastic
inferences could be beneficial.

Although sample-based methods show weaker overall corre-
lations, they remain competitive without requiring access to

Method
MCVQ VQA

AverageAI2D MMMU TextVQA ChartQA

AoL 0.42 0.43 0.57 0.64 0.52

NLLmax 0.29 0.59 0.97 0.99 0.71
NLLavg 0.26 0.28 0.98 0.98 0.63
Entmax 0.37 0.62 0.97 0.96 0.73
Entavg 0.11 0.38 0.98 0.98 0.63
SampleBLEU 0.63 0.73 0.76 0.64 0.69
ATC 0.12 0.59 0.85 0.84 0.60

Table 2. Method comparison for ranking different LLaVA-
prismatic models on AI2D and TextVQA. We use Spearman’s
rank correlation (ρ) as the metric. We observe that uncertainty-
based method still exhibit moderately high correlation strength,
which indicate their effectiveness in ranking LLaVA models.

model architecture or internal states. This highlights their
potential to rank API-based or closed-source LMMs (e.g.,
GPT-4V (Achiam et al., 2023)).

ATC can be used for LMMs ranking, but the correla-
tion strength is influenced by the choice of proxy dataset.
We compute ATC performance as the average correlation
when using the other seven datasets as proxy datasets. Our
analysis reveals the choice of proxy dataset is critical, as
the scale of uncertainty calculated on different datasets can
vary. This variation can lead to an inaccurately estimated
threshold for determining instance correctness. A poten-
tial improvement involves adopting uncertainty calibration
methods, such as temperature scaling (Guo et al., 2017), to
calibrate model uncertainty onto a consistent scale.

6. Analysis
This section includes three distinct analyses. The first specif-
ically investigates whether the considered methods are ef-
fective for ranking models within the same series. We use
LLaVA models as a case study because they are widely
adopted and representative of LMM architectures. The other
two analyses consider models from different series, consis-
tent with the broader evaluation in Section 5.

Ranking LMMs from the same series. So far, all ex-
periments have focused on selecting LMMs from different
model series. However, in some scenarios, the objective
is to choose a training recipe that yields better-performing
LMMs within the same model series. These models may
be trained with additional fine-tuning steps, varied data aug-
mentations, different training sources, or different language
models (e.g., Vicuna and Mistral (Jiang et al., 2023)) and
visual encoders, such as CLIP and DINOv2 (Oquab et al.,
2023). For our analysis, we use the LLaVA series due to
its widespread adoption. Specifically, we employ 15 dif-
ferent LLaVA prismatic (LLaVA-pri) models (Karamcheti

7
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Figure 4. Correlation Analysis of Fréchet Distances and Model
Performance Correlation Across Datasets. Orange stars indi-
cate the dataset pairs with the highest similarity for each dataset.
Observations reveal that variations in text prompt similarity are
more closely aligned with changes in performance correlation than
variations in image feature similarity.

et al., 2024). We report results on four datasets in Table 2:
AI2D, MMMU, TextVQA, and ChartQA, with AI2D and
TextVQA being used to evaluate the performance of differ-
ent LLaVA variants in the original paper. The AoL and ATC
performance metrics are computed in the same manner as
described in Section 5, using the average correlation across
other three datasets.

Our findings align with those from ranking different series
of LMMs. First, using model performance on a single ex-
isting dataset may not accurately reflect LMMs rankings
on a different domain, even when the models are trained
with a similar pipeline and minor variations. Second, we
observe that ranking different LLaVA-pri models in MCVQ
presents a significant challenge, as the variance in model
performance on MCVQ tasks is lower compared to VQA
tasks. For instance, the performance gap on AI2D is only
4%, whereas the gap on TextVQA exceeds 20%. This indi-
cates that ranking methods must capture subtle differences
between models. We find that SampleBLEU remains effec-
tive, while NLL and Entropy may not capture these nuances
accurately. Additionally, the decrease in correlation between
uncertainty estimated by softmax probability suggests that
although modifications to the training pipeline may have
a slight effect on performance, they can lead to significant
variations in the confidence levels for generation. This find-
ing underscores the importance of assessing LMMs more
comprehensively, beyond accuracy alone.

Analysis of the weak correlation of AoL. Figure 2(b) il-
lustrates the correlation of model performance across differ-
ent benchmarks. We observe that while TextVQA, ChartQA,
DocVQA, and OCRVQA all aim to assess the capability of
LMMs to recognize optical characters, the correlation be-
tween them varies significantly. Specifically, model perfor-
mance on TextVQA, ChartQA, and DocVQA shows strong
correlations, whereas performance on OCRVQA consis-
tently exhibits low correlation with the other three datasets.
To explore whether the images or texts within these datasets

Method
MCVQ VQA

AI2D MMMU TextVQA ChartQA

#Samples 3088 1050 5000 2500

50 samples 0.89 0.35 0.92 0.98
NLLmax 0.92 0.56 0.82 0.93

Table 3. Labelling a subset of target domain to rank models on
AI2D, MMMU, TextVQA and ChartQA. We report the Spear-
man’s rank correlation (ρ). While a small labeled set provides a
reasonable ranking, it may not fully capture the overall order. In
contrast, NLLmax offers more stable correlations, highlighting its
potential for label-free model ranking.

influence the correlation strength of model performance, we
utilize CLIP-L-14-336 (Radford et al., 2021) to extract im-
age and text embeddings. We then use the Fréchet distance
(FD) (Fréchet, 1957) to measure the similarity between
datasets based on these features.

Figure 4 presents a correlation study between the FD of
dataset pairs and the correlation strength of model perfor-
mance on those datasets. We observe a strong correlation
for FDs computed using text input features, while FDs mea-
sured by image features show a weaker correlation. This
suggests that text input similarity is likely a more influen-
tial factor for model performance correlation than image
similarity. Additionally, orange stars are used to label the
points representing the lowest FD for each dataset. More-
over, OCRVQA shows a low correlation strength with other
datasets (Figure 2). The closest dataset in prompt feature
space is TextVQA, with a FD of 124, which is considerably
higher than the lowest FDs observed between other dataset
pairs, typically around 70 or lower. This difference sheds
light on the weak model performance correlation between
OCRVQA and other OCR-focused datasets.

Ranking LMMs by a labeled subset of the target domain.
Table 3 presents the correlation strength between model
performance on 50 labeled instances in the target domain
and the overall performance across the entire dataset. We
observe that a small labeled set can provide a good ranking.
However, such an approach may not fully capture the model
ranking across the entire dataset, since the sampled data
may not be representative (Polo et al., 2024). In contrast,
NLLmax gives a more stable correlation, highlighting the
potential of uncertainty-based methods for effective model
ranking without data annotation.

7. Conclusion and Discussion
This work studied whether the performance of large multi-
modal models in a new target domain can be ranked without
the access to target domain labels. Our analysis identi-
fied only a weak correlation in model performance across
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different domains. This motivated the investigation and
evaluation of alternative approaches based on uncertainty
estimates obtained from model predictions. We evaluate 45
LMMs on closed and open-ended visual question answering
tasks, testing various training frameworks, visual encoders,
and language models. Our experiments reveal that scores
based on the negative log-likelihood of generated tokens
serve as highly effective performance indicators for target
domains. We also find that while stochastic sampling can be
helpful, it is less effective for multiple-choice tasks, where it
requires many repetitions of inference and careful tempera-
ture tuning. By establishing a baseline for uncertainty-based
LMMs ranking, this study aims to motivate and inspire
further research into this important area.

Potential future directions. Beyond uncertainty scores,
several promising directions remain for future research.
Test-time augmentation and semantic entropy present
natural next steps. Additionally, the internal states of
LMMs (Azaria & Mitchell, 2023; Gottesman & Geva, 2024)
offer opportunities for uncertainty estimation or error de-
tection, for example, by training a classifier on these repre-
sentations. However, in unsupervised LMM ranking, this
approach requires training a separate classifier per model,
which can be computationally expensive. An alternative is
to measure the statistical distance between a model’s inter-
nal state for a given response and the distribution of internal
states from multiple inference passes. A larger average
distance may signal greater uncertainty and potentially in-
dicate a lower model rank. Exploring how internal states
can inform LMM ranking is an open direction. Finally, the
observed asymmetry in the impact of text and image fea-
ture dissimilarity on cross-dataset correlations highlights a
valuable area for improving multimodal benchmark design.
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A. Appendix
In this supplementary material, we first introduce the experimental details including the models, datasets and compute
in Appendix B. Next, we visualize the image and text features using t-SNE plots. Last, we show the full results of the
correlation study on all datasets.

B. Experiment Details
B.1. Datasets

All experiments are conducted on VLMEvalKit (Duan et al., 2024). We consider 8 datasets and their corresponding links to
download TSV files via the toolkit:

ScienceQA (Lu et al., 2022) (https://opencompass.openxlab.space/utils/VLMEval/ScienceQA_
TEST.tsv);

AI2D (Hiippala et al., 2021) (https://opencompass.openxlab.space/utils/VLMEval/AI2D_TEST.
tsv);

ChartQA (Masry et al., 2022) (https://opencompass.openxlab.space/utils/VLMEval/ChartQA_TEST.
tsv);

OCRVQA (Mishra et al., 2019) (https://opencompass.openxlab.space/utils/VLMEval/OCRVQA_
TESTCORE.tsv);

TextVQA (Singh et al., 2019) (https://opencompass.openxlab.space/utils/VLMEval/TextVQA_VAL.
tsv);

DocVQA (Mathew et al., 2021) (https://opencompass.openxlab.space/utils/VLMEval/DocVQA_VAL.
tsv);

RealWorldQA (x.ai, 2024) (https://opencompass.openxlab.space/utils/VLMEval/RealWorld.tsv);

MMMU (Yue et al., 2024) (https://opencompass.openxlab.space/utils/VLMEval/MMMU_DEV_VAL.
tsv)

GQA (Ainslie et al., 2023) (https://opencompass.openxlab.space/utils/VLMEval/GQA_TestDev_
Balanced.tsv)

B.2. Models

We include a diverse array of large multimodal models from 12 series:

LLaVA-V1.5

llava v1.5 7b
llava v1.5 13b

LLaVA-NeXT

llava next mistral 7b
llava next vicuna 7b
llava next vicuna 13b

LLaVA-NeXT-Interleave

llava next interleave 7b
llava next interleave 7b dpo
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LLaVA-OneVision

llava onevision qwen2 0.5b ov
llava onevision qwen2 7b ov
llava onevision qwen2 0.5b si
llava onevision qwen2 7b si

ShareGPT4V

sharegpt4v 7b
sharegpt4v 13b

InstructBLIP

InstructBLIP 7b
InstructBLIP 13b

Eagle

Eagle-X5-7B
Eagle-X5-13B
Eagle-X5-13B-Chat

InternVL

Mini-InternVL-Chat-2B-V1-5
Mini-InternVL-Chat-4B-V1-5
InternVL2-1B
InternVL2-2B
InternVL2-4B
InternVL2-8B

PaliGemma

paligemma-3b-mix-224
paligemma-3b-mix-448

Mantis

Mantis-8B-Idefics2
Mantis-8B-clip-llama3
Mantis-8B-siglip-llama3

mPLUG-Owl2

mPLUG-Owl2

Qwen2-VL

Qwen2-VL-2B-Instruct
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Qwen-VL

deepseek vl2 tiny

LLaVA Prismatic

reproduction-llava-v15+7b
one-stage+7b
full-ft-multi-stage+7b
full-ft-one-stage+7b
in1k-224px+7b
dinov2-224px+7b
clip-224px+7b
siglip-224px+7b
clip-336px-resize-crop+7b
clip-336px-resize-naive+7b
siglip-384px-letterbox+7b
llama2-no-cotraining+7b
llava-lvis4v+7b
llava-lrv+7b
llava-lvis4v-lrv+7b

B.3. Compute and Library

PyTorch version is 2.01.0+cu117. All experiment is run on four A6000 GPUs. All 45 models can be downloaded via
Huggingface with different versions of transformer library:

transformers==4.33.0 for mPLUG-Owl2 (Li et al., 2022) and InstructBLIP (Dai et al., 2023);

transformers==4.37.0 for LLaVA-V1.5 (Liu et al., 2024a), ShareGPT4V (Chen et al., 2023a), InternVL (Chen et al.,
2024) series;

transformers==latest for LLaVA-NeXT (Liu et al., 2024b), LLaVA-OneVision (Li et al., 2024a), LLaVA-NeXT-
Interleave (Li et al., 2024b) PaliGemma-3B (Beyer et al., 2024), Mantis (Jiang et al., 2024), Eagle (Shi et al., 2024b) and
LLaVA Prismatic (Karamcheti et al., 2024) series.

C. Visualization of Image and Text Features
In the main paper, we demonstrate that distances in text features contribute more significantly to the weak correlation of
model performance across datasets than image features. To visualize this finding, we utilize t-distributed stochastic neighbor
embedding (t-SNE) (Hinton & Roweis, 2002). Our results show that CLIP-L-14-336 (Radford et al., 2021) effectively
captures distinctions between images from different datasets, with images from the same dataset forming distinct clusters.
Additionally, the text features of visual question answering (VQA) and multiple-choice visual questioning (MCVQ) tasks are
separated by the text encoder of CLIP. Notably, the text features of OCRVQA are distant from those of ChartQA, TextVQA,
and DocVQA, despite all being VQA tasks. This finding supports our observation in the main paper that the effectiveness of
ranking methods is influenced by dataset characteristics (i.e., VQA vs. MCVQ).

D. Full Results of Correlation Study
In the following, we present the full results of correlation study for ranking different series of large multimodal models.
We only show NLLF, NLLP, NLLmin, NLLmean, EntF, EntP, Entmax, Entmean, SampleBLEU, SampleBERT, Sample*

BERT.
ATC and Accuracy on the line are not included because their performance are computed by the average correlation strength
across eight datasets.
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Figure 5. Two t-SNE plots are presented: one using image features (Top) and the other using text features (Bottom) of the datasets.
We observe that the text features of OCRVQA are more scattered and significantly distant from those of other datasets.
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Figure 6. Correlation study between NLLF and model performance. Spearman’s correlation (ρ) and weighted Kendall’s correlation
(τw) are metrics. Each point denotes a model. Straight lines are fit with robust linear regression (Huber, 2011).
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Figure 7. Correlation study between NLLP and model performance. Spearman’s correlation (ρ) and weighted Kendall’s correlation
(τw) are metrics. Each point denotes a model. Straight lines are fit with robust linear regression (Huber, 2011).
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Figure 8. Correlation study between NLLmin and model performance. Spearman’s correlation (ρ) and weighted Kendall’s correlation
(τw) are metrics. Each point denotes a model. Straight lines are fit with robust linear regression (Huber, 2011).
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Figure 9. Correlation study between NLLmean and model performance. Spearman’s correlation (ρ) and weighted Kendall’s correlation
(τw) are metrics. Each point denotes a model. Straight lines are fit with robust linear regression (Huber, 2011).
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Figure 10. Correlation study between EntF and model performance. Spearman’s correlation (ρ) and weighted Kendall’s correlation
(τw) are metrics. Each point denotes a model. Straight lines are fit with robust linear regression (Huber, 2011).
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Figure 11. Correlation study between EntP and model performance. Spearman’s correlation (ρ) and weighted Kendall’s correlation
(τw) are metrics. Each point denotes a model. Straight lines are fit with robust linear regression (Huber, 2011).
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Figure 12. Correlation study between Entmax and model performance. Spearman’s correlation (ρ) and weighted Kendall’s correlation
(τw) are metrics. Each point denotes a model. Straight lines are fit with robust linear regression (Huber, 2011).
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Figure 13. Correlation study between Entmean and model performance. Spearman’s correlation (ρ) and weighted Kendall’s correlation
(τw) are metrics. Each point denotes a model. Straight lines are fit with robust linear regression (Huber, 2011).
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Figure 14. Correlation study between SampleBLEU and model performance. Spearman’s correlation (ρ) and weighted Kendall’s
correlation (τw) are metrics. Each point denotes a model. Straight lines are fit with robust linear regression (Huber, 2011).
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Figure 15. Correlation study between SampleBERT and model performance. Spearman’s correlation (ρ) and weighted Kendall’s
correlation (τw) are metrics. Each point denotes a model. Straight lines are fit with robust linear regression (Huber, 2011).
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Figure 16. Correlation study between Sample*
BERT and model performance. Spearman’s correlation (ρ) and weighted Kendall’s

correlation (τw) are metrics. Each point denotes a model. Straight lines are fit with robust linear regression (Huber, 2011).
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