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ABSTRACT

We explore a fairness-related challenge that arises in generative models. The chal-
lenge is that biased training data with imbalanced representations of demographic
groups may yield a high asymmetry in size of generated samples across distinct
groups. We focus on practically-relevant scenarios wherein demographic labels
are not available and therefore the design of a fair generative model is particularly
challenging. In this paper, we propose an optimization framework that regulates
the unfairness under such practical settings by employing one prominent statistical
notion, total variation distance (TVD). We quantify the degree of unfairness via the
TVD between the generated samples and balanced-yet-small reference samples.
We take a variational optimization approach to faithfully implement the TVD-based
measure. Experiments on benchmark real datasets demonstrate that the proposed
framework can significantly improve the fairness performance while maintaining
realistic sample quality for a wide range of the reference set size all the way down
to 1% relative to training set.

1 INTRODUCTION

High-quality realistic samples synthesized thanks to recent advances in generative models (Brock
et al., 2019; Goodfellow et al., 2014; Karras et al., 2019) have played a crucial role to enrich training
data for a widening array of applications such as face recognition, natural language processing, and
medical imaging (Wang et al., 2019; Chang et al., 2018; Yi et al., 2019). One challenge concerning
fairness arises when generative models are built upon biased training data that preserve unbalanced
representations of demographic groups. Any existing bias in the dataset can readily be propagated to
the learned model, thus producing generations that are biased towards certain demographics. The
unbalanced generated samples may often yield undesirable performances against underrepresented
groups for downstream applications. One natural way to ensure fair sample generation is to exploit
demographic labels (if available) to build a fair generative model, e.g., via conditional GAN (Mirza
& Osindero, 2014; Odena et al., 2017; Miyato & Koyama, 2018) which employs such labels to easily
generate an arbitrary number of samples for minority groups. In many practically-relevant scenarios,
however, such labels are not often available.

To address the challenge, one pioneering work (Choi et al., 2020) develops a novel debiasing technique
that employs the reweighting idea (Ren et al., 2018; Kamiran & Calders, 2012; Byrd & Lipton, 2019)
to put more weights to underrepresented samples, thereby promoting fair sample generation across
demographic groups. One key feature of the technique is to identify the bias (reflected in the weights)
via a small and unlabelled reference dataset. While it enjoys significant fairness performance for
moderate sizes of the reference dataset, it may provide a marginal gain for a more practically-relevant
case of a small set size where the weight estimation is often inaccurate, as hinted by the meta-learning
literature (Ren et al., 2018; Shu et al., 2020). We also find such phenomenon in our experiments; see
Table 2 for details.

On the other hand, one recent study (Roh et al., 2020) sheds lights on addressing the small set
size issue. Roh et al. (2020) propose a robust training approach by employing the Jensen-Shannon
divergence (or equivalently mutual information (Majtey et al., 2005)) between poisoned training and
clean reference samples. It then takes the divergence as a regularization term in order to promote
robust training. One key benefit of Roh et al. (2020)in light of the reweighting-based approaches (Ren
et al., 2018; Choi et al., 2020) is that the robustness performance is guaranteed even for a small
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size of the clean reference set down to 5% relative to the training set size. This implies that the
divergence-based regularization approach makes a more efficient use of reference data for robustness,
as compared to the reweighting technique.

Contribution: Inspired by the key benefit featured in Roh et al. (2020), we address the small
set issue by another well-known statistical measure, in particular, total variation distance (TVD).
See Section 3.2 for details on the rationale behind the use of TVD. Similarly we introduce a
reference dataset which is balanced and unlabelled. We then employ it to formulate the TVD
between the generated and reference sample distributions, which can serve as quantifying the degree
of unfairness. We then promote fair sample generation by adding the TVD into a conventional
optimization (e.g., GAN-based optimization (Goodfellow et al., 2014; Nowozin et al., 2016; Arjovsky
et al., 2017)). Motivated by the variational optimization technique w.r.t. TVD (Villani, 2009;
Nowozin et al., 2016; Arjovsky et al., 2017), we translate the TVD-regularization term into a function
optimization. We also conduct extensive experiments on three benchmark real datasets: CelebA (Liu
et al., 2015), UTKFace (Zhang et al., 2017), and FairFace (Karkkainen & Joo, 2021). We demonstrate
via simulation that the proposed framework can significantly boost up the fairness performance
while offering high-quality realistic samples reflected in low FID. We also find that our approach
outperforms the state of the art (Choi et al., 2020), particularly being robust to the balanced reference
set size: the significant improvements preserve for a wide range of the reference set size down to 1%
relative to training data (more preferable in reality).

Related works: In addition to Choi et al. (2020), Tan et al. (2020) propose a different way that
promotes fair sample generation by smartly perturbing the input distribution of a pre-trained generative
model with the help of a classifier for sensitive attributes. The key distinction w.r.t. ours is that
it relies upon the additional classifier which requires the use of demographic labels to obtain. Yu
et al. (2020) employ demographic labels for minority groups to generate a wide variety of samples
with improved data converge by harmonizing GAN and MLE ideas. A distinction w.r.t. ours is
that it requires the knowledge on demographic labels. Jalal et al. (2021) consider a fair generative
model yet in a different context, image reconstruction. The goal of the task is to ensure fair sample
generation of restored images from degraded versions. Since it relies upon the degraded images, it
is not directly comparable to ours. Another line of fair generative modeling focuses on label bias,
instead of representation bias (Xu et al., 2018; 2019a;b; Sattigeri et al., 2019; Jang et al., 2021; Kyono
et al., 2021). The goal therein is to develop a generative model such that the generated decision
labels are statistically independent of the given demographic labels. Again, these are not directly
comparable to ours, as they require the use of demographic labels.

The variational optimization technique w.r.t. TVD that gives an inspiration to our work has originated
from Villani (2003; 2009), wherein the author shows that the TVD can be expressed as a function
optimization in the context of transport theory. The technique was recently applied to the GAN
context (Nowozin et al., 2016). The TVD has also served as a useful tool for quantifying various
fairness measures in fair classifiers that pursue individual fairness (Dwork et al., 2012; Dwork &
Ilvento, 2018) and group fairness (Gordaliza et al., 2019; Wang et al., 2020a; Farokhi, 2021).

2 PROBLEM FORMULATION

Setup: Fig. 1 illustrates the problem setting for a fair generative model that we focus on herein.
We consider a challenging yet practically-relevant scenario wherein demographic information (or
that we call sensitive attribute), say z ∈ Z , is not available. Under this blind setting, the goal of
the problem is to construct a fair generative model that ensures the produced samples to have the
same size across distinct demographics. We assume that there are two types of data given in the
problem: (i) training data Dbias := {x(i)bias}

mbias
i=1 ; (ii) reference data Dref := {x(i)ref}

mref
i=1 . Since we

consider the setting where training data is potentially biased, we use the word “bias” in the associated
notations. Here mbias denotes the number of training examples. Let Pbias be data distribution which
each training data x(i)bias ∈ X is generated upon. In a biased scenario having female-vs-male sensitive
attribute, e.g., z = 0 (female) and z = 1 (male), we may have Pbias(Z = 0) > Pbias(Z = 1).
As in Choi et al. (2020), we also employ a balanced yet small reference dataset for the purpose
of promoting fair sample generation, which can be obtained via a set of carefully-designed data
collection protocols employed in organizations like World Bank and biotech companies (Choi et al.,
2020; 23&me, 2016; Hong, 2016). Let Pref be the corresponding data distribution defined on X :
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Figure 1: Part of a fair generative model that intends to yield generated samples with the equal size
over demographic groups. We employ training data {x(i)bias}

mbias
i=1 (potentially biased) and balanced

reference data {x(i)ref}
mref
i=1 . The entire structure of the proposed model will be illustrated in detail in

Fig. 2. Here mbias (or mref ) denotes the number of training samples (or reference samples).

Pref(Z = 0) ≈ Pref(Z = 1). Since the balanced reference set is often challenging to collect, typically
the number of the reference samples is much smaller than that of training examples: mref � mbias.
Denote by x̂ := G(w) ∈ X the generated sample fed by a random noise input w ∈ W . We assume
that the generated samples have the same support X as training and reference samples. Let PG and
PW be distributions w.r.t. generated samples and the random noise input respectively.

As a fairness measure that will be employed for the purpose of evaluating our framework to be
presented in Section 3, we consider fairness discrepancy proposed by Choi et al. (2020). It quantifies
how PG differs from Pref w.r.t. a certain sensitive attribute, formally defined below.

Definition 1 (Fairness Discrepancy (Choi et al., 2020)). Fairness discrepancy between Pref and PG
w.r.t. a sensitive attribute z ∈ {z1, . . . , z|Z|} is defined as:

F(Pref ,PG) := ‖pref(z)− pG(z)‖2 (1)

where

pref(z) :=


Pref(Z = z1)
Pref(Z = z2)

...
Pref(Z = z|Z|)

 and pG(z) :=


PG(Ẑ = z1)

PG(Ẑ = z2)
...

PG(Ẑ = z|Z|)

 .

Here Ẑ denotes the prediction of the sensitive attribute w.r.t. a generated sample, yielded by a
pre-trained classification model which we call attribute classifier as in Choi et al. (2020). The
attribute classifier is employed only for the purpose of evaluation, and is trained based on another
real dataset, e.g., like the one mentioned in Choi et al. (2020): the standard train and validation splits
of CelebA (Liu et al., 2015). For faithful evaluation, we consider a vast number of generated samples
(i.e., more than 10,000) as well as employ highly-accurate attribute classifiers, around 98% accuracy
of gender classifier for instance.

As a measure for the quality of generated samples that may compete with the fairness measure,
we employ a well-known measure: Fréchet Inception Distance (FID) (Heusel et al., 2017). It
is defined as the Fréchet distance (Fréchet, 1957) (also known as the second-order Wasserstein
distance (Wasserstein, 1969)) between real and generated samples approximated via the Gaussian
distribution. The lower FID, the more realistic and diverse the generated samples are. For a more
precise measure that reveals sample quality of each sensitive group, we consider FID computed
within each demographic, called intra FID (Miyato & Koyama, 2018; Zhang et al., 2019; Wang et al.,
2020b). Computing intra FID requires the knowledge on group identities of generated samples. Since
demographic labels are not available in our context, we rely upon the attribute classifier (that we
introduced above) for predicting demographic information of the generated samples.

GAN-based generative model: Our framework (to be presented soon) builds upon one powerful
generative model: Generative Adversarial Network (GAN) (Goodfellow et al., 2014). The GAN
comprises two competing players: (i) discriminator D(·) that wishes to discriminate real samples
against generated samples; and (ii) generator G(·) that intends to fool the discriminator by producing
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realistic generated samples. In particular, we consider a general optimization framework (Tseng et al.,
2021) which subsumes many GAN variants as special cases:

(Discriminator) max
D

EPbias

[
fD(D(X))

]
+ EPG

[
fG(D(X))

]
;

(Generator) min
G
−EPG

[
gG(D(X))

] (2)

where fD, fG, and gG indicate certain functions that vary depending on an employed GAN approach.
For instance, the choice of (fD(t), fG(t), gG(t)) = (t,−t, t) together with Lipschitz-1 condition
on D leads to the prominent WGAN optimization (Arjovsky et al., 2017). Another choice of
(fD(t), fG(t), gG(t)) = (min{0,−1 + t},min{0,−1− t}, t) yields a hinge-loss-based GAN (Lim
& Ye, 2017; Tran et al., 2017). We adopt this as a base framework that we will add a fairness aspect
into in the next section.

3 PROPOSED FRAMEWORK

3.1 TVD-BASED APPROACH

One natural way to enforce a fairness constraint is to incorporate a fairness-regularization term into
the base framework. However, since the base framework consists of two distinct optimizations, how
to add the regularization term is not clear. To gain some insights into this, we focus on one instance
of GAN, which allows us to express the two as only one optimization and then relate the optimization
to a well-known statistical notion: total variation distance (TVD). To this end, we first consider the
following mappings: (fD(t), fG(t), gG(t)) = (t,−t, t). Applying these into equation 2 gives:

min
G

max
D

EPbias

[
D(X)

]
− EPG

[
D(X)

]
. (3)

We now employ the variational optimization technique presented in Villani (2003; 2009); Nowozin
et al. (2016); Arjovsky et al. (2017) to translate equation 3 into the TVD between Pbias and PG.
Details are described in Theorem 1 below.
Theorem 1 (Nowozin et al. (2016)). The optimization in equation 3 with the bounded constraint
D(·) ∈ [−1, 1] is equivalent to:

min
G

TV(Pbias,PG) (4)

where

TV(Pbias,PG) :=
1

2

∑
x∈X
|Pbias(x)− PG(x)|.

Proof. See appendix A.

3.2 FAIR GENERATIVE MODEL

Now we have the TVD-based framework with the single optimization. So one natural way to impose
a fairness constraint is to add a proper regularization term on top of equation 4. Remember our
framework employs the reference dataset containing balanced samples, reflected in Pref . Hence, as
the regularization term, we may consider a distance measure between Pref (target distribution) and
PG, since a large distance penalizes the objective. To this end, we propose to use the same TVD as
was used in equation 4:

min
G

(1− λ) · TV(Pbias,PG) + λ · TV(Pref ,PG) (5)

where λ ∈ [0, 1] denotes a normalized regularization factor that balances the sample quality against
the fairness constraint. The rationale behind the use of TVD regularization is that it is robust to
the size of dataset compared to a set of f -divergences (Tseng et al., 2021). Moreover, it offers the
best trade-off performances in fairness and sample quality compared to other divergence measures:
Jensen-Shannon divergence (Wong & You, 1985), Kullback-Leibler divergence (Kullback & Leibler,
1951), Pearson χ2-divergence (Pearson, 1900), and Wasserstein distance (Wasserstein, 1969). We
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Figure 2: The architecture of the proposed three-player optimization, reflected in equation 6.

provide empirical evidence that demonstrates this performance benefit in Section 4.2; see Table 3 for
details.

One challenge that arises in equation 5 is that expressing the TVDs in terms of an optimization variable
G is not that straightforward. For ease of implementation, we rely upon Theorem 1 again, which
shows the equivalence between the TVD-based optimization and the two-player game (equation 3).
Since equation 5 includes one more TVD, we introduce the third player, who serves as another
discriminator trying to distinguish generated samples from the balanced reference samples. Based on
this, we propose a three-player game which is equivalent to equation 5. See Theorem 2 for the formal
statement of the equivalence and its proof.
Theorem 2. The optimization in equation 5 is equivalent to:

min
G

max
|Dfair|≤1

max
|D|≤1

(1− λ){EPbias
[D(X)]− EPG

[D(X)]}+ λ{EPref
[Dfair(X)]− EPG

[Dfair(X)]}.

(6)

Proof. Manipulating equation 6, we obtain:

min
G

max
|Dfair|≤1

max
|D|≤1

(1− λ){EPbias
[D(X)]− EPG

[D(X)]}+ λ{EPref
[Dfair(X)]− EPG

[Dfair(X)
]
}

=min
G

(1− λ)
∑
x∈X
{Pbias(x)− PG(x)}D∗(x) + λ

∑
x∈X
{Pref(x)− PG(x)}D∗fair(x)

(7)

where the equality is because we assume the same support X for all data samples. Under bounded
discriminator functions D(·), Dfair(·) ∈ [−1, 1], one can readily obtain the optimal discriminators as:

D∗(x) = sign{Pbias(x)− PG(x)};
D∗fair(x) = sign{Pref(x)− PG(x)}.

Substituting these into equation 7, we get equation 5. This completes the proof.

The optimization structure of the new discriminator Dfair is the same as that of D, except that we read
Pref instead of Pbias. The generator optimization has an additional term w.r.t. Dfair(X) accordingly.
The translated three-player game can then be implemented, e.g., via parameterization of three neural
networks. We then employ a three-way alternating gradient descent (Goodfellow et al., 2014) for the
parameterized neural networks. This procedure is formally presented in Algorithm 1.
Remark 1 (Implementing bounded functions via hinge loss). Among a multitude of practices for
implementing bounded functions D(·), Dfair(·) ∈ [−1, 1], we take an approximated approach that
offers empirical benefits: the use of hinge loss (Lim & Ye, 2017; Tran et al., 2017). As expressed in
Steps 7 and 12 in Algorithm 1, we apply the hinge loss in both D and Dfair so that the discriminators
attempt to constrain themselves within the interval [−1, 1]. We found via extensive experiments that
this choice enables more stabilized training, thereby offering greater performances relative to a direct
and simple approach: employing tanh activations in D and Dfair. Actually this hinge-loss-based
approximation is inspired by Nguyen et al. (2009); Arjovsky et al. (2017); Tan et al. (2019) which
explore in depth the equivalence between TVD and hinge-loss-based optimization. �
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Algorithm 1 Three-player optimization for the TVD-based fair generative model

1: Input: Training data Dbias = {x(i)bias}
mbias
i=1 , reference data Dref = {x(i)ref}

mref
i=1 , noise input distribu-

tion PW , and several hyperparameters: λ; the numbers of discriminator steps k and l; and the
number of iterations T

2: Initialize: G(w; θ) (generator), D(x;φ) (discriminator), and Dfair(x;ψ) (fairness discriminator)
3: for T steps do
4: for k steps do {Loop for training D(x;φ)}
5: Sample minibatch of mB noise inputs {w(1), . . . , w(mB)} from PW
6: Sample minibatch of mB training data points {x(1)bias, . . . , x

(mB)
bias } from Dbias at random

7: Update D(x;φ) by ascending its stochastic gradient:

∇φ
1− λ
mB

mB∑
i=1

[
min

{
0,−1 +D(x

(i)
bias;φ)

}
+min

{
0,−1−D(G(w(i); θ);φ)

}]
8: end for
9: for l steps do {Loop for training Dfair(x;ψ)}

10: Sample minibatch of mBfair
noise inputs {w(1), . . . , w(mBfair

)} from PW
11: Sample minibatch of mBfair

reference data points {x(1)ref , . . . , x
(mBfair

)

ref } from Dref at random
12: Update Dfair(x;ψ) by ascending its stochastic gradient:

∇ψ
λ

mBfair

mBfair∑
i=1

[
min

{
0,−1 +Dfair(x

(i)
ref ;ψ)

}
+min

{
0,−1−Dfair(G(w

(i); θ);ψ)
}]

13: end for
14: Sample minibatch of mBG

noise inputs {w(1), . . . , w(mBG
)} from PW

15: Update G(w; θ) by descending its stochastic gradient:

∇θ
[
− 1− λ
mBG

mBG∑
i=1

D(G(w(i); θ);φ)− λ

mBG

mBG∑
j=1

Dfair(G(w
(j); θ);ψ)

]
16: end for

Remark 2 (Three-way battles). Fig. 2 illustrates the entire architecture of the translated three-level
optimization. Here we see interesting three-way battles. The first is a well-known battle between the
generator G and the 1st discriminator D. Remember D∗(x) = sign{Pbias(x)− PG(x)}. So one can
interpret D∗ as the strength of distinguishing real (potentially biased) samples against generated
samples. On the other hand, the generator intends to fool D, thus promoting realistic samples. The
second battle is in between the generator and the 2nd discriminator Dfair. The same interpretation
can be made from D∗fair(x) = sign{Pref(x)− PG(x)} (the ability to distinguish balanced reference
samples against the generated samples). This way, the generatorG is encouraged to produce balanced
yet less realistic (due to the small-sized reference set) samples, thus pitting the 1st discriminator
against the 2nd discriminator indirectly. The last battle is in between the 1st and 2nd discriminators.
This tension is directly controlled by the fairness tuning knob λ; see corresponding tradeoff curves
presented in Fig. 4 in appendix E.4. It turns out the three-way tradeoff relationships established via
our TVD-based framework are greatly balanced, thus achieving significant performances both in
fairness and sample quality. This is empirically demonstrated in Section 4.2; see Tables 1 and 3 for
details. �

4 EXPERIMENTS

We conduct experiments on three benchmark real datasets: CelebA (Liu et al., 2015), UTK-
Face (Zhang et al., 2017), and FairFace (Karkkainen & Joo, 2021). We implement our algorithm in
PyTorch (Paszke et al., 2019), and all experiments are performed on servers with TITAN RTX and
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Quadro RTX 8000 GPUs. For our algorithm, all the simulation results (to be reported) are the ones
averaged over five trials with distinct seeds.

4.1 SETUP

Datasets: Our construction of Dbias and Dref respects the method described in Choi et al. (2020).
Only for the purpose of data construction, we have an access to sensitive attributes z, so as to control
the ratio of demographic group sizes. For CelebA, we consider two scenarios depending on the
number of focused attributes: (i) CelebA-single (gender); (ii) CelebA-multi (two attributes: gender
and hair color). Training data Dbias is constructed to have 9 : 1 ratio (female vs. male) samples
where mbias = 67507. We take balanced samples for Dref (1 : 1 ratio). For CelebA-multi, we have
four groups: (i) (female, non-black); (ii) (male, non-black); (iii) (female, black); (iv) (male, black).
For Dbias, we take 85 : 15 ratio samples (non-black hair vs. black hair) where mbias = 60000. For
UTKFace dataset, we consider a race attribute: white vs. non-white. We take 9 : 1 ratio biased
samples with mbias ≈ 10000. For FairFace dataset, we consider another type of race categorized
as white vs. black. We also take the 9 : 1 ratio biased samples yet with mbias ≈ 20000. A wide
range of the reference set size is taken into consideration. We focus mainly on two sizes: (i) 10%
(mref ≈ 0.1mbias); (ii) 25% (mref ≈ 0.25mbias). To demonstrate the robustness of our proposed
approach to the reference set size, we also consider small sizes of the reference set down to 1%. See
appendix B.1 for more details.

Baselines: We consider three baselines. The first baseline, say Baseline I, is a non-fair algorithm
building upon the base framework described in equation 2. It is trained on the aggregated dataset
Dbias ∪ Dref . The second baseline, say Baseline II, is the same non-fair algorithm yet trained only
with a small balanced reference setDref . The last is the state of the art, Choi et al. (2020). For all three
baselines, we employ the hinge loss optimization (Lim & Ye, 2017; Tran et al., 2017): choosing the
mapping functions in equation 2 as (fD(t), fG(t), gG(t)) = (min{0,−1 + t},min{0,−1− t}, t).
Attribute classifiers: As mentioned in Section 2 (near Definition 1), we employ attribute classifiers,
only for the purpose of evaluating our twin measures: (i) fairness discrepancy (defined in equation 1);
(ii) intra FID. We introduce four different attribute classifiers for predicting senstive attributes in the
following scenarios: (i) gender for CelebA-single; (ii) gender and hair-color for CelebA-multi; (iii)
white-vs-non-white race for UTKFace; (iv) white-vs-black race for FairFace. For all the classifiers,
we use a variant of ResNet18 (He et al., 2016). CelebA and FairFace classifiers are trained over the
standard train and validation splits of CelebA (Liu et al., 2015) and FairFace (Karkkainen & Joo,
2021), respectively. For training UTKFace classifier, we use 8 : 1 : 1 splits of UTKFace (Zhang
et al., 2017) dataset. We found that our evaluation is sensitive to the performances of the attribute
classifiers; see appendix C.1 for a detailed discussion.

Hyperparameter search: For implementation of all three baselines (Baselines I, Baseline II, and Choi
et al. (2020)) and the proposed framework, we all employ the BigGAN architecture (Brock et al.,
2019). In other words, we parameterize G, D, and Dfair with the neural-net architecture introduced
in Brock et al. (2019). We leave details in appendix B.2. We also provide a complexity analysis of
our algorithm with a comparison to the state of the art (Choi et al., 2020); see appendix D for details.

4.2 RESULTS

Table 1 provides performance comparison with the three baselines on CelebA dataset. Notice for
all the considered settings that our approach exhibits better (or comparable) performances than the
state of the art (Choi et al., 2020) both in fairness (“Fairness discrepancy”) and sample quality (“Intra
FID”). The lower, the better for all the measures. The performance gaps are more apparent in the
small reference set size. Notice in the last row w.r.t. CelebA-single in Table 1 that the fairness
performance exhibits slight degradation with an increase in the reference set size. See appendix C.2
for an in-depth discussion on this counter-intuitive adverse effect of the increased reference set size.
Due to space limitation, we leave in appendix E.1 experimental results conducted on the other two
datasets: UTKFace and FairFace. The performance trends are similar to those in CelebA.

Fig. 3 visualizes generated samples on CelebA-single with the 10% reference set size. The top figure
corresponds to Choi et al. (2020), while the bottom is due to the proposed algorithm. For each figure,
faces above the yellow lines are female samples, while the rest are male samples. Here the gender is
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Table 1: Performance comparison on CelebA dataset. CelebA-single indicates the scenario in which
a single attribute (gender) is employed. CelebA-multi refers to the case considering two attributes:
gender and hair color. Baseline I is a non-fair algorithm building upon the base framework with the
hinge loss (Lim & Ye, 2017; Tran et al., 2017), and trained with the aggregated data Dbias ∪ Dref .
Baseline II is the same non-fair algorithm yet trained only with the small yet balanced reference
dataset Dref . Choi et al. is the state of the art (Choi et al., 2020). “Intra FID” refers to Fréchet
Inception Distance (Heusel et al., 2017) computed within each group (Miyato & Koyama, 2018;
Zhang et al., 2019), and we provide results for minority groups herein; see appendix E.2 for complete
results. The lower intra FID, the more realistic and diverse samples. “Fairness” is fairness discrepancy
introduced by Choi et al. (2020); see equation 1 for the definition. The lower, the fairer. The reference
set size indicates a ratio relative to training data.

CelebA-single CelebA-multi

Reference set size 10% 25% 10% 25%

Baseline I Intra FID 12.73 ± 0.053 12.00 ± 0.069 10.83 ± 0.046 9.76 ± 0.067
Fairness 0.554 ± 0.002 0.495 ± 0.001 0.245 ± 0.002 0.224 ± 0.002

Baseline II Intra FID 32.31 ± 0.109 23.81 ± 0.118 29.66 ± 0.088 21.92 ± 0.056
Fairness 0.115 ± 0.002 0.093 ± 0.002 0.136 ± 0.001 0.107 ± 0.001

Choi et al. Intra FID 25.74 ± 0.079 20.68 ± 0.076 16.27 ± 0.042 13.68 ± 0.062
Fairness 0.104 ± 0.002 0.065 ± 0.002 0.090 ± 0.001 0.063 ± 0.002

Proposed Intra FID 14.29 ± 1.354 11.34 ± 1.288 12.93 ± 0.631 12.07 ± 0.299
Fairness 0.057 ± 0.012 0.069 ± 0.015 0.080 ± 0.006 0.073 ± 0.002

Figure 3: (Top) Generated samples by Choi et al. (2020) trained on CelebA-single with 10% reference
set size. Faces above the yellow line are female (57 pictures), while the rest are male (43). Intra FID
values are around 21.07 (female) and 25.74 (male); (Bottom) Generated samples by the proposed
approach under the same setting. We obtain 54 females and 46 males, yet producing more realistic
sample images, reflected in a much lower intra FID values, around 9.51 (female) and 14.29 (male).

predicted via the attribute classifier. While both approaches yield well-balanced samples (57 : 43
for Choi et al. (2020), and 54 : 46 for ours; see Table 1 for a more precise performance comparison),
our algorithm produces more realistic sample images. This is reflected in lower intra FID values,
around 9.51 (female group) and 14.29 (male group). On the other hand, Choi et al. (2020) offers
intra FID values of around 21.07 and 25.74 for female and male groups, respectively. See Table 17
(in appendix E) for the values of intra FID. In appendix F, we also provide generated samples for
UTKFace and FairFace datasets.
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Table 2: Robustness of the proposed approach to the reference set size down to 1%. This is evaluated
on CelebA-single. All the other settings and baselines are the same as those in Table 1. Our algorithm
offers more robust performances both in fairness and intra FID.

Reference set size 5% 2.5% 1%

Baseline I Intra FID 13.54 ± 0.074 13.79 ± 0.072 15.89 ± 0.094
Fairness 0.559 ± 0.001 0.566 ± 0.002 0.576 ± 0.002

Baseline II Intra FID 40.07 ± 0.062 67.70 ± 0.112 92.34 ± 0.131
Fairness 0.120 ± 0.003 0.150 ± 0.003 0.455 ± 0.002

Choi et al. Intra FID 32.30 ± 0.049 25.81 ± 0.043 30.28 ± 0.085
Fairness 0.043 ± 0.002 0.274 ± 0.002 0.355 ± 0.002

Proposed Intra FID 23.42 ± 1.312 24.53 ± 1.157 30.93 ± 2.196
Fairness 0.048 ± 0.012 0.119 ± 0.011 0.166 ± 0.011

Table 2 demonstrates the robustness of our algorithm to the reference set size. Notice even for the 1%
reference set size, our algorithm offers still respectable performances both in fairness and sample
quality. On the other hand, Choi et al. (2020) suffers from performance degradation starting from
2.5%. Refer to appendix E.2 for intra FIDs w.r.t. the female group.

Table 3 demonstrates the rationale behind the use of TVD-based regularization. Observe that among
the considered regularization methods, our TVD-based approach offers the best (or the second best)
performances both in fairness and sample quality. It also yields the smallest discrepancy between intra
FIDs of different groups. Another noticeable observation is that our divergence-based regularization
approach outperforms Choi et al. (2020) for a variety of other divergence measures not limited to
TVD; also see Table 1 for detailed comparison. For implementing other measures, e.g., JSD, we
replace the TVD regularization term in equation 5 with the considered measure (e.g., JSD) while
maintaining the first term in the objective function. We also conduct more extensive experiments
which take different divergence measures even for the first term in the objective function in equation 5.
Even in such cases, we obtain similar results which exhibit good performances when employing TVD
for fairness regularization. See appendix E.3 for the experimental results.

Table 3: Performance comparison with other fairness regularizers on CelebA-single with the 10%
reference set size. “JSD-based” refers to a regularization method based on Jensen-Shannon divergence
implemented via Goodfellow et al. (2014). “KLD-based” is the one built upon Kullback-Leibler
divergence (Nowozin et al., 2016). “χ2-based” represents the one implementing Pearson-χ2 diver-
gence (Mao et al., 2017). “WD-based” refers to a regularization with Wasserstein distance (Gulrajani
et al., 2017). “Female” (or “Male”) refers to intra FID for female (or male) group. For each measure,
we mark the best result in bold and the second-best with underline.

JSD-based KLD-based χ2-based WD-based TVD-based

Female 12.80 ± 1.499 15.24 ± 0.371 16.01 ± 1.601 16.51 ± 1.244 9.51 ± 1.069
Male 17.83 ± 1.173 22.47 ± 0.331 25.25 ± 1.877 24.54 ± 2.731 14.29 ± 1.354
Fairness 0.087 ± 0.012 0.077 ± 0.019 0.058 ± 0.019 0.047 ± 0.033 0.057 ± 0.012

5 CONCLUSION

We introduced a TVD-based optimization framework for a fair generative model that well tradeoffs
the fairness performance (quantified as fairness discrepancy) against sample quality (reflected in intra
FID). Inspired by the equivalence between the TVD and function optimization, we also developed an
equivalent three-player optimization which can readily be implemented via neural-net parameteri-
zation. Our algorithm offers better performances than the state of the art both in fairness and intra
FID, exhibiting more significant performances particularly for practically-relevant scenarios where
the access to balanced dataset is limited. One future work of interest is to push forward for more
challenging scenarios where the reference dataset is not available.
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ETHICS STATEMENT

One defining feature of our proposed framework is to offer fair sample generation of demographic
groups while maintaining realistic high quality of generated samples. Hence, it is expected to play a
crucial role to enrich well-balanced training data for a widening array of downstream applications,
thereby ensuring great performances even for underrepresented groups which often suffer from
degraded performances due to biased data.

One disadvantage of our approach requires the use of the balanced reference set. So it may not be
directly applicable to more challenging scenarios where gathering such non-biased samples are very
limited. Another flip side is that our framework builds upon the adversarial training approach which
often incurs training instability. Hence, we believe one promising future direction is to push the
boundary towards such challenging settings while addressing the training stability issue.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of experiments, we provide a thorough description regarding our
three benchmark real datasets: CelebA (Liu et al., 2015), UTKFace (Zhang et al., 2017), and Fair-
Face (Karkkainen & Joo, 2021), along with data construction methods in Section 4.1 and appendix B.1.
All the hyperparameter settings w.r.t. the three real datasets are presented in Appendix B.2. We also
provide the average running time of our algorithm together with specific computer configuration
details in Appendix D. Lastly, we provide the codes in the supplementary material.
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A APPENDIX: PROOF OF THEOREM 1

Theorem 1 (Nowozin et al. (2016)). The optimization in equation 3 with the bounded constraint
D(·) ∈ [−1, 1] is equivalent to:

min
G

TV(Pbias,PG) (4)

where

TV(Pbias,PG) :=
1

2

∑
x∈X
|Pbias(x)− PG(x)|.

Proof. We first manipulate equation 3 as:

min
G

max
D

EPbias

[
D(X)

]
− EPG

[
D(X)

]
=min

G

∑
x∈X

{
Pbias(x)− PG(x)

}
D∗(x)

(8)

where the equality is because we assume the same support X for training and generated samples.
Under the bounded constraint D(·) ∈ [−1, 1], the optimal D∗ maximizing the above summation
becomes (Nowozin et al., 2016):

D∗(x) = sign{Pbias(x)− PG(x)}.

Substituting this into equation 8, we obtain:

min
G

∑
x∈X

{
Pbias(x)− PG(x)

}
D∗(x)

=min
G

∑
x∈X
|Pbias(x)− PG(x)| = min

G
2 · TV(Pbias,PG)

where the first equality is due to the optimal D∗. This completes the proof.

B APPENDIX: IMPLEMENTATION DETAILS

We first presentmbias (the number of samples for training set) andmref (w.r.t. reference set) employed
in a variety of considered scenarios. Next we provide details on the model architectures (together
with hyperparameters) employed for (G(·), D(·), Dfair(·)) (in our framework) as well as for attribute
classifiers.

B.1 THE NUMBER OF SAMPLES FOR TRAINING AND REFERENCE SETS

Tables 4 and 5 show mbias and mref employed for our experiments. Notice that mbias (or mref) in
UTKFace and FairFace is much smaller than that of CelebA. As expected, this leads to the overall
performance degradation of UTKFace and FairFace, as reported in appendix E; see Tables, 15, 16,
and 17 therein.

Table 4: Number of samples used in CelebA. CelebA-single indicates the scenario in which a single
attribute (gender) is employed. CelebA-multi refers to the case considering two attributes: gender
and hair color. For CelebA-single, we consider 9 : 1 female-vs-male samples for training set. For
CelebA-multi, we consider 85 : 15 non-black-hair vs black-hair samples. The reference set size
indicates a ratio relative to training set.

CelebA-single CelebA-multi

Reference set size 1% 2.5% 5% 10% 25% 10% 25%

mbias 67, 507 67, 507 67, 507 67, 507 67, 507 60, 000 60, 000
mref 674 1, 686 3, 374 6, 750 16, 876 6, 000 15, 000
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Table 5: Number of samples used in UTKFace and FairFace. All the settings are the same as those in
Table 4. For UTKFace, we consider 9 : 1 white-vs-non-white samples for training set. For FairFace,
we consider 9 : 1 ratio white-vs-black samples.

UTKFace FairFace

Reference set size 10% 25% 10% 25%

mbias 8, 486 7, 865 17, 397 16, 123
mref 848 1, 966 1, 740 4, 032

B.2 ARCHITECTURES AND HYPERPARAMETER CONFIGURATIONS

We employ attribute classifiers, only for the purpose of evaluating our twin measures: (i) fairness
discrepancy (defined in equation 1); (ii) intra FID. We introduce four different attribute classifiers for
predicting sensitive attributes in the following scenarios: (i) gender for CelebA-single; (ii) gender
and hair-color for CelebA-multi; (iii) white-vs-non-white race for UTKFace; (iv) white-vs-black race
for FairFace. For all the attribute classifiers, we use a modified version of ResNet18 (He et al., 2016);
see Table 6 for architectural details. We train the classifiers for CelebA and FairFace scenarios with
the standard train and validation splits of CelebA (Liu et al., 2015) and FairFace (Karkkainen & Joo,
2021), respectively. UTKFace (Zhang et al., 2017) does not provide such standard dataset splits, so
we manually divide the full UTKFace dataset into 8 : 1 : 1 ratio of train/valid/test splits and use them
for training the attribute classifier for UTKFace. We use the same hyperparameters for training all
of the classifiers. We use a batch size of 64 and adam optimizer with the learning rate 0.001 and
(β1, β2) = (0.9, 0.999). We also employ early stopping.

We adopt the BigGAN (Brock et al., 2019) architecture for implementing all the baselines (Baselines
I, II, and Choi et al. (2020)) and the proposed framework. See Table 7 for architectural details.
For Dfair employed in our framework, we use the same architecture as D. Tables 8, 9, and 10
exhibit hyperparameters used for our approach. Tables 11 and 12 exhibit hyperparameters used for
experiments with other regularizations. For implementing JSD-based regularization, we rely upon the
original GAN with non-saturating loss (Goodfellow et al., 2014). For Kullback-Leibler divergence,
we employ the loss function proposed in f -GAN (Nowozin et al., 2016). Least Squares GAN
loss (Mao et al., 2017) is employed for implementation of Pearson-χ2 divergence. For implementing
Wasserstein distance, WGAN-GP (Gradient Penalty) (Gulrajani et al., 2017) is employed.

For all the experimental results, λ was chosen as the one that yields the lowest FID among all
the candidates respecting a good fairness performance, e.g., fairness discrepancy < 0.1 on CelebA
dataset. For a batch size, we considered the following candidates {8, 16, 32, 64, 128, 256}. We
controlled the learning rates for G and D among {5 ·10−5, 10−4, 2 ·10−4, 4 ·10−4} and {2 ·10−4, 4 ·
10−4} respectively. For the number of D-step per G-step, we considered a number among {2, 3, 4}.

Table 6: A modified ResNet18 architecture for attribute classifiers.
Name Component

Conv 7× 7 conv, 64 filters, stride 2

Residual Block 1 3× 3 max pool, stride 2

Residual Block 2
[

3× 3 conv, 128 filters
3× 3 conv, 128 filters

]
× 2

Residual Block 3
[

3× 3 conv, 256 filters
3× 3 conv, 256 filters

]
× 2

Residual Block 4
[

3× 3 conv, 512 filters
3× 3 conv, 512 filters

]
× 2

Output Layer 7× 7 average pool stride 1,
fully-connected, softmax
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Table 7: BigGAN architecture for generator and discriminator. Here ch represents the channel width
multiplier: ch = 64 for 64× 64 images of our interest. “ResBlock up” means a Generator Residual
Block where the input is passed through a ReLU activation and then upsampled, followed by two
3× 3 convolutional layers with another ReLU activation in between. “ResBlock down” refers to a
Discriminator Residual Block in which the input is passed through two 3× 3 convolutional layers
with a ReLU activation in between, and then downsampled. Upsampling is implemented via nearest
neighbor interpolation, and downsampling is via average pooling. “ResBlock up/down n → m”
refers to a ResBlock with n input channels and m output channels.

G D (or Dfair)

1× 1× 2ch Noise 64× 64× 3 Image

Linear 1× 1× 16ch→ 1× 1× 16ch ResBlock down 1ch→ 2ch
ResBlock up 16ch→ 16ch Non-Local Block (64× 64)

ResBlock up 16ch→ 8ch ResBlock down 2ch→ 4ch

ResBlock up 8ch→ 4ch ResBlock down 4ch→ 8ch

ResBlock up 4ch→ 2ch ResBlock down 8ch→ 16ch

Non-Local Block (64× 64) ResBlock down 16ch→ 16ch
ResBlock up 4ch→ 2ch ResBlock 16ch→ 16ch

BN, ReLU, 3× 3 Conv 1ch→ 3 ReLU, Global sum pooling

Tanh Linear→ 1

For the second discriminator w.r.t fairness, we swept the learning rate through {10−4, 2 · 10−4, 4 ·
10−4} and the number of D-step per G-step through {1, 2, 3}. For Choi et al. (2020), we found for
UTKFace and FairFace that a simple 3 or 5-layer CNN classifier better estimates example weights
than the ResNet-based architecture used in Choi et al. (2020). All baseline performances are measured
using the same approach as in Choi et al. (2020): average over 10 independent evaluation sets of
10,000 samples each drawn from the corresponding baseline model.

Table 8: Hyperparameters used for CelebA experiments. We use the same betas for (G,D,Dfair).
CelebA-single CelebA-multi

Reference set size 10% 25% 10% 25%

λ 0.9 0.85 0.9 0.925
Batch size (D & G) 16 8 16 16
Batch size (Dfair) 8 8 8 16
Learning rate (G) 5e-5 5e-5 5e-5 5e-5
Learning rate (D & Dfair) 2e-4 2e-4 2e-4 2e-4
(β1, β2) (for Adam optimizer) (0, 0.999) (0, 0.999) (0, 0.999) (0, 0.999)
D steps per G step 2 2 2 2
Dfair steps per G step 1 1 1 1

C APPENDIX: ADDITIONAL DISCUSSIONS

We first investigate the evaluation sensitivity w.r.t. the attribute classifiers that we employ for
performance evaluation. Next, we discuss the impact of the reference set size on the fairness
performance in our framework. Lastly, we explore a connection between our interested setting and
transfer learning framework.
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Table 9: Hyperparameters used for CelebA experiments with small reference set sizes. We share
(β1, β2) = (0, 0.999) for (G,D,Dfair).

CelebA-single

Reference set size 1% 2.5% 5%

λ 0.9 0.9 0.9
Batch size (D & G) 8 16 16
Batch size (Dfair) 4 8 8
Learning rate (G) 5e-5 5e-5 5e-5
Learning rate (D & Dfair) 2e-4 2e-4 2e-4
(β1, β2) (for Adam optimizer) (0, 0.999) (0, 0.999) (0, 0.999)
D steps per G step 2 2 2
Dfair steps per G step 1 1 1

Table 10: Hyperparameters used for UTKFace and FairFace experiments. We employ the same betas
for (G,D,Dfair).

UTKFace FairFace

Reference set size 10% 25% 10% 25%

λ 0.9 0.8 0.9 0.85
Batch size (D & G) 16 16 16 16
Batch size (Dfair) 8 8 8 8
Learning rate (G) 5e-5 5e-5 5e-5 5e-5
Learning rate (D & Dfair) 2e-4 2e-4 2e-4 2e-4
(β1, β2) (for Adam optimizer) (0, 0.999) (0, 0.999) (0, 0.999) (0, 0.999)
D steps per G step 2 2 2 2
Dfair steps per G step 1 1 1 1

Table 11: Hyperparameters used for experiments with other fairness regularizers. We employ the
same betas for (G,D,Dfair). “JSD-based” refers to a regularization method based on Jensen-Shannon
divergence (Wong & You, 1985) implemented via Goodfellow et al. (2014). “KLD-based” is the
one built upon Kullback-Leibler divergence (Kullback & Leibler, 1951; Nowozin et al., 2016). “χ2-
based” represents the one implementing Pearson-χ2 divergence (Pearson, 1900; Mao et al., 2017).
“WD-based” refers to a regularization with Wasserstein distance (Wasserstein, 1969; Gulrajani et al.,
2017).

JSD-based KLD-based χ2-based WD-based

λ 0.985 0.925 0.9 0.975
Batch size (D & G) 16 16 16 16
Batch size (Dfair) 8 8 8 8
Learning rate (G) 5e-5 5e-5 5e-5 1e-4
Learning rate (D & Dfair) 2e-4 2e-4 2e-4 1e-4
(β1, β2) (for Adam optimizer) (0, 0.999) (0, 0.999) (0, 0.999) (0, 0.9)
D steps per G step 2 2 2 7
Dfair steps per G step 1 2 1 7

C.1 EVALUATION SENSITIVITY W.R.T. ATTRIBUTE CLASSIFIERS

As mentioned in Sections 2 and 4.1, we rely upon the attribute classifier for evaluating our two
performance measures, fairness discrepancy (see Definition 1 in Section 2) and intra FID. One natural
question is then to ask how sensitive the evaluation is to the choice of the attribute classifier. We
address this question by investigating a gap between performances measured with two differently-
accurate classifiers. We found that fairness discrepancy varies significantly depending on the accuracy
of the attribute classifier. This is in contrast with intra FID which is not much affected with the choice
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Table 12: Hyperparameters used for experiments with other fairness regularizers. “JSD-JSD” indicates
the case where both base optimization (the first term in equation 5) and regularization are based
on Jensen-Shannon divergence (Wong & You, 1985). “χ2-χ2” refers to the one that implements
Pearson-χ2 divergence (Pearson, 1900) for base optimization as well as for regularization. “WD-WD”
represents the one that employs Wasserstein distance (Wasserstein, 1969) both for base optimization
and regularization.

JSD-JSD χ2-χ2 WD-WD

λ 0.99 0.75 0.975
Batch size (D & G) 16 16 64
Batch size (Dfair) 8 8 16
Learning rate (G) 5e-5 5e-5 1e-4
Learning rate (D & Dfair) 2e-4 2e-4 1e-4
(β1, β2) (for Adam optimizer) (0, 0.999) (0, 0.999) (0, 0.9)
D steps per G step 2 2 7
Dfair steps per G step 1 1 7

of the attribute classifier. For instance, 10% accuracy of the attribute classifier yields around 25%
deviations in fairness discrepancy, while exhibiting marginal deviations in intra FID values less than
1%.

C.2 IMPACT OF REFERENCE SET SIZE ON FAIRNESS PERFORMANCE

Our framework heavily depends on reference data in regulating unfairness, and the size of the
reference data indeed affects our performance of fairness. If a given reference dataset is too small
to well-represent the underlying reference distribution, the measured TVD (via such small-sized
reference set) would then be inaccurate, degrading the fairness performance accordingly.

On the other hand, such degradation can occur with a large reference dataset. For implementing
the fairness regularization, we rely upon GAN framework that often yields a model focused on
learning only a specific part of representations in a given dataset, rather than covering all the
representations inside (Metz et al., 2016; Arjovsky et al., 2017). Due to this property, with a
larger reference set augmented with vast amount of representations, our models (generator and
fairness discriminator) can be more encouraged toward learning such augmented (yet less relevant to
representations w.r.t. demographic groups) representations and therefore less focused on respecting
balanced representations of demographic groups, degrading the fairness performance accordingly.
This phenomenon is well exhibited in our experiments; see the last rows in Tables 1 and 15 for
instance.

C.3 RELATION TO TRANSFER LEARNING

Our problem setting can be interpreted as a transfer learning framework, where we wish to exploit
the knowledge learned from a large training dataset Dbias to augment learning on a small reference
dataset Dref . We explore such connection herein with a basic transfer learning technique, fine-tuning.
Employing only one discriminator, we first train our models on Dbias until convergence, and then
fine-tune the models on Dref . Table 13 compares the performance of the fine-tuning method with all
the other approaches, evaluated on CelebA-single with 10% reference set. Notice that the fine-tuning
method well-balances between Baseline I and II, yet still inferior than the proposed approach both in
fairness and sample quality.
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Table 13: Performance comparison with fine-tuning method on CelebA-single with 10% reference
set. Baseline I is a non-fair algorithm building upon the base framework with the hinge loss (Lim
& Ye, 2017; Tran et al., 2017), and trained with the aggregated data Dbias ∪ Dref . Baseline II is the
same non-fair algorithm yet trained only with the small yet balanced reference dataset Dref . Choi
et al. is the state of the art (Choi et al., 2020). “Female” (or “Male”) refers to intra FID for female
(or male) group. The lower intra FID, the more realistic and diverse samples. “Fairness” is fairness
discrepancy introduced by Choi et al. (2020); see equation 1 for the definition. The lower, the fairer.

Female Male Fairness

Baseline I 12.73 ± 0.053 8.37 ± 0.057 0.554 ± 0.002

Baseline II 32.31 ± 0.109 26.18 ± 0.049 0.115 ± 0.002

Choi et al. 25.74 ± 0.079 21.07 ± 0.064 0.104 ± 0.002

Fine-tuning 19.79 ± 0.451 13.40 ± 0.514 0.147 ± 0.008

Proposed 14.29 ± 1.354 9.51 ± 1.069 0.057 ± 0.012

D APPENDIX: COMPLEXITY ANALYSIS

We also offer complexity analysis of our approach while making a comparison to Choi et al. (2020).
As performance measures, we consider the total number of parameters as well as the running time
measured under Pytorch on Xeon Silver 4210R CPU and TITAN RTX GPU. Table 14 presents the
interested measures (together with fairness and intra FID performances) for one certain scenario:
CelebA-single with 10% reference set size. While our approach provides better intra FID and fairness
performances, it comes at a cost of an increased complexity, around 16.7% and 40% for the running
time and model complexity, respectively.

Table 14: Performance comparison on CelebA-single with 10% reference set size. Choi et al. (2020)
corresponds to the state of the art. “Intra FID” refers to Fréchet Inception Distance (Heusel et al.,
2017) computed within each group (Miyato & Koyama, 2018; Zhang et al., 2019), and we provide
results for minority group herein. The lower intra FID, the more realistic and diverse samples.
“Fairness” is fairness discrepancy introduced by Choi et al. (2020). The lower, the fairer.

Intra FID Fairness Running Time (s) # of parameters

Choi et al. 25.74± 0.079 0.104± 0.002 42, 417.24 51, 577, 028
Proposed 14.29± 1.354 0.057± 0.012 49, 497.72 71, 120, 773

E APPENDIX: ADDITIONAL RESULTS

We first provide performance comparison with the three baselines (Baseline I, Baseline II, and Choi
et al. (2020)) on UTKFace and FairFace datasets. Next we present the complete results on CelebA
dataset, where intra FID values for all demographics are included. We then compare fairness
regularization performances with distinct base optimizations. Lastly, we provide tradeoff curves that
illustrate the tension between fairness and sample quality in our framework.

E.1 PERFORMANCES ON UTKFACE AND FAIRFACE

Tables 15 and 16 concern UTKFace and FairFace datasets. One significant distinction w.r.t. CelebA
is that training and reference set sizes are much smaller, around 7 times. Hence, as expected, the
overall performances are worse than those on CelebA dataset. Even in this small data regime, we
observe the same trends on the performance benefits of ours relative to the baselines.
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Table 15: Performance comparison on UTKFace dataset where a race attribute is considered: white
vs. non-white. Baseline I is a non-fair algorithm building upon the base framework with the hinge
loss (Lim & Ye, 2017; Tran et al., 2017), and trained with the aggregated data Dbias ∪ Dref . Baseline
II is the same non-fair algorithm yet trained only with the small yet balanced reference dataset
Dref . Choi et al. is the state of the art (Choi et al., 2020). “White” (or “Non-white”) refers to
intra FID (Miyato & Koyama, 2018; Zhang et al., 2019) for white (or non-white) group. The lower
intra FID, the more realistic and diverse samples for that group. “Fairness” is fairness discrepancy
introduced by Choi et al. (2020); see equation 1 for the definition. The lower, the fairer. The reference
set size indicates a ratio relative to training data.

Reference set size 10% 25%

Baseline I
White 15.37 ± 0.053 14.17 ± 0.047
Non-white 19.89 ± 0.119 18.86 ± 0.117

Fairness 0.453 ± 0.002 0.400 ± 0.003

Baseline II
White 77.83 ± 0.136 36.78 ± 0.070
Non-white 83.51 ± 0.071 35.73 ± 0.077

Fairness 0.010 ± 0.003 0.007 ± 0.003

Choi et al.
White 28.07 ± 0.068 33.95 ± 0.081
Non-white 36.43 ± 0.231 40.06 ± 0.138

Fairness 0.285 ± 0.003 0.123 ± 0.003

Proposed
White 23.64 ± 3.153 16.69 ± 0.913
Non-white 27.24 ± 4.125 19.20 ± 2.285

Fairness 0.091 ± 0.022 0.131 ± 0.021

Table 16: Performance comparison on FairFace dataset. All the settings and baselines are the same as
those in Table 15, except for different types of demographics: white vs. black.

Reference set size 10% 25%

Baseline I
White 25.38 ± 0.084 23.68 ± 0.109
Black 25.76 ± 0.068 22.96 ± 0.047

Fairness 0.434 ± 0.002 0.386 ± 0.003

Baseline II
White 77.45 ± 0.104 48.02 ± 0.117
Black 83.76 ± 0.118 45.20 ± 0.055

Fairness 0.105 ± 0.002 0.009 ± 0.002

Choi et al.
White 33.20 ± 0.059 36.56 ± 0.106
Black 33.33 ± 0.076 36.37 ± 0.082

Fairness 0.317 ± 0.002 0.142 ± 0.002

Proposed
White 30.73 ± 2.210 28.67 ± 2.330
Black 31.16 ± 2.158 34.07 ± 3.140

Fairness 0.044 ± 0.019 0.106 ± 0.023
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E.2 COMPLETE RESULTS ON CELEBA

Tables 17 to 19 exhibit the complete results w.r.t. CelebA experiments, where intra FID values for all
associated groups are provided. Observe that in all considered settings, our approach offers better (or
comparable) sample quality than the state of the art (Choi et al., 2020) for all demographics, reflected
in low intra FID values.

Table 17: Complete results on CelebA-single in which a single attribute (gender) is employed.
Baseline I is a non-fair algorithm building upon the base framework with the hinge loss (Lim &
Ye, 2017; Tran et al., 2017), and trained with the aggregated data Dbias ∪ Dref . Baseline II is the
same non-fair algorithm yet trained only with the small yet balanced reference dataset Dref . Choi
et al. (2020) is the state of the art. “Female” (or “Male”) refers to intra FID (Miyato & Koyama,
2018; Zhang et al., 2019) for female (or male) group. The lower intra FID, the more realistic and
diverse samples for that group. “Fairness” is fairness discrepancy introduced by Choi et al. (2020);
see equation 1 for the definition. The lower, the fairer. The reference set size indicates a ratio relative
to training data.

Reference set size 10% 25%

Baseline I
Female 8.37 ± 0.057 7.32 ± 0.047
Male 12.73 ± 0.053 12.00 ± 0.069

Fairness 0.554 ± 0.002 0.495 ± 0.001

Baseline II
Female 26.18 ± 0.049 17.66 ± 0.084
Male 32.31 ± 0.109 23.81 ± 0.118

Fairness 0.115 ± 0.002 0.093 ± 0.002

Choi et al.
Female 21.07 ± 0.064 21.33 ± 0.059
Male 25.74 ± 0.079 20.68 ± 0.076

Fairness 0.104 ± 0.002 0.065 ± 0.002

Proposed
Female 9.51 ± 1.069 7.45 ± 1.351
Male 14.29 ± 1.354 11.34 ± 1.288

Fairness 0.057 ± 0.012 0.069 ± 0.015
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Table 18: Complete results on CelebA-multi experiments where two attributes are considered: gender
and hair color. All the settings and baselines are the same as those in Table 17 yet here we consider
intra FID values for four groups: (i) female with non-black hair; (ii) male with non-black hair; (iii)
female with black-hair; (iv) male with black hair.

Reference set size 10% 25%

Baseline I

Female w/ non-black hair 9.25 ± 0.040 7.74 ± 0.082
Male w/ non-black hair 12.70 ± 0.090 11.61 ± 0.065
Female w/ black hair 8.93 ± 0.049 8.14 ± 0.043
Male w/ black hair 10.83 ± 0.046 9.76 ± 0.067

Fairness 0.245 ± 0.002 0.224 ± 0.002

Baseline II

Female w/ non-black hair 26.96 ± 0.065 19.22 ± 0.087
Male w/ non-black hair 35.35 ± 0.116 25.73 ± 0.131
Female w/ black hair 24.51 ± 0.085 17.15 ± 0.078
Male w/ black hair 29.66 ± 0.088 21.92 ± 0.056

Fairness 0.136 ± 0.001 0.107 ± 0.001

Choi et al.

Female w/ non-black hair 15.86 ± 0.048 13.11 ± 0.032
Male w/ non-black hair 18.78 ± 0.058 14.78 ± 0.058
Female w/ black hair 16.88 ± 0.047 12.85 ± 0.039
Male w/ black hair 16.27 ± 0.042 13.68 ± 0.062

Fairness 0.090 ± 0.001 0.063 ± 0.002

Proposed

Female w/ non-black hair 9.14 ± 0.733 8.84 ± 0.457
Male w/ non-black hair 11.93 ± 0.656 11.82 ± 0.451
Female w/ black hair 11.01 ± 0.390 9.75 ± 0.435
Male w/ black hair 12.93 ± 0.631 12.07 ± 0.299

Fairness 0.080 ± 0.006 0.073 ± 0.002

Table 19: Complete results on CelebA-single with the reference set size down to 1%. All the other
settings and baselines are the same as those in Table 17.

Reference set size 5% 2.5% 1%

Baseline I
Female 8.25 ± 0.039 8.09 ± 0.064 8.31 ± 0.057
Male 13.54 ± 0.074 13.79 ± 0.072 15.89 ± 0.094

Fairness 0.559 ± 0.001 0.566 ± 0.002 0.576 ± 0.002

Baseline II
Female 33.56 ± 0.036 52.46 ± 0.070 83.46 ± 0.100
Male 40.07 ± 0.062 67.70 ± 0.112 92.34 ± 0.131

Fairness 0.120 ± 0.003 0.018 ± 0.003 0.455 ± 0.002

Choi et al.
Female 25.51 ± 0.044 16.94 ± 0.046 21.49 ± 0.057
Male 32.30 ± 0.049 25.81 ± 0.043 30.28 ± 0.085

Fairness 0.043 ± 0.002 0.274 ± 0.002 0.355 ± 0.002

Proposed
Female 15.04 ± 0.635 17.03 ± 1.174 21.88 ± 1.946
Male 23.42 ± 1.312 24.53 ± 1.157 30.93 ± 2.196

Fairness 0.048 ± 0.012 0.119 ± 0.011 0.166 ± 0.011
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E.3 REGULARIZATION WITH DIFFERENT BASE OPTIMIZATIONS

Table 20 compares regularization performances with different divergence measures for the first term
in equation 5. Even in this comparison, we observe that our TVD-based approach is still prominent
among the considered methods, yielding well-balanced performances of fairness and sample quality.
We do not include the performance regarding Kullback-Leibler divergence, where we failed to get
meaningful results due to numerical problem. This is also reported in other works (Song & Ermon,
2020) which relies upon the same implementation (Nowozin et al., 2016).

Table 20: Performance comparison with other fairness regularizations on CelebA-single with the
10% reference set size. “JSD-JSD” indicates the case where both base optimization (the first term
in equation 5) and regularization are based on Jensen-Shannon divergence (Wong & You, 1985;
Goodfellow et al., 2014). “χ2-χ2” refers to the one that implements Pearson-χ2 divergence (Pearson,
1900; Mao et al., 2017) for base optimization as well as for regularization. “WD-WD” represents
the one that employs Wasserstein distance (Wasserstein, 1969; Gulrajani et al., 2017) both for base
optimization and regularization. “Female” (or “Male”) refers to intra FID for female (or male) group.
For each measure, we mark the best result in bold and the second-best with underline.

JSD-JSD χ2-χ2 WD-WD TVD-TVD

Female 11.02 ± 1.521 26.68 ± 1.496 15.80 ± 1.049 9.51 ± 1.069
Male 15.33 ± 1.661 40.35 ± 2.605 21.86 ± 0.782 14.29 ± 1.354
Fairness 0.107 ± 0.015 0.054 ± 0.012 0.037 ± 0.014 0.057 ± 0.012

E.4 FAIRNESS-QUALITY TRADEOFF CURVES

Fig. 4 visualizes a tradeoff relationship between sample quality and fairness in our framework.
Despite slight fluctuations, one can readily see that as lambda increases, fairness performance
improves (smaller fairness discrepancy) at the expense of the degraded sample quality, reflected in
larger intra FID. This validates the role of λ as a tuning knob for controlling fairness.

Figure 4: Fairness-quality tradeoff curves evaluated on CelebA-single with 10% reference set. Each
point is obtained with a particular λ, the tuning knob in our framework. Blue dot points indicate
performances for female group, and green dots are for male group.

24



Under review as a conference paper at ICLR 2022

F APPENDIX: ADDITIONAL GENERATED SAMPLES

We provide generated samples obtained from many scenarios under the three real datasets, not
included in the main paper due to space constraint. Unlike the main paper, we also present samples
generated from Baseline I and Baseline II. Remember that Baseline I is a non-fair algorithm building
upon the base framework (equation 2 in Section 2) with the hinge loss (Lim & Ye, 2017; Tran et al.,
2017), while being trained with the aggregated dataset Dbias ∪ Dref . Baseline II is the same non-fair
algorithm yet trained only with Dref . We leave all the samples from below.

Figure 5: Generated samples trained on CelebA-single with 25% reference set size. Faces above the
yellow line are female, while the rest are male.
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Figure 6: Generated samples trained on CelebA-multi with 10% reference set size. Faces above the
red line are samples without black hair, while the rest are black hair.
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Figure 7: Generated samples trained on CelebA-multi with 25% reference set size. Faces above the
red line are samples without black hair, while the rest are black hair.
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Figure 8: Generated samples trained on UTKFace with 10% reference set size. Faces above the
yellow line are white, while the rest are non-white.
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Figure 9: Generated samples trained on UTKFace with 25% reference set size. Faces above the
yellow line are white, while the rest are non-white.
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Figure 10: Generated samples trained on FairFace with 10% reference set size. Faces above the
yellow line are white, while the rest are black.

30



Under review as a conference paper at ICLR 2022

Figure 11: Generated samples trained on FairFace with 25% reference set size. Faces above the
yellow line are white, while the rest are black.
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Figure 12: Generated samples trained on CelebA-single with 5% reference set size. Faces above the
yellow line are female, while the rest are male.
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Figure 13: Generated samples trained on CelebA-single with 2.5% reference set size. Faces above
the yellow line are female, while the rest are male.
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Figure 14: Generated samples trained on CelebA-single with 1% reference set size. Faces above the
yellow line are female, while the rest are male.
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