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ABSTRACT

Video Highlight Detection and Moment Retrieval (HD/MR) are essential in video
analysis. Recent joint prediction transformer models often overlook cross-task dy-
namics and video-text alignment. We propose VideoLights, a novel HD/MR
framework addressing these limitations through: (i) Convolutional Projection
and Feature Refinement modules with an intermodal alignment loss for better
video-text feature alignment. (ii) Bi-Directional Cross-Modal Fusion network for
strongly coupled query-aware clip representations. (iii) Uni-Directional joint-task
feedback mechanism enhancing both tasks through correlation. In addition, we in-
troduce hard positive/negative losses for adaptive error penalization and improved
learning. Our approach includes intelligent pretraining and finetuning using syn-
thetic data and features from various encoders. Comprehensive experiments on
QVHighlights, TVSum, and Charades-STA benchmarks demonstrate state-of-the-
art performance.

1 INTRODUCTION

The surge in digital devices, platforms, and internet usage has led to abundant online video con-
tent (Apostolidis et al., 2021; Wu et al., 2017). However, navigating through such vast content poses
an exceedingly difficult challenge for users, impeding their ability to pinpoint specific points of in-
terest within recordings (Anne Hendricks et al., 2017; Apostolidis et al., 2021). Consequently, Video
Highlight Detection (HD; (Badamdorj et al., 2022; Mahasseni et al., 2017; Wei et al., 2022; Zhang
et al., 2016)) and Moment Retrieval (MR; (Anne Hendricks et al., 2017; Gao et al., 2017; Liu et al.,
2015; Escorcia et al., 2022)), which evaluate saliency scores of video clips and automatically identify
significant moments (i.e., clips with the highest saliency scores) for user queries, respectively, have
become indispensable tools in video analysis—streamlining content management, recommendation,
creation, editing, and event detection processes. Given their shared objective of ranking/localizing
the relevant video clips based on user queries and the commonality in their multi-modal models and
data properties, recent studies using transfer learning have begun to jointly model Video Highlight
Detection and Moment Retrieval (HD/MR) (Lei et al., 2021; Liu et al., 2022; Xu et al., 2023; Moon
et al., 2023; Lin et al., 2023; Jang et al., 2023).

Joint HD/MR prediction requires understanding of text-video modalities and their cross-modal and
cross-task synergies. Most approaches undermine either cross-task or cross-modal dynamics, lim-
iting potential gains. Moment-DETR (Lei et al., 2021) uses concatenated pre-trained features.
UMT (Liu et al., 2022) augments audio inputs but uses isolated features. QD-DETR (Moon et al.,
2023) aligns text with video. MH-DETR (Xu et al., 2023) introduces a cross-modality interaction.
UniVTG (Lin et al., 2023) presents multi-task learning. These methods lack cross-task interactions.
TaskWeave (Yang et al., 2024) and TR-DETR (Sun et al., 2024b) address bidirectional cross-task
relations, but have limitations in cross-modal dynamics. We propose VideoLights, a framework
that leverages cross-modal and cross-task interactions through these core modules and principles:

1. Feature Refinement and Alignment (FRA) Module: Implements CNN-based intramodal
and intermodal feature interaction and refinement, with intermodal alignment loss for text-
video correspondence.
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2. Bi-Directional Cross-Modal Fusion (Bi-CMF) Network: Employs a multi-stage hier-
archical process for bidirectional text-video attention, yielding a strongly coupled query-
aware clip representation.

3. Unidirectional Joint-Task Feedback Mechanism (Uni-JFM): Enhances task correlation
through task-specific and task-coupled losses, utilizing cosine similarity on feature vectors
from HD and MR, improving cross-task learning efficiency.

4. Adaptive Error Correction: Incorporates hard positive and hard negative losses to adap-
tively penalize model errors in clip saliency prediction, fostering improved learning.

5. Intelligent Model Pre-training: Utilizes synthetic data generated from video corpora and
language-image models to create high-quality paired text queries for model pre-training.

We perform comprehensive evaluations on widely recognized benchmarks QVHighlights (Lei et al.,
2021), TVSum (Song et al., 2015), and Charades-STA (Gao et al., 2017). Results show that in
both tasks, VideoLights achieves strong performance, outperforming all previous baselines by
a significant margin (an average of 1.4% in QVHighlights, 0.7% in TVSum, and 0.3 in Charades-
STA) and achieving their new state-of-the-art results. We also provide an in-depth ablation study
of our model on the QVHighlights development set, visualize the qualitative examples, and analyze
the effects of different synthetic pretraining corpus and the impact of feature ensembles. We will
open-source our implementation accordingly.

2 RELATED WORK

Moment retrieval (MR) and highlight detection (HD) are related video understanding tasks. MR re-
trieves video segments matching natural language queries, while HD identifies salient frames. MR
approaches include two-stage (Anne Hendricks et al., 2017; Hendricks et al., 2018; Gao et al., 2017;
Zeng et al., 2021; Zhang et al., 2020b; Xiao et al., 2021b) and one-stage methods (Chen et al., 2018;
Liu et al., 2020; Qu et al., 2020; Ning et al., 2021; Yuan et al., 2019; Zhang et al., 2019; Zhao et al.,
2021; Xiao et al., 2021a; Liu et al., 2018; Zhang et al., 2020b; 2021; Wang et al., 2021; Zhang et al.,
2020a; Mun et al., 2020; Liu et al., 2021; Zeng et al., 2020)(Liu et al., 2023). Recent advance-
ments in MR and HD utilize transformer-based architectures(Vaswani et al., 2017). DETR (Carion
et al., 2020) simplifies predictions by eliminating anchor generation and non-maximum suppression.
Moment-DETR (Lei et al., 2021) introduced the QVHighlights dataset for concurrent HD/MR, ex-
celling at identifying query-relevant moments and saliency scores. UMT (Liu et al., 2022) proposed
a unified multimodal architecture for MR and HD but removed the moment decoder and bipartite
matching, resulting in inferior MR performance. Other approaches include TVT (Lei et al., 2020),
which used subtitles, and FVMR (Gao & Xu, 2021), which improved inference speed. This paper
develops a joint prediction HD/MR model focusing on cross-modal and cross-task interplays.

Cross-modal learning integrates information from different modalities, as explored in models
like TERAN (Messina et al., 2021), HGSPN (Hu et al., 2019), AVS (Morgado et al., 2020),
and (Badamdorj et al., 2021). Unloc (Yan et al., 2023) uses CLIP (Radford et al., 2021) for text-to-
video attention in a single-stage model for multiple tasks. Our approach employs bi-directional text-
video interactions with cross-task supervision. Recent works Sun et al. (2024b); Xiao et al. (2023);
Moon et al. (2024) focus on feature alignment and refinement, with Yang et al. (2024) and Sun
et al. (2024b) emphasizing HD-MR task interrelation. Moon et al. (2024) explores intermodality
correlation for joint MR and HD.

Recent studies have explored weakly supervised pretraining with multimodal data, improving model
performance (Lei et al., 2021; Xiao et al., 2023; Lin et al., 2023; Liu et al., 2022; Yan et al., 2023).
Some use ASR captions as query text (Lei et al., 2021; Xiao et al., 2023; Liu et al., 2022). (Yan
et al., 2023) pretrained their CLIP backend on Kinetics-700(Carreira et al., 2022) before fine-tuning.
UniVTG (Lin et al., 2023) combined Ego4D (Grauman et al., 2022) and VideoCC (Nagrani et al.,
2022) datasets. (Jung et al., 2022) generated two types of captions: from subtitles and visual
information. In text-only contexts, (Parvez et al., 2023) demonstrated enhanced supervision by
combining different encoders.

3 PROPOSED VIDEOLIGHTS MODEL

We present VideoLights, our joint prediction HD/MR model that enables learning from cross-
modal (text vs video) and cross-task (HD vs MR) interplays. VideoLights features a unique

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Preprocessing &
Feature Extraction

Augmented
query is used

for weekly
supervised

training and
Actual dataset
is used for fine-

tunig.

CLIP

BLIP

A 
helicopter is

flying over the
area against a

clear blue
 sky.

Query
from

Dataset

CLIP

BLIP

SLOW_FAST

BLIP Backend

A 
helicopter flying

through a blue sky
with no clouds

Augmented Query
Generation

Video

+

+

Conv
Video

Projection 
Module

Conv
Text 

Projection 
Module

FR
+

Symmetric
Loss

Class 
Prediction 

Head

Localization
Prediction 

Head

Saliency 
Prediction 

Head

Context
Generation/

Transformer Layer Cross Entropy Loss

Prediction

Cross Entropy Loss

L1 + IoU loss

Loss Calculation

Decoder

Hard Pos + Neg Loss

HD/MR Task-
Coupled loss

Encoder

Bi-CMF

FR
A

Ranking Loss

Saliency Cosine
Similarity Loss

Figure 1: In VideoLights, FRA models the video-text cross-modal correlations from projected
embeddings and passes them to Bi-CMF in the encoder. A trainable saliency vector predicts output
saliency levels. Class and moment prediction heads predict logits and video moments, while saliency
cosine similarity and task-coupled HD/MR losses together provide cross-task feedback Uni-JFM.
Proposed new losses are in purple.

composite of a Bi-Directional Cross-Modal Fusion Network, a Unidirectional Join-Task Feedback
module, advanced appetite loss functions, and intelligent model training. VideoLights pipleline
is depecited in Figure 1.

3.1 MODEL OVERVIEW

Highlight Detection (HD) and Moment Retrieval (MR) aim to estimate the saliency of video clips
and identify significant moments for a given text query. Given a video of L clips, we define the
video frames as F ∈ RL×3×W×H , where W and H denote the width and height of the video, and
3 represents the number of color channels. The feature representation of the video is denoted as
V ∈ RL×dv , where dv is the feature dimension extracted by a frozen video encoder. Given a text
query of N tokens, the representation of the text is denoted as T ∈ RN×dt , where dt is the feature
dimension extracted by a frozen text encoder. With these representations and given the video and
the text, our goal is twofold: for Moment Retrieval (MR), we aim to determine all the moments
M ∈ R2×m, where each moment consists of a central coordinate mc and width mσ , identifying m
such moments within the video. For Highlight Detection (HD), we aim to rank the saliency scores
S ∈ RL for each clip in the video to detect highlights.

Embeddings: We compute the initial feature sets V and T from multiple different VLPs as follows:

T = clip(Q)⊕ blip(Q) (1)

V = clip(F )⊕ slowfast(F )⊕ blip(F ) (2)

Here ⊕ operator denotes concatenation of the features and clip, blip, and slowfast refer to frozen
CLIP (Radford et al., 2021), BLIP-2 (Li et al., 2023), and Slow-Fast models (Feichtenhofer et al.,
2019) respectively.

Projection and Alignment: When combining V and T for further processing, their differing hidden
dimensions can make merging challenging. We address this issue by aligning the feature dimension-
alities of the video and text representations using a Feed Forward Network (FFCNN) consisting of
convolution layers. After this step, V ∈ RL×dv becomes V ∈ RL×d and T ∈ RN×dt becomes
T ∈ RN×d, where d is the dimension of the hidden layer.

V = relu(FFCNN(V )), T = relu(FFCNN(T ))

After this, we applied an intermodal feature alignment and refinement that aligned the video features
with the text features. Details are discussed in Section 3.2.
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Figure 2: Here in this figure, (a) is the video, (b) and (c) are correspondence maps of query and video
tokens using linear and convolution layers respectively, which show that queries are more aligned
for the convolution layer, video, and text than linear projection layers. (d) is the effect of the Feature
Refinement module that effectively aligns video and text tokens that match ground truth saliency
levels (green line) in each heat map saliency level is shown with green line plot.

Encoder with Cross-Modal Interaction Both video and text representations are passed to the
video-query (cross-modal) refinement module like (Sun et al., 2024a) to learn query-attended video
representations and highlight relevant video tokens. Then, refined video tokens and query tokens are
sent to our cross-modal interaction module Bi-CMF (discussed in Section 3.3). This module fuses
video and text features to learn their inter-relevance and learns a strongly coupled query-injected
video representation, which is then used to predict the saliency level of each clip. Then, in the
multilayer encoder self, attention is applied to the output of the Bi-CMF.

Decoder with Cross-Task Dynamics Furthermore, the fused representation is sent to a decoder
module following the work Moon et al. (2023). This module’s output is used in the class prediction
head and localization prediction head to predict foreground-background class and moments in video.
Negative relations between irrelevant video-text queries is used to fine-tune the response, similar to
what was done in (Moon et al., 2023). We propose a new learning module, unidirectional cross-task
feedback network Uni-JFM. Uni-JFM takes one task HD as a reference and computes its additional
losses: a task-specific (from HD) and a cross-task (from MR) losses discussed in Section 3.5.

Adaptive Learning and Loss Functions VideoLights utilizes different losses for moment re-
trieval and highlight identification. We utilize L1, gIoU (Union, 2019) LgIoU (m,m), and cross-
entropy Lcls objectives to perform moment retrieval like (Lei et al., 2021). Additionally, we have
used margin ranking loss Lrank, rank contrastive loss Lcont like (Moon et al., 2023), and entropy
loss for highlight identification. Then total loss is the summation of highlight loss and moment loss.
For alignment, from FRA, we used symmetric alignment loss Lsym. For saliency prediction (i.e.,
in HD), we have introduced two adaptive hard negative loss Lhardneg

, hard positive loss Lhardpos

(discussed in Section 3.4). These losses penalize errors in saliency prediction that persist with itera-
tions.

In summary, the formulation of moment loss Lmr can be expressed as follows:

Lmr = λL1||m−m||+ λgIoULgIoU (m,m) + λclsLcls (3)

As the additional Lhardneg
, Lhardpos

as well as LUni−JFM losses are computed in saliency predic-
tion, we denote the overall saliency loss as follows:

Lhl = λrankLrank + λcontLcont + Lhardneg + Lhardpos + LUni−JFM (4)

Therefore, the total loss is: Ltotal = λsalLhl+Lmr+Lsym where the hyperparameters λsal are used
to achieve a balance between these losses. Below we discuss the Bi-CMF and Uni-JFM modules,
Adpative Lhardneg , Lhardpos losses, and our pretraing procedure.

4
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Figure 3: Bi-CMF learns query-oriented video via text2video, video2text, then text2video attentions.

3.2 FEATURE REFINEMENT AND ALIGNMENT NETWORK: FRA

The Feature Refinement and Alignment Network (FRA) enhances local (clip or word level) and
global (video or sentence level) alignment between video and query tokens through a two-stage pro-
cess. Initially, a Convolution Projection layer captures local representations, aligning video and text
features while adjusting token dimensions. Subsequently, the Feature Refinement Layer achieves
global alignment by computing an adjusted correspondence map, deriving sentence-level features,
calculating a similarity matrix, and aggregating results. Formally, this process is represented as:

VQ = V · TT
, S = pool(T ), VS = V · ST ,

Sv = S · 11×V×1, V = conv(V ⊕ VQ ⊕ VS ⊕ Sv)

The FRA’s effectiveness is further enhanced by a symmetric align loss adopted from Radford et al.
(2021) that ensures text-to-video and video-to-text alignment, ensuring robust alignment between
query and video features. The loss can be represented as:

L = V · TT · exp(t), y = {0, 1, 2, . . . , n− 1},
Lv = CrossEntropyLoss(L,y, axis = 0), Lt = CrossEntropyLoss(L,y, axis = 1),

Lsym =
Lv + Lt

2
Figure 2 illustrates the FRA module’s effectiveness.

3.3 BI-DIRECTIONAL CROSS-MODAL FUSION NETWORK: BI-CMF

To learn a strongly coupled, query-oriented video representation, we introduce our Bi-Directional
Cross-Modal Fusion Network, Bi-CMF.

It features three multihead attention layers for cross-attention and one for self-attention. Initially, a
cross-attention layer uses projected video features as queries, while text data with positional embed-
ding serves as keys and values, identifying video tokens conditioned by textual tokens.

Similarly, another cross-attention layer is utilized to discern projected textual tokens (query) fetau-
res conditioned by video tokens, fused with positional embedding (keys and values), enabling the
identification of textual features pertinent to the video.

Subsequently, conditioned video tokens are used as queries, while conditioned textual tokens serve
as keys and values in the final cross-attention layer, yielding fused contextual information that em-
phasizes video tokens relevant to the query. Further refinement is achieved through a self-attention
mechanism applied to this fused context, allowing for the extraction of more nuanced video context.

VT = attn(V , T , T ), TV = attn(T , V , V ), Vattn = attn(V T , TV , TV )

Residual connections (He et al., 2016), layer normalization (Ba et al., 2016) and dropout (Srivastava
et al., 2014) mechanisms are implemented at each stage to enhance model robustness and learnable
position encodings are incorporated into the input of each attention layer.

Bi-CMF is depicted in Figure 3 and detailed in Appendix Algorithm 2.
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3.4 ADAPTIVE LOSS FUNCTIONS

We aim to enhance learning by identifying and rectifying persistent model errors. To achieve this,
we design novel adaptive loss functions, specifically targeting hard positives and hard negatives. For
the hard negative loss, we minimize the number of predictions in the negative regions where there are
no relevant clips. Given the saliency score S̄i and the ground truth saliency score Si for non-relevant
clips i ∈ Vneg , we define the loss, Lhardneg

= WjΣi∈Vneg
abs(Si − S̄i), where Wj is a function of

the jth epoch that penalizes more with a higher number of epochs. As in general, Si for i ∈ Vneg

is zero, the loss can be defined as: Lhardneg = WjΣi∈Vnegabs(S̄i). For hard positive cases, we use
Mean Square Error, and similarly, we define the loss as: Lhardneg

= WjΣi∈Vpos
MSE(Si, S̄i).

3.5 UNIDIRECTION JOINT-TASK FEEDBACK MODULE (UNI-JFM)

To leverage the cross-task synergies while jointly predicting HD/MR, we devise a unidirectional
joint-task feedback mechanism that is a composite of a task-specific and a task-coupled loss. We
take HD as a reference task and compute its task-specific loss Lts. To do so, we calculate the saliency
cosine similarity loss from the predicted saliency level. Here for saliency score S̄ and ground truth
saliency score S the saliency cosine similarity loss Lts can be defined as: Lts = 1− S̄.S

∥S̄∥∥S∥ . Next,
for the task-coupled loss Ltc, first, we use the feature vectors for MR, M to calculate saliency scores
S̄mr following the MR2HD technique of (Sun et al., 2024a) using a GRU unit. Then, differently,
we calculate the similarity between the ground truth saliency S and this calculated saliency S̄mr.
This similarity score is used as the loss function Ltc , where Ltc = 1 − S̄mr.S

∥S̄mr∥∥S∥ . The final loss,
LUni−JFM = Lts + Ltc.

3.6 PRETRAINING

We propose a novel multi-step methodology to enhance attention-based networks’ performance by
addressing limitations in ASR caption-based weakly supervised training (Lei et al., 2021; Xiao et al.,
2023). Our approach segments videos into 10-second intervals, generates descriptive captions using
the BLIP model for representative frames, and creates synthetic data pairs from QVHighlights and
Charades-STA datasets. Saliency scores are calculated based on frame-query similarity, and the
resulting caption-query pairs are used for model training. While this process may generate noisy
pretrain data, the subsequent finetuning helps filter out irrelevant information, leading to improved
generalization (Wu et al., 2022). Detailed data statistics and steps are provided in Appendix Table 5
and Algorithm 1.

4 EXPERIMENTS

Datasets: We evaluate VideoLights using three widely recognized benchmarks to ensure a com-
prehensive and rigorous assessment. First, the QVHighlights dataset (Lei et al., 2021) uniquely com-
bines Moment and Highlight Detection tasks, providing extensive video annotations and maintaining
evaluation impartiality through its online server. This dataset includes 12,562 YouTube videos and
10,310 annotations, with standardized data splits as per established works. Additionally, we use the
Charades-STA (Gao et al., 2017) dataset for Moment Retrieval (MR) and the TVSum (Song et al.,
2015) dataset for Highlight Detection (HD). TVSum, encompasses ten categories with five videos
each. We follow the data splits in (Liu et al., 2022; Xu et al., 2023; Moon et al., 2023), that con-
sider 80% of the dataset for training and 20% for testing. Charades-STA, features 9,848 videos
and 16,128 query texts, We adopt the data splits in prior work QD-DETR (Moon et al., 2023) with
12,408 samples for training and 3,720 for testing. Our adherence to these standardized splits and the
diversity of datasets underscore our commitment to a robust and fair evaluation of VideoLights .

Evaluation Metrics: We follow established evaluation metric standards from (Lei et al., 2021;
Liu et al., 2022; Moon et al., 2023; Xu et al., 2023; Jang et al., 2023). For moment retrieval, we
calculate Recall@1 with predetermined thresholds of 0.5 and 0.7, mean average precision (mAP)
with Intersection over Union (IoU) thresholds of 0.5 and 0.75, and average mAP across multiple
IoU thresholds that range from 0.50 to 0.95. The same standards are applied to the QVHighlights
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Table 1: Results on QVHighlights test split. † represents the use of audio modality

Method
MR HD

R1 mAP >=Very Good
@0.5 @0.7 @0.5 @0.75 Avg mAP HIT@1

Moment-detr (Lei et al., 2021) 52.89 33.02 54.82 29.4 30.73 35.69 55.6
UMT (Liu et al., 2022) † 56.23 41.18 53.83 37.01 36.12 38.18 59.99
MH-DETR (Xu et al., 2023) 60.05 42.48 60.75 38.13 38.38 38.22 60.51
EaTR (Jang et al., 2023) 61.36 45.79 61.86 41.91 41.74 37.15 58.65
QD-DETR (Moon et al., 2023) 62.40 44.98 63.17 42.05 41.44 39.13 63.1
UVCOM (Xiao et al., 2023) 63.55 47.47 63.37 42.67 43.18 39.74 64.20
TR-DETR (Sun et al., 2024a) 64.66 48.96 63.98 43.73 42.62 39.91 63.42
TaskWeave (Yang et al., 2024) 64.26 50.06 65.39 46.47 45.38 39.28 63.68
CG-DETR (Moon et al., 2024) 65.40 48.40 64.50 42.80 42.90 40.30 66.20
UniVTG (Lin et al., 2023) 58.86 40.86 57.60 35.59 35.47 38.20 60.96
VideoLights 67.51 51.95 67.13 45.94 45.72 41.74 68.09

Moment-detr(pt) (Lei et al., 2021) 59.78 40.33 60.51 35.36 36.14 37.43 60.17
UMT(pt) (Liu et al., 2022) 60.83 43.26 57.33 39.12 38.08 39.12 62.39
QD-DETR (pt) (Moon et al., 2023) 64.10 46.10 64.30 40.50 40.62 38.52 62.27
UVCOM(pt) (Xiao et al., 2023) 64.53 48.31 64.78 43.65 43.80 39.98 65.58
UniVTG(pt) (Lin et al., 2023) 65.43 50.06 64.06 45.02 43.63 40.54 66.28
VideoLights-pt 68.68 51.56 68.00 46.39 46.22 42.55 69.91

dataset. For highlight identification, our evaluations include measuring mAP and HIT@1, indicating
the hit ratio for the clip with the highest score.

Implementation details1: By default, we concatenate the video fetaures, concatenating frozen
BLIP-2 (Li et al., 2023), CLIP (Radford et al., 2021), Slowfast (Feichtenhofer et al., 2019) and
text features using frozen BLIP-2 and (Li et al., 2023), CLIP except in TVSum. In TVSum, we
follow previous wroks such as TR-DETR (Sun et al., 2024b), and use I3D (Carreira & Zisserman,
2017) pre-trained on Kinetics 400 (Kay et al., 2017) for visual features. We used a hidden unit
size of d = 256, two Bi-CMF layers, three encoder layers, three decoder layers, seed value 2018,
and 10-moment queries. We added a dropout rate of 0.1 for the transformer layers and 0.5 for
the input projection layers (Lei et al., 2021). Loss hyperparameters were assigned as λL1 = 10,
λgIoU = 1, λcls = 4, λsal = 1, λrank = 1, λcont = 1, and ∆ = 0.2. We also initialized the model
weights using the Xavier initialization (Glorot & Bengio, 2010) and tuned the model parameters
with AdamW (Loshchilov & Hutter, 2019), using an initial learning rate of 1e-4 and a weight decay
of 1e-4. Following (Lei et al., 2021), we trained the model for 200 epochs with a batch size of 32.
For Charades-STA and TVSum, we have used a batch size of 32 and 4, respectively, with learning
rates 1e-4 and 1e-3 each. See Table 6 in the appendix for details about the parameters that changed
in different experiments. For all experiments, we use T4, and RTX 3050 Ti GPUs.

4.1 MAIN RESULTS

Perfomance in QVHighlights:

In Table 1, we compare the performance of various methods on the QVHighlights test split
for both moment retrieval (MR) and highlight detection (HD) tasks. Our proposed frame-
work, VideoLights-pt demonstrates superior performance across all metrics. Specifically,
VideoLights-pt achieves the highest R@0.5 (68.68) and R@0.7 (51.56) for MR, and the high-
est mAP@0.5 (68.27) and mAP@0.75 (46.39), as well as the highest average mAP (45.22). In the
HD task, VideoLights-pt also outperforms other methods with an mAP of 42.55 and HIT@1
of 69.91 in the pretrain fine-tuning settings. Without pretraining, VideoLights also achieves
the best results on all but one metrics, with significant improvements over previous state-of-the-
art methods: 3.23% in R1@0.5 (over CG-DETR), 3.78% in R1@0.7 (over TaskWeave), 2.66%
in mAP@0.5 (over TaskWeave), 0.75% in mAP Avg (over TaskWeave), 3.57% in HD mAP, and
2.86% in HD HIT@1 (both over CG-DETR). The only metric where VideoLights doesn’t lead
is mAP@0.75, trailing TaskWeave by 1.14%. These improvements, ranging from 0.75% to 3.78%

1Codes and models are available at: TBA
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Table 2: Evaluation of highlight detection methods on TVSum using Top-5 mAP. † represents the
use of audio modality. ‡ indicates the use of I3D for visual feature

Methods VT VU GA MS PK PR FM BK BT DS Avg.

sLSTM (Zhang et al., 2016)‡ 41.1 46.2 46.3 47.7 44.8 46.1 45.2 40.6 47.1 45.5 45.1
SG (Mahasseni et al., 2017)‡ 42.3 47.2 47.5 48.9 45.6 47.3 46.4 41.7 48.3 46.6 46.2
LIM-S (Xiong et al., 2019)‡ 55.9 42.9 61.2 54.0 60.3 47.5 43.2 66.3 69.1 62.6 56.3
Trailer (Wang et al., 2020)‡ 61.3 54.6 65.7 60.8 59.1 70.1 58.2 64.7 65.6 68.1 62.8
SL-Module (Xu et al., 2021)‡ 86.5 68.7 74.9 86.2 79 63.2 58.9 72.6 78.9 64.0 73.3
UMT (Liu et al., 2022)†‡ 87.5 81.5 81.5 81.5 81.4 87.0 76.0 86.9 84.4 79.6 83.1
QD-DETR (Moon et al., 2023)‡ 88.2 87.4 85.6 85.0 85.8 86.9 76.4 91.3 89.2 73.7 85.0
UVCOM (Xiao et al., 2023)‡ 87.6 91.6 91.4 86.7 86.9 86.9 76.9 92.3 87.4 75.6 86.3
CG-DETR (Moon et al., 2024)‡ 86.9 88.8 94.8 87.7 86.7 89.6 74.8 93.3 89.2 75.9 86.8
TR-DETR (Sun et al., 2024a)‡ 89.3 93.0 94.3 85.1 88.0 88.6 80.4 91.3 89.5 81.6 88.1
VideoLights ‡ 88.5 92.4 92.3 85.1 92.7 90.6 78.0 93.9 91.9 80.0 88.5

UniVTG (Lin et al., 2023) 83.9 85.1 89.0 80.1 84.6 81.4 70.9 91.7 73.5 69.3 81.0
VideoLights 90.8 90.6 89.2 85.0 88.8 87.6 73.2 93.0 87.6 81.8 86.8

UniVTG (pt) (Lin et al., 2023) 92.0 77.8 89.8 83.8 82.2 85.8 74.3 91.8 90.5 77.6 84.6
VideoLights-pt 88.4 84.7 91.7 87.0 90.0 86.4 77.1 94.0 88.8 78.7 86.7

across different metrics, show the effectiveness of our approach in both moment retrieval and high-
light detection tasks.

Table 3: Results on Charades-STA test set.

Method R@0.3 R@0.5 R@0.7 mIoU

2D-TAN (Zhang et al., 2020b) 58.76 46.02 27.5 41.25
VSLNet (Zhang et al., 2020a) 60.30 42.69 24.14 41.58
Moment-detr (Lei et al., 2021) 65.83 52.07 30.59 45.54
QD-DETR (Moon et al., 2023) - 57.31 32.55 -
TR-DETR (Sun et al., 2024a) - 57.61 33.52 -
UniVTG (Lin et al., 2023) 70.81 58.01 35.65 50.10
CG-DETR (Moon et al., 2024) 70.40 58.40 36.30 50.10
VideoLights 70.73 58.92 38.12 50.77

UniVTG (pt) (Lin et al., 2023) 72.63 60.19 38.55 52.17
VideoLights-pt 72.28 60.54 38.95 51.73

Perfomance in Charades-STA

Our proposed models,
VideoLights and
VideoLights-pt , demon-
strate competitive performance
on the Charades-STA test
set. Without pretraining,
VideoLights achieves state-
of-the-art results in three out
of four metrics. It outperforms
CG-DETR by 0.89% in R@0.5
(58.92 vs 58.40) and by 5.01%
in R@0.7 (38.12 vs 36.30).
VideoLights also improves
upon UniVTG’s mIoU by 1.34% (50.77 vs 50.10). For R@0.3, VideoLights (70.73) closely
trails UniVTG (70.81) by a marginal 0.11%. In the pretraining setting, VideoLights-pt shows
mixed results compared to UniVTG (pt). It surpasses UniVTG (pt) by 0.58% in R@0.5 (60.54 vs
60.19) and by 1.04% in R@0.7 (38.95 vs 38.55). However, VideoLights-pt falls slightly
behind in R@0.3 by 0.48% (72.28 vs 72.63) and in mIoU by 0.84% (51.73 vs 52.17). These results
highlight the effectiveness of our approach, particularly in improving performance on stricter
evaluation criteria (R@0.5 and R@0.7) in both pretraining and non-pretraining scenarios.

Perfomance in TVSum: Our proposed model VideoLights demonstrates competitive perfor-
mance across various domains in the TVSum dataset, as shown in Table 2. VideoLights achieves
state-of-the-art results in 4 out of 10 domains and in the overall average. Specifically, it outperforms
previous methods in PK (92.7% vs TR-DETR’s 88.0%, a 5.34% improvement), PR (90.6% vs CG-
DETR’s 89.6%, a 1.12% gain), BK (93.9% vs CG-DETR’s 93.3%, a 0.64% increase), and BT
(91.9% vs TR-DETR’s 89.5%, a 2.68% improvement). In the remaining domains, VideoLights
shows competitive performance, closely trailing the best results: VT (88.5% vs TR-DETR’s 89.3%,
-0.89%), VU (92.4% vs TR-DETR’s 93.0%, -0.65%), GA (92.3% vs CG-DETR’s 94.8%, -2.64%),
MS (85.1%, tied with TR-DETR), FM (78.0% vs TR-DETR’s 80.4%, -2.99%), and DS (80.0% vs
TR-DETR’s 81.6%, -1.96%). Notably, VideoLights achieves the highest overall average perfor-
mance of 88.5%, surpassing TR-DETR’s 88.1% by 0.45%. These results highlight the effectiveness
of VideoLights across diverse video domains in highlight detection tasks. When compared with
UniVTG without pretraining, case VideoLights outperforms in all domains, and with pertain-
ing, case VideoLights-pt outperforms in all domains except VT and BT.
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(a)

(b)

Figure 4: Qualitative results. (a) demonstrates VideoLights outperformed TR-DETR (Sun et al.,
2024b) in both MR and HD. (b) Both VideoLights and TR-DETR performed below the ground
truth, but upon closer examination, it is evident that incorrectly predicted clips are still related to the
given query.

In summary, VideoLights not only matches but often exceeds the performance of other cutting-
edge methods, demonstrating its effectiveness in joint video highlight detection & moment retrieval.

(a) (b)
After 

Text2Video
Attention 

After 
Bi-CMF

Figure 5: (a) and (b) show video-query correspondence maps: (a) after text-to-video (t2v) attention
and (b) after the Bi-CMF layer. The green line represents the ground truth saliency scores. Bi-CMF
attends to the correct video region better than t2v (highlighted in the magenta box). The word ’Is’
asserts that ’a’ refers to one basket, unlike ’is not’.

4.2 ABLATION STUDIES

To comprehend module impacts, we present our model ablation on QVHighlights val split in Table 4.

Effect of FRA: From Table 4 comparing rows 2 and 5, the addition of the FRA module while
keeping Bi-CMF disabled results in an average performance gain of 9.24% across all metrics. Also,
Figure 2 shows the qualitative efficacy of this module.

Effect of Bi-CMF: The rows 2 and 4 of Table 4 demonstrate the effectiveness of our Bi-CMF
module, showing an average performance gain of 4.41% across all metrics, with the most significant
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Table 4: Ablation study on QVHighlights val split. fra stands for FRA module, bi stands for Bi-
CMF module, bf stans for Blip features, pt stands for pre-train on the synthetic dataset using Blip
Backend, hl stands for adaptive hard positive and negative loss, tcl stands for task coupled loss, and
scsl stands for saliency cosine similarity loss. The effect of different pretraining data is in the bottom
block without any new losses.

Modules Losses MR HD

R1 mAP >=Very Good

sl. fra bi bf pt hl tcl scsl @0.5 @0.7 @0.5 @0.75 Avg mAP HIT@1

1. ✗ ✗ ✗ ✗ ✓ ✓ ✓ 60.77 45.74 61.24 41.32 40.71 37.91 58.71
2. ✗ ✗ ✓ ✗ ✓ ✓ ✓ 62.13 49.03 62.92 44.20 44.04 39.67 63.87
3. ✓ ✓ ✗ ✗ ✓ ✓ ✓ 63.16 48.00 63.25 43.96 43.39 39.64 63.03
4. ✗ ✓ ✓ ✗ ✓ ✓ ✓ 65.42 52.84 64.89 46.67 45.69 40.75 65.55
5. ✓ ✗ ✓ ✗ ✓ ✓ ✓ 70.45 54.26 68.88 47.61 47.50 42.47 69.29
6. ✓ ✓ ✓ ✗ ✓ ✓ ✓ 70.26 54.84 68.90 48.77 47.87 42.19 69.48
7. ✓ ✓ ✓ ✗ ✗ ✗ ✗ 63.81 48.00 64.39 43.64 43.02 39.12 63.68
8. ✓ ✓ ✓ ✗ ✓ ✗ ✗ 68.58 53.42 67.96 47.75 47.7 42.38 68.71
9. ✓ ✓ ✓ ✗ ✗ ✓ ✗ 69.10 53.87 68.56 47.73 48.02 41.69 67.94

10. ✓ ✓ ✓ ✗ ✗ ✗ ✓ 68.90 54.26 68.68 48.94 47.88 42.65 70.26
11. ✓ ✓ ✓ ✓ ✓ ✓ ✓ 71.74 56.77 69.35 50.09 49.10 43.38 71.29

No Pretraining 63.29 44.52 63.49 39.83 39.96 38.37 62.84
ASR Pretraining (Lei et al., 2021) 61.42 44.97 62.25 40.37 40.08 38.28 61.16

Our BLIP Pretraining 63.23 46.00 62.67 41.32 40.71 39.89 63.87

improvement in R@0.7 (7.77%). A qualitative analysis through feature heatmap visualization in
Figure 5 reveals that Bi-CMF achieves a more sparse spectrum density compared to both baseline
(no cross-modal) and uni-directional (text-to-video) approaches like QD-DETR, indicating better
query relevance differentiation.

Effect of new loss functions: Row 7-10 in Table 4 in the top block signify the gains using our pro-
posed loss functions. All of the new losses show significant improvements in both tasks individually
and in combination, which enhances tasks to a great extent. Here, we see that hl and scsl contribute
towards HD, and tcl contributes to MR tasks.

Effect of Blip-2 features and Pretraining: As shown especially the difference between the 6th row
and the 11th row in the upper block, pre-training also helps improve performance. Usage of BLIP-2
features along with the standard CLIP, and SlowFast also brings about improvements. The bottom
block shows the results with different pretraining corpus that poses the effectiveness of pretraining.

5 LIMITATION AND CONCLUSION

Conclusion In this paper, we propose a novel joint prediction model for highlight detection and
moment retrieval, VideoLights. It features a feature refinement and alignment module, a bi-
directional cross-modal and uni-directional cross-task feedback mechanism. Our custom cross-
modal interaction module enhances the ability to understand intermodal relationships between text
and video, resulting in superior content retrieval and highlight identification performance. Our ex-
periments on the QVHighlights and TVSum datasets have shown that our approach outperforms
current techniques and has fewer learning parameters, indicating efficiency and scalability. Our
contributions set the stage for future research in video content analysis. demonstrating the potential
of integrating advanced language and vision models to tackle real-world challenges in multimedia
content processing.

Limitation Our proposal for weakly supervised training utilizing vision-language pretraining mod-
els simplifies the training process but may still be prone to biases or inaccuracies in caption gener-
ation. At the same time, our dependency on pretraining models for caption generation and feature
extraction can lead to computational overhead and reliance on external resources, thus potentially
limiting the scalability of our approach. Moreover, the performance of our Bi-CMF module is heav-
ily reliant on the quality of input features and the effectiveness of attention mechanisms, both of
which can vary depending on the complexity and diversity of the video content. To fully unlock the
potential of our proposed approach in real-world applications, it is crucial to address these limita-
tions through further research and refinement.
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6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our experimental results, we provide comprehensive details of our
implementation. The core hyperparameters and environmental settings used across all experiments
are thoroughly documented in Section 4. For specific experiments that required parameter tuning, we
present a detailed breakdown in Table 6, which includes the optimal hyperparameter configurations
for each dataset and evaluation scenario. This includes learning rates, batch sizes, and model-specific
parameters that were determined through empirical validation. The complete source code, including
pre-processing scripts, model architectures, training pipelines, and evaluation protocols, along with
detailed instructions for environment setup and data preparation, is available in the supplementary
materials. We shall provide model checkpoints and experiment logs to ensure reproducibility.
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A APPENDIX

A.1 DATASET STATISTICS

Table 5 provides a comparison of three datasets utilized in a study, describing the different attributes
of each. The QVHighlights dataset includes vlog and news content, with 10,300 annotations and
12,500 videos. It supports tasks such as Moment Retrieval (MR) and Highlight Detection (HD)
and has been utilized in pre-training. We have generated 187682 synthetic data from videos of this
dataset using the approach described in Algorithm 1. The Charades-STA dataset, which focuses
on activity-related content, comprises 16,100 annotations and 6,700 videos, specifically used for
Moment Retrieval and has also been employed in pre-training. We have generated 23,193 synthetic
data samples from this dataset. Lastly, the TVSum dataset, based on web content, is notably smaller,
with 50 annotations and 50 videos, used exclusively for Highlight Detection. It has 10 domains, VT,
VU, GA, MS, PK, PR, FM, BK, BT, and DS each containing 5 videos. Unlike the other datasets, it
has not been used in pre-training and does not include synthetic data.

Table 5: Comparison of datasets used in this study.

Dataset Domain Annotations Videos Task Used in pt Synthetic data

QVHighlights Vlog / News 10.3K 12.5K MR, HD ✓ 187682
Charades-STA Activity 16.1K 6.7K MR ✓ 23193
TVSum Web 50 50 HD

Algorithm 1 Synthetic data generation process

1: Segment videos into 10-second intervals, each representing a discrete moment within the video
content.

2: For each 10-second interval, select a representative frame and use the BLIP model to generate a
descriptive caption for that frame.

3: Use the generated caption as a query, encapsulating the essence of the selected frame.
4: Match the generated query-captions with video frames within each 10-second interval using

cosine similarity to find the similarity score, which serves as the saliency level for highlight
detection.

5: Train the model using the generated caption-query pair, considering the entire 10-second interval
as a moment for training purposes.

A.2 ADDITIONAL ABLATION ON BI-CMF

Our research findings indicate that integrating the Bi-CMF module into our model significantly im-
proves performance in MR and HD tasks compared to the model without this module. In addition,
we conducted further ablation studies to evaluate the impact of different Bi-CMF layer counts on the
model. The results, outlined in Table 8, show that while one and two layers demonstrate similar per-
formance in both MR and HD metrics, the introduction of three layers enhances MR performance
but decreases performance in HD tasks. Furthermore, as the number of layers increases, perfor-
mance on both tasks across all metrics decreases. The impact on MR performance, particularly in
MR-full-mAP, is illustrated in Figure 6.

We also performed additional experiments to assess the effectiveness of bi-CMF compared to uni-
directional cross-attention. In this experiment, we replaced our bi-CMF with a unidirectional cross-
attention module while keeping all other parameters constant. The results are presented in Table 9.
We observed that across all metrics in the MR task, Bi-CMF demonstrated a notable improvement
over unidirectional cross-attention.

A.3 SOCIETAL IMPACT

The research explores significant societal implications of the advancements in Video Highlight De-
tection and Moment Retrieval (HD/MR). With the exponential growth of online video content, these
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Algorithm 2 Bi-Directional Cross-Modal Fusion Network

1: Input: Video embeddings V , Text embeddings T
2: Output: Fused contextual information F
3: Initialize F as empty tensor
4: # Apply cross-attention between V and T to obtain video tokens conditioned by text tokens:
5: Query = V ·Wq

6: Key = T ·Wk + PositionalEmbedding
7: Value = T ·Wv + PositionalEmbedding
8: O1 = Softmax(Query·Key⊤√

d
) · Value

9: O1 = V + norm(linear(dropout(O1)))
10: # Apply cross-attention between T and V to obtain text tokens conditioned by video tokens:
11: Query = T ·Wq

12: Key = V ·Wk + PositionalEmbedding
13: Value = V ·Wv + PositionalEmbedding
14: O2 = Softmax(Query·Key⊤√

d
) · Value

15: O2 = T + norm(linear(dropout(O2)))
16: # Cross-attention to O1 and O2 to obtain fused representation:
17: Query = O1 ·Wq

18: Key = O2 ·Wk

19: Value = O2 ·Wv

20: O3 = Softmax(Query·Key⊤√
d

) · Value
21: # Apply self-attention with layer normalization to obtain fine grained representation:
22: Query = O3 ·Wq

23: Key = O3 ·Wk

24: Value = O3 ·Wv

25: F = Softmax(Query·Key⊤√
d

) · Value

26: F = O3 + dropout(F )
27: F d = dropout(activation(linear(F )))
28: F = norm(linear(F d)))
29: return F

Table 6: Experiment-specific hyperparameters. Visual features: I3D, SlowFast (SF), CLIP (C),
and BLIP-2 (Blip). VF: visual features, TF: text features. Coefficients: symmetric alignment loss
(al coef), task coupled loss (tcl coef), hard positive/negative loss (hl coef), and cosine similarity
loss (scsl coef).

Dataset Exp VF TF Epoch lr Bs al coef tcl coef hl coef scsl coef

QVHighlights Without pt SF+C+Blip C+Blip 200 1E-04 32 0.1 1 10 1
Finetune SF+C+Blip C+Blip 200 1E-04 32 0.8 1 10 1

Charades-STA Without pt SF+C+Blip C+Blip 100 1E-04 32 0.1 1 10 1
Finetune SF+C+Blip C+Blip 100 1E-04 32 0.8 1 10 1

TVSum
I3D I3D+Blip C+Blip 2000 1E-03 4 0.8 0 T 7 T 7

SF+C+Blip SF+C+Blip C+Blip 2000 1E-03 4 0.8 0 T 7 T 7
Finetune (SF+C+Blip) SF+C+Blip C+Blip 2000 1E-03 4 T 7 0 T 7 T 7

technologies have the potential to greatly improve user experiences by facilitating easy navigation
and retrieval of pertinent information within videos. This could result in more efficient consumption
of educational material, greater accessibility for individuals with limited time or attention spans, and
better organization of news and entertainment media. However, the societal impact extends beyond
the mere convenience. These tools could also be used to automate video summarization for surveil-
lance footage or body camera recordings, raising privacy concerns and ethical questions regarding
AI-driven video analysis. While technology offers numerous benefits, it is imperative to carefully
consider potential misuse, such as creating deceptive video summaries or perpetuating algorithmic
biases in video highlight generation systems. Therefore, continuing ethical debates and responsible
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Table 7: Value of hl coef, scsl coef and al coef in different experiments on the TVSum dataset

Exp Coef Name VT VU GA MS PK PR FM BK BT DS

I3D hl coef 10 1 1 1 10 10 10 1 10 10
scsl coef 1 1 10 5 5 10 5 1 1 10

SF+C+Blip hl coef 10 10 10 10 10 10 10 10 10 10
scsl coef 10 5 10 1 5 10 1 10 10 10

Finetune (SF+C+Blip)
hl coef 1 1 5 1 5 1 5 1 5 10

scsl coef 5 1 1 1 10 10 10 5 10 5
al coef 0.8 0.8 0.1 0.8 0.1 0.8 0.1 0.8 0.1 0.8

Table 8: Experiment using different Bi-CMF layer counts on QVHighlights val split.

Bi-CMF layer count
MR HD

R1 mAP >=Very Good
@0.5 @0.7 @0.5 @0.75 Avg mAP HIT@1

0 65.55 49.74 64.50 44.51 43.86 40.87 66.9
1 68.84 53.16 67.29 46.08 45.98 42.31 69.35
2 68.84 53.10 67.41 46.59 45.88 42.20 69.61
3 69.16 52.71 68.29 47.27 47.27 42.13 67.74
4 67.16 52.58 66.95 47.21 46.55 41.47 67.35
5 68.00 52.58 66.86 46.58 46.11 41.12 67.94

Table 9: Experiment using different Bi-CMF layer counts on QVHighlights val split.

Method
MR HD

R1 mAP >=Very Good
@0.5 @0.7 @0.5 @0.75 Avg mAP HIT@1

UniDirectional Attention 67.61 50.65 67.06 45.46 45.42 42.59 69.61
Bi-CMF 68.84 53.16 67.29 46.08 45.98 42.31 69.35

Table 10: Effect of hl coef and scl coef on TVSum result on I3D visual features

hl coef scl coef VT VU GA MS PK PR FM BK BT DS Avg.

10
1 88.45 85.32 83.43 80.85 84.18 87.13 77.1 92.36 91.92 76.88 84.76
5 84.31 71.32 91.93 85.13 92.67 84.08 78.01 91.59 90.46 77.5 84.70
10 87.29 75.32 82.68 80.67 87.43 90.58 72.55 91.68 86.85 79.99 83.50

1
1 87.29 92.43 85.63 81.76 79.87 85.55 63.81 93.96 85.72 63.92 81.99
5 83.77 75.63 88.97 79.71 80.65 87.56 72.55 90.79 88.83 77.1 82.56
10 87.36 75.479 92.29 85.02 84.56 87.69 71.73 91.25 87.08 77.93 84.04

Max 88.45 92.43 92.29 85.13 92.67 90.58 78.01 93.96 91.92 79.99 88.54

development practices will be indispensable as these technologies progress and become integrated
into various aspects of society.
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Figure 6: Bi-CMF layer count VS MR-full-mAP plot

Figure 7: Qualitative results. In case there is little change in consecutive frames, our model failed to
detect moments properly.
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Convolution
Projection

Feature 
Refinement

Query: Masked woman walks around the city while having her red hood up.

(a)

Figure 8: Qualitative results. demonstrates when FRA aligned video and query better
VideoLights was able to predict better. Here the green line plot and bar are respectively ground
truth HD and MR results, and blue one is VideoLights prediction.
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Convolution
Projection

Feature 
Refinement

Query: Weather broadcaster briefing about snowy weather in graph

(a)

Figure 9: Qualitative results. When FRA failed to align word and video, VideoLights failed to
predict better MR and HD. Here the green line plot and bar are respectively ground truth HD and
MR results, and blue one is VideoLights prediction.
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