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Abstract

Large language models (LLMs) have suc-
ceeded remarkably in multilingual translation
tasks. However, the inherent translation mech-
anisms of LLMs remain poorly understood,
largely due to sophisticated architectures and
vast parameter scales. In response to this issue,
this study explores the translation mechanism
of LLM from the perspective of computational
components (e.g., attention heads and MLPs).
Path patching is utilized to explore causal rela-
tionships between components, detecting those
crucial for translation tasks and subsequently
analyzing their behavioral patterns in human-
interpretable terms. Comprehensive analysis
reveals that translation is predominantly facili-
tated by a sparse subset of specialized attention
heads (less than 5%), which extract source
language, indicator, and positional features.
MLPs subsequently integrate and process these
features by transiting towards English-centric
latent representations. Notably, building on
the above findings, targeted fine-tuning of only
64 heads achieves translation improvement
comparable to full-parameter tuning while
preserving general capabilities. !

1 Introduction

Large language models (LLMs) have succeeded
remarkably in multilingual translation tasks (Chen
etal., 2024a,b; Zhu et al., 2024; Zhang et al., 2024),
paving the way for a new paradigm in machine
translation (Xu et al., 2024a; Alves et al., 2024).
Recent advancements have continuously focused
on enhancing translation capabilities, bringing
them progressively closer to human-level trans-
lation (Xu et al.,, 2024c; Lu et al., 2024; Xu
et al., 2024b). Despite the widespread adoption
and recent advancements in LLMs, the internal
mechanisms by which they perform translation
tasks remain poorly understood and pose severe

'Our code and data will be released once accepted.

challenges. Prior analyses focused on surface-level
emergent linguistic phenomena (e.g., neuron activa-
tion patterns (Mu et al., 2024; Tang et al., 2024) or
intermediate representations (Wendler et al., 2024;
Zhu et al., 2024)), remaining observational rather
than elucidating the computational mechanistic
basis underlying translation. A comprehensive
understanding of these functional mechanisms is
critical for achieving robust improvements in trans-
lation capability and advancing the development of
controllable and interpretable LLMs (Wang et al.,
2023; Zhang et al., 2025).

In this paper, we study the internal mechanism
of LLM translation by progressively investigating
the following research questions:

* Which components of LLMs crucially con-
tribute to performing translation?

» What behavioral patterns do these translation-
crucial components exhibit?

* Can fine-tuning these translation-crucial com-
ponents enhance LLM translation capability?

To this end, we leverage path patching (Goldowsky-
Dill et al., 2023) to examine the causal relationships
between computational components (e.g., attention
heads and MLP), detecting those crucial for trans-
lation tasks. For components judged as crucial,
we then systematically analyze their behavioral
patterns by (1) characterizing attention head’s roles
according to the attention contribution to lexical
alignment and (2) measuring correlations between
MLP representations and translation-relevant token
embeddings. Our analysis reveals three distinct
attention head functional roles: (i) source heads
that focus on source-language tokens, (ii) indicator
heads that track translation-initiating signals, and
(iii) positional heads that maintain sequential co-
herence. Additionally, we demonstrate that MLPs
dynamically integrate translation-related features



from critical attention heads, iteratively transiting
them into English-centric latent representations.

Building on these insights, we design a targeted
optimization strategy based on supervised fine-
tuning (SFT) (Ouyang et al., 2022) to selectively
fine-tune translation-crucial components, thereby
assessing whether fine-tuning these components
improves translation performance. As a result, our
findings are as follows:

* Only a sparse subset of heads (less than 5%)
are crucial for LLMs’ translation.

* Crucial heads exhibit specialized functions
to process translation-relevant features, with
MLPs integrating these features and transiting
to English-centric latent representations.

* Fine-tuning merely 64 heads achieves perfor-
mance parity with full-parameter fine-tuning.

2 Related Works

Mechanistic Interpretability. Mechanistic inter-
pretability (MI) elucidates neural network mecha-
nisms by seeking to reverse-engineer and decode
their functioning (Meng et al., 2022; Lan et al.,
2024; Zhao et al., 2024a; Rai et al., 2024). Within
the broader MI landscape, two key techniques
are foundational to this work: (i) Path patch-
ing (Goldowsky-Dill et al., 2023; Wang et al.,
2023), derived from activation patching (Heimer-
sheim and Nanda, 2024; Zhang and Nanda, 2024),
probes causal relationships and analyzes interac-
tions between components in neural networks by
tracing effect propagation along network pathways
via targeted activation interventions. (ii) Embed-
ding projection (Geva et al., 2022; Dar et al., 2023)
maps high-dimensional representations to human-
interpretable spaces via dimensionality reduction
approaches. Recent studies highlight the utility
of path patching to gain insights into functioning
behavior, such as identifying circuits for tasks like
indirect object identification(Wang et al., 2023) and
arithmetic calculations(Zhang et al., 2025).

Interpretability in Multilingual LLMs. Recent
studies have delved deeper into how LLMs achieve
multilingually by investigating linguistic phenom-
ena emergent in multilingual context (Bhattacharya
and Bojar, 2024; Peng and Sggaard, 2024; Fer-
rando and Costa-jussa, 2024; Dumas et al., 2024).
Key findings indicate that (i) increased linguistic

diversity in inputs leads to reduced neuron activa-
tions (Mu et al., 2024); (ii) LLMs exhibit language-
specific functional regions (Tang et al., 2024); and
(iii) English frequently functions as an implicit
computational pivot (Wendler et al., 2024; Zhao
et al., 2024b). Unlike prior research focusing on
surface-level emergent linguistic phenomena rather
than computational translation mechanisms, this
work comprehensively analyzes the functional pro-
cesses underlying LLLMs’ translation abilities. We
present a novel method to systematically examine
how LLMs execute translation tasks, improving
interpretability and practical understanding of their
translation functionalities.

3 Constructing Analysis Dataset

Our goal is to explore the translation mechanism
of LLMs. Directly leveraging existing sentence-
level parallel corpora is challenging due to the lack
of one-to-one word alignment between source and
target languages. This motivates us to investigate
how LLMs perform word-level translation. Taking
inspiration from the prompt design and word selec-
tion in Wendler et al. (2024), we construct a closed
set of word translation analysis datasets across five
widely used languages (e.g., English (En), Chinese
(Zh), Russian (Ru), German (De), and French (Fr)).
Taking word translation from English to Chinese
as an example, a word translation prompt like
“English: book - 7 3: ” (“F 3L means “Chinese”)
might appear in the analysis datasets. In this study,
we select the samples that LLMs can translate
correctly, denoting these sentences successfully
prompting LLMs to translate as reference data
using the notation of Xy. More details of the
construction of word translation datasets can be
referred to Appendix A.1.

Moreover, to meet the demand for compo-
nent activation perturbation, we constructed a
supplementary dataset comprising counterfactual
sentences that exclude translation logic, using the
notation of X.r. The counterfactual sentences
are generated adhering to two core principles:
(1) preserving grammatical structures from the
original X'y sentences and (2) replacing several
crucial words responsible for the translation logic
with contextually irrelevant terms. For instance,
a sentence from X like “English: cloud -
3L 7 is replaced with the corresponding
counterfactual one “English: cloud - Nothing: _”.
This isolates model’s impact on translation tasks



from sentence structural or syntactic variables,
enabling precise analysis of how LLMs perform
translation tasks. Various counterfactual templates
are considered in this study and provided in
Appendix A.2. The constructed analysis dataset
(including X and Xy) is utilized in subsequent
sections, as illustrated in the examples below:

Reference Data (Xy)

English: "cloud” - HA3C: "
English: "flower” - HH3(: "
English: "snow” - FA3C(: "

Counterfactual Data (X,r)

English: "cloud” - Nothing: "
English: "flower"” - Nothing:
English: "snow” - Nothing:

n

n
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Figure 1: The overview of the interpretation method: (1)
detect crucial components, (2) analyze their behavioral
patterns, and (3) selectively fine-tune them.

Our method investigates the internal mecha-
nisms of LLM translation through three steps:

1. Detecting, validating translation-crucial
components and examining their consistency
across training phases (Section §5).

2. Analyzing the inherent patterns of these com-
ponents to characterize their behavioral and
distinctive features (Section §6).

3. Implementing a targeted SFT strategy to
fine-tune essential components and improve
translation performance (Section §7).

5 Crucial Components Detection

We begin by addressing the first research ques-
tion: “Which components crucially influence LLMs’
translation capabilities?” Using path patching, we
detect components crucial for performing trans-
lation tasks (Section §5.1), subsequently validate
their importance through knockout (Section §5.2),
and further examine whether these heads exhibit
consistency across training stages (Section §5.3).

5.1 Detecting Crucial Components for
Translation Tasks via Path Patching

To determine the causal mechanisms behind the
model’s translation, we employ the path patch-
ing (Wang et al., 2023; Zhang et al., 2025). This
method systematically analyzes causal relation-
ships between two computation nodes (Sender —
Receiver), evaluating whether the Sender causally
influences the Receiver, and whether their connec-
tion is functionally crucial for translation tasks.
We perturb specific activations using counter-
factual data X.r, while maintaining others at
reference data Xy, measuring the counterfactual
effect through output logit comparisons. Our
method iteratively examines all components, iso-
lates constituent circuits, and quantifies changes in
ground-truth token logits. Appendix B provides
more details of the method.

Detection results of crucial heads. We begin
by examining the causal impact of logits from
path patching each head across layers on LLaMA2-
7B (Touvron et al., 2023). As a particularly clean
case, we focus on two categories of translation
directions: Zh = X, and X = Zh, which has many
single-token words. We define “crucial heads” as
those whose magnitude of logit change exceeds
1.0%. As illustrated in Figure 2, we highlight
several key findings:

1. Only a sparse subset of heads significantly
influences translation performance. For
instance, patching the head at position (31, 8)
results in a substantial decrease in the target
token’s logit value, illustrating its critical role
in the translation process.

2. Impactful heads are concentrated in the
middle and final layers. Earlier layers lack
heads directly influencing target token logits;
instead, crucial heads cluster predominantly
between layers 12 and 20 and in the final two
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Figure 2: Importance of heads related to translation across different directions. Each square at position (z,y)
refers to the x-th head in the y-th layer. Red (Brown) squares denote heads (MLPs) that have a positive impact on
predicting the target token, while grey (purple) squares indicate heads (MLPs) with a negative effect.

layers. This pattern remains consistent across
all translation directions.

3. Crucial heads exhibit high transferability
across translation directions. A notable
finding is the significant overlap of crucial
heads across diverse language pairs. Analysis
reveals that language pairs sharing the same
source or target language exhibit a crucial
attention head overlap exceeding 60%, while
bidirectional translation pairs (e.g., Zh < En)
surpass 70%. This overlap suggests these
heads serve generalizable functions in trans-
lation, independent of translation directions.
Their consistency across language pairs un-
derscores their importance and transferability,
indicating contributions to core translation
mechanisms regardless of specific languages.

For robustness, we also conduct additional exper-
iments on detecting crucial heads in other LLMs
and other directions (e.g., En = X, and X = En).
Details are provided in the Appendix C.

Detection results of crucial MLPs. Similar
to crucial heads, most MLPs in earlier layers
(0-14) exhibit negligible influence on output logits,
with changes confined to approximately +0.0%.
Crucial MLPs cluster predominantly after layer 15,
exceeding 5.0% logit change, whereas the final
layer MLP exhibits a substantial impact—reaching
70.0% on target token logit change. This strong
correlation between later MLP layers and logit

changes underscores their progressively critical
role in shaping translations as processing advances.

5.2 Validating Crucial Heads Through
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Figure 3: The influence on En = Zh translation
accuracy in the analysis dataset when attention heads
are progressively knocked out, sorted by their effect on
logits (“key heads”), and randomly (“random heads”)

Interpretive analyses of model components risk
misleading or non-rigorous (Bolukbasi et al., 2021;
Wiegreffe and Pinter, 2019). To ensure reliability,
we validate the significance of detected crucial
heads and test the irrelevance of non-crucial ones
via mean ablation (Wang et al., 2023). This method
replaces a component’s activation with average
activations across counterfactual data X ¢, thereby
removing task-specific information. Performance
decline confirms a component’s importance for
translation tasks, whereas no significant perfor-
mance change indicates uncritical.



Validation results on the analysis dataset. We
examine how incrementally knocking out En = Zh
crucial heads affects LLM translation performance
on the analysis dataset. As shown in Figure 3,
disabling “crucial heads” leads to a significant
decline in translation accuracy, whereas knocking
out “random heads” causes minor fluctuations,
with accuracy remaining stable within 2%. These
results highlight the essential role of the detected
key attention heads in sustaining the translation
functionality of the LLM.

5.3 Examine Consistency of Crucial Heads
Across Training
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Figure 4: Importance of heads related to En= Zh
translation across LLM after CPT or SFT.

To investigate whether crucial attention heads
remain consistent across distinct training phases,
we analyze (1) continued pre-training (CPT) (Xu
et al., 2024a) on the LLaMA-2-7B base model
on 1 billion tokens of OSCAR data (Ortiz Suarez
et al., 2020) and (2) supervised fine-tuning
(SFT) (Ouyang et al., 2022) on LLaMA-2-7B base
model on the WMT17-22 validation dataset.

Detection results across different training
phases. Following Section §5.1, we examine
the causal impact of logits on different LLM
training phases in En = Zh translation of analysis
dataset. The results are illustrated in Figure 4,
compared to the base LLM results in Figure 2d,
LLMs after CPT exhibit significant distributional
shifts in translation-crucial heads, whereas changes
are minimal after SFT. This demonstrates that
pre-training stage changes LLMs’ core translation
capabilities, while supervised fine-tuning primary
focuses on localized parameter adjustments
without altering their fundamental abilities.

6 Behavioral Patterns Analysis

Motivated by the sparse distribution of crucial
heads, we now turn to the second research question:
“What behavioral patterns do translation-crucial
components exhibit?” by systematically investigat-
ing their computational mechanisms through two

interpretable diagnostic methods: (1) visualizing
attention patterns to characterize the roles of crucial
heads (Section §6.1), and (2) projecting MLP repre-
sentation to measure correlations with translation-
related token embeddings (Section §6.2).

6.1 Analysis of Attention Head

Following the findings of Kobayashi et al. (2020),
who demonstrates that attention weights alone fail
to explain model behavior, we inspect attention val-
ues O/ € RV*N (where N denotes the sequence
length) to analyze significant token interactions.
We compute O/ = ny:l AYX fW@j over
reference data X ¢ for each analyzed head (3, j),
where, A;-fj denotes attention weights and W%/
value matrix. Each heads’ role is determined by
salient feature of Of{fE oy € RPN between the
END position’s Query token and all Key tokens.
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Figure 5: The attention values visualization of
the role-classified key heads, which show different
characteristics of different crucial heads.

Characterizing heads. To better understand the
“behavior” of the translation-crucial heads, we
first gain an intuitive insight by visualizing their
attention values as shown in the case in Figure
5. Our findings indicate that these heads exhibit
distinct focus patterns across different types of
input tokens. Building on these patterns and
following Voita et al. (2019), we further categorize
these heads into three distinct functional roles:

* Source Heads demonstrate concentrated at-
tention on source-language tokens, specializ-
ing in cross-lingual alignment. These heads



facilitate lexical transfer by identifying source
language tokens among the input sequence.

* Indicator Heads exhibit spike-shaped atten-
tion patterns on translation-specific indicators
(e.g., language identifiers like "English" or
"B " and structural cues like colons),
assisting translation mode recognition and
syntactic boundary detection.

* Positional Heads predominately attend to
adjacent tokens, managing contextual depen-
dencies and resolving grammatical agreement.
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Figure 6: The attention value distribution of different
roles of key heads across Zh <> En translation tasks.

Distinct attention distribution across heads. To
quantitatively analyze the distinct patterns of the
crucial heads’ roles, we randomly selected 100
samples from the analysis dataset and plotted
the distribution of averaged attention values for
the three key head roles across two translation
directions (Zh < En). Figure 6 demonstrates that
these heads exhibit distinct attention distributions,
with minimal focus on tokens outside important
input tokens. The source heads primarily attend to
source input tokens, the positional heads distribute
attention uniformly across the input context, and
the indicator heads concentrate on translation task
indicator tokens.

Overall, these analyses provide a clear, human-
interpretable perspective of why deactivating cru-
cial heads significantly impacts LLM translation.

6.2 Analysis of MLP

To analyze linguistic content encoded in
the inputs (MLPF;,) and outputs (MLP,,)
of MLP layers, particularly for translation-
relevant tokens: translation indicator (IND),
source (SRC) and target-language (TGT),
we employ the unembedding matrix Wy as
a diagnostic probe and Wy [] denotes the
unembedding vectors corresponding to a specific

token. For each token T'OK, we compute
cosine similarities (denoted as (M LP,TOK))
between M LP;,, MLP,,, and Wy[{TOK}|
to quantify linguistic information propagation
through MLP layers. Following Geva et al.
(2022), we isolate MLP contributions evaluating:
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Figure 7: We investigate the correlation between MLP
input or output with translation-related tokens.

MLPs integrate and process translation-related
features iteratively, yielding target translation.
Figure 7 investigates MLP interactions with source
and target tokens across 100 En = Zh sam-
ples. Figure 7a presents that in early layers
(1-14), (M LP;,,SRC) values remain near-zero,
indicating minimal source token encoding, con-
sistent with the inactive region before layer 14
in Figure 2d. A surge in (M LP;,, SRC) occurs
between layers 15-25, aligning with activation
of key attention heads (e.g., 15.12 and 16.26),
where source information is encoded into MLP
representations for downstream processes. From
layers 25-31, (M LP;,, SRC) declines, signaling
a transition to target translation. Concurrently,
((M LP;,,IND)) rises after layer 12 and peaks in
the final layers, enabling coherent target-language
generation. Critically, control comparisons with
random English tokens ((M L P;,, RAND)) remain
near-zero throughout all layers, confirming the
specificity of the observed patterns. As shown in
Figure 7b, starting at layer 15, where MLPs start
processing target token information, (M LP,,; —
M L Py, Wi;[TARGET]) sharply increases, while
(MLP,,; — MLP;,, Wy[RANDOM]) declines.
This indicates that MLPs progressively execute
translation across layers. Parallel trends in other
LLMs (Appendix C) confirm their generality.

MLP intermediate features exhibit a transition
to English-centric latent representation. We
further investigate the detailed translation process
between non-English pairs (e.g., German/Russian
= Chinese) by analyzing the word “book”. Quan-
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titative comparisons between M LP,,; — M LFP;,
representations and cross-lingual semantic embed-
dings (Figure 8) reveal: in layers 16-26, simi-
larity with English embeddings surpasses other
languages, declining in later layers (25-31). We
hypothesize LLMs employ a “bridge-translation”
paradigm—akin to humans using their native lan-
guage as a mental intermediary—where source
inputs are first processed into English-centric latent
representations before generating target outputs.
This aligns with prior work (Wendler et al., 2024;
Zhao et al., 2024b), confirming English’s latent
intermediary role in multilingual LLM tasks.

Consolidating these findings, we conclude that
LLMs employ attention heads to capture source
language and translation indicator tokens, which
are forwarded to downstream MLPs. MLPs in-
tegrate and process these features by transiting
towards an English-centric latent representation,
finally generating the target translation.

7 Targeted Fine-tune

Building on the insights given from two previous
investigations, we aim to answer the final ques-
tion: “Can fine-tuning these translation-crucial
components enhance LLM translation capability?”
To address this, we propose a method to fine-tune
these components selectively, as detailed in Section
§7.1. We then introduce our experimental setup
in Section §7.2 and further carry out three sets
of experiments (Section §7.3, §7.4, and §7.5) to
comprehensively evaluate the proposed method.

7.1 Selectively Fine-tune Crucial Components

SFT is a common technique for improving trans-
lation performance in LLMs (Jiao et al., 2023;
Xu et al., 2024a). Building on this, our method
selectively updates parameters directly tied to
translation tasks (those detected as crucial in
Section §5.1) while preserving the remaining. This

strategy aims to precisely improve the model’s
translation capabilities without compromising gen-
eral functionality. Given crucial translation-related
components O, our method computes gradients G
for © rather than for the entire set of parameters
and iteratively adjusts these parameters. Modifying
only a subset of parameters reduces training du-
ration and mitigates interference with the model’s
pre-existing capabilities.

7.2 Experimental Setup

We examine three approaches: (1) Full-parameter
fine-tuning (Full SFT), (2) Targeted fine-tuning
of translation-crucial components (Targeted SFT),
and (3) Random-component fine-tuning (Random
SFT), where random components match the param-
eter count of Targeted SFT. For training, we lever-
age human-parallel corpora (WMT17-WMT?22,
Flores-200 (Guzman et al., 2019)) following Xu
et al. (2024a), evaluating translation accuracy
on WMT23/24 and general-domain benchmarks
(MMLU (Hendrycks et al., 2021), ARC (Clark
et al., 2018), SIQA (Sap et al., 2019)). Implemen-
tation details are in Appendix D.

Our experiments focus on two goals: (1) com-
paring Full, Targeted, and Random SFT on Llama-
2-7B across six bidirectional translation tasks
(English < Chinese, German, Russian), and (2)
assessing generalization by fine-tuning English =
Chinese crucial heads and testing performance on
English < Japanese/Czech translation tasks.

7.3 Comparison Experimental Results

As shown in Tables 1 and 2, Targeted SFT demon-
strates three key advantages: (1) Translation
performance improvement—it significantly im-
proves translation performance across all language
directions, particularly in X = En, outperforming
Full SFT and far exceeding Random SFT; (2) Gen-
eral capabilities preservation-unlike Full SFT,
which degrades non-translation task performance,
Targeted SFT maintains baseline generalization;
(3) Training efficiency-it modifies fewer than 5%
of parameters and halves training time compared
to Full SFT, achieving substantial computational
cost savings. Additional results for other LLMs are
provided in Appendix E.

7.4 Generalization Evaluation Results

Table 3 demonstrates that translation-crucial at-
tention heads exhibit cross-lingual generalization:
fine-tuning only the En = Zh crucial heads



Translation Tasks

Generic Tasks

Train Tuned Zh=En De=-En Ru=-En MMLU Commonfense
Models Reasoning
Speed Params.
BLEU{/COMET1/BLEURT{ Acc. Acc.
LLaMA2-7B - - 15.6/73.1/56.6  24.8/76.8/62.1  20.2/73.8/60.3 459 553
+ Full SFT  17sam./sec. 6.7B 20.4/78.7/63.9  35.4/83.4/70.7  25.8/79.8/67.6 42.6 50.2
+ Targeted SFT 33sam./sec. ~ 0.27B 21.3/79.1/64.3  37.1/83.7/71.4  27.8/80.3/68.4 46.0 55.7
+ Random SFT 33sam.sec. 0.27B 16.9/76.9/61.1 32.5/81.6/68.1 23.7/78.2/65.3 45.9 54.9

Table 1: The overall results of X = En translation on WMT’23/24 and generic tasks. Results surpassing Full SFT
are highlighted in green, inferior outcomes in red, and comparable performance in blue.

Translation Tasks

Generic Tasks

Train Tuned En=Zh En=De EnmRu MMLU Commonsense
Models Reasoning
Speed Params.
BLEU1/COMET{/BLEURT} Acc. Acc.
LLaMA2-7B - - 17.0/74.1/55.9  13.0/64.2/49.1 12.8/70.5/52.4 459 55.3
+ Full SFT 17sam./sec. 6.7B 30.3/80.7/62.9 27.9/78.3/63.7 19.5/80.0/63.2 40.2 50.0
+ Targeted SFT  33sam./sec. 0.27B 30.7/81.4/64.3 27.6/78.4/63.8 20.1/80.4/63.6 46.2 56.0
+ Random SFT 33sam./sec. 0.27B 26.4/79.3/61.6  22.7/76.2/60.3  15.8/77.9/60.7 46.1 55.2

Table 2: The overall results of En = X translation on WMT’23/24 and generic tasks.

in Llama-2-7B and evaluating them on other
translation directions (En < Cs (Czech) and En
& Ja (Japanese)) achieves performance gains
comparable to full-parameter fine-tuning.

En=-Cs En=Ja Cs=En Ja=En
Models
BLEU1/COMET{/BLEURT/
LLaMA2-7B 4.4/63.6/39.7  6.1/73.3/47.4  23.7/77.9/65.1  10.8/72.9/56.6
+Full SFT  20.2/80.0/66.5  15.2/82.4/56.7 31.9/83.1/71.7  17.4/79.5/64.1
+ Targeted SFT  20.8/80.3/66.7 15.3/81.9/56.7 33.5/83.5/72.3  18.7/80.0/64.7

+Random SFT  15.8/78.5/63.8 11.3/79.9/53.7  29.1/81.5/68.8

Table 3: WMT’23/24 En < Cs and En < Ja Results.
Targeted SFT fine-tunes En = Zh crucial heads.

14.0/77.9/62.1

7.5 Ablation Study of Trainable Components

Ablating Train  Tuned Zh= En MMLU

Attention Heads Speed Params. BLEU/COMET/BLEURT Acc.
top-8 heads 58sam./sec. 0.017B 18.7/78.1/63.0 46.1
top-16 heads 52sam./sec.  0.033B 20.0/78.4/63.5 45.9
top-32 heads 50sam./sec.  0.067B 20.4/78.6/63.8 45.8
top-64 heads 40sam./sec.  0.134B 21.3/79.1/64.3 45.9
top-96 heads 36sam./sec.  0.134B 21.0/79.0/64.2 45.7
top-128 heads 33sam./sec.  0.268B 21.1/79.1/64.4 45.5
top-160 heads 30sam./sec.  0.335B 21.3/79.1/64.4 453

Table 4: Ablative experiments on the number of heads.
The most cost-effective setting is shown in green.

We conduct ablation studies in Zh = En trans-
lation on WMT’23/24 to examine how varying
the number of fine-tuned attention heads and
MLPs affects translation performance, generic
capabilities, and training efficiency. As shown in
Table 4, fine-tuning 64 attention heads achieves
the optimal balance between performance and

computational cost. Table 5 reveals that increasing
MLPs enhances translation performance but more
significantly degrades generic capabilities and
training speed compared to tuning additional heads.

Ablating Train Tuned Zh = En MMLU

MLPs Speed  Params. gy g1 COMET/BLEURT  Acc.
Top-64 heads 33sam./sec. ~ 0.27B 21.3/79.1/64.3 45.8
+top-1 MLP  30sam./sec. ~ 0.41B 21.8/79.1/64.5 45.7
+top-2 MLP  27sam./sec.  0.54B 21.8/79.1/64.5 45.6
+top-3 MLP  24sam./sec. ~ 0.68B 21.9/79.1/64.5 45.3
+top-5 MLP  20sam./sec. ~ 0.95B 22.1/79.2/64.6 44.2
+all MLP  18sam./sec.  4.62B 22.5/79.4/64.7 42.8

Table 5: Ablative experiments on the number of MLPs.

8 Conclusion

This study systematically explores the translation
mechanism of LLM by progressively addressing
three research questions. We begin by detect-
ing components crucial for translation via path
patching and find that only a sparse subset of
components (less than 5%) are indispensable for
translation. These heads exhibit specialized func-
tions, extracting translation-related features, while
MLPs integrate and process by transiting toward
English-centric latent representations. Based on
these findings, we found that targeted fine-tuning
of merely 64 translation-crucial heads achieves per-
formance parity with full-parameter tuning. These
findings collectively advance the interpretability of
the inner translation mechanism of LLMs.



Limitations

This study acknowledges two methodological con-
siderations that guide future research directions.
While the intentionally simplified lexical transla-
tion task provided crucial experimental control to
isolate core mechanisms, extending these findings
to more ecologically valid sentence-level contexts
would strengthen their practical relevance. Further-
more, although our parameter-aware methodology
proves effective across open-source architectures,
its applicability to closed-source systems remains
theoretically constrained—a limitation that simul-
taneously highlights the urgent need for developing
model-agnostic analysis frameworks in this evolv-
ing research domain.
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A Translation Task Templates and
Examples

As a clear case study, we first focus on Chinese due
to its prevalence of single-token words and lack of
spacing. We analyze Llama-2’s vocabulary to iden-
tify single-token Chinese words (primarily nouns)
with direct single-token English translations. This
enables direct comparison of the model’s next-
token probabilities for correct Chinese words and
their English equivalents. For robustness, we
replicate experiments in German, Russian, and
French, compiling datasets of 139 Chinese, 120
German, 115 Russian, and 118 French words.

A.1 Dataset Construction

To ensure the next token is unambiguously in-
ferable as a single token, we design translation
prompts where x,,41 is uniquely determined by the
preceding context x;...z,. Each prompt specifies
the source language, word, and target language,
requiring the model to predict the translated word.
Taking English-to-Chinese as an example, a word
translation like “English: flower - 1 3: £ (“H
T means “Chinese”, “{£” means “flower”) might
naturally appear in the pretraining corpus.

Such prompts explicitly guide Llama-2 to per-
form translation by leveraging its pretrained lin-
guistic knowledge.

A.2 Templates

We formalize counterfactual prompt generation
through systematic grammatical preservation and
semantic disruption, operating under two core
design principles:

* Structural Isomorphism: Maintain origi-
nal syntactic patterns (interrogative formats,
placeholder positions, punctuation) while al-
tering semantic content

* Targeted Lexical Substitution: Replace criti-
cal components through four operation classes

Perturbation Taxonomy The perturbation strate-
gies fall into four principal categories, as detailed
in Table 6:

Validation Protocol The constructed templates
undergo rigorous verification:

1. Grammatical Integrity Check: Measure tem-
plate fluency via language model perplexity
scores (threshold: <15% deviation from
originals)
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Operation Type Implementation Mechanism

Target Nullification Replace language identifiers with non-linguistic

concepts ({tgt_lang} — “Void”/“Null”)

Substitute translation verbs with irrelevant actions
(“translate” — “eat”/“delete”)

Action Distortion

Semantic
Obfuscation

Alter task-specific nouns to disrupt functionality
(“translation” — “color”/“flavor”)

Paradox Insertion Introduce self-contradictory modifiers

{tgt_lang}” — “into a silent rock”)

(“into

Table 6: Taxonomy of Counterfactual Perturbation
Operations

2. Task Disruption Test: Verify semantic shift
through human annotation (success criterion:
>90% agreement on functionality removal)

Implementation Advantages
provides three key benefits:

Our methodology

* Controlled isolation of template components
affecting model behavior

* Cross-lingual consistency
placeholder-based design

through

* Reproducible taxonomy enabling systematic
ablation studies

The counterfactual prompts we used are shown
in Table 7

B Path Patching for Detecting
Components Crucial for LLM
Translation

Algorithm 1 Critical Component Detection via Path Patching

Require: Dataset D containing factual/counterfactual pairs
(Xy, Xcr), model F with components C
Ensure: Node importance scores A = 61, ...

1: for each data pair (X](f>7 XC(?) € Ddo

) 677»

2: Compute reference activations Hy < F (X ng))
3: Compute contrastive activations H.y < F (Xé?)
4: for each component 9 e Cdo

5: Create hybrid activation map H + where:

, ~ HE ifk =)

6: Hy H J’?f otherwise

7: Obtain original logit y; < F(Xs; Hy)

8: Obtain patched logit 5 < F(Xy; Hy)

9: Calculate patched effect: 5](.“ — ﬂyff%
10: end for
11: end for
12: for each importance score §; € A do

Aggregate across dataset: §; <— ﬁ ZL.Z'I 65”
: end for

: return Node importance scores A

The computation of large language models
(LLMs) can be formalized as a directed acyclic



Normal Prompt Counterfactual Prompt Perturbation Type
{src_lang}: "{src_word}" - {tgt_lang}: {src_lang}: "{src_word}” - There is Target Nullification
"{tgt_word} nothing: "{tgt_word}

Translate "{src_word}" into {tgt_lang}: Translate "{src_word}" into Nothing: " Target Nullification
Translate the {src_lang} word Translate the {src_lang} word Target Nullification
"{src_word}" to {tgt_lang}: " "{src_word}" to Null: "

From {src_lang}: "{src_word}” to From {src_lang}: "{src_word}” to Target Nullification
{tgt_lang}: " Nowhere: "

Provide the translation of "{src_word}"
from {src_lang} to {tgt_lang}: "

Q: How do you say
{tgt_lang}? A: "

Q: What is the {tgt_lang} translation
"{src_word}"? A: "

"{src_word}" in

Translate "{src_word}" into {tgt_lang}:

n

Q: What is "{src_word}" translated into
{tgt_lang}? A: "

From {src_lang}:
{tgt_lang}: "{tgt_word}

"{src_word}" -

Provide the color of "{src_word}" from
{src_lang} to {tgt_lang}: "

Q: How do you eat
{tgt_lang}? A: "

Q: What 1is the
"{src_word}"? A: "

"{src_word}" in

{tgt_lang} flavor

Translate "{src_word}" into a silent
rock: "

Q: What is "{src_word}" erased into
{tgt_lang}? A: "

From {src_lang}: "{src_word}" -

Disabled: "{tgt_word}

Action Distortion
Action Distortion
Semantic Obfusca-
tion

Paradox Insertion

Action Distortion

Action Distortion

Note: All placeholders ({src_lang}, {src_word}, etc.) follow actual implementation syntax. Counterfactual perturbations
preserve original grammatical structures while altering translation semantics through targeted substitutions.

Table 7: Examples of some regular translation prompt templates and counterfactual prompt templates.

Layer 31

Layer 0

Input embedding

Gather activations given X,

Attention Head IEl MLP Layer @

Input embedding

Calculate outputs with
hard interventions

Gather activations given X,

Residual
Connection

OInputhutput —> Data flow

U\ Intervention — Perturbed data flow Activations given X, ‘ Activations given X,

Figure 9: Illustration of the method “path patching”. It measures the importance of the selected circuit (i.e., the red
lines that originate from Head 30 in Layer O to Output) for the transformer in completing the task on reference data.
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Figure 10: Comparison of the results of path patching experiments on LLaMA2-7B, LLaMA2-13B, and Mistral-
7B (Jiang et al., 2023) across Zh = En translation task. Each square at position (z, y) refers to the xth-head in the
y-th layer. Red (Brown) squares denote heads (mlps) that have a positive impact on predicting the target token,
while grey (purple) squares indicate heads (mlps) with a negative effect. For each head/MLP, a darker color indicates

a larger logit difference from the original model before patching.
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Figure 11: Importance of heads related to translation across different directions. Each square at position (z, y)
refers to the x-th head in the y-th layer. Red (Brown) squares denote heads (MLPs) that have a positive impact on
predicting the target token, while grey (purple) squares indicate heads (MLPs) with a negative effect.
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graph (DAG) (Wang et al., 2023), where nodes rep-
resent computational components (e.g., attention
heads, MLP layers) and edges denote directional
data flow between them. Mechanistic interpretabil-
ity seeks to reverse-engineer neural networks into
interpretable algorithms, leveraging computational
circuits as a framework. A computational circuit
is a subgraph of the model’s computational graph
M, comprising nodes (e.g., embeddings, attention
heads) and edges (e.g., residual connections, pro-
jections) that collectively implement specific tasks,
such as translation.

To analyze causal relationships within these
circuits, we employ path patching (Goldowsky-
Dill et al., 2023; Wang et al., 2023; Zhang et al.,
2025). Algorithm 1 formalizes path patching as
follows: for each component ¢V, we (1) compute
reference and counterfactual activations (H s, H.y),
(2) create hybrid activations by replacing ¢()’s
activations with H.; while keeping others at Hy,
(3) compute logit differences (J;) between original
and patched outputs, and (4) aggregate d; across the
dataset to quantify ¢\ )’s task-critical importance.
This method isolates the causal effect between
a Sender node (e.g., Head 30 in Layer 0) and a
Receiver node (e.g., the output layer) by perturbing
the Sender’s activations with X while freezing
other nodes with X. . As illustrated in Figure 9,
activations from all nodes are first recorded. A
hard intervention replaces the Sender’s activations
with those from X.r, , propagating the effect
through paths P (residual connections and MLPs).
Concurrently, other attention heads are frozen to
X7 to isolate the Sender’s impact. The resulting
logits are compared to quantify the Sender’s causal
contribution: significant changes indicate critical
paths for task execution.

Since residual streams and MLPs process tokens
independently (Elhage et al., 2021), perturbing
activations at the END token position suffices to
measure effects on next-token prediction.

C More Analysis of Other LLLMs and
Translation Directions

Crucial Component Detection. Figure 10 ex-
tends key component identification to LLaMA?2-
13B and Mistral-7B. All three models exhibit
sparse localization of translation-critical attention
heads (e.g., 17.24, 16.0) in middle layers, despite
architectural differences (e.g., LLaMA2-13B’s 40
layers with 40 heads per layer).
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Figure 11 illustrates the detection results for
bidirectional translation directions (En = X and
X = En). While the multi-token nature of
English tokens results in fewer prominent detection
instances, the findings remain consistent with
the earlier analysis in Section §5.1. Together,
these observations support the conclusion that
translation mechanisms utilize a sparse subset
of attention heads, which are language-agnostic,
thereby underscoring their generalization capacity.

Analysis of Crucial MLPs. Figures 12 and 13
reveal consistent MLP dynamics across models.
For MLP input/{SRC},{IND} similarities, trends
follow ascending-descending phases with inflec-
tion points at layers (13-18-28) for LLaMA2-7B,
(13-18-35) for LLaMA2-13B, and (13-20-28) for
Mistral-7B. Similarly, M LP,,; — MLPFP;, and
target token {TGT} similarities show stabilization-
to-increase patterns with identical inflection layers.
This synchronization across models indicates a
shared computation mechanism: attention heads
initiate translation processing, which MLPs subse-
quently refine. These results demonstrate robust-
ness across architectures and scales.

Cross-Lingual Bridge  Translation. We
extend our analysis to non-English pairs (e.g.,
French/Japanese Chinese) by examining token-
level dynamics. As shown in Figure 14, similarity
trends between M L P, — M L P;,, representations
and cross-lingual embeddings align with the
bridge-translation hypothesis: in layers 15-24,
English-centric latent representations dominate
across LLaMA2-13B and Mistral-7B, with
similarity declining sharply in layers 25-32. This
reinforces the observed paradigm where LLMs
internally map source languages to English-like
representations before generating target outputs,
corroborating findings in multilingual latent
alignment studies (Wendler et al., 2024; Zhao
et al., 2024b). The consistency across both
architectures underscores the generality of
English’s intermediary role.

D Experimental Setup Details

Following the gradient rescaling method proposed
by (Yu et al., 2025), gradients are adjusted by
a factor of %, where H is the total number of
attention heads in a layer and h represents the
updated heads in the same layer. For model fine-

tuning, we use Llama2-7B and Llama2-13B with
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Figure 14: We investigate the projection of each MLP layer (M LP,,,; — M LP;,,) along the direction of the different

languages.

a learning rate of 2 x 10~°, a batch size of 128,
and train for 2 epochs. The warm-up ratio is set
to 0.02, and weight decay is configured at 0.1.
All experiments are conducted on a cluster of 8
NVIDIA A100 80 GB GPUs.

E Comparison Experimental Results on
More LLMs

We investigate whether our method generalizes
to larger LLMs (Llama-2-13B) and diverse ar-
chitectures (Mistral-7B). As shown in Tables 8
and 9, Targeted SFT exhibits three consistent
advantages across LLMs: (1) Enhanced translation
performance, particularly in X En, surpassing
Full SFT and significantly outperforming Random
SFT; (2) Generalization preservation, maintaining
baseline non-translation task performance unlike
Full SFT; (3) Training efficiency, modifying fewer
than 5% of parameters and reducing training time
by 50% compared to Full SFT.
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Translation Tasks Generic Tasks

Train  Tuned  En=Zh En=De EnsRu  MMLy Commonsense
Models Reasoning
Speed Params.
BLEU1/COMET{/BLEURT} Acc. Acc.
LLaMA2-7B - - 17.0/74.1/55.9 13.0/64.2/49.1 12.8/70.5/52.4 459 55.3
+ Full SFT  17sam./sec. 6.7B 30.3/80.7/62.9  27.9/78.3/63.7 19.5/80.0/63.2  40.2 50.0
+ Targeted SFT 33sam./sec.  0.27B 27.6/80.0/62.5 27.6/78.4/63.8 20.1/80.4/63.6 46.2 56.0
+ Random SFT 33sam.sec. 0.27B  26.4/79.3/61.6 22.7/76.2/60.3 15.8/77.9/60.7 46.1 55.2
LLaMA2-13B - - 23.0/77.5/59.1  17.1/67.7/52.8 15.6/72.9/55.1 55.1 58.4
+ Full SFT  12sam./sec. 13.0B 32.8/81.8/64.4 29.8/80.0/65.8 20.7/81.6/65.0 53.7 56.4
+ Targeted SFT  28sam./sec. ~ 0.32B  33.4/82.2/64.8 30.1/80.1/65.9 21.3/81.8/65.3 54.9 58.1
+ Random SFT 28sam./sec.  0.32B 28.8/80.6/63.3 24.6/78.3/62.9 17.3/80.0/62.8 55.0 58.2
Mistral-7B - - 13.7/68.0/49.6  15.6/63.1/49.3  11.2/65.1/48.1 62.7 59.2
+ Full SFT  17sam./sec. 6.7B 31.1/80.6/63.4 26.5/77.4/62.8 19.6/79.5/62.5 43.0 40.8
+ Targeted SFT 33sam./sec.  0.27B 31.9/82.0/65.1 26.3/78.0/63.2 20.5/79.9/63.1 62.5 59.1
+ Random SFT 33sam./sec. 0.27B  27.5/79.5/61.6 22.2/75.5/59.8 15.6/77.4/60.5 62.4 59.2

Table 8: The evaluation results of En=-X translation (average WMT23 and WMT24 evaluation results) and generic
tasks of different SFT strategies.

Translation Tasks Generic Tasks

Train Tuned En=Zh En=De En>Ru  MMLy Commonsense
Models Reasoning
Speed Params.
BLEU{/COMET//BLEURT/ Acc. Acc.
LLaMAZ2-7B - - 15.6/73.1/56.6  24.8/76.8/62.1 20.2/73.8/60.3 45.9 55.3
+ Full SFT  17sam./sec. 6.7B 20.4/78.7/63.9 35.4/83.4/70.7 25.8/79.8/67.6 42.6 50.2
+ Targeted SFT  33sam./sec. 0.27B 21.7/79.1/64.4 37.1/83.7/71.4 27.8/80.3/68.4 46.0 55.7
+ Random SFT  33sam./sec. 0.27B 16.9/76.9/61.1 32.5/81.6/68.1 23.7/78.2/65.3 45.9 549
LLaMA2-13B - - 17.3/74.0/57.8 27.0/78.0/63.8 22.2/74.9/61.5 55.1 58.4
+ Full SFT  12sam./sec. 13.0B 22.4/79.5/65.3 36.9/84.0/71.6 27.8/80.8/68.9 50.0 55.3
+ Targeted SFT  28sam./sec. 0.32B 23.6/80.5/66.5 38.3/84.7/72.7 29.7/81.5/69.3 549 58.1
+ Random SFT 28sam./sec. 0.32B 19.0/78.1/63.1 34.2/81.8/68.9 25.3/79.3/66.6 55.5 58.8
Mistral-7B - - 16.9/74.3/58.1 26.6/77.9/63.9 22.6/75.3/62.5 62.7 59.2
+ Full SFT 17sam./sec. 6.7B 19.7/78.4/63.1 32.0/82.2/69.0 24.0/78.7/66.2 40.3 50.3
+ Targeted SFT  33sam./sec. 0.27B 21.2/79.2/64.3 33.7/83.0/70.2 26.4/79.6/66.4 62.9 59.1
+ Random SFT  33sam./sec. 0.27B 16.8/77.1/61.1  29.3/80.6/66.8 21.4/77.1/63.9 62.5 59.3

Table 9: The evaluation results of X=-En translation (average WMT23 and WMT24 evaluation results) and generic

tasks of different SFT strategies.
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