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ABSTRACT

AI-generated images have become highly realistic, raising concerns about poten-
tial misuse for malicious purposes. In this work, we propose a novel approach,
DetGO, to detect generated images by overfitting the distribution of natural im-
ages. Our critical insight is that a model overfitting to one distribution (natural
images) will fail to generalize to another (AI-generated images). Inspired by the
sharpness-aware minimization, where the objective function is designed in a min-
max scheme to find flattening minima for better generalization, DetGO instead
seeks to overfit the natural image distribution in a max-min manner. This requires
finding a solution with a minimal loss near the current solution and then maximiz-
ing the loss at this solution, leading to sharp minima. To address the divergence
issue caused by the outer maximization, we introduce an anchor model that fits the
natural image distribution. In particular, we learn an overfitting model that pro-
duces the same outputs as the anchor model while exhibiting abrupt loss behavior
for small perturbations. Consequently, we can effectively determine whether an
input image is AI-generated by calculating the output differences between these
two models. Extensive experiments across multiple benchmarks demonstrate the
effectiveness of our proposed method.

1 INTRODUCTION

The rapid advancement of generative models (Ho et al., 2020; Song et al., 2021; Gu et al., 2022; Liu
et al., 2022; Rombach et al., 2022; Midjourney, 2022) has revolutionized the field of image synthe-
sis, allowing the creation of highly realistic images that are increasingly difficult to distinguish from
those captured in the real world. This unprecedented ability to generate photorealistic images has
sparked significant interest across various domains, ranging from creative industries to scientific re-
search. However, alongside these exciting possibilities comes a growing concern over the potential
for misuse, particularly in the context of misinformation (Qi et al., 2019), fraud (Uyyala & Yadav,
2023), and malicious activities like deepfake generation (Fanelli, 2009). As these synthetic images
become more sophisticated, the line between real and generated content blurs, raising critical ques-
tions about authenticity and trust in digital media. This growing threat has underscored the urgent
need for effective techniques to differentiate between authentic and AI-generated images reliably.

Traditional methods (Frank et al., 2020; Dzanic et al., 2020; Sinitsa & Fried, 2023; Qian et al., 2020)
for detecting AI-generated images have focused mainly on identifying visual artifacts or inconsisten-
cies that are inadvertently introduced during the image generation process. These approaches, which
typically rely on training classifiers to recognize such anomalies, require large datasets containing
both real and generated images. However, as generative models continue to evolve, these artifacts
become increasingly subtle or even nonexistent (Corvi et al., 2023), making it progressively more
challenging to identify generated images using conventional techniques. Consequently, there is a
pressing need for new detection strategies that are robust to the advances in generative models and
do not depend on the existence of easily recognizable artifacts in the generated content.

In this paper, we propose DetGO, a novel detection method that addresses the limitations of tradi-
tional approaches by fundamentally shifting the focus from detecting generation-specific artifacts
to overfitting the distribution of natural images. DetGO operates on the critical insight that a model
trained to overfit a single distribution—in this case, natural images—will inherently struggle to
generalize to another distribution, such as AI-generated images. By focusing on this distributional
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mismatch, DetGO is able to detect generated images without requiring access to AI-generated im-
ages during training. This is a significant departure from traditional methods that depend on both
natural and generated images to build their classifiers. Instead, DetGO capitalizes on the inherent
differences between the distributions of real and generated images, providing a more robust and
scalable solution as generative models become increasingly sophisticated.

Technically, we draw inspiration from Sharpness-Aware Minimization (SAM) (Foret et al., 2021).
Both theoretical and empirical evidence suggests that smoother geometries of the loss landscape,
particularly the flatness of minima, often lead to improved generalization performance (Keskar
et al., 2017; Dziugaite & Roy, 2017; Jiang et al., 2020). In particular, SAM identifies flatter re-
gions through an initial maximization followed by minimization of the loss, thereby enhancing the
model’s generalization capability. In contrast, we take the opposite approach by actively seeking
sharp minima when it trains models over natural images. This sharpness makes a model fit the natu-
ral image distribution tightly, limiting the model’s ability to generalize to a different distribution, i.e.,
generated image distribution. To make the loss landscape sharp, we introduce a novel framework
with two models, i.e., an anchor model and an overfitting model. The anchor model is designed to be
a non-parametric image encoding function, while the overfitting model is trained to overfit the natu-
ral image distribution. In particular, the overfitting model is adjusted to produce outputs that closely
match those of the anchor model. However, these two models exhibit drastically difference in loss
values under slight perturbations. This divergence allows us to effectively identify AI-generated
images, as the generated images are unable to follow the tight distribution that the overfitting model
has been trained to capture.

The novel contribution of DetGO lies in its ability to exploit the inherent distribution discrepancy
between natural and generated images, providing a detection framework that does not rely on the
presence of generation-specific artifacts. Moreover, this approach avoids the need for a large dataset
of generated images, which can be challenging to obtain and may not cover the wide range of
generative models that continue to emerge. Thus, DetGO offers a scalable and flexible solution
that can adapt to new types of generative models without the need for retraining on new generated
images. To verify the effectiveness of the proposed DetGO, we present comprehensive experiments
across multiple benchmarks. Our experimental results demonstrate that DetGO not only surpasses
traditional detection methods but also remains effective with advancements in generative models.

Our main contributions can be summarized as follows:

• We provide a new approach to detect AI-generated images by exploiting the nature of
overfitting to natural image distribution. This gets rid of the identification of differences
between AI-generated and natural images.

• We propose a novel dual-model framework termed DetGO to exploit the nature of overfit-
ting to natural image distribution for AI-generated image detection. DetGO trains a model
to overfit natural image by a max-min scheme, i.e., making models sensitive to slight per-
turbations, inspired by sharpness-aware minimization.

• Comprehensive experiments on benchmarks demonstrate the effectiveness of the proposed
method. Moreover, DetGO exhibits strong robustness to changes in generative models, as
its training process eliminates the need for AI-generated image.

2 RELATED WORKS

We will begin by reviewing the related achievements of prior research in the detection of generated
images. Following this, we will introduce several fundamental concepts underpinning our overfitting
principle, which forms the basis of our proposed approach.

AI-generated images detection. With the rapid development of generative models like
GAN (Goodfellow et al., 2020) and diffusion (Ho et al., 2020) frameworks, the ability to create
realistic synthetic images has surged, necessitating effective detection algorithms. Recent learning-
based approaches include CNNspot (Wang et al., 2020), which showed that a simple classifier
trained on ProGAN-generated (Karras et al., 2018) images can generalize to unseen GAN outputs
with augmentation techniques. DIRE (Wang et al., 2023a) found that diffusion models better recon-
struct diffusion-generated images than real ones, training a binary classifier based on reconstruction
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errors. Ojha (Ojha et al., 2023) noted that traditional deep learning methods struggle with new gen-
erative models, but detection in the CLIP (Radford et al., 2021) feature space can generalize well.
NPR (Tan et al., 2023a) utilized the upsampling characteristics of generative models to train a clas-
sifier on pixel relationships. Meanwhile, training-free methods like AEROBLADE (Ricker et al.,
2024) demonstrated that autoencoders can more accurately reconstruct generated images than real
ones. In contrast, DetGO requires no prior knowledge of generative models and is trained solely on
real images, achieving strong generalization across benchmarks.

Overfitting. Overfitting has traditionally been viewed negatively in classical statistical learning the-
ory, where models with increasing complexity, tend to perform poorly on unseen data. Traditional
methods such as regularization techniques (Krogh & Hertz, 1991)), have been widely utilized to
combat overfitting by penalizing complex models. Early stopping (Morgan & Bourlard, 1989), an-
other classical technique aimed at halting training before the model starts to overfit, has received less
attention in deep learning. The interplay between regularization methods and the generalization ca-
pabilities of deep networks has been explored in various studies. For instance, recent work highlights
the inadequacy of the classical bias-variance trade-off in explaining the generalization performance
of overparameterized models (Zhang et al., 2017), particularly in light of the phenomenon known as
”double descent” (Belkin et al., 2018; Nakkiran et al., 2020). This suggests that deeper networks can
continue to improve in performance even after achieving perfect training accuracy, a counterintu-
itive result that challenges traditional views on model complexity. Empirical techniques specifically
designed to reduce overfitting in deep learning have also gained prominence. Dropout (Srivastava
et al., 2014), a stochastic regularization method that randomly removes units during training, aims
to mitigate co-adaptation among neurons, thereby enhancing model robustness. Data augmentation
techniques, such as Cutout (Devries & Taylor, 2017) and mixup (Zhang et al., 2018), have been
shown to effectively improve generalization by artificially increasing the diversity of the training
set. These approaches encourage the model to learn more invariant representations and reduce sen-
sitivity to specific training samples. Studies indicate that these methods specifically designed to
combat overfitting are generally less effective in practice than employing early stopping (Rice et al.,
2020). In this work, we consider the overfitting to specific distributions as an asset in the context of
AI-generated image detection.

3 METHOD

3.1 MOTIVATION

As discussed in Sharpness-Aware Minimization (SAM), a smoother loss landscape tends to enhance
generalization performance. To improve generalization, we aim to find parameter values where the
entire neighborhood exhibits both low training loss and low curvature. Specifically, this can be
achieved by optimizing the following loss (Foret et al., 2021):

min
w

LSAM
S (w) + λ||w||22 where LSAM

S (w) ≜ max
||ϵ||2≤ρ

LS(w + ϵ), (1)

where ρ ≥ 0 is a hyperparameter, S is a training set and w is parameter value of loss LSAM
S .

On the contrary, our model seeks to achieve the worst generalization performance by overfitting to
the real image distribution, thereby preventing generalization to the generated image distribution.
Disregarding the regularization term, we achieve this by reversing the SAM objective:

max
θ

L′
θ(x) where L′

θ(x) ≜ min
0<||ϵ||2≤ρ

Lθ(x+ ϵ), (2)

where Lθ(x) : Rd → R represent the loss of the model parameterized by θ at a data point x ∈ X ⊂
Rd, d denotes the dimension of images.

3.2 MINIMIZATION

In order to maximize L′
θ(x), we need to take the derivative with respect to its independent variable

x to obtain the maximum sharpness. However, directly differentiating L′
θ(x) is challenging, so we

approach the problem by starting with Lθ(x). Since ϵ is close to 0, we perform a first-order Taylor
expansion of Lθ(x+ ϵ) at the point x:

Lθ(x+ ϵ) ≈ Lθ(x) + ϵT∇xLθ(x). (3)
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There exists an ϵ such that 0 < ||ϵ||2 ≤ ρ that minimizes Lθ(x + ϵ), and ϵ should satisfy the
following condition:

ϵ̂(θ,x) = argmin
0<||ϵ||2≤ρ

Lθ(x+ ϵ) ≈ argmin
0<||ϵ||2≤ρ

ϵT∇xLθ(x). (4)

Substituting ϵ̂(θ,x) into Equation 2, we get:

L′
θ(x) = Lθ(x+ ϵ̂(θ,x)). (5)

3.3 MAXIMIZATION

Because our model only accepts inputs of real images during training, x represents a real image
in this context. When the model receives a real image input x, the loss is computed as Lθ(x),
and from this calculate L′

θ(x). We aim to fit Lθ(x) to the point of maximum sharpness at x,
ensuring minimizing Lθ(x) while maximizing L′

θ(x), i.e., Lθ(x+ ϵ̂(θ,x)). Clearly, we now need
to optimize θ to simultaneously achieve both objectives. Our insight leads to the construction of a
new loss function Lθ(x) that unifies both objectives:

min
θ

Lθ(x) = −Lθ(x+ ϵ̂(θ,x)) + λLθ(x). (6)

Thus, we only need to optimize Lθ(x) over natural image to achieve our objectives.

However, as we have not yet imposed any constraints on the values of the loss function, directly
optimizing Lθ(x) results in non-convergence issue. To address this issue, we introduce an anchor
model, leading to a dual-model framework. Namely, the anchor model is pre-trained to fit the natural
image distribution, which is introduced to avoid the shift of the optimized overfitting model θ.

w(·) : Rd → R is an anchor model with fixed parameters, and θ(·) : Rd → R is an overfitting
model with learnable parameters. The anchor model w(·) is a self-supervised model trained on real
images, capable of encoding real images into consistent features. Then we train θ(·) to achieve the
overfitting objective. Specifically, we constrain the outputs of both w(·) and θ(·) to be scalar values
between 0 and 1, and define Lθ(x) = |w(x) − θ(x)|. Naturally, this ensures that the minimum
value of Lθ(x) is 0, and the maximum value is 1. Substituting the result into Equation 6, we obtain
our optimization objective:

Lθ(x) = −|w(x+ ϵ̂(θ,x))− θ(x+ ϵ̂(θ,x))|+ |w(x)− θ(x)|. (7)

Considering Equation 4, ϵ̂(θ,x) represents a vector in the neighborhood of 0 that points in the
direction of −∇xLθ(x). Since −∇xLθ(x) is difficult to solve, but when the number of x is suffi-
ciently large, ϵ̂(θ,x) follows a Gaussian distribution, we sample it from a Gaussian distribution in
our experiments. Under the above approximations, our loss function becomes:

Lθ(x) = −|w(x+ ϵ)− θ(x+ ϵ)|+ |w(x)− θ(x)|. (8)

After optimizing Lθ(x) through training, the model produces a small value for L(x) when a real
image x is input, and a larger value for L(x + ϵ). Since x represents a real image and x + ϵ
represents a sample deviating from the real image (i.e., a generated image), we can utilize L(·) as a
discriminator to determine whether an image is real.

3.4 DETAILS

Specifically, we extract features from the image x using the DINOv2 model (Oquab et al., 2024) to
implement w(x). For θ(·), we first transform the image using two trainable convolutional layers into
a vector of the same size as the original image. This transformed vector is then added to the original
image, and the combined result is passed through DINOv2 to extract features, thereby implementing
θ(x). This approach preserves the original feature extraction capability of the DINOv2 model, this
will be discussed in detail in Section 4.3. Define the operations applied to the image prior to inputting
it into the DINOv2 model as gθ(·) : Rd → Rd, where the convolution operations are denoted as
cθ(·) : Rd → Rd, such that:

g(x) = x+ λccθ(x). (9)
Denoting the DINOv2 model as d(·), we obtain:

w(x) = d(x), θ(x) = d(gθ(x)). (10)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Since the DINOv2 model outputs a feature vector, we extend the form of L(x) to be the second-order
norm, i.e., L(x) = ||w(x)− θ(x)||2. We visualize the overall process in Figure 1.

We employ validation-based early stopping by reserving 1,000 samples for validation purposes.
Specifically, due to the relatively small number of trainable parameters, we evaluate the model’s
performance on the validation set after every 10 gradient descent iterations. The model checkpoint
with the best validation performance is then selected for further evaluation on the test set.

4 EXPERIMENTS

Figure 1: Framework of the proposed method during training and test-
ing phases.

In this section, we will
first outline the experi-
mental setups employed in
our study, followed by
a comprehensive presenta-
tion of the experimental re-
sults that substantiate the
efficacy of our approach.

4.1 SETUP

Training Datasets. Unlike
conventional detectors,
DetGO is trained exclu-
sively on real images,
specifically utilizing the
ImageNet dataset (Deng
et al., 2009). We selected
100 images from each category, resulting in a total of 100,000 images.

Testing Datasets. To assess the generalization ability of our proposed method in practical contexts,
we utilized a variety of real images, multiple GAN and diffusion models and several commercially
available generative models following the work of (Stein et al., 2023a). For the real images, we
utilized three datasets: ImageNet , LSUN-Bedroom (Yu et al., 2015), and LAION (Schuhmann
et al., 2021). For the generated images, we selected outputs from a range of advanced genera-
tive models, including ADM (Dhariwal & Nichol, 2021), ADM-G, LDM (Rombach et al., 2022),
DiT-XL2 (Peebles & Xie, 2023), BigGAN (Brock et al., 2019), GigaGAN (Kang et al., 2023),
StyleGAN (Karras et al., 2019), RQ-Transformer (Lee et al., 2022), MaskGIT (Chang et al., 2022),
DDPM (Ho et al., 2020), iDDPM (Nichol & Dhariwal, 2021), Diffusion Projected GAN (Wang
et al., 2023b), Projected GAN and Unleasing Transformer (Bond-Taylor et al., 2022). Additionally,
we conducted tests on GenImage (Zhu et al., 2023), a recently established benchmark for detecting
AI-generated content. This benchmark includes a variety of models such as GLIDE (Nichol et al.,
2022), VQDM (Gu et al., 2022), Stable Diffusion (Rombach et al., 2022), Wukong (Wukong, 2022),
and Midjourney (Midjourney, 2022).

Baselines. We use both training methods and training-free methods as baselines. For training meth-
ods, we take CNNspot (Wang et al., 2020), Ojha (Ojha et al., 2023), DIRE (Wang et al., 2023a),
and NPR (Tan et al., 2023a) as baselines. For training-free methods, we take AEROBLADE (Ricker
et al., 2024) as baselines. On GenImage, we also report the result of F3Net (Qian et al., 2020),
GANDetection (Mandelli et al., 2022), LGrad (Tan et al., 2023b), ResNet-50 (He et al., 2016), DeiT-
S (Touvron et al., 2021), Swin-T (Liu et al., 2021), Spec (Zhang et al., 2019) and GramNet (Liu et al.,
2020).

Experiment details. Specifically, to balance detection performance and efficiency, we use DINOv2-
ViT-L/14, which will be discussed in 4.3. During the training and testing phases, the images fed into
the network undergo random cropping to a size of 224 × 224 pixels, and all images are in PNG
format. We utilize the Stochastic Gradient Descent (SGD) optimizer with a batch size of 32 and
a learning rate of 0.01. Additionally, we implement early stopping to ensure optimal performance
during training. To evaluate the performance of the proposed method, we adopt the metrics used
in the baseline studies, which include the Area Under the Receiver Operating Characteristic curve
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Table 1: Fake image detection performance on ImageNet. Values are percentages. Bold numbers
are superior results. A higher value indicates better performance.

Models
ADM ADMG LDM DiT BigGAN GigaGAN StyleGAN XL RQ-Transformer Mask GIT Average

Methods
AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

AEROBLADE 50.49 50.24 57.27 56.57 61.02 57.50 71.54 71.40 50.14 51.74 55.50 53.90 50.56 52.42 69.33 68.48 58.08 57.28 58.21 57.73
CNNspot 71.25 68.21 70.27 66.23 70.34 64.41 53.02 48.86 86.11 81.98 66.96 63.61 68.28 64.37 60.12 57.21 73.86 68.22 68.91 64.79
Ojha 83.24 83.28 77.48 76.32 83.23 82.66 80.00 78.10 90.70 89.46 81.33 79.23 81.97 79.28 82.61 80.71 84.63 86.07 82.80 81.68
DIRE 57.82 58.57 55.95 53.84 57.59 58.62 50.38 51.99 50.46 50.10 49.16 52.42 51.99 53.36 51.80 50.45 49.74 50.01 52.76 53.26
NPR 76.68 74.10 77.26 74.49 92.73 88.74 79.44 73.18 81.48 78.55 80.22 77.07 80.91 77.52 86.49 83.55 89.75 86.32 82.77 79.27
DetGO 86.09 85.74 79.30 78.73 73.41 84.09 70.79 82.72 91.03 90.50 87.26 92.53 88.49 93.10 88.23 93.17 82.90 89.87 83.06 87.82

Table 2: Fake image detection performance on GenImage. Except for DetGO, all methods require
training on Stable Diffusion V1.4.

ModelsMethods Midjourney ADM GLIDE Wukong VQDM BigGAN Average

ResNet-50 54.90 53.50 61.90 98.20 56.60 52.00 62.85
DeiT-S 55.60 49.80 58.10 98.90 56.90 53.50 62.13
Swin-T 62.10 49.80 67.60 99.10 62.30 57.60 66.42
CNNDet 52.80 50.10 39.80 78.60 53.40 46.80 53.58
Spec 52.00 49.70 49.80 94.80 55.60 49.80 58.62
F3Net 50.10 49.90 50.00 99.90 49.90 49.90 58.28
GramNet 54.20 50.30 54.60 98.90 50.80 51.70 60.08
DIRE 60.20 50.90 55.00 99.20 50.10 50.20 60.93
Ojha 73.20 55.20 76.90 75.60 56.90 80.30 69.68
DetGO 70.66 71.99 70.96 69.10 82.93 88.06 75.61

(AUROC, AUC), average precision score (AP), and accuracy (ACC). Due to the extensive size of
GenImage and the time-consuming nature of certain detection methods, we opted to directly utilize
the scores reported by certain baselines as presented in the corresponding articles.

4.2 RESULTS

Comparison to Existing Detectors. Given that DetGO was trained on the ImageNet dataset, we
initially utilized ImageNet as the real-image dataset to compare the performance of our approach
with various baselines. Following the methodology outlined in (Stein et al., 2023b), our experimen-
tal results on the ImageNet dataset are presented in Table 1. The generative models presented are
all trained on the ImageNet dataset. It is evident that DetGO effectively distinguishes between real
and generated images, and demonstrates consistent performance across various generative models,
and outperforms all compared methods. Furthermore, we tested the performance of DetGO on the
GenImage dataset. In these tests, real image dataset is still ImageNet and the results of the compared
baselines are sourced from the GenImage paper and were obtained using models trained with Stable
Diffusion V1.4. Since Stable Diffusion V1.4 and v1.5 are too similar and all baselines achieve an
AUROC of 99, we exclude this set of data from our results. Aside from Stable Diffusion V1.5,
these baselines exhibit a significant decline in performance on datasets that were not encountered
during training. In contrast, DetGO demonstrated consistent performance with the highest average
accuracy.

Generalization Capability Evaluation. Unlike the previous context, when assessing the general-
ization capability of DetGO, the real and generated images used were unseen by the detector during
training, while no such restrictions were imposed on the baselines. Table 3 displays the detection
performance on real images from the LSUB-bedroom and generated images produced by models
trained on the LSUB-bedroom dataset. DetGO demonstrated superior performance compared other
models. To address the challenges posed by the rising prevalence of video generation models to dig-
ital security, we also tested our model’s performance on generated video frames. Our experimental
setup was based on the recently prominent Sora model (OpenAI, 2024). Since Sora is not publicly
available, we utilized several demonstration videos from the official Sora website. Specifically, we
selected 50 publicly available videos from Sora and extracted 5, 000 frames each to compile our
dataset. For real images, we chose 5, 000 pictures from the LAION-400m dataset. Table 4 presents
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Table 3: Fake image detection performance on LSUN-BEDROOM.

Models
ADM DDPM iDDPM Diffusion GAN Projected GAN StyleGAN Unleashing Transformer Average

Methods
AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

AEROBLADE 55.96 58.62 70.67 71.71 69.64 67.69 49.05 50.53 52.47 49.79 49.68 51.41 56.43 57.00 57.70 58.11
CNNspot 65.97 63.55 75.53 72.91 76.37 73.89 82.80 83.16 85.42 85.47 98.36 98.42 91.58 91.43 82.29 81.26
Ojha 71.52 70.72 80.52 79.89 79.88 79.36 86.08 84.22 86.91 85.51 83.75 82.86 85.86 84.97 82.08 81.01
DIRE 54.47 56.39 57.30 62.34 59.08 61.47 54.16 56.79 55.18 55.11 57.90 56.98 61.69 64.77 57.11 59.12
NPR 68.70 63.81 82.97 75.63 71.72 66.62 81.77 73.94 83.56 75.82 65.33 58.78 80.14 72.35 76.31 69.56
DetGO 71.23 71.43 85.77 86.31 83.06 83.40 91.21 90.93 91.84 91.61 80.14 81.51 92.22 92.17 85.07 85.33

Table 4: Fake image detection performance on Sora.

Methods
CNNspot Ojha NPR DIRE AEROBLADE DetGOModel

AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

Sora 59.58 56.36 73.64 74.17 78.07 61.43 60.20 56.05 62.37 63.48 87.64 88.07

our results, demonstrating that DetGO also achieved the best performance on novel datasets. The ex-
periments highlighted above demonstrate that our model exhibits strong generalization capabilities
across various generative models and datasets.

Robustness to post-processing operations. In real-world scenarios, images are seldom pris-
tine; they undergo continuous compression and interference during dissemination on social me-
dia. Detection models that perform well on clean images may experience diminished perfor-
mance on distorted ones. In this section, we evaluate the robustness of DetGO against interfer-
ence. We introduce disturbances at five levels of Gaussian blur (σ = 1, 2, 3, 4, 5), Gaussian noise
(λ = 0.05, 0.1, 0.15, 0.2, 0.25), and JPEG compression (quality: q = 90, 80, 70, 60, 50). We ex-
plore the robustness of the previously well-performing baseline: CNNSpot, Ojha, NPR and DetGO.
The results are presented in Figure 2. As shown in the results, DetGO exhibits the best robust-
ness when faced with degraded images. The feature extraction method based on pixel relationships,
NRP, experienced significant degradation. In contrast, our approach leverages the strong general-
ization capability of DINOv2, achieving superior results across various interference tests, thereby
demonstrating its effectiveness in real-world applications.

100 90 80 70 60 50
q

45

50

55

60

65

70

75

80

AU
RO

C

CNNspot
Ojha
NPR
DetGO

(a)

0 1 2 3 4 5
50

55

60

65

70

75

80

AU
RO

C

CNNspot
Ojha
NPR
DetGO

(b)

0.00 0.05 0.10 0.15 0.20 0.25

50

55

60

65

70

75

80

AU
RO

C

CNNspot
Ojha
NPR
DetGO

(c)

Figure 2: Robustness to post-processing operations. (a) shows the robustness to JPEG compression,
(b) shows the robustness to Gaussian blur, and (c) shows the robustness to Gaussian noise.

Robustness to data transformations. Robustness to data transformations is an essential property
for models to maintain consistent performance under a range of perturbations that may occur in
real-world scenarios. When applied to the ImageNet dataset, for instance, real images that undergo
common transformations—such as random cropping, resizing, rotation, or color jittering—may be
misclassified by models as fake or synthetic. This phenomenon arises because these transformations,
which are typically employed during model training for data augmentation, introduce subtle pertur-
bations that can alter the distribution of pixel values and higher-level features. Consequently, a model
trained to distinguish between real and fake images may misinterpret these legitimate variations as
artifacts indicative of synthetic generation. This sensitivity suggests that the decision boundaries
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Table 5: Fake image detection performance on ImageNet with data transformations.

ModelsTransformation Intensity ADM ADMG LDM DiT BigGAN GigaGAN StyleGAN XL RQ-Transformer Mask GIT Average

None 86.09 79.30 73.41 70.79 91.03 87.26 88.49 88.23 82.90 83.06

Rotation −45◦ ∼ 45◦ 83.05 76.94 65.32 67.95 85.88 83.01 84.12 83.24 75.26 78.31
−90◦ ∼ 90◦ 80.57 74.98 65.50 66.64 83.88 79.93 81.11 81.18 72.81 76.29

Flip horizontal p = 0.5 86.15 79.39 70.29 71.89 90.99 87.93 88.68 87.84 81.16 82.70
vertical p = 0.5 82.31 76.51 68.94 69.29 87.74 82.78 83.63 83.10 77.79 79.12

Brightness jitter −0.25 ∼ 0.25 85.92 79.29 70.05 71.12 90.35 87.67 88.45 87.83 81.11 82.42
−0.5 ∼ 0.5 85.21 79.28 69.92 71.13 90.16 86.67 88.10 87.69 80.64 82.09

Contrast jitter −0.25 ∼ 0.25 86.04 79.15 70.01 71.45 90.68 87.79 88.38 88.03 80.80 82.48
−0.5 ∼ 0.5 85.54 79.24 69.57 71.18 90.17 86.61 87.83 87.37 80.77 82.03

Saturation jitter −0.25 ∼ 0.25 86.19 79.24 70.15 71.80 90.76 88.01 88.77 88.02 81.19 82.68
−0.5 ∼ 0.5 85.86 79.22 70.45 71.23 90.53 87.56 88.81 87.82 80.92 82.49

Hue jitter −0.25 ∼ 0.25 85.41 78.34 69.95 71.89 88.04 85.50 87.91 86.71 81.16 81.66
−0.5 ∼ 0.5 83.80 78.28 69.04 70.29 87.45 85.15 87.55 85.52 80.32 80.82

learned by the model might be overly reliant on superficial characteristics, rather than capturing the
fundamental semantic content of the images. Our results, as shown in Table 5, demonstrate that the
proposed method exhibits relative robustness to various data augmentations. This robustness can
be attributed to the DINOv2 model’s extensive pretraining on large-scale real-world image datasets,
which equips it with a strong capability to capture invariant features under different transformations.
Consequently, the model can maintain stable performance when subjected to natural variations in
real images. We only observed a relatively significant performance drop under random rotation
transformations. This decline can likely be attributed to the pixel interpolation process introduced
during rotation, which may cause a loss of fine-grained details in the image.

4.3 ABLATION STUDY

This section examines the effects of models, convolutional layers, training perturbations, and early
stopping on detection performance. We found that smaller models like DINOv2-S/14 significantly
underperformed. We set the dimensionality of convolutional layers to 1 for efficiency, as it had min-
imal impact on results. Adding Gaussian noise ϵ showed that both low and high perturbation levels
hindered generalization. Our early stopping strategy also revealed that optimal test performance did
not occur at minimum loss, highlighting the importance of validation. These insights underscore
key factors influencing detection effectiveness. Additionally, we investigated the impact of placing
trainable layers either before the input or after the output of the DINOv2 model. Our results show
that the latter configuration tends to degrade DINOv2’s feature extraction capabilities.

The effect of models. In our experiments, we primarily utilized the DINOv2-ViT-L/14 model.
This section explores the impact of different DINOv2 model sizes on performance. The results,
as shown in Table 6, indicate that the performance of ViT-L/14 and ViT-g/14 is similar, while a
noticeable performance drop occurs with the smaller ViT-S/14 and ViT-B/14 models. This decline
may be attributed to the smaller models’ inability to effectively capture the differences between real
and generated images. Considering detection efficiency, we opted for the more balanced ViT-L/14
model in our experiments.

The effect of convolutional layer. In ”Details” 3.4 of the Method section, we provide a comprehen-
sive elaboration on the structural composition of the function θ(·). This discussion further explores
the implications of the dimensionality of the intermediate layer within the convolutional network
framework and the convolutional coefficients λc in the g(·) function. Table 7 and 8 illustrates the
impact of these factors on detection performance. It can be observed that the dimensionality of the
intermediate layers in the convolutional network has a negligible impact on the final detection per-
formance. Therefore, to expedite training, we set the dimensionality of the intermediate layers to 1.
We next focus on the effect of the convolutional coefficient. When the coefficient is set to a very low
value, the function g fails to introduce meaningful changes to the image x, rendering the subsequent
feature extraction model ineffective at distinguishing x from g(x). Conversely, when the coefficient
is too large, it overly distorts x, thereby obscuring the differences in distinguishing characteristics
between the real and generated images, i.e., the differences between x and g(x).
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Table 6: The effect of the size of DINOv2.

Size ViT-S/14 ViT-B/14 ViT-L/14 ViT-g/14

AUC 63.01 73.43 83.06 80.56

Table 7: The effect of the intermediate layer dimension.

Dim 1 2 3 4 5

AUC 83.06 82.01 82.23 81.22 80.83

Table 8: The effect of convolutional coefficients.

λc 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5

AUC 52.03 74.69 83.06 82.88 82.61 78.79 73.27 66.86

Table 9: The effect of noise intensity during training.

λn 0.1 0.2 0.3 0.4 0.5 0.6 0.7

AUC 73.97 78.69 83.06 82.44 80.12 74.15 68.18

Table 10: The effect of loss weight.

λ 0.02 0.05 0.1 0.2 0.3 0.5

AUC 71.35 80.94 83.06 82.17 80.23 76.51

The effect of training perturba-
tions. In the training process, we
introduce Gaussian noise ϵ to the
original image x. Our experimen-
tal results demonstrate that variations
in the intensity of this noise signif-
icantly influence the detection per-
formance of the model, as shown in
Table 9. When the perturbation is
minimal, the model tends to overfit
to the training set rather than learn-
ing meaningful representations of the
real images. Conversely, when the
perturbation is excessively large, the
model only learns to distinguish be-
tween real images and pure noise,
which also leads to a deterioration in
detection performance. This trade-
off indicates that an optimal level of
perturbation is crucial for effective
model training, as it ensures that the
model captures the inherent charac-
teristics of the data.

The effect of loss weight. In the
Equation 8, we introduced our pro-
posed loss function, which is formulated as a weighted ℓ2-norm of the difference between two
feature vectors. This formulation includes a hyperparameter, λ, that controls the relative importance
of the feature difference term in the overall loss. In this section, we investigate the effect of vary-
ing the λ value on the model’s performance. The choice of λ significantly influences the learning
dynamics, as it governs the sensitivity of the model to discrepancies in the feature representations.
When λ is too small, the loss function may not adequately penalize deviations between features,
potentially leading to a model that underfits and fails to capture subtle distinctions between real and
synthetic images. Conversely, an excessively large λ value could dominate the learning process,
causing the model to prioritize minimizing feature differences at the expense of other critical loss
components, thereby hindering its ability to generalize. Our results, as depicted in Table 10, show
that there is an optimal range for λ, where the model achieves a balance between feature alignment
and overall classification performance.

Figure 3: Pipeline of DetGO-Rear.

Validation-based early stopping. As men-
tioned previously in 3.4, we evaluate the
model’s performance on the validation set af-
ter every 10 gradient descent iterations to select
the optimal checkpoint. In Figure 4, we present
how the performance on both the validation and
test sets evolves throughout the training pro-
cess. During the training process, the loss con-
tinues to decrease; however, it is clear that the
model does not achieve higher performance at
lower loss values. Our early stopping strategy
effectively ensures optimal performance on the
test set.

Trainable layer placement. In our experi-
ments, we initially positioned the trainable con-
volutional layers between the input images and
the DINOv2 model. In this section, we investi-
gate the effects of relocating the trainable layers
to follow the DINOv2 model, utilizing linear
layers as the trainable components. We refer to
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Table 11: Comparison of detection performance between DetGO and its variants on ImageNet.

ModelsMethods ADM ADMG LDM DiT BigGAN GigaGAN StyleGAN XL RQ-Transformer Mask GIT Average

DetGO-Front 86.09 79.30 73.41 70.79 91.03 87.26 88.49 88.23 82.90 83.06
DetGO-Rear 79.31 71.93 67.11 69.15 89.31 82.15 87.97 84.65 82.73 79.37

this variant as DetGO-Rear, while the original method is designated as DetGO-Front for comparison.
The detection architecture is illustrated in Figure 3, while the performance results on the ImageNet
dataset are summarized in Table 11. Our findings reveal that when the trainable layers are placed
after the DINOv2 model, the overall performance is inferior compared to the configuration where
these layers precede the DINOv2. This decline in performance suggests that placing trainable lay-
ers after DINOv2 may compromise the model’s inherent feature extraction capabilities. DINOv2
is designed to capture rich, high-level representations from the input data, and the introduction of
trainable layers after it’s output layer can interfere with the effective utilization of these features,
thereby diminishing the model’s ability to leverage the discriminative features that are critical for
accurate classification. This ablation study underscores the importance of strategically positioning
trainable components within the network architecture to preserve the integrity of the feature extrac-
tion process and enhance overall model performance.

5 LIMITATION

The success of DetGO hinges on the availability of high-quality real image datasets for training.
While our approach does not require synthetic images, it necessitates extensive collections of real-
world images that are both diverse and representative of the natural image distribution. This de-
pendency could pose a challenge in domains where access to high-quality, unbiased real images is
limited or constrained by privacy concerns.

The introduction of two separate models—the anchor model and the overfitting model—significantly
increases the computational overhead, particularly during the training phase. This dual-model struc-
ture requires additional memory and training time compared to traditional single-model approaches.
Although it can be mitigated by employing smaller versions of DINOv2, optimizing computational
efficiency remains an open challenge for large-scale deployments or real-time applications.

6 CONCLUSION
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Figure 4: Performance throughout the training process.

In this paper, we introduced DetGO,
a novel approach for detecting AI-
generated images by leveraging over-
fitting to the distribution of real im-
ages. Unlike conventional detection
methods that rely on the existence
of generation-specific artifacts or re-
quire access to synthetic examples
during training, DetGO capitalizes
on the inherent distributional differ-
ences between real and generated im-
ages. Through a dual-model frame-
work comprising an anchor model
and an overfitting model, DetGO ef-
fectively highlights the mismatch in loss landscapes, achieving state-of-the-art detection perfor-
mance across multiple benchmarks, including various GANs, diffusion models, and commercially
available generative models. Our extensive experimental evaluation demonstrates that DetGO not
only outperforms existing detectors on standard datasets but also maintains robust generalization
capability in the face of increasingly sophisticated generative models. Additionally, DetGO exhibits
resilience against typical post-processing operations, making it a promising candidate for real-world
deployment scenarios.
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ETHICS STATEMENT

We affirm that this research adheres to the ICLR Code of Ethics. This work does not involve the
use of human subjects, private data, or datasets with sensitive or restricted content. All experiments
were conducted using publicly available image datasets.

The proposed method, DetGO, is intended solely for detecting AI-generated images and does not
contribute to the generation or dissemination of misleading or harmful content. The study is de-
signed to address potential misuse of AI technology by enhancing detection capabilities and does
not introduce risks or adverse consequences that could result from its implementation.

The methodology and results are reported with full transparency to ensure reproducibility and ethi-
cal standards in research. The work complies with all applicable legal and ethical guidelines, and the
authors have no conflicts of interest or sponsorships that could influence the research outcomes. Ad-
ditionally, all references and related works have been appropriately cited, and the research upholds
the principles of academic integrity and responsible conduct of research.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have provided detailed descriptions of the exper-
imental setup, model architecture, and training procedures in Section 4. Specifically, the training
datasets, hyperparameters, and evaluation metrics are clearly outlined to facilitate replication. All
models were trained using publicly available datasets and we specify the data preprocessing steps
employed in Section 4.1. All datasets required for our experiments can be directly accessed through
the links or official websites specified in the references (Stein et al., 2023a; Zhu et al., 2023; Schuh-
mann et al., 2021; OpenAI, 2024).

The proposed method, DetGO, is implemented using PyTorch, and the architecture details, including
the dual-model framework and loss functions, are provided in Sections 3.2 and 3.3. Code will be
available once the paper is accepted.
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Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas
Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jégou, Julien Mairal, Patrick Labatut, Ar-
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