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Abstract
Discrete curvature has recently been used in graph
machine learning to improve performance, un-
derstand message-passing and assess structural
differences between graphs. Despite these ad-
vancements, the theoretical properties of discrete
curvature measures, such as their representational
power and their relationship to graph features
is yet to be fully explored. This paper stud-
ies Ollivier–Ricci curvature on graphs, providing
both a discussion and empirical analysis of its
expressivity, i.e. the ability to distinguish non-
isomorphic graphs.

1. Introduction
Curvature is a fundamental concept in differential geometry
and topology that allows one to distinguish between differ-
ent types of manifolds. Among the assortment of curvature
constructions and the variety of properties they exhibit, Ricci
curvature has become one of the most prominent. Roughly
speaking, Ricci curvature is based on measuring the differ-
ences in the growth of volumes in a space as compared to
a ‘model’ Euclidean space. While originally requiring a
smooth manifold, recent work has started to explore how
to formulate a theory of Ricci curvature in discrete set-
tings (Coupette et al., 2023; Devriendt & Lambiotte, 2022;
Forman, 2003; Liu et al., 2018; Ollivier, 2007; Saucan et al.,
2020). We focus on Ollivier-Ricci curvature (OR) (Ollivier,
2007) which, intuitively, quantifies a notion of similarity
between node neighbourhoods, the discrete analogue for
‘volume’. In the context of graphs, OR curvature provides
sophisticated tools to characterise edges by analysing their
neighbourhoods. Recent works have shown the benefits
of using OR curvature to assess differences between real-
world networks (Samal et al., 2018), as well as its ability
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to reduce over-squashing in GNNs by facilitating graph
rewiring (Nguyen et al., 2023). However, the representa-
tional power of OR curvature on graphs remains largely
unexplored.

Our contributions are as follows:

• We analyse the expressive power of OR curvature in
terms of the Weisfeiler–Le(h)man (WL) heirarchy.

• We outline the use of higher-order neighbourhoods to
calculate OR curvature and show that this provides
additional expressive power.

2. Background
Ollivier–Ricci Curvature. Ollivier introduced a notion
of curvature for metric spaces that measures the Wasserstein
distance between Markov chains, i.e. random walks, defined
on two nodes (Ollivier, 2007). To define this for graphs,
let G = (V,E) be a graph with some metric dG and a
probability measure µv at each node v ∈ V . The Ollivier–
Ricci curvature of any1 pair i, j ∈ V ×V with i ̸= j is then
defined as

κOR(i, j) := 1− 1

dG(i, j)
W1(µi, µj), (1)

where W1 refers to the first Wasserstein distance between
µi, µj . Eq. (1) defines the Ollivier–Ricci (OR) curvature in
a general setting outlined by van der Hoorn et al. (2020); this
is in contrast to the majority of previous works in the graph
setting which specify dG to be the shortest-path distance
and µi, µj to be uniform probability measures in the 1-
hop neighbourhood of the node. Extending the probability
measures to act on larger locality scales is known to be
beneficial for characterising graphs (Benjamin et al., 2021;
Gosztolai & Arnaudon, 2021; Jiradilok & Kamtue, 2021).

Higher-order OR curvature. Defining κOR in a general
framework allows us to alter the probability meausure and
metric. In this work, we look to expand our understanding
of OR curvature’s utility by investigating measures based
on random walk probabilities. Specifically, for a node x and

1In contrast to other notions of curvature, Ollivier–Ricci curva-
ture is defined for both edges and non-edges.
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a positive integer m, we calculate µRW as

µRW(y) :=
∑
k≤m

ϕk(x, y), (2)

with ϕk(x, y) denoting the probability of reaching node y in
a k-step random walk that starts from node x. Subsequently,
we normalise Eq. (2) to ensure a valid probability distribu-
tion. By changing the value of m, we can consider up to
m-step random walks.

The k-dimensional Weisfeiler-Le(h)man test. The WL
hierarchy has become a standard way of measuring the
expressivity of GNNs (Morris et al., 2021a;b). It is
based on the idea of labelling all k-tuples of vertices in
graphs. Initially, two k-tuples v = (v1, . . . , vk) and
w = (w1, . . . , wk) are assigned the same label if the map
vj 7→ wj induces a homomorphism between the subgraphs
induced by v and w, respectively. For subsequent iterations,
tuples are relabelled according to a neighbourhood relation
between them. This process is performed iteratively and re-
sults in a graph colouring or vertex partition. If two graphs
give rise to different colour sequences, the graphs are guar-
anteed to be non-isomorphic (the other direction does not
hold, as seen in Fig. 1). There are classes of graphs that can-
not be distinguished by k-WL but that can be distinguished
by (k + 1)-WL (Morris et al., 2021a). We thus obtain a hi-
erarchy of tests for graph isomorphism, with higher orders
substantially increasing in computational complexity.

3. Expressivity of Ollivier-Ricci Curvature
To understand the expressive power of OR curvature, we
explore its ability to distinguish non-isomorphic graphs in
comparison to k-WL. Specifically, we study regular graphs
that 1-WL fails to distinguish, while also analysing strongly-
regular graphs that 3-WL fails to distinguish.

3.1. Distinguishing Beyond 1-WL

1-WL cannot distinguish any n-sized r-regular graph as the
degree is constant across nodes. Figure 1 shows three exam-
ples of regular graphs that cannot be distinguished by 1-WL.
Feng et al. (2022) show that using 2-hop message-passing,
Example 1 can be distinguished with a graph diffusion ker-
nel but not with the shortest path kernel, whereas Example
2 can be distinguished with the shortest path kernel and not
with the graph diffusion kernel. In comparison to 2-hop
message passing, standard κOR (uniform measure on 1-hop
neighbourhoods) has a smaller field of view. κOR does, how-
ever, consider pairs of neighbourhoods which can improve
representational power. For example, κOR can bound the
number of triangles within a locally finite graph (Jost & Liu,
2011), allowing it to differentiate the pairs of graphs which
have different numbers of triangles and thus improve upon

Example 2

Example 1

Example 3

Figure 1: Examples of pairs of regular graphs that cannot be
distinguished by 1-WL, the first-order Weisfeiler–Le(h)man
test for graph isomorphism.

2-hop message-passing with a specific kernel choice. Exam-
ple 3 cannot be distinguished by 2-hop message-passing (re-
gardless of kernel choice) nor standard κOR. However, by
changing the probability measure used by κOR, we can shift
the focus towards even larger substructures. This allows a
random walk measure with m = 2 to distinguish the graphs
in Example 3.

3.2. Distinguishing Beyond 3-WL

Strongly-regular graphs are often used to assess the ex-
pressive power of graph learning algorithms, constituting
a class of graphs that are particularly hard to distinguish.
A strongly-regular graph is defined using four parameters
{n, d, α, β} where n is the number of nodes in the graph,
d is the degree of each node, α is the number of common
neighbours between adjacent vertices and β is the number
of common neighbours between non-adjacent vertices. Let
i, j ∈ V × V and define Ni to be the set of vertices which
are adjacent to node i, not including j or any nodes adjacent
to j. Suppose there is a maximal matching M of size m
between Ni and Nj . Following Bonini et al. (2020), the
standard OR curvature of a strongly-regular graph is then
given by

κOR(i, j) =
α+ 2

d
− | Ni | −m

d
. (3)

Theorem 1 (Expressivity of OR curvature). Ollivier–Ricci
curvature can distinguish the Rook and Shrikhande graphs,
which are strongly-regular graphs with the same intersec-
tion array (Southern et al., 2023).

The Rook and Shrikhande graphs cannot be distinguished
by 3-WL (Bouritsas et al., 2022; Morris et al., 2021a). For
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strongly regular graphs with a girth of 3, the OR curvature
does not depend only on the graph parameters (Bonini et al.,
2020). It is therefore sensitive to differences in the first-hop
peripheral subgraphs (Feng et al., 2022) of the Rook and
Shrikhande graphs, thus distinguishing them.

The implications of this section are that (i) OR curvature
can distinguish graph pairs that are 3-WL indistinguish-
able without needing more than 1-hop of neighborhood
information. (ii) Using OR curvature with a higher-order
measure allows us to distinguish some graphs that cannot
be distinguished using standard OR curvature.

3.3. Other Metrics and Future Work

Recent work has explored expressivity beyond WL for
GNN expressiveness evaluation, including diameter count-
ing, counting substructures (Chen et al., 2020) and bicon-
nectivity (Zhang et al., 2023). Interestingly, OR curvature
has been shown to provide an upper bound for the graph
diameter (Paeng, 2012) as well as a lower bound for the
number of triangles (Jost & Liu, 2011). Additionally, the
resistance distance, which is another form of discrete cur-
vature (Devriendt & Lambiotte, 2022), was shown to solve
biconnectivity (Zhang et al., 2023). We leave a detailed
exploration of such relations to future work.

4. Experiments
In the previous section, we discussed the theoretical ex-
pressivity of OR curvature. Subsequently, we will show
empirical experiments to evaluate these claims.

4.1. Distinguishing Graphs

We explore the ability of our method to distinguish strongly-
regular graphs in a subset of data sets, i.e. sr16622,
sr251256, sr261034, sr281264, and sr291467.
These data sets are challenging to classify since they cannot
be described in terms of the 1-WL test (Bodnar et al., 2021).
Additionally, we evaluate discrete curvature on the BREC
dataset, which was recently introduced to evaluate GNN
expressiveness (Wang & Zhang, 2023). The dataset consists
of different categories of graph pairs (Basic, Regular, and
Extension), which are distinguishable by 3-WL but not by
1-WL, as well as Strongly-Regular (STR) and CFI graph
pairs which are indistinguishable using 3-WL. We explore
the ability of OR curvature to distinguish these graph pairs
and compare them to substructure counting, S3 and S4,
which involves enumerating all 3-node/4-node substructures
around nodes in combination with the WL algorithm. These
approaches, unlike OR curvature, have limited practical
applications due to their high computational complexity.

We calculate Wasserstein distances based on histograms of

Table 1: Success rate (↑) of distinguishing pairs of graphs in
the BREC dataset when using different probability measures
in the OR curvature calculation.

Method Basic (56) Regular (50) STR (50) Extension (97) CFI (97)

1-WL 0.00 0.00 0.00 0.00 0.00
3-WL 1.00 1.00 0.00 1.00 0.59

S3 0.86 0.96 0.00 0.05 0.00
S4 1.00 0.98 1.00 0.84 0.00

RW, m = 1 1.00 0.96 0.06 0.87 0.00
RW, m = 2 1.00 1.00 0.14 0.97 0.01
RW, m = 3 1.00 1.00 0.14 0.99 0.04
RW, m = 4 1.00 1.00 0.14 1.00 0.09
RW, m = 5 1.00 1.00 0.14 1.00 0.19
RW, m = 6 1.00 1.00 0.14 1.00 0.19

Table 2: Success rate (↑) of distinguishing pairs of strongly-
regular graphs when using Ollivier-Ricci curvature.

Method sr16622 sr251256 sr261034 sr281264 sr291467

1-WL 0.00 0.00 0.00 0.00 0.00
3-WL 0.00 0.00 0.00 0.00 0.00

RW, m = 1 1.00 0.00 0.00 1.00 0.00
RW, m = 2 1.00 0.00 0.78 1.00 0.00

OR curvature measurements between the pairs of graphs.
Subsequently, we count all non-zero distances (> 1× 10−8

to correct for precision errors). Our main observations from
Table 1 and Table 2 are that OR curvature can distinguish
graphs which are 3-WL indistinguishable and using a higher-
order random walk measure can improve discriminative
power: we observe improvements in success rate from m =
1 to m = 2 on the Regular, STR, Extension, and CFI graph
pairs, respectively. Additionally, the approach performs
competitively and sometimes better than S4, which has
been shown to be extremely effective in graph learning
tasks (Bouritsas et al., 2022). Despite its prowess, S4 is
computationally expensive, making it an infeasible measure
in many applications. OR curvature, by contrast, even with
higher-order neighbourhoods, scales significantly better.

5. Conclusion
Our work provides the first thorough analysis of the expres-
sivity of Ollivier-Ricci curvature on graphs. We have shown
not only that OR curvature can distinguish graphs outside
the capabilities of 3-WL, but also that its expressivity can
be improved by varying its probability measure, thus mo-
tivating the use of higher-order OR curvature. Finally, we
demonstrate OR curvature’s practical utility by perform-
ing experiments that distinguish pairs of graphs in various
strongly regular graph datasets and the BREC dataset. Fu-
ture work could explore expressivity beyond WL, showing
how OR curvature can improve diameter approximation,
counting substructures, and biconnectivity solutions as well
as exploring the utility of other random walk measures.
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curvature and diameter bounds on graphs. Calculus of
Variations and Partial Differential Equations, 57(2), mar
2018. doi: 10.1007/s00526-018-1334-x.

Morris, C., Lipman, Y., Maron, H., Rieck, B., Kriege, N. M.,
Grohe, M., Fey, M., and Borgwardt, K. Weisfeiler and
Leman go machine learning: The story so far, 2021a.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and leman go
neural: Higher-order graph neural networks, 2021b.

Nguyen, K., Nguyen, T., Nong, H., Nguyen, V., Ho, N., and
Osher, S. Revisiting over-smoothing and over-squashing
using ollivier-ricci curvature, 2023.

Ollivier, Y. Ricci curvature of metric spaces. Comptes
Rendus Mathematique, 345(11):643–646, 2007. ISSN
1631-073X. doi: 10.1016/j.crma.2007.10.041.

Paeng, S.-H. Volume and diameter of a graph and ollivier’s
ricci curvature. European Journal of Combinatorics, 33
(8):1808–1819, 2012. ISSN 0195-6698. doi: https://doi.
org/10.1016/j.ejc.2012.03.029.

Samal, A., Sreejith, R. P., Gu, J., Liu, S., Saucan, E., and
Jost, J. Comparative analysis of two discretizations of
ricci curvature for complex networks. Scientific Reports,
8(1), 2018. doi: 10.1038/s41598-018-27001-3.

Saucan, E., Samal, A., and Jost, J. A simple differential
geometry for complex networks, 2020.

Southern, J., Wayland, J., Bronstein, M., and Rieck, B. Cur-
vature filtrations for graph generative model evaluation,
2023.

van der Hoorn, P., Lippner, G., Trugenberger, C., and Kri-
oukov, D. Ollivier curvature of random geometric graphs
converges to ricci curvature of their riemannian mani-
folds, 2020.

Wang, Y. and Zhang, M. Towards better evaluation of gnn
expressiveness with brec dataset, 2023.

Zhang, B., Luo, S., Wang, L., and He, D. Rethinking the
expressive power of gnns via graph biconnectivity, 2023.

4


	Introduction
	Background
	Expressivity of Ollivier-Ricci Curvature
	Distinguishing Beyond 1-WL
	Distinguishing Beyond 3-WL
	Other Metrics and Future Work

	Experiments
	Distinguishing Graphs

	Conclusion

