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Abstract001

Large language models (LLMs) have suc-002
ceeded remarkably in multilingual translation003
tasks. However, the inherent translation mech-004
anisms of LLMs remain poorly understood,005
largely due to sophisticated architectures and006
vast parameter scales. In response to this issue,007
this study explores the translation mechanism008
of LLM from the perspective of computational009
components (e.g., attention heads and MLPs).010
Path patching is utilized to explore causal rela-011
tionships between components, detecting those012
crucial for translation tasks and subsequently013
analyzing their behavioral patterns in human-014
interpretable terms. Comprehensive analysis015
reveals that translation is predominantly facili-016
tated by a sparse subset of specialized attention017
heads (less than 5%), which extract source018
language, indicator, and positional features.019
MLPs subsequently integrate and process these020
features by transiting towards English-centric021
latent representations. Notably, building on022
the above findings, targeted fine-tuning of only023
64 heads achieves translation improvement024
comparable to full-parameter tuning while025
preserving general capabilities. 1026

1 Introduction027

Large language models (LLMs) have succeeded028

remarkably in multilingual translation tasks (Chen029

et al., 2024a,b; Zhu et al., 2024; Zhang et al., 2024),030

paving the way for a new paradigm in machine031

translation (Xu et al., 2024a; Alves et al., 2024).032

Recent advancements have continuously focused033

on enhancing translation capabilities, bringing034

them progressively closer to human-level trans-035

lation (Xu et al., 2024c; Lu et al., 2024; Xu036

et al., 2024b). Despite the widespread adoption037

and recent advancements in LLMs, the internal038

mechanisms by which they perform translation039

tasks remain poorly understood and pose severe040

1Our code and data will be released once accepted.

challenges. Prior analyses focused on surface-level 041

emergent linguistic phenomena (e.g., neuron activa- 042

tion patterns (Mu et al., 2024; Tang et al., 2024) or 043

intermediate representations (Wendler et al., 2024; 044

Zhu et al., 2024)), remaining observational rather 045

than elucidating the computational mechanistic 046

basis underlying translation. A comprehensive 047

understanding of these functional mechanisms is 048

critical for achieving robust improvements in trans- 049

lation capability and advancing the development of 050

controllable and interpretable LLMs (Wang et al., 051

2023; Zhang et al., 2025). 052

In this paper, we study the internal mechanism 053

of LLM translation by progressively investigating 054

the following research questions: 055

• Which components of LLMs crucially con- 056

tribute to performing translation? 057

• What behavioral patterns do these translation- 058

crucial components exhibit? 059

• Can fine-tuning these translation-crucial com- 060

ponents enhance LLM translation capability? 061

To this end, we leverage path patching (Goldowsky- 062

Dill et al., 2023) to examine the causal relationships 063

between computational components (e.g., attention 064

heads and MLP), detecting those crucial for trans- 065

lation tasks. For components judged as crucial, 066

we then systematically analyze their behavioral 067

patterns by (1) characterizing attention head’s roles 068

according to the attention contribution to lexical 069

alignment and (2) measuring correlations between 070

MLP representations and translation-relevant token 071

embeddings. Our analysis reveals three distinct 072

attention head functional roles: (i) source heads 073

that focus on source-language tokens, (ii) indicator 074

heads that track translation-initiating signals, and 075

(iii) positional heads that maintain sequential co- 076

herence. Additionally, we demonstrate that MLPs 077

dynamically integrate translation-related features 078
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from critical attention heads, iteratively transiting079

them into English-centric latent representations.080

Building on these insights, we design a targeted081

optimization strategy based on supervised fine-082

tuning (SFT) (Ouyang et al., 2022) to selectively083

fine-tune translation-crucial components, thereby084

assessing whether fine-tuning these components085

improves translation performance. As a result, our086

findings are as follows:087

• Only a sparse subset of heads (less than 5%)088

are crucial for LLMs’ translation.089

• Crucial heads exhibit specialized functions090

to process translation-relevant features, with091

MLPs integrating these features and transiting092

to English-centric latent representations.093

• Fine-tuning merely 64 heads achieves perfor-094

mance parity with full-parameter fine-tuning.095

2 Related Works096

Mechanistic Interpretability. Mechanistic inter-097

pretability (MI) elucidates neural network mecha-098

nisms by seeking to reverse-engineer and decode099

their functioning (Meng et al., 2022; Lan et al.,100

2024; Zhao et al., 2024a; Rai et al., 2024). Within101

the broader MI landscape, two key techniques102

are foundational to this work: (i) Path patch-103

ing (Goldowsky-Dill et al., 2023; Wang et al.,104

2023), derived from activation patching (Heimer-105

sheim and Nanda, 2024; Zhang and Nanda, 2024),106

probes causal relationships and analyzes interac-107

tions between components in neural networks by108

tracing effect propagation along network pathways109

via targeted activation interventions. (ii) Embed-110

ding projection (Geva et al., 2022; Dar et al., 2023)111

maps high-dimensional representations to human-112

interpretable spaces via dimensionality reduction113

approaches. Recent studies highlight the utility114

of path patching to gain insights into functioning115

behavior, such as identifying circuits for tasks like116

indirect object identification(Wang et al., 2023) and117

arithmetic calculations(Zhang et al., 2025).118

Interpretability in Multilingual LLMs. Recent119

studies have delved deeper into how LLMs achieve120

multilingually by investigating linguistic phenom-121

ena emergent in multilingual context (Bhattacharya122

and Bojar, 2024; Peng and Søgaard, 2024; Fer-123

rando and Costa-jussà, 2024; Dumas et al., 2024).124

Key findings indicate that (i) increased linguistic125

diversity in inputs leads to reduced neuron activa- 126

tions (Mu et al., 2024); (ii) LLMs exhibit language- 127

specific functional regions (Tang et al., 2024); and 128

(iii) English frequently functions as an implicit 129

computational pivot (Wendler et al., 2024; Zhao 130

et al., 2024b). Unlike prior research focusing on 131

surface-level emergent linguistic phenomena rather 132

than computational translation mechanisms, this 133

work comprehensively analyzes the functional pro- 134

cesses underlying LLMs’ translation abilities. We 135

present a novel method to systematically examine 136

how LLMs execute translation tasks, improving 137

interpretability and practical understanding of their 138

translation functionalities. 139

3 Constructing Analysis Dataset 140

Our goal is to explore the translation mechanism 141

of LLMs. Directly leveraging existing sentence- 142

level parallel corpora is challenging due to the lack 143

of one-to-one word alignment between source and 144

target languages. This motivates us to investigate 145

how LLMs perform word-level translation. Taking 146

inspiration from the prompt design and word selec- 147

tion in Wendler et al. (2024), we construct a closed 148

set of word translation analysis datasets across five 149

widely used languages (e.g., English (En), Chinese 150

(Zh), Russian (Ru), German (De), and French (Fr)). 151

Taking word translation from English to Chinese 152

as an example, a word translation prompt like 153

“English: book -中文: ” (“中文” means “Chinese”) 154

might appear in the analysis datasets. In this study, 155

we select the samples that LLMs can translate 156

correctly, denoting these sentences successfully 157

prompting LLMs to translate as reference data 158

using the notation of Xf . More details of the 159

construction of word translation datasets can be 160

referred to Appendix A.1. 161

Moreover, to meet the demand for compo- 162

nent activation perturbation, we constructed a 163

supplementary dataset comprising counterfactual 164

sentences that exclude translation logic, using the 165

notation of Xcf . The counterfactual sentences 166

are generated adhering to two core principles: 167

(1) preserving grammatical structures from the 168

original Xf sentences and (2) replacing several 169

crucial words responsible for the translation logic 170

with contextually irrelevant terms. For instance, 171

a sentence from Xf like “English: cloud - 172

中文: _” is replaced with the corresponding 173

counterfactual one “English: cloud - Nothing: _”. 174

This isolates model’s impact on translation tasks 175
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from sentence structural or syntactic variables,176

enabling precise analysis of how LLMs perform177

translation tasks. Various counterfactual templates178

are considered in this study and provided in179

Appendix A.2. The constructed analysis dataset180

(including Xf and Xcf ) is utilized in subsequent181

sections, as illustrated in the examples below:182

Reference Data (Xf)

English: "cloud" - 中文: "
English: "flower" - 中文: "
English: "snow" - 中文: "

183

Counterfactual Data (Xcf)
English: "cloud" - Nothing: "
English: "flower" - Nothing: "
English: "snow" - Nothing: "

184

4 Overview of Interpretation185

Detect Crutial Components via Path Patching

1.CRUCIAL COMPONENTS DETECTION

2.BEHAVIORAL PATTERNS
ANALYSIS

3.TARGETED
FINE-TUNE

Analyze Attention Head Patterns Explore Information flow from MLPs

MLPs

distribution 
over vocabulary

...H HH H

M

+

+

...+

+

Selectively Fine-tune Crucial Components

H Attention Head

M MLP

Residual 
Connection
Identified 

Key Components

Trainable

Frozen

Legends

Figure 1: The overview of the interpretation method: (1)
detect crucial components, (2) analyze their behavioral
patterns, and (3) selectively fine-tune them.

Our method investigates the internal mecha-186

nisms of LLM translation through three steps:187

1. Detecting, validating translation-crucial188

components and examining their consistency189

across training phases (Section §5).190

2. Analyzing the inherent patterns of these com-191

ponents to characterize their behavioral and192

distinctive features (Section §6).193

3. Implementing a targeted SFT strategy to194

fine-tune essential components and improve195

translation performance (Section §7).196

5 Crucial Components Detection 197

We begin by addressing the first research ques- 198

tion: “Which components crucially influence LLMs’ 199

translation capabilities?” Using path patching, we 200

detect components crucial for performing trans- 201

lation tasks (Section §5.1), subsequently validate 202

their importance through knockout (Section §5.2), 203

and further examine whether these heads exhibit 204

consistency across training stages (Section §5.3). 205

5.1 Detecting Crucial Components for 206

Translation Tasks via Path Patching 207

To determine the causal mechanisms behind the 208

model’s translation, we employ the path patch- 209

ing (Wang et al., 2023; Zhang et al., 2025). This 210

method systematically analyzes causal relation- 211

ships between two computation nodes (Sender → 212

Receiver), evaluating whether the Sender causally 213

influences the Receiver, and whether their connec- 214

tion is functionally crucial for translation tasks. 215

We perturb specific activations using counter- 216

factual data Xcf , while maintaining others at 217

reference data Xf , measuring the counterfactual 218

effect through output logit comparisons. Our 219

method iteratively examines all components, iso- 220

lates constituent circuits, and quantifies changes in 221

ground-truth token logits. Appendix B provides 222

more details of the method. 223

Detection results of crucial heads. We begin 224

by examining the causal impact of logits from 225

path patching each head across layers on LLaMA2- 226

7B (Touvron et al., 2023). As a particularly clean 227

case, we focus on two categories of translation 228

directions: Zh ⇒ X, and X ⇒ Zh, which has many 229

single-token words. We define “crucial heads” as 230

those whose magnitude of logit change exceeds 231

1.0%. As illustrated in Figure 2, we highlight 232

several key findings: 233

1. Only a sparse subset of heads significantly 234

influences translation performance. For 235

instance, patching the head at position (31, 8) 236

results in a substantial decrease in the target 237

token’s logit value, illustrating its critical role 238

in the translation process. 239

2. Impactful heads are concentrated in the 240

middle and final layers. Earlier layers lack 241

heads directly influencing target token logits; 242

instead, crucial heads cluster predominantly 243

between layers 12 and 20 and in the final two 244
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(a) Zh⇒ En
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(b) Zh⇒ Fr
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(c) Zh⇒ Ru
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(d) En⇒ Zh
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(e) Fr⇒ Zh
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(f) Ru⇒ Zh

Figure 2: Importance of heads related to translation across different directions. Each square at position (x, y)
refers to the x-th head in the y-th layer. Red (Brown) squares denote heads (MLPs) that have a positive impact on
predicting the target token, while grey (purple) squares indicate heads (MLPs) with a negative effect.

layers. This pattern remains consistent across245

all translation directions.246

3. Crucial heads exhibit high transferability247

across translation directions. A notable248

finding is the significant overlap of crucial249

heads across diverse language pairs. Analysis250

reveals that language pairs sharing the same251

source or target language exhibit a crucial252

attention head overlap exceeding 60%, while253

bidirectional translation pairs (e.g., Zh ⇔ En)254

surpass 70%. This overlap suggests these255

heads serve generalizable functions in trans-256

lation, independent of translation directions.257

Their consistency across language pairs un-258

derscores their importance and transferability,259

indicating contributions to core translation260

mechanisms regardless of specific languages.261

For robustness, we also conduct additional exper-262

iments on detecting crucial heads in other LLMs263

and other directions (e.g., En ⇒ X, and X ⇒ En).264

Details are provided in the Appendix C.265

Detection results of crucial MLPs. Similar266

to crucial heads, most MLPs in earlier layers267

(0–14) exhibit negligible influence on output logits,268

with changes confined to approximately ±0.0%.269

Crucial MLPs cluster predominantly after layer 15,270

exceeding 5.0% logit change, whereas the final271

layer MLP exhibits a substantial impact—reaching272

70.0% on target token logit change. This strong273

correlation between later MLP layers and logit274

changes underscores their progressively critical 275

role in shaping translations as processing advances. 276

5.2 Validating Crucial Heads Through 277

Knockout 278
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Figure 3: The influence on En ⇒ Zh translation
accuracy in the analysis dataset when attention heads
are progressively knocked out, sorted by their effect on
logits (“key heads”), and randomly (“random heads”)

Interpretive analyses of model components risk 279

misleading or non-rigorous (Bolukbasi et al., 2021; 280

Wiegreffe and Pinter, 2019). To ensure reliability, 281

we validate the significance of detected crucial 282

heads and test the irrelevance of non-crucial ones 283

via mean ablation (Wang et al., 2023). This method 284

replaces a component’s activation with average 285

activations across counterfactual data Xcf , thereby 286

removing task-specific information. Performance 287

decline confirms a component’s importance for 288

translation tasks, whereas no significant perfor- 289

mance change indicates uncritical. 290
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Validation results on the analysis dataset. We291

examine how incrementally knocking out En ⇒ Zh292

crucial heads affects LLM translation performance293

on the analysis dataset. As shown in Figure 3,294

disabling “crucial heads” leads to a significant295

decline in translation accuracy, whereas knocking296

out “random heads” causes minor fluctuations,297

with accuracy remaining stable within 2%. These298

results highlight the essential role of the detected299

key attention heads in sustaining the translation300

functionality of the LLM.301

5.3 Examine Consistency of Crucial Heads302

Across Training303
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Figure 4: Importance of heads related to En⇒ Zh
translation across LLM after CPT or SFT.

To investigate whether crucial attention heads304

remain consistent across distinct training phases,305

we analyze (1) continued pre-training (CPT) (Xu306

et al., 2024a) on the LLaMA-2-7B base model307

on 1 billion tokens of OSCAR data (Ortiz Suárez308

et al., 2020) and (2) supervised fine-tuning309

(SFT) (Ouyang et al., 2022) on LLaMA-2-7B base310

model on the WMT17-22 validation dataset.311

Detection results across different training312

phases. Following Section §5.1, we examine313

the causal impact of logits on different LLM314

training phases in En ⇒ Zh translation of analysis315

dataset. The results are illustrated in Figure 4,316

compared to the base LLM results in Figure 2d,317

LLMs after CPT exhibit significant distributional318

shifts in translation-crucial heads, whereas changes319

are minimal after SFT. This demonstrates that320

pre-training stage changes LLMs’ core translation321

capabilities, while supervised fine-tuning primary322

focuses on localized parameter adjustments323

without altering their fundamental abilities.324

6 Behavioral Patterns Analysis325

Motivated by the sparse distribution of crucial326

heads, we now turn to the second research question:327

“What behavioral patterns do translation-crucial328

components exhibit?” by systematically investigat-329

ing their computational mechanisms through two330

interpretable diagnostic methods: (1) visualizing 331

attention patterns to characterize the roles of crucial 332

heads (Section §6.1), and (2) projecting MLP repre- 333

sentation to measure correlations with translation- 334

related token embeddings (Section §6.2). 335

6.1 Analysis of Attention Head 336

Following the findings of Kobayashi et al. (2020), 337

who demonstrates that attention weights alone fail 338

to explain model behavior, we inspect attention val- 339

ues Oi,j ∈ RN×N (where N denotes the sequence 340

length) to analyze significant token interactions. 341

We compute Oi,j =
∑N

n=1A
i,j
n XfW

i,j
V over 342

reference data Xf for each analyzed head (i, j), 343

where, An
i,j denotes attention weights and Wi,j

V 344

value matrix. Each heads’ role is determined by 345

salient feature of Oi,j
{END} ∈ R1×N between the 346

END position’s Query token and all Key tokens. 347
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Figure 5: The attention values visualization of
the role-classified key heads, which show different
characteristics of different crucial heads.

Characterizing heads. To better understand the 348

“behavior” of the translation-crucial heads, we 349

first gain an intuitive insight by visualizing their 350

attention values as shown in the case in Figure 351

5. Our findings indicate that these heads exhibit 352

distinct focus patterns across different types of 353

input tokens. Building on these patterns and 354

following Voita et al. (2019), we further categorize 355

these heads into three distinct functional roles: 356

• Source Heads demonstrate concentrated at- 357

tention on source-language tokens, specializ- 358

ing in cross-lingual alignment. These heads 359
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facilitate lexical transfer by identifying source360

language tokens among the input sequence.361

• Indicator Heads exhibit spike-shaped atten-362

tion patterns on translation-specific indicators363

(e.g., language identifiers like "English" or364

"中文", and structural cues like colons),365

assisting translation mode recognition and366

syntactic boundary detection.367

• Positional Heads predominately attend to368

adjacent tokens, managing contextual depen-369

dencies and resolving grammatical agreement.370
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Figure 6: The attention value distribution of different
roles of key heads across Zh ⇔ En translation tasks.

Distinct attention distribution across heads. To371

quantitatively analyze the distinct patterns of the372

crucial heads’ roles, we randomly selected 100373

samples from the analysis dataset and plotted374

the distribution of averaged attention values for375

the three key head roles across two translation376

directions (Zh ⇔ En). Figure 6 demonstrates that377

these heads exhibit distinct attention distributions,378

with minimal focus on tokens outside important379

input tokens. The source heads primarily attend to380

source input tokens, the positional heads distribute381

attention uniformly across the input context, and382

the indicator heads concentrate on translation task383

indicator tokens.384

Overall, these analyses provide a clear, human-385

interpretable perspective of why deactivating cru-386

cial heads significantly impacts LLM translation.387

6.2 Analysis of MLP388

To analyze linguistic content encoded in389

the inputs (MLPin) and outputs (MLPout)390

of MLP layers, particularly for translation-391

relevant tokens: translation indicator (IND),392

source (SRC) and target-language (TGT),393

we employ the unembedding matrix WU as394

a diagnostic probe and WU [∗] denotes the395

unembedding vectors corresponding to a specific396

token. For each token TOK, we compute 397

cosine similarities (denoted as ⟨MLP,TOK⟩) 398

between MLPin, MLPout, and WU [{TOK}] 399

to quantify linguistic information propagation 400

through MLP layers. Following Geva et al. 401

(2022), we isolate MLP contributions evaluating: 402
MLPout−MLPin

∥MLPout−MLPin∥ · WU [{TOK}]
∥WU [{TOK}]∥ , TOK ∈ {IND,SRC,TGT} . 403
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Figure 7: We investigate the correlation between MLP
input or output with translation-related tokens.

MLPs integrate and process translation-related 404

features iteratively, yielding target translation. 405

Figure 7 investigates MLP interactions with source 406

and target tokens across 100 En ⇒ Zh sam- 407

ples. Figure 7a presents that in early layers 408

(1–14), ⟨MLPin,SRC⟩ values remain near-zero, 409

indicating minimal source token encoding, con- 410

sistent with the inactive region before layer 14 411

in Figure 2d. A surge in ⟨MLPin,SRC⟩ occurs 412

between layers 15–25, aligning with activation 413

of key attention heads (e.g., 15.12 and 16.26), 414

where source information is encoded into MLP 415

representations for downstream processes. From 416

layers 25–31, ⟨MLPin,SRC⟩ declines, signaling 417

a transition to target translation. Concurrently, 418

(⟨MLPin, IND⟩) rises after layer 12 and peaks in 419

the final layers, enabling coherent target-language 420

generation. Critically, control comparisons with 421

random English tokens (⟨MLPin,RAND⟩) remain 422

near-zero throughout all layers, confirming the 423

specificity of the observed patterns. As shown in 424

Figure 7b, starting at layer 15, where MLPs start 425

processing target token information, ⟨MLPout − 426

MLPin,WU [TARGET]⟩ sharply increases, while 427

⟨MLPout − MLPin,WU [RANDOM]⟩ declines. 428

This indicates that MLPs progressively execute 429

translation across layers. Parallel trends in other 430

LLMs (Appendix C) confirm their generality. 431

MLP intermediate features exhibit a transition 432

to English-centric latent representation. We 433

further investigate the detailed translation process 434

between non-English pairs (e.g., German/Russian 435

⇒ Chinese) by analyzing the word “book”. Quan- 436
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Figure 8: We investigate the correlation between
intermediate representation with different languages
tokens unembedding vector.

titative comparisons between MLPout −MLPin437

representations and cross-lingual semantic embed-438

dings (Figure 8) reveal: in layers 16–26, simi-439

larity with English embeddings surpasses other440

languages, declining in later layers (25–31). We441

hypothesize LLMs employ a “bridge-translation”442

paradigm—akin to humans using their native lan-443

guage as a mental intermediary—where source444

inputs are first processed into English-centric latent445

representations before generating target outputs.446

This aligns with prior work (Wendler et al., 2024;447

Zhao et al., 2024b), confirming English’s latent448

intermediary role in multilingual LLM tasks.449

Consolidating these findings, we conclude that450

LLMs employ attention heads to capture source451

language and translation indicator tokens, which452

are forwarded to downstream MLPs. MLPs in-453

tegrate and process these features by transiting454

towards an English-centric latent representation,455

finally generating the target translation.456

7 Targeted Fine-tune457

Building on the insights given from two previous458

investigations, we aim to answer the final ques-459

tion: “Can fine-tuning these translation-crucial460

components enhance LLM translation capability?”461

To address this, we propose a method to fine-tune462

these components selectively, as detailed in Section463

§7.1. We then introduce our experimental setup464

in Section §7.2 and further carry out three sets465

of experiments (Section §7.3, §7.4, and §7.5) to466

comprehensively evaluate the proposed method.467

7.1 Selectively Fine-tune Crucial Components468

SFT is a common technique for improving trans-469

lation performance in LLMs (Jiao et al., 2023;470

Xu et al., 2024a). Building on this, our method471

selectively updates parameters directly tied to472

translation tasks (those detected as crucial in473

Section §5.1) while preserving the remaining. This474

strategy aims to precisely improve the model’s 475

translation capabilities without compromising gen- 476

eral functionality. Given crucial translation-related 477

components Θ, our method computes gradients G 478

for Θ rather than for the entire set of parameters 479

and iteratively adjusts these parameters. Modifying 480

only a subset of parameters reduces training du- 481

ration and mitigates interference with the model’s 482

pre-existing capabilities. 483

7.2 Experimental Setup 484

We examine three approaches: (1) Full-parameter 485

fine-tuning (Full SFT), (2) Targeted fine-tuning 486

of translation-crucial components (Targeted SFT), 487

and (3) Random-component fine-tuning (Random 488

SFT), where random components match the param- 489

eter count of Targeted SFT. For training, we lever- 490

age human-parallel corpora (WMT17–WMT22, 491

Flores-200 (Guzmán et al., 2019)) following Xu 492

et al. (2024a), evaluating translation accuracy 493

on WMT23/24 and general-domain benchmarks 494

(MMLU (Hendrycks et al., 2021), ARC (Clark 495

et al., 2018), SIQA (Sap et al., 2019)). Implemen- 496

tation details are in Appendix D. 497

Our experiments focus on two goals: (1) com- 498

paring Full, Targeted, and Random SFT on Llama- 499

2-7B across six bidirectional translation tasks 500

(English ⇔ Chinese, German, Russian), and (2) 501

assessing generalization by fine-tuning English ⇒ 502

Chinese crucial heads and testing performance on 503

English ⇔ Japanese/Czech translation tasks. 504

7.3 Comparison Experimental Results 505

As shown in Tables 1 and 2, Targeted SFT demon- 506

strates three key advantages: (1) Translation 507

performance improvement—it significantly im- 508

proves translation performance across all language 509

directions, particularly in X ⇒ En, outperforming 510

Full SFT and far exceeding Random SFT; (2) Gen- 511

eral capabilities preservation-unlike Full SFT, 512

which degrades non-translation task performance, 513

Targeted SFT maintains baseline generalization; 514

(3) Training efficiency-it modifies fewer than 5% 515

of parameters and halves training time compared 516

to Full SFT, achieving substantial computational 517

cost savings. Additional results for other LLMs are 518

provided in Appendix E. 519

7.4 Generalization Evaluation Results 520

Table 3 demonstrates that translation-crucial at- 521

tention heads exhibit cross-lingual generalization: 522

fine-tuning only the En ⇒ Zh crucial heads 523

7



Translation Tasks Generic Tasks

Models Train
Speed

Tuned
Params.

Zh⇒En De⇒En Ru⇒En MMLU Commonsense
Reasoning

BLEU↑/COMET↑/BLEURT↑ Acc. Acc.

LLaMA2-7B - - 15.6/73.1/56.6 24.8/76.8/62.1 20.2/73.8/60.3 45.9 55.3
+ Full SFT 17sam./sec. 6.7B 20.4/78.7/63.9 35.4/83.4/70.7 25.8/79.8/67.6 42.6 50.2

+ Targeted SFT 33sam./sec. 0.27B 21.3/79.1/64.3 37.1/83.7/71.4 27.8/80.3/68.4 46.0 55.7
+ Random SFT 33sam./sec. 0.27B 16.9/76.9/61.1 32.5/81.6/68.1 23.7/78.2/65.3 45.9 54.9

Table 1: The overall results of X ⇒ En translation on WMT’23/24 and generic tasks. Results surpassing Full SFT
are highlighted in green, inferior outcomes in red, and comparable performance in blue.

Translation Tasks Generic Tasks

Models Train
Speed

Tuned
Params.

En⇒Zh En⇒De En⇒Ru MMLU Commonsense
Reasoning

BLEU↑/COMET↑/BLEURT↑ Acc. Acc.

LLaMA2-7B - - 17.0/74.1/55.9 13.0/64.2/49.1 12.8/70.5/52.4 45.9 55.3
+ Full SFT 17sam./sec. 6.7B 30.3/80.7/62.9 27.9/78.3/63.7 19.5/80.0/63.2 40.2 50.0

+ Targeted SFT 33sam./sec. 0.27B 30.7/81.4/64.3 27.6/78.4/63.8 20.1/80.4/63.6 46.2 56.0
+ Random SFT 33sam./sec. 0.27B 26.4/79.3/61.6 22.7/76.2/60.3 15.8/77.9/60.7 46.1 55.2

Table 2: The overall results of En ⇒ X translation on WMT’23/24 and generic tasks.

in Llama-2-7B and evaluating them on other524

translation directions (En ⇔ Cs (Czech) and En525

⇔ Ja (Japanese)) achieves performance gains526

comparable to full-parameter fine-tuning.

Models En⇒Cs En⇒Ja Cs⇒En Ja⇒En

BLEU↑/COMET↑/BLEURT↑

LLaMA2-7B 4.4/63.6/39.7 6.1/73.3/47.4 23.7/77.9/65.1 10.8/72.9/56.6
+ Full SFT 20.2/80.0/66.5 15.2/82.4/56.7 31.9/83.1/71.7 17.4/79.5/64.1

+ Targeted SFT 20.8/80.3/66.7 15.3/81.9/56.7 33.5/83.5/72.3 18.7/80.0/64.7
+ Random SFT 15.8/78.5/63.8 11.3/79.9/53.7 29.1/81.5/68.8 14.0/77.9/62.1

Table 3: WMT’23/24 En ⇔ Cs and En ⇔ Ja Results.
Targeted SFT fine-tunes En ⇒ Zh crucial heads.527

7.5 Ablation Study of Trainable Components528

Zh ⇒ En MMLUAblating
Attention Heads

Train
Speed

Tuned
Params. BLEU/COMET/BLEURT Acc.

top-8 heads 58sam./sec. 0.017B 18.7/78.1/63.0 46.1
top-16 heads 52sam./sec. 0.033B 20.0/78.4/63.5 45.9
top-32 heads 50sam./sec. 0.067B 20.4/78.6/63.8 45.8
top-64 heads 40sam./sec. 0.134B 21.3/79.1/64.3 45.9
top-96 heads 36sam./sec. 0.134B 21.0/79.0/64.2 45.7
top-128 heads 33sam./sec. 0.268B 21.1/79.1/64.4 45.5
top-160 heads 30sam./sec. 0.335B 21.3/79.1/64.4 45.3

Table 4: Ablative experiments on the number of heads.
The most cost-effective setting is shown in green.

We conduct ablation studies in Zh ⇒ En trans-529

lation on WMT’23/24 to examine how varying530

the number of fine-tuned attention heads and531

MLPs affects translation performance, generic532

capabilities, and training efficiency. As shown in533

Table 4, fine-tuning 64 attention heads achieves534

the optimal balance between performance and535

computational cost. Table 5 reveals that increasing 536

MLPs enhances translation performance but more 537

significantly degrades generic capabilities and 538

training speed compared to tuning additional heads. 539

Ablating
MLPs

Train
Speed

Tuned
Params.

Zh ⇒ En MMLU

BLEU/COMET/BLEURT Acc.

Top-64 heads 33sam./sec. 0.27B 21.3/79.1/64.3 45.8

+top-1 MLP 30sam./sec. 0.41B 21.8/79.1/64.5 45.7
+top-2 MLP 27sam./sec. 0.54B 21.8/79.1/64.5 45.6
+top-3 MLP 24sam./sec. 0.68B 21.9/79.1/64.5 45.3
+top-5 MLP 20sam./sec. 0.95B 22.1/79.2/64.6 44.2

+all MLP 18sam./sec. 4.62B 22.5/79.4/64.7 42.8

Table 5: Ablative experiments on the number of MLPs. 540

8 Conclusion 541

This study systematically explores the translation 542

mechanism of LLM by progressively addressing 543

three research questions. We begin by detect- 544

ing components crucial for translation via path 545

patching and find that only a sparse subset of 546

components (less than 5%) are indispensable for 547

translation. These heads exhibit specialized func- 548

tions, extracting translation-related features, while 549

MLPs integrate and process by transiting toward 550

English-centric latent representations. Based on 551

these findings, we found that targeted fine-tuning 552

of merely 64 translation-crucial heads achieves per- 553

formance parity with full-parameter tuning. These 554

findings collectively advance the interpretability of 555

the inner translation mechanism of LLMs. 556
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Limitations557

This study acknowledges two methodological con-558

siderations that guide future research directions.559

While the intentionally simplified lexical transla-560

tion task provided crucial experimental control to561

isolate core mechanisms, extending these findings562

to more ecologically valid sentence-level contexts563

would strengthen their practical relevance. Further-564

more, although our parameter-aware methodology565

proves effective across open-source architectures,566

its applicability to closed-source systems remains567

theoretically constrained—a limitation that simul-568

taneously highlights the urgent need for developing569

model-agnostic analysis frameworks in this evolv-570

ing research domain.571
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A Translation Task Templates and851

Examples852

As a clear case study, we first focus on Chinese due853

to its prevalence of single-token words and lack of854

spacing. We analyze Llama-2’s vocabulary to iden-855

tify single-token Chinese words (primarily nouns)856

with direct single-token English translations. This857

enables direct comparison of the model’s next-858

token probabilities for correct Chinese words and859

their English equivalents. For robustness, we860

replicate experiments in German, Russian, and861

French, compiling datasets of 139 Chinese, 120862

German, 115 Russian, and 118 French words.863

A.1 Dataset Construction864

To ensure the next token is unambiguously in-865

ferable as a single token, we design translation866

prompts where xn+1 is uniquely determined by the867

preceding context x1...xn. Each prompt specifies868

the source language, word, and target language,869

requiring the model to predict the translated word.870

Taking English-to-Chinese as an example, a word871

translation like “English: flower -中文:花” (“中872

文” means “Chinese”, “花” means “flower”) might873

naturally appear in the pretraining corpus.874

Such prompts explicitly guide Llama-2 to per-875

form translation by leveraging its pretrained lin-876

guistic knowledge.877

A.2 Templates878

We formalize counterfactual prompt generation879

through systematic grammatical preservation and880

semantic disruption, operating under two core881

design principles:882

• Structural Isomorphism: Maintain origi-883

nal syntactic patterns (interrogative formats,884

placeholder positions, punctuation) while al-885

tering semantic content886

• Targeted Lexical Substitution: Replace criti-887

cal components through four operation classes888

Perturbation Taxonomy The perturbation strate-889

gies fall into four principal categories, as detailed890

in Table 6:891

Validation Protocol The constructed templates892

undergo rigorous verification:893

1. Grammatical Integrity Check: Measure tem-894

plate fluency via language model perplexity895

scores (threshold: ≤15% deviation from896

originals)897

Operation Type Implementation Mechanism

Target Nullification Replace language identifiers with non-linguistic
concepts ({tgt_lang} → “Void”/“Null”)

Action Distortion Substitute translation verbs with irrelevant actions
(“translate” → “eat”/“delete”)

Semantic
Obfuscation

Alter task-specific nouns to disrupt functionality
(“translation” → “color”/“flavor”)

Paradox Insertion Introduce self-contradictory modifiers (“into
{tgt_lang}” → “into a silent rock”)

Table 6: Taxonomy of Counterfactual Perturbation
Operations

2. Task Disruption Test: Verify semantic shift 898

through human annotation (success criterion: 899

≥90% agreement on functionality removal) 900

Implementation Advantages Our methodology 901

provides three key benefits: 902

• Controlled isolation of template components 903

affecting model behavior 904

• Cross-lingual consistency through 905

placeholder-based design 906

• Reproducible taxonomy enabling systematic 907

ablation studies 908

The counterfactual prompts we used are shown 909

in Table 7 910

B Path Patching for Detecting 911

Components Crucial for LLM 912

Translation 913

Algorithm 1 Critical Component Detection via Path Patching

Require: Dataset D containing factual/counterfactual pairs
(Xf , Xcf ), model F with components C

Ensure: Node importance scores ∆ = δ1, ..., δm
1: for each data pair (X(i)

f , X
(i)
cf ) ∈ D do

2: Compute reference activations Hf ← F(X(i)
f )

3: Compute contrastive activations Hcf ← F(X(i)
cf )

4: for each component c(j) ∈ C do
5: Create hybrid activation map H̃f where:

6: H̃f ←

{
Hk

cf if k = c(j)

Hk
f otherwise

7: Obtain original logit yf ← F(Xf ;Hf )

8: Obtain patched logit ỹf ← F(Xf ; H̃f )

9: Calculate patched effect: δ(i)j ←
ỹf−yf
yf+ϵ

10: end for
11: end for
12: for each importance score δi ∈ ∆ do
13: Aggregate across dataset: δi ← 1

|D|
∑|D|

j=1 δ
(j)
i

14: end for
15: return Node importance scores ∆

The computation of large language models 914

(LLMs) can be formalized as a directed acyclic 915

12



Normal Prompt Counterfactual Prompt Perturbation Type

{src_lang}: "{src_word}" - {tgt_lang}:
"{tgt_word}

{src_lang}: "{src_word}" - There is
nothing: "{tgt_word}

Target Nullification

Translate "{src_word}" into {tgt_lang}:
"

Translate "{src_word}" into Nothing: " Target Nullification

Translate the {src_lang} word
"{src_word}" to {tgt_lang}: "

Translate the {src_lang} word
"{src_word}" to Null: "

Target Nullification

From {src_lang}: "{src_word}" to
{tgt_lang}: "

From {src_lang}: "{src_word}" to
Nowhere: "

Target Nullification

Provide the translation of "{src_word}"
from {src_lang} to {tgt_lang}: "

Provide the color of "{src_word}" from
{src_lang} to {tgt_lang}: "

Action Distortion

Q: How do you say "{src_word}" in
{tgt_lang}? A: "

Q: How do you eat "{src_word}" in
{tgt_lang}? A: "

Action Distortion

Q: What is the {tgt_lang} translation
"{src_word}"? A: "

Q: What is the {tgt_lang} flavor
"{src_word}"? A: "

Semantic Obfusca-
tion

Translate "{src_word}" into {tgt_lang}:
"

Translate "{src_word}" into a silent
rock: "

Paradox Insertion

Q: What is "{src_word}" translated into
{tgt_lang}? A: "

Q: What is "{src_word}" erased into
{tgt_lang}? A: "

Action Distortion

From {src_lang}: "{src_word}" -
{tgt_lang}: "{tgt_word}

From {src_lang}: "{src_word}" -
Disabled: "{tgt_word}

Action Distortion

Note: All placeholders ({src_lang}, {src_word}, etc.) follow actual implementation syntax. Counterfactual perturbations
preserve original grammatical structures while altering translation semantics through targeted substitutions.

Table 7: Examples of some regular translation prompt templates and counterfactual prompt templates.
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Figure 9: Illustration of the method “path patching”. It measures the importance of the selected circuit (i.e., the red
lines that originate from Head 30 in Layer 0 to Output) for the transformer in completing the task on reference data.
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Figure 10: Comparison of the results of path patching experiments on LLaMA2-7B, LLaMA2-13B, and Mistral-
7B (Jiang et al., 2023) across Zh ⇒ En translation task. Each square at position (x, y) refers to the xth-head in the
y-th layer. Red (Brown) squares denote heads (mlps) that have a positive impact on predicting the target token,
while grey (purple) squares indicate heads (mlps) with a negative effect. For each head/MLP, a darker color indicates
a larger logit difference from the original model before patching.
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(b) En⇒ Fr
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(e) Fr⇒ En
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Figure 11: Importance of heads related to translation across different directions. Each square at position (x, y)
refers to the x-th head in the y-th layer. Red (Brown) squares denote heads (MLPs) that have a positive impact on
predicting the target token, while grey (purple) squares indicate heads (MLPs) with a negative effect.
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Figure 12: We investigate the projection of each MLP layer input (MLPin) along the direction of the source
language, indicator, and random English tokens ({SRC},{IND}, and {RAND}), respectively.

14



graph (DAG) (Wang et al., 2023), where nodes rep-916

resent computational components (e.g., attention917

heads, MLP layers) and edges denote directional918

data flow between them. Mechanistic interpretabil-919

ity seeks to reverse-engineer neural networks into920

interpretable algorithms, leveraging computational921

circuits as a framework. A computational circuit922

is a subgraph of the model’s computational graph923

M , comprising nodes (e.g., embeddings, attention924

heads) and edges (e.g., residual connections, pro-925

jections) that collectively implement specific tasks,926

such as translation.927

To analyze causal relationships within these928

circuits, we employ path patching (Goldowsky-929

Dill et al., 2023; Wang et al., 2023; Zhang et al.,930

2025). Algorithm 1 formalizes path patching as931

follows: for each component c(j), we (1) compute932

reference and counterfactual activations (Hf , Hcf ),933

(2) create hybrid activations by replacing c(j)’s934

activations with Hcf while keeping others at Hf ,935

(3) compute logit differences (δj) between original936

and patched outputs, and (4) aggregate δj across the937

dataset to quantify c(j)’s task-critical importance.938

This method isolates the causal effect between939

a Sender node (e.g., Head 30 in Layer 0) and a940

Receiver node (e.g., the output layer) by perturbing941

the Sender’s activations with Xcf while freezing942

other nodes with Xf . . As illustrated in Figure 9,943

activations from all nodes are first recorded. A944

hard intervention replaces the Sender’s activations945

with those from Xcf , , propagating the effect946

through paths P (residual connections and MLPs).947

Concurrently, other attention heads are frozen to948

Xf to isolate the Sender’s impact. The resulting949

logits are compared to quantify the Sender’s causal950

contribution: significant changes indicate critical951

paths for task execution.952

Since residual streams and MLPs process tokens953

independently (Elhage et al., 2021), perturbing954

activations at the END token position suffices to955

measure effects on next-token prediction.956

C More Analysis of Other LLMs and957

Translation Directions958

Crucial Component Detection. Figure 10 ex-959

tends key component identification to LLaMA2-960

13B and Mistral-7B. All three models exhibit961

sparse localization of translation-critical attention962

heads (e.g., 17.24, 16.0) in middle layers, despite963

architectural differences (e.g., LLaMA2-13B’s 40964

layers with 40 heads per layer).965

Figure 11 illustrates the detection results for 966

bidirectional translation directions (En ⇒ X and 967

X ⇒ En). While the multi-token nature of 968

English tokens results in fewer prominent detection 969

instances, the findings remain consistent with 970

the earlier analysis in Section §5.1. Together, 971

these observations support the conclusion that 972

translation mechanisms utilize a sparse subset 973

of attention heads, which are language-agnostic, 974

thereby underscoring their generalization capacity. 975

Analysis of Crucial MLPs. Figures 12 and 13 976

reveal consistent MLP dynamics across models. 977

For MLP input/{SRC},{IND} similarities, trends 978

follow ascending-descending phases with inflec- 979

tion points at layers (13-18-28) for LLaMA2-7B, 980

(13-18-35) for LLaMA2-13B, and (13-20-28) for 981

Mistral-7B. Similarly, MLPout − MLPin and 982

target token {TGT} similarities show stabilization- 983

to-increase patterns with identical inflection layers. 984

This synchronization across models indicates a 985

shared computation mechanism: attention heads 986

initiate translation processing, which MLPs subse- 987

quently refine. These results demonstrate robust- 988

ness across architectures and scales. 989

Cross-Lingual Bridge Translation. We 990

extend our analysis to non-English pairs (e.g., 991

French/Japanese Chinese) by examining token- 992

level dynamics. As shown in Figure 14, similarity 993

trends between MLPout−MLPin representations 994

and cross-lingual embeddings align with the 995

bridge-translation hypothesis: in layers 15–24, 996

English-centric latent representations dominate 997

across LLaMA2-13B and Mistral-7B, with 998

similarity declining sharply in layers 25–32. This 999

reinforces the observed paradigm where LLMs 1000

internally map source languages to English-like 1001

representations before generating target outputs, 1002

corroborating findings in multilingual latent 1003

alignment studies (Wendler et al., 2024; Zhao 1004

et al., 2024b). The consistency across both 1005

architectures underscores the generality of 1006

English’s intermediary role. 1007

D Experimental Setup Details 1008

Following the gradient rescaling method proposed 1009

by (Yu et al., 2025), gradients are adjusted by 1010

a factor of H
h , where H is the total number of 1011

attention heads in a layer and h represents the 1012

updated heads in the same layer. For model fine- 1013

tuning, we use Llama2-7B and Llama2-13B with 1014
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(a) LLaMA2-7B
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(b) LLaMA2-13B
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(c) Mistral-7B

Figure 13: We investigate the projection of each MLP layer (MLPout −MLPin) along the direction of the target
language, and random English tokens ({TGT} (i.e., right translation), and {RAND} (i.e., wrong translation)),
respectively.
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(a) LLaMA2-7B
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(b) LLaMA2-13B
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(c) Mistral-7B

Figure 14: We investigate the projection of each MLP layer (MLPout−MLPin) along the direction of the different
languages.

a learning rate of 2 × 10−5, a batch size of 128,1015

and train for 2 epochs. The warm-up ratio is set1016

to 0.02, and weight decay is configured at 0.1.1017

All experiments are conducted on a cluster of 81018

NVIDIA A100 80 GB GPUs.1019

E Comparison Experimental Results on1020

More LLMs1021

We investigate whether our method generalizes1022

to larger LLMs (Llama-2-13B) and diverse ar-1023

chitectures (Mistral-7B). As shown in Tables 81024

and 9, Targeted SFT exhibits three consistent1025

advantages across LLMs: (1) Enhanced translation1026

performance, particularly in X En, surpassing1027

Full SFT and significantly outperforming Random1028

SFT; (2) Generalization preservation, maintaining1029

baseline non-translation task performance unlike1030

Full SFT; (3) Training efficiency, modifying fewer1031

than 5% of parameters and reducing training time1032

by 50% compared to Full SFT.1033
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Translation Tasks Generic Tasks

Models Train
Speed

Tuned
Params.

En⇒Zh En⇒De En⇒Ru MMLU Commonsense
Reasoning

BLEU↑/COMET↑/BLEURT↑ Acc. Acc.

LLaMA2-7B - - 17.0/74.1/55.9 13.0/64.2/49.1 12.8/70.5/52.4 45.9 55.3
+ Full SFT 17sam./sec. 6.7B 30.3/80.7/62.9 27.9/78.3/63.7 19.5/80.0/63.2 40.2 50.0

+ Targeted SFT 33sam./sec. 0.27B 27.6/80.0/62.5 27.6/78.4/63.8 20.1/80.4/63.6 46.2 56.0
+ Random SFT 33sam./sec. 0.27B 26.4/79.3/61.6 22.7/76.2/60.3 15.8/77.9/60.7 46.1 55.2

LLaMA2-13B - - 23.0/77.5/59.1 17.1/67.7/52.8 15.6/72.9/55.1 55.1 58.4
+ Full SFT 12sam./sec. 13.0B 32.8/81.8/64.4 29.8/80.0/65.8 20.7/81.6/65.0 53.7 56.4

+ Targeted SFT 28sam./sec. 0.32B 33.4/82.2/64.8 30.1/80.1/65.9 21.3/81.8/65.3 54.9 58.1
+ Random SFT 28sam./sec. 0.32B 28.8/80.6/63.3 24.6/78.3/62.9 17.3/80.0/62.8 55.0 58.2

Mistral-7B - - 13.7/68.0/49.6 15.6/63.1/49.3 11.2/65.1/48.1 62.7 59.2
+ Full SFT 17sam./sec. 6.7B 31.1/80.6/63.4 26.5/77.4/62.8 19.6/79.5/62.5 43.0 40.8

+ Targeted SFT 33sam./sec. 0.27B 31.9/82.0/65.1 26.3/78.0/63.2 20.5/79.9/63.1 62.5 59.1
+ Random SFT 33sam./sec. 0.27B 27.5/79.5/61.6 22.2/75.5/59.8 15.6/77.4/60.5 62.4 59.2

Table 8: The evaluation results of En⇒X translation (average WMT23 and WMT24 evaluation results) and generic
tasks of different SFT strategies.

Translation Tasks Generic Tasks

Models Train
Speed

Tuned
Params.

En⇒Zh En⇒De En⇒Ru MMLU Commonsense
Reasoning

BLEU↑/COMET↑/BLEURT↑ Acc. Acc.

LLaMA2-7B - - 15.6/73.1/56.6 24.8/76.8/62.1 20.2/73.8/60.3 45.9 55.3
+ Full SFT 17sam./sec. 6.7B 20.4/78.7/63.9 35.4/83.4/70.7 25.8/79.8/67.6 42.6 50.2

+ Targeted SFT 33sam./sec. 0.27B 21.7/79.1/64.4 37.1/83.7/71.4 27.8/80.3/68.4 46.0 55.7
+ Random SFT 33sam./sec. 0.27B 16.9/76.9/61.1 32.5/81.6/68.1 23.7/78.2/65.3 45.9 54.9

LLaMA2-13B - - 17.3/74.0/57.8 27.0/78.0/63.8 22.2/74.9/61.5 55.1 58.4
+ Full SFT 12sam./sec. 13.0B 22.4/79.5/65.3 36.9/84.0/71.6 27.8/80.8/68.9 50.0 55.3

+ Targeted SFT 28sam./sec. 0.32B 23.6/80.5/66.5 38.3/84.7/72.7 29.7/81.5/69.3 54.9 58.1
+ Random SFT 28sam./sec. 0.32B 19.0/78.1/63.1 34.2/81.8/68.9 25.3/79.3/66.6 55.5 58.8

Mistral-7B - - 16.9/74.3/58.1 26.6/77.9/63.9 22.6/75.3/62.5 62.7 59.2
+ Full SFT 17sam./sec. 6.7B 19.7/78.4/63.1 32.0/82.2/69.0 24.0/78.7/66.2 40.3 50.3

+ Targeted SFT 33sam./sec. 0.27B 21.2/79.2/64.3 33.7/83.0/70.2 26.4/79.6/66.4 62.9 59.1
+ Random SFT 33sam./sec. 0.27B 16.8/77.1/61.1 29.3/80.6/66.8 21.4/77.1/63.9 62.5 59.3

Table 9: The evaluation results of X⇒En translation (average WMT23 and WMT24 evaluation results) and generic
tasks of different SFT strategies.
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