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ABSTRACT

Data plays a central role in the development of modern artificial intelligence,
with high-quality data emerging as a key driver of model performance. This
has prompted the development of various data curation methods in recent years.
However, measuring the effectiveness of these data curation techniques remains a
major challenge. Traditional evaluation methods, which assess a trained model’s
performance on specific benchmarks, risk promoting practices that merely make
the data more similar to the test data. This issue exemplifies Goodhart’s law: when
a measure becomes a target, it ceases to be a good measure. To address this, we
propose an information-theoretic framework for evaluating data curation methods,
where dataset quality is measured by its informativeness about the true model
parameters using the Blackwell ordering. We compare informativeness by the
Shannon mutual information of the evaluated data and the test data, and we propose
a novel method for estimating the mutual information of datasets by training
Bayesian models on embedded data and computing the mutual information from
the model’s parameter posteriors. Experiments on real-world data demonstrate
that our mutual information-based evaluation assigns appropriately lower scores to
data curation strategies that reduce dataset informativeness, while traditional test
score-based evaluation methods may favor data curation strategies that overfit to
the test set but compromise the training data’s informativeness.

1 INTRODUCTION

Data plays a central role in the development of modern artificial intelligence, where the large volume
and high quality of the data used in training are critical to model performance (Brown et al., 2020;
Peebles & Xie, 2023; Team et al., 2024; MetaAI, 2024). As AI systems continue to grow larger and
the computational costs of training escalate, the focus is shifting from simply expanding model and
dataset sizes to enhancing the quality of the data itself. This shift has prompted the development
of various data curation strategies, including data filtering (Gunasekar et al., 2023; Li et al., 2023;
Fang et al., 2023; Pouget et al., 2024), duplicate removal (Kandpal et al., 2022), data augmentation
(Muennighoff et al., 2024), and synthetic data generation (Liu et al., 2024).

However, ensuring the effectiveness of these curation techniques remains a major challenge (Li et al.,
2024; Weber et al., 2024). The standard evaluation approach involves training a model on a curated
dataset and measuring its performance against benchmark test sets (Li et al., 2024; Albalak et al.,
2024; Team et al., 2024; MetaAI, 2024). This methodology, though common, can inadvertently
encourage undesirable curation practices that optimize performance on specific benchmarks, yet
risk overfitting to the test data and undermining the model’s ability to generalize to new data. For
instance, as noted by (Pouget et al., 2024), popular pre-training methods often filter datasets to
emphasize English-language image-text pairs in order to maximize performance on western-oriented
benchmarks like ImageNet and COCO. While this may improve performance on those benchmarks, it
degrades performance on global datasets. This illustrates a critical issue: as highlighted by Goodhart’s
law, when a measure becomes a target, it ceases to be a good measure.

An important question, therefore, is how to distinguish between data curation methods that simply
boost a trained model’s performance on specific benchmarks and those that genuinely enhance
data quality and improve the model’s ability to generalize to new data. In this work, we propose
an alternative information-theoretic framework that may help make this distinction: rather than
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measuring the test score of a trained model on specific test sets, we evaluate the informativeness of
a dataset for a given machine learning task. To achieve this, we adopt the well-known Blackwell
ordering Blackwell et al. (1951) to compare the informativeness of datasets. A data curation method
is considered effective if it increases the dataset’s informativeness about the true model parameters,
while it is deemed strategic if it decreases the dataset’s informativeness, according to the Blackwell
ordering.

To quantify informativeness, we propose using the Shannon mutual information (MI) of the curated
dataset and the test dataset as a metric. This mutual information metric is effective in identifying
data curation methods that reduce informativeness. Specifically, if a curation method decreases
the dataset’s informativeness according to the Blackwell ordering, it must lead to a decrease in the
mutual information. However, estimating mutual information of datasets presents a challenge in
practice. Existing techniques can reliably estimate the mutual information of two random variables
in up to tens of dimensions but fail in higher dimensions (Gowri et al., 2024).1 This is particularly
problematic, as datasets are inherently high-dimensional due to the many data points they contain.

Our main technical contribution is a novel method for estimating the mutual information of two
datasets. We exploit a dataset’s capacity to train a machine learning model and compute the mutual
information through the posterior distributions of the model parameters. To get such posteriors, we
reduce model size by utilize embeddings from pre-trained foundation models. Our method consists of
two steps: (1) using pre-trained foundation models to embed data examples, and (2) training relatively
small Bayesian models, such as Bayesian logistic regression, on the resulting embeddings to estimate
the mutual information of the datasets.

We demonstrate the effectiveness of our method through experiments on real-world datasets, including
MNIST and CIFAR. Our experiments reveal that the test score-based evaluation method may favor
data curation strategies that make the dataset more similar to the test data but reduce its informative-
ness about the true model parameters. In contrast, our mutual information-based evaluation assigns
appropriately lower scores to such strategies. This is because our method accurately estimates the
mutual information of datasets, as verified by our experiments.

To summarize, our contribution is threefold:
• We propose an information-theoretic framework for evaluating data curation methods, where

dataset quality is measured by its informativeness about the true model parameters using the
well-established Blackwell ordering.

• A novel method is introduced for estimating the mutual information of datasets by training a
Bayesian model on embedded data and computing the MI from the parameter posteriors.

• Experiments on real-world data show that our mutual information-based evaluation, unlike
the test score-based evaluation, assigns appropriately lower scores to informativeness-
reducing data curation methods by accurately estimating the mutual information of datasets.

1.1 RELATED WORK

Data curation. The success of large language models (LLMs) is fundamentally anchored in the
quality of their training datasets, which underscoring the critical need for advancements in data
curation to ensure optimal training efficiency, cost-effectiveness and robust generalization. Data
filtering (Gunasekar et al., 2023; Li et al., 2023; Fang et al., 2023; Pouget et al., 2024; Xie et al.,
2023) aims to select data points to include in the training dataset from a large pool of raw data,
often guided by various heuristics. Duplicate removal (Kandpal et al., 2022) focuses on repeated
occurrences and impact of sequences within training datasets. The findings underscore the importance
of sequence-level deduplication in training efficiency and model privacy without sacrificing model
performance. Data augmentation (Muennighoff et al., 2024; Törnberg, 2023) generates new training
samples from the original dataset to enhance its diversity and volume while preserving its core
characteristics while synthetic data generation (Liu et al., 2024) creates totally new data that closely
resemble the distribution of real data. Data mixing (Xie et al., 2024; Liu et al., 2025) determines
the weight of each domain’s dataset to optimize performance across all domains. Data distillation

1Considering that the intrinsic dimension of typical images ranges from approximately 20 to 43, as reported
by (Pope et al., 2021), these nonparametric methods will not be reliable when applied to datasets containing
more than just a few images.
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(Sachdeva & McAuley, 2023) aims to create compact, high-fidelity data summaries that capture the
most essential knowledge from a given target dataset.
Data point valuation. The assessment of data point value has been actively studied in the data
valuation literature. A standard approach is to measure the change in the test accuracy after removing
a single training data point of interest. Data Shapley by Ghorbani & Zou (2019) deploys the
Shapley value from cooperative game theory to ML settings, and several variants that improve its
computational efficiency or relax underlying conditions have been proposed (Jia et al., 2019a; Kwon
& Zou, 2021; Wang & Jia, 2022; Wang et al., 2024a). An alternative common approach utilizes the
influence function introduced in robust statistics (Koh & Liang, 2017; Feldman & Zhang, 2020). This
method provides a mathematically rigorous interpretation of data values and has been implemented in
various applications, such as image classification and sentiment analysis, or text-to-image generation
(Park et al., 2023; Kwon et al., 2023). Other algorithm-agnostic and task-agnostic methods have also
been explored, such as (Just et al., 2023; Xu et al., 2021). We refer the readers to Jiang et al. (2023)
for a comprehensive and detailed review.
Dataset valuation. Beyond evaluating individual data points, various methods have been proposed
for dataset evaluation. The standard approach involves training a model on a curated dataset and mea-
suring its performance on benchmark test sets (Li et al., 2024; Albalak et al., 2024). Garrido-Lucero
et al. (2024) leverages estimated Shapley values for efficient dataset valuation. Mohammadi Amiri
et al. (2023) focus on intrinsic, task-agnostic dataset valuation by estimating data diversity and
relevance without requiring a validation set. However, none of these methods provide the information-
theoretic guarantees as we do.
Peer prediction approach. Our method is also connected to the peer prediction literature Miller
et al. (2005); Prelec (2004); Jurca & Faltings (2008); Radanovic & Faltings (2013; 2014); Witkowski
& Parkes (2012); Kong & Schoenebeck (2018a); Schoenebeck & Yu (2020b), which studies eliciting
truthful information without ground truth. Among these, Kong & Schoenebeck (2018b); Chen et al.
(2020); Schoenebeck & Yu (2020a) are most relevant. Kong & Schoenebeck (2018b) proposed a
mutual information-based peer prediction method using two agents’ predictions about a latent label,
later adapted for data valuation by Chen et al. (2020). However, their approach computes pointwise
mutual information through a complex integral involving the product of two posteriors divided by the
prior (see Appendix B for details). Schoenebeck & Yu (2020a) also estimates mutual information but
is restricted to discrete variables or specific continuous distributions.
Mutual information estimation. Mutual information (MI) is a key concept in data science that
measures the statistical dependence between random variables. Non-parametric methods, such as
binning, likelihood-ratio estimators with support vector machines, and kernel-density estimators,
are commonly used (Fraser & Swinney, 1986; Darbellay & Vajda, 1999; Kraskov et al., 2004) for
estimating mutual information, but these approaches often do not scale well with sample size and
data dimension (Gao et al., 2015). Variational methods, such as MINE (Belghazi et al., 2018b)
and InfoNCE (Oord et al., 2018), have become popular alternatives. Recent work by Gowri et al.
(2024) shows that while standard MI estimators perform well in up to tens of dimensions, they are
not reliable in higher dimensions when the available data is limited. To mitigate this, they suggest
reducing dimensionality with pre-trained models before MI estimation, which improves scalability.

2 MODEL

Consider a machine learning task with a model parameterized by θ ∈ Θ ⊆ Rk. We assume the
Bayesian perspective, where θ is drawn from an underlying prior distribution p(θ). Suppose we have
a test dataset T = (x

(1)
T , . . . ,x

(NT )
T ), consisting of NT i.i.d. data points drawn from an underlying

distribution p(xT |θ), and an original dataset D = (x
(1)
D , . . . ,x

(ND)
D ), with ND i.i.d. data points from

an underlying p(xD|θ). The two datasets may not follow the same distribution, so p(xD|θ) need not
equal p(xT |θ). Denote the support of D and T by D and T , respectively.

We aim to evaluate different data curation methods, which can be seen as functions applied to the
original dataset, possibly incorporating additional information to improve the data. This additional
information is represented by a random variable A, which may be correlated with both the model
parameter θ and the dataset D.
Definition 2.1 (Data curation method). Let A be a random variable representing additional infor-
mation for data curation, and let A be the support of A. A data curation method with additional
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information A is a function f : A×D → D that outputs a modified dataset f(A,D) given A and an
original dataset D ∈ D. The space of such functions is denoted by F .

Below are several examples of data curation methods:

• Adding new data. A simple data curation method is adding new data, where A ∈ D
represents the new data and f(A,D) = D ∪A.

• Deleting data. It is also common to select a subset of data and remove the others, as seen in
coreset selection Mirzasoleiman et al. (2020), data filtering with quality signals (Gunasekar
et al., 2023; Li et al., 2023; Fang et al., 2023; Pouget et al., 2024), data deduplication (Kand-
pal et al., 2022), and removing low-quality or out-of-domain data Northcutt et al. (2021);
Ghorbani & Zou (2019); Jia et al. (2019b). In data deletion, the additional information
can be represented as a random vector A ∈ {0, 1}ND indicating whether each data point is
retained or removed.

• Reweighting data. Another commonly used method is resampling data points with different
weights Xie et al. (2024); Xu et al. (2024). In this case, the additional information can
represented by a random vector A ∈ NND indicating the number of copies of each data
point in the final dataset.

To distinguish between methods that merely adapt the dataset to be more similar to the test data and
those that introduce meaningful improvements, we employ the Blackwell ordering of informativeness.

Definition 2.2 (Blackwell order of informativeness Blackwell et al. (1951)). If random variables
X → Y → Z form a Markov chain, then Z is less informative than Y about X .

In particular, suppose we have a data curation method f(A,D) that reduces the informativeness of D
about the true model parameter θ in the Blackwell order, i.e., θ → D → f(A,D) forms a Markov
chain. Then by Blackwell’s theorem, the best model trained on D can achieve an expected loss that is
at least as low as the best model trained on f(A,D).

Theorem 2.3 (Informal, Blackwell et al. (1951)). Suppose θ → D → f(A,D) forms a Markov chain.
Consider the decision problem of selecting a hypothesis/trained model h from a hypothesis/model
class H to minimize the expected loss using a dataset. Then, the minimum expected loss achievable
using D is at least as low as that achievable using f(A,D).

We defer the formal version of this theorem to Theorem A.5.

We thus define such curation methods that reduce informativeness as strategic data curation methods.
A data curation method is considered strategic if the resulting dataset is less informative about the
true model parameter θ according to the Blackwell ordering.

Definition 2.4 (Strategic data curation). A data curation method f(·) is strategic if the curated dataset
f(A,D) is less informative about θ than the original dataset D. Formally, θ → D → f(A,D) forms
a Markov chain.

Below are several examples of strategic curation methods:

• Adding fake data. When adding new data A, if A consists of i.i.d. data points from p(xD|θ),
then f(A,D) is more informative because it does not form a Markov chain. However, if A
contains randomly generated fake data, f(A,D) becomes strategic, as θ → D → f(A,D)
forms a Markov chain.

• Deleting or reweighting data without additional signals. When deleting or reweighting
data, if A ∈ NND is guided by some additional quality or relevance signal, such as oracle
information identifying incorrect/irrelevant labels, the filtered/reweighted dataset can be
more informative. Conversely, if A is decided solely from the observed dataset D without
utilizing new signals—i.e., when there exist functions hD(A) that determine the distribution
of A given a dataset D—the resulting dataset f(A,D) will be less informative. Because we
have p(A|D,θ) = hD(A) = p(A|D), indicating that θ → D → A forms a Markov chain,
and thus θ → D → f(A,D) forms a Markov chain.

• Deleting or reweighting data by non-essential features. In addition, when deleting or
reweighting data, if A ∈ NND is based on some non-essential feature that is non-predictive
of the label, the resulting dataset will be less informative. To be more specific, suppose a
data point x = (z, y) in D consists of a label y and essential features z. Suppose there is
some non-essential feature zN that satisfies p(y|θ, z, zN ) = p(y|θ, z) and is non-predictive
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of y conditioned on z, as illustrated in the graphical model in Figure 1. Then if the vector
A ∈ NND is decided by this non-essential feature of the data points, z(1)N , . . . , z

(ND)
N (as

well as D), then the resulting dataset will be less informative because z
(1)
N , . . . , z

(ND)
N are

independent of θ conditioned on D (as the path between θ and zN is blocked by z and
d-separation implies conditional independence).

θ y z z, zN zN

Figure 1: Graphical model for non-essential features.

For simplicity, we sometimes omit the dependency on A and use f(D) to represent a data curation
method.

We assess a data curation method by assigning it a score, with the goal of distinguishing between
methods that increase or reduce informativeness. A scoring function for data curation methods is
defined as follows.
Definition 2.5 (Scoring function for data curation methods). A scoring function for data curation
methods S : F → R assigns a score S(f) to a data curation method f(·), given access to the original
data D and test data T .
Our goal is to design a scoring function that does not encourage strategic data curation methods.
Specifically, we seek a function that assigns lower scores to strategic methods than to the case of no
modification.
Definition 2.6 (Strategy-proof scoring functions). A scoring function S(f) for data curation methods
is strategy-proof if it ensures that strategic data curation methods always receive a score no higher
than the identity function f(D) ≡ D, while S(f) itself is non-constant.

3 PMI SCORING FUNCTION

We propose a strategy-proof scoring function that measures the Shannon mutual information (MI) of
the curated datasets and test datasets. To estimate the mutual information, we leverage pre-trained
models to embed data points and then build a Bayesian model, based on which we introduce a
closed-form formula for approximating the pointwise mutual information (PMI) of datasets. In
this section, we omit the dependency on A and use f(D) to represent a data curation method for
simplicity.

3.1 METHOD

We first introduce the key steps of our approach.
Mutual information as the metric. Due to the data processing inequality, the simplest metric that
would yield a strategy-proof scoring function, if computable, is the Shannon mutual information of
the model parameter θ and the curated dataset f(D) = D̂, denoted by I(θ, f(D)).

Lemma 3.1 (Data processing inequality). If θ → D → D̂ form a Markov chain, then I(θ, D) ≥
I(θ, D̂), where I(X,Y ) is the Shannon mutual information of X and Y . Therefore if we use
I(θ, f(D)) to score f(·), a strategic f(·) will not receive a score higher than the identity function
f(D) ≡ D.

However, since the underlying true model parameter is not observable, we propose using the Shannon
mutual information of the curated dataset and the observable test dataset T as the scoring function,
which serves as a strategy-proof scoring function as well.

Proposition 3.2. The Shannon mutual information of the curated dataset f(D) = D̂ and the test
dataset T , if computable, is a strategy-proof scoring function. The Shannon mutual information
I(D̂, T ) = ED̂,T

[
log p(D̂,T )

p(D̂)p(T )

]
is defined as the expectation of the pointwise mutual information

PMI(D̂, T ) = log p(D̂,T )

p(D̂)p(T )
, where the expectation is taken over the joint distribution p(D̂, T ) that

is induced by the data generating process described in Section 2.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The proof is deferred to Appendix C.1.

Bayesian modeling on embedded data. Then the problem boils down to estimating the mutual
information of two datasets. Estimating mutual information of high-dimensional variables is chal-
lenging in practice. Existing techniques such as (Kraskov et al., 2004; Belghazi et al., 2018b; Oord
et al., 2018) can reliably estimate MI in up to tens of dimensions, but fail in higher dimensions (Gowri
et al., 2024). However, a dataset contains many data points, which inevitably boosts the dimension
even with low-dimensional representation of data points. As a result, our problem of estimating
mutual information between datasets introduces significant new challenges. To address this, we
propose a novel method that leverages a dataset’s ability to train a machine learning model.

The proposed method proceeds as follows. First, recall that the mutual information is the expectation
of the pointwise mutual information. We generate k dataset pairs (D1, T1), . . . , (Dk, Tk) and use the
average pointwise mutual information 1

k

∑k
i=1 PMI(f(Di), Ti) to estimate the mutual information

I(f(D), T ).

Next, we leverage widely-used large pretrained models to generate embeddings of the data, which
are then used to train smaller Bayesian models with a specified prior p(θ) and specified likelihoods
p(xD|θ), p(xT |θ) (such as Bayesian logistic regression, Bayesian linear regression, or a Bayesian
multilayer perceptron). We assume that the true data generating process is well modeled by this
Bayesian model on data embeddings.
Assumption 3.3. We assume that the true data generating process is adequately captured by applying
a tractable Bayesian model parametrized by θ to embeddings generated by a pretrained model, with a
specified prior p(θ) and specified likelihoods p(xD|θ), p(xT |θ) for the resulting embeddings.

For simplicity, we still use D and T to represent the embedded data and then utilize this Bayesian
model on embedded D,T to estimate the PMI of datasets.

Closed-form approximation of pointwise mutual information. Even with a Bayesian model,
computing PMI(f(Di), Ti) = log p(f(Di),Ti)

p(f(Di))p(Ti)
= log p(Ti|f(Di))

p(Ti)
remains non-trivial, particularly

because the marginal probability p(f(Di)), p(Ti) is often intractable (which leads to intractable
posterior p(θ|·) as well) for most of the Bayesian models. Extensive research in Bayesian machine
learning has focused on estimating the posterior distribution of model parameters p(θ|·). For instance,
methods such as Laplace approximation, variational inference aim to approximate the posterior p(θ|·)
by tractable distributions. But even with a tractable approximated posterior p(θ|·), the posterior
predictive p(Ti|f(Di)) =

∫
θ
p(Ti|θ)p(θ|f(Di)) dθ is still intractable for most models including

logistic regression. The computation of the posterior predictive p(Ti|f(Di)) requires further approx-
imation such as Monte Carlo integration or likelihood function approximation (see Section 4.1 for
detailed discussion and experiments). Building on the vast literature on approximating p(θ|·), our
main technical contribution is a closed-form formula for the PMI when p(θ|·) is approximated by a
tractable distribution, bypassing the further approximation of the posterior predictive.

Theorem 3.4 (PMI dataset score). Let D̂i = f(Di) be the curated datasets, and let p(θ|X) be
the posterior of θ given a dataset X . Then the pointwise mutual information PMI(D̂i, Ti) can be
computed as

PMI(D̂i, Ti) =Uη(D̂i, Ti)

:= log
p(θ = η|D̂i) · p(θ = η|Ti)

p(θ = η) · p(θ = η|D̂i, Ti)
, (1)

where η is an arbitrary parameter value in Θ.2

The proof of Theorem 3.4 only relies on Bayes’ rule and we defer the proof to Appendix C.2.

Our PMI dataset score can be easily computed as long as the posteriors and the prior are approximated
by tractable distributions. This makes it applicable to a wide range of commonly-used Bayesian

2Note that the value of Uη(D̂i, Ti) stays the same across all η values, so η can be chosen arbitrarily. Theo-
rem 3.4 mainly builds on the following equation p(T |D)

p(T )
= p(θ=η|D)·p(θ=η|T )

p(θ=η)·p(θ=η|D,T )
when D and T are independent

conditional on θ, which might be of independent interest. Our expression in Theorem 3.4 also allows new
interpretations of PMI, which we defer to Appendix D.1.
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neural networks, including Gaussian approximation Daxberger et al. (2021); Yang et al. (2023);
Blundell et al. (2015); Wang et al. (2024b), Gaussian mixture approximation Blundell et al. (2015),
and Dirichlet approximation Hobbhahn et al. (2022).

Algorithm and convergence rate. Combining all the steps, our PMI scoring function for data
curation methods can be computed as in Algorithm 1.

Algorithm 1 PMI scoring function
Require: Datasets (D1, T1), . . . , (Dk, Tk), an data curation method f(·) for evaluation, a pre-trained

model used to embed the data points, a Bayesian model for the embedded data with tractable
approximated posteriors p(θ|·), a vector η ∈ Θ.

Ensure: A score for the curation method f(·)
1: Apply the curation method f(·) on D1, . . . , Dk and get the curated datasets D̂1, . . . , D̂k

2: Use the pre-trained model to embed the datasets D̂1, . . . , D̂k and T1, . . . , Tk.
3: For each pair of embedded (D̂i, Ti), compute the pointwise mutual information Uη(D̂i, Ti) via

the approximated posteriors of the Bayesian model parameters p(θ|·) as in Equation (1).
4: Return 1

k

∑k
i=1 Uη(D̂i, Ti).

Based on the previous analysis, the algorithm outputs an unbiased estimator of the target metric
I(f(D), T ), which converges to the true value of I(f(D), T ) as k increases.

Corollary 3.5. The output of Algorithm 1 provides an unbiased estimator of I(f(D), T ). Assuming
that the posteriors are in an exponential family and the datasets have bounded sufficient statistics, we
have Pr

(∣∣∣ 1k ∑k
i=1 Uη(D̂i, Ti)− I(D̂, T )

∣∣∣ ≤ ε
)
≥ 1− δ when k = O(log(1/δ)/ε2), and we have

the expected square error of the estimator decreases as O(1/k).

The proof is deferred to Appendix C.3. Compared to commonly used MI estimators, our concentration
bound is independent of the variable dimension, unlike the bound in Belghazi et al. (2018a), which
scales as O

(
d log(

√
d/ε)+d+log(1/δ)

ε2

)
, where d is the variable dimension. Additionally, unlike the

methods in (Belghazi et al., 2018a; Kraskov et al., 2004; Oord et al., 2018; Song & Ermon, 2019),
our approach guarantees not only consistency but also unbiasedness. We further show the advantages
of our method in Section 4.1

4 EXPERIMENTS

We evaluate the accuracy of our MI estimator and its ability to assess dataset informativeness through
experiments on real-world data. Our results demonstrate that the PMI scoring function remains
effective even when employing the simple Bayesian logistic regression model with Gaussian approxi-
mation (outlined in Appendix C.4) for Bayesian modeling. The Gaussian posterior approximation
can be efficiently computed by training a standard logistic regression model with L2 regularization or
by employing the Laplace approximation method in Daxberger et al. (2021).

4.1 ACCURACY OF MUTUAL INFORMATION ESTIMATION

We evaluate our method on resampled real-world data.

Dataset generation. We resample datasets from MNIST and estimate their mutual information,
where the exact value of mutual information is unknown but their relative rankings can be inferred.
To assess the accuracy of our method, we measure the rank correlation between the estimated and
true rankings. The setup is as follows. We randomly sample dataset pairs containing images of 0s and
1s from MNIST. First, we randomly select two correlated numbers, rD, rT ∈ {0.2, 0.8}, distributed
as in the following table where ρ is a number between 0.25 and 0.5.

P (rD, rT ) rD = 0.2 rD = 0.8
rT = 0.2 ρ 1

2 − ρ
rT = 0.8 1

2 − ρ ρ
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These numbers represent the proportion of data points with label 0 in datasets D and T , respectively.
We then generate D and T by randomly sampling images from MNIST to match the specified label
proportions rD, rT , resulting in two correlated datasets.
Fact 1. The mutual information of the generated datasets I(D,T ) increases in ρ for 0.25 ≤ ρ ≤ 0.5.
The proof is deferred to Appendix E.1.

Baseline method. Gowri et al. (2024) demonstrated that commonly-used nonparametric methods
reliably estimate MI in up to tens of dimensions, but fail in higher dimensions.3 Consequently,
such methods are unsuitable for estimating dataset-level mutual information. We thus focus on
parametric methods for approximating PMI(D,T ) = log p(T |D)

p(T ) , which requires estimating the
posterior predictive p(T |D) =

∫
θ
p(T |θ)p(θ|D) dθ. For classification problems, several approaches

exist for posterior predictive approximation, including Monte Carlo integration, probit approxi-
mation (Gibbs, 1998), and Laplace bridge (Hobbhahn et al., 2022). However, probit approxima-
tion and Laplace bridge cannot be used as they only provide posterior predictives for individual
data points,

∫
θ
p(x

(i)
T |θ)p(θ|D) dθ, whereas we need posterior predictives for an entire dataset,∫

θ

∏
i p(x

(i)
T |θ)p(θ|D) dθ, where x(i)

T is the i-th data point in T . As a result, Monte Carlo integration
stands as the only viable baseline for our problem.

Setting. We use our method and the Monte Carlo baseline to estimate the mutual information of
D,T and assess their accuracy by the rank correlation between the estimated rankings the true ρ
rankings. We consider ten values of ρ, corresponding to mutual information values ranging from
0.1 to 1.0 in increments of 0.1. For each ρ, we estimate the mutual information with both our PMI
formula and Monte Carlo integration, averaged over the 1,000 dataset pairs. To compute our PMI
formula, we train logistic regression models on D and T with L2 regularization parameterized by C,
which corresponds to a Gaussian prior N(0, C · I). For Monte Carlo integration, we adopt the same
logistic regression model and sample 1000 points from the posterior p(θ|D) to estimate the posterior
predictive p(T |D).

Results. As shown in Table 1, our PMI estimator consistently achieves significantly higher Kendall
τ rank correlation than the baseline, regardless of the choice of regularization strength C. This
demonstrates that our method provides far more accurate mutual information estimates, and its
ranking estimates are robust to prior misspecification. Additionally, our method runs much faster
than the baseline. This indicates that our approach not only provides more accurate results but is also
computationally more efficient.

Method τ Runtime (min)
PMI (C = 1) 0.956 75

PMI (C = 100) 0.911 76
PMI (C = 1000) 0.911 75

Baseline 0.600 739

Table 1: Comparison of Kendall’s τ rank correlation and runtime across different methods. PMI
(C = c) refers to our PMI-based mutual information estimation method, where C denotes the
regularization parameter for L2 regularization in logistic regression, corresponding to a Gaussian
prior N(0, C · I). The baseline method employs Monte Carlo integration with 1,000 samples per
estimate and an optimally selected regularization strength (C = 100). For each ρ, both PMI and MC
integration are averaged over 1,000 pairs of correlated datasets (D,T ), each with 100 images and
reduced to 100 dimensions via Principal Component Analysis. Runtime is measured as the total time
(in minutes) required to complete all experiments across 10 ρ values on the same machine.

4.2 EVALUATING DATA CURATION METHODS

We next use popular datasets to test our PMI scoring function in evaluating data curation methods. We
show that the PMI scoring function is effective in distinguishing between strategic and non-strategic
curation methods, whereas evaluating curation methods using test scores could promote strategic
methods that do not add new information but merely make the data more similar to the test data.

3Given that the intrinsic dimension of MNIST images is approximately 10, as reported by (Pope et al., 2021),
these nonparametric methods fail when applied to datasets containing more than 10 images.
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Data curation methods and dataset generation. There are numerous data curation methods
available for evaluation. We select three that can be clearly classified as strategic or non-strategic. To
evaluate these methods, we apply these methods to dataset pairs randomly sampled from the training
and test sets of Colored MNIST Arjovsky et al. (2020) and Corrupted CIFAR Hendrycks & Dietterich
(2019).

• Data filtering: We consider the removal of mislabeled data, assuming access to oracle
information about the correctness of each label. We consider such data filtering as a
non-strategic curation methods that is expected to receive a score higher score than no
modification. To generate datasets for filtering, we randomly sample T1, . . . , Tk from the
test set, and sample datasets from the training set and flip the labels of some data points
to generate D1, . . . , Dk. We compare the scores before and after the removal of these
mislabeled data points.

• Strategic data duplication or removal by non-essential features: We then consider the
duplication/removal of a data subset without using quality or relevance signals but only
makes the data more similar to the test data based on non-essential features, such as the
brightness of an image (in Corrupted CIFAR) or the color of a figure (in Colored MNIST).
This results in a strategic curation method, which should receive a score lower than that of
f(D) ≡ D. We generate datasets for duplication or removal as follows. Let zE represent the
essential features from the original MNIST/CIFAR, zN ∈ {0, 1} be a binary non-essential
features introduced in Colored MNIST/Corrupted CIFAR (e.g. color and brightness), and
y ∈ {0, 1} be a binary label. We sample pairs of D and T with the same essential feature
distribution pD(zE , y) = pT (zE , y) but different compositions of non-essential features
pD(zN = 0|zE , y) ̸= pT (zN = 0|zE , y). We then consider data duplication/removal
on D based on the non-essential feature zN that aligns pD(zN |zE , y) with pT (zN |zE , y).
Conditioned on D, such duplication/removal is independent of the true θ, making it a
strategic curation method.

For both cases, we generate the smallest datasets that achieve reasonable accuracy ∼ 80%− 90% to
avoid overlap.

Scoring functions. We compare our PMI scoring function (Algorithm 1) to the test accuracy
baseline that trains a model on the curated dataset and evaluate its accuracy on the test set. Specifically,
we define the test accuracy scoring function as: STS(f) = 1

k

∑k
i=1 Acc(θ(f(Di)), Ti), where

Acc(θ(D), T ) represents the accuracy of the model trained on D when evaluated on the test set
T . To compute our PMI score in Algorithm 1, we train different models for Colored MNIST and
Corrupted CIFAR. For Colored MNIST, we directly use a logistic regression model. For Corrupted
CIFAR, we use pre-trained ResNet18 to extract image embeddings and subsequently train a logistic
regression. The logistic regression models are trained using L2 regularization with parameter C,
which corresponds to a Gaussian prior N(0, C · I). These models are subsequently employed to
evaluate the test accuracy scoring function.

Results. Table 2 and Table 3 present the changes in the PMI scoring function and test accuracy
after applying the three data curation methods. Across both datasets, our PMI score effectively
distinguishes between strategic and non-strategic curation methods: data filtering increases the PMI
score, whereas data duplication or removal based on non-essential features leads to a decrease.
In contrast, the test accuracy metric fails to detect strategic data duplication and removal, always
assigning them higher scores. This suggests that relying solely on test accuracy may inadvertently
promote strategic methods that do not introduce new information but merely make the training
data more similar to the test data. Furthermore, our findings are robust to prior misspecification
(varying choices of C), and we observe the same pattern across different data distributions, as detailed
in Appendix E.2.

5 DISCUSSION AND FUTURE WORK

We propose an information-theoretic framework for evaluating data curation methods that measures
data informativeness by the mutual information of the curated data and the test data. We discuss
several potential directions for future work. Firstly, a key open problem is to develop principled
method for selecting dataset pairs that most effectively estimate mutual information. We have
observed that the PMI scoring function can fail when the datasets Di, Ti are too small to train

9
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C Operation PMI Score Change Accuracy Change(%)
10 Data Denoising 6.4621 ± 0.8463 0.91 ± 0.06
50 Data Denoising 8.1367 ± 1.0031 0.78 ± 0.11

100 Data Denoising 12.7610 ± 1.2069 0.14 ± 0.01
200 Data Denoising 13.5874 ± 1.0423 0.31 ± 0.02

10 Data Duplication -2.8150 ± 1.1563 3.84 ± 0.55
50 Data Duplication -1.8428 ± 1.0567 3.30 ± 0.65

100 Data Duplication -1.8762 ± 0.9954 2.75 ± 0.54
200 Data Duplication -2.5927 ± 1.1437 1.43 ± 0.29

10 Data Removal -5.2692 ± 0.7825 0.31 ± 0.02
50 Data Removal -5.5265 ± 0.9823 0.28 ± 0.03

100 Data Removal -6.5826 ± 1.0437 0.34 ± 0.04
200 Data Removal -13.9614 ± 2.0497 0.54 ± 0.04

Table 2: Changes in PMI score function and test accuracy after applying three data curation methods
to the Colored MNIST dataset. C denotes the regularization parameter for L2 regularization in the
trained logistic regression models, corresponding to a Gaussian prior N(0, C · I). The training and
the test sets consist of 200− 400 samples. The Denoising method removes flipped data points, while
Duplication aligns the distribution of non-essential features in the training set with the test set by
duplicating a subset of samples. Removal achieves the same alignment by discarding data points.
We compute the mean changes in PMI scores and test accuracy by averaging results over 1,000 trials,
while the variances are further estimated from 10 repeated runs. Details of the experimental setup
and results for a different data distribution are provided in Appendix E.2.1.

C Operation PMI Score Change Accuracy Change (%)
10000 Data Denoising 1.8112±0.1408 7.24±0.07
30000 Data Denoising 1.6553±0.1288 7.25±0.17
50000 Data Denoising 1.5311±0.1452 7.29±0.10

100000 Data Denoising 1.2920±0.1578 7.37±0.14
10000 Data Duplication -0.6288±0.0275 0.53±0.03
30000 Data Duplication -0.8258±0.0311 0.53±0.03
50000 Data Duplication -0.9025±0.0385 0.58±0.03

100000 Data Duplication -0.9987±0.0501 0.59±0.03
10000 Data Removal -3.8205±0.0892 0.69±0.07
30000 Data Removal -4.4238±0.0847 0.77±0.10
50000 Data Removal -4.6780±0.1171 0.82±0.13

100000 Data Removal -5.0191±0.0969 0.79±0.16

Table 3: Changes in PMI score function and test accuracy after applying three data curation methods
to the Corrpted CIFAR dataset. C denotes the regularization parameter for L2 regularization in the
trained logistic regression models, corresponding to a Gaussian prior N(0, C · I). The training and
the test sets consist of 120−180 samples. The experiments were repeated 1,000 times to compute the
mean changes in PMI scores and test accuracy, and this process was repeated 10 times to estimate the
variances. Details of the experimental setup and results for a different data distribution are provided
in Appendix E.2.2.

effective models, as well as when they are too large, resulting in significant overlap between datasets
that violates the independence assumption. Secondly, the selection of the prior is also crucial. While
we observe that the PMI scoring function is robust to prior misspecifications in terms of ranking
mutual information, the absolute accuracy of its MI estimates is highly sensitive to the choice of prior.
Thirdly, our experiments focus on the simple logistic regression for Bayesian modeling. It remains an
open question whether mutual information estimation could be improved by more advanced Bayesian
neural networks.
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A BLACKWELL ORDERING

We begin by providing background on the Blackwell order of information structures. We first
introduce the formal definitions of decision-making problems and information structures.
Definition A.1. A decision-making problem under uncertainty is defined by the following compo-
nents:

• State Space (Ω): A set of possible states of the world, denoted ω ∈ Ω.
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• Action Space (A): A set of possible actions or decisions, denoted a ∈ A.

• Utility Function (u): A function u : A× Ω → R that quantifies the payoff of taking action
a in state ω.

• Prior Belief (P ): A probability distribution over Ω, representing the decision-maker’s initial
beliefs. And the corresponding random variable for the state is denoted by W .

An information structure reveals some signal about the state of the world ω.
Definition A.2. An information structure S consists of a pair (Y, π), where:

• Y is a set of possible signals or observations.

• π : Ω → ∆(Y) is a Markov kernel specifying the conditional probability π(y|ω) of
observing signal y given state ω. The corresponding random variable representing the signal
is denoted by Y .

The decision-maker observes a signal y from the information structure and updates their beliefs about
the state ω using Bayes’ rule. Based on the updated beliefs, they choose an action a to maximize
their expected utility.

The Blackwell order provides a way to compare two information structures in terms of their informa-
tiveness, which is defined as follows.
Definition A.3 (Blackwell et al. (1951)). Let S1 = (Y1, π1) and S2 = (Y2, π2) be two information
structures over a common state space Ω, with the corresponding signals represented by random
variables Y1 and Y2. We say that S1 is more informative than S2 in the Blackwell order, if there exists
a Markov kernel κ : Y1 → ∆(Y2) such that:

π2(y2|ω) =
∑

y1∈Y1

κ(y2|y1)π1(y1|ω) ∀y2 ∈ Y2, ω ∈ Ω,

or equivalently W → Y1 → Y2 forms a Markov chain, where W is the random variable representing
the state.

In particular, if an information structure S1 is more informative than S2 in the Blackwell order, then,
by Blackwell’s theorem on decision-making superiority, the decision-maker can achieve at least as
high an expected utility using S1 as they can using S2 for any decision-making problem.
Theorem A.4 (Blackwell’s theorem on decision-making superiority Blackwell et al. (1951)). Let
S1 = (Y1, π1) and S2 = (Y2, π2) be two information structures over a common state space Ω with
the corresponding signals represented by random variables Y1 and Y2. The following statements are
equivalent:

1. Blackwell Informativeness: S1 is more informative than S2, or equivalently, W → Y1 →
Y2 forms a Markov chain.

2. Decision-Making Superiority: For any decision-making problem (Ω, A, u, P ), the maxi-
mum expected utility achievable using S1 is at least as high as that achievable using S2.
Formally:

max
a1:Y1→A

E[u(a1(y1), ω)] ≥ max
a2:Y2→A

E[u(a2(y2), ω)],

where the expectations are taken over ω ∼ P , y1 ∼ π1(·|ω), and y2 ∼ π2(·|ω).

We can then apply Blackwell’s theorem on decision-making superiority to the problem of data
valuation in machine learning. Consider the true underlying model parameter θ as the state of the
world and the dataset D as a signal about θ. Suppose we aim to use D to select a hypothesis or
trained model h from a hypothesis/model class H, which serves as the action space. The utility
function u(h,θ) represents the negative expected loss when the true model parameter is θ and the
hypothesis/model h is chosen:

u(h,θ) = −Ex,y∼p(x,y|θ)[l(h(x), y)] ≜ −L(h,θ),

where l(·) is a loss function.
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Now, suppose we have a data curation strategy f(D) that reduces the informativeness of the dataset
D about θ in the Blackwell order, i.e., θ → D → f(D) forms a Markov chain. By Blackwell’s
theorem on decision-making superiority, the decision-maker can achieve at least as low an expected
loss using the original dataset D as they can using the curated dataset f(D).

Theorem A.5. Let θ be the true underlying model parameter, D1 be a dataset consisting of data
points (x, y) drawn from p(x, y|θ), and D2 be a less informative dataset such that θ → D1 → D2

forms a Markov chain. Consider the decision problem of selecting a hypothesis/trained model h from
a hypothesis/model class H to minimize the expected loss E[l(h(x), y)] using a dataset. Then, the
minimum expected loss achievable using D1 is at least as low as that achievable using D2. Formally:

min
h1:D→H

E[L(h1(D1),θ)] ≤ min
h2:D→H

E[L(h2(D2),θ)],

where L(h,θ) = Ex,y∼p(x,y|θ)[l(h(x), y)] represents the expected loss when the true parameter is θ
and the model h is chosen. The expectation is taken over θ ∼ p(θ), D1, and D2.

B INTEGRAL PMI SCORE

Kong & Schoenebeck (2018b) proposes a method to compute the PMI.

Theorem B.1 (Integral PMI score (Kong & Schoenebeck, 2018b)). The pointwise mutual informa-
tion PMI(d, t) = log

∫
θ
p(θ|D = d)p(θ|T = t)/p(θ) dθ. Therefore the data valuation function

U(d, t) = log
∫
θ
p(θ|D = d)p(θ|T = t)/p(θ) dθ is truthful.

Nonetheless, this integral formulation remains computationally challenging for many basic Bayesian
machine learning scenarios. Chen et al. (2020) introduced a theoretical framework for evaluating the
integral score specifically within exponential family distributions; however, applying their approach
is non-trivial. Computing their normalization function g(·) may necessitate solving a non-trivial
integral.

For completeness, we provide a stand-alone proof for Theorem B.1.

Theorem B.2 (Kong & Schoenebeck (2018b); Chen et al. (2020)). Let D and T be two datasets that
are independent conditional on θ, i.e.,

p(D,T |θ) = p(D|θ)p(T |θ),

then the valuation function

U(d, t) = log

∫
θ

p(θ|D = d)p(θ|T = t)/p(θ) dθ.

is truthful.

Proof. This is basically because when D and T are conditionally independent, we have

U(d′, t) = log

∫
θ

p(θ|D = d′)p(θ|T = t)

p(θ)
dθ

= log

∫
θ

p(d′|θ)p(t|θ)p(θ)
p(d′)p(t)

dθ

= log

∫
θ
p(d′, t,θ) dθ

p(d′)p(t)

= log
p(d′, t)

p(d′)p(t)

= log
p(t|D = d′)

p(t)

= log p(t|D = d′)− log p(t),
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which is just the log scoring rule. If the data provider manipulates the dataset and report f(d) = d′ ̸=
d, then we have

ET [U(d, T )|D = d]− ET [U(d′, T )|D = d]

=
∑
t∈T

p(t|D = d) log p(t|D = d)−
∑
t∈T

p(t|D = d) log p(t|D = d′)

=
∑
t∈T

p(t|D = d) log
p(t|D = d)

p(t|D = d′)

= DKL

(
p(t|D = d), p(t|D = d′)

)
≥ 0.

Chen et al. (2020) proposed a theoretical framework for computing this integral score for exponential
family distributions.

Definition B.3 (Exponential family Murphy (2012)). A likehihood function p(x|θ), for x =
(x1, . . . , xn) ∈ Xn and θ ∈ Θ ⊆ Rm is said to be in the exponential family in canonical form
if it is of the form

p(x|θ) = 1

Z(θ)
h(x) exp

[
θTϕ(x)

]
or p(x|θ) = h(x) exp

[
θTϕ(x)−A(θ)

]
(2)

Here ϕ(x) ∈ Rm is called a vector of sufficient statistics, Z(θ) =
∫
Xn h(x) exp

[
θTϕ(x)

]
is called

the partition function, A(θ) = lnZ(θ) is called the log partition function.

If the posterior distributions p(θ|x) are in the same probability distribution family as the prior
probability distribution p(θ), the prior and posterior are then called conjugate distributions, and the
prior is called a conjugate prior.

Definition B.4 (Conjugate prior for the exponential family Murphy (2012)). For a likelihood function
in the exponential family p(x|θ) = h(x) exp

[
θTϕ(x)−A(θ)

]
. The conjugate prior for θ with

parameters ν0, τ 0 is of the form

p(θ) = P(θ|ν0, τ 0) = g(ν0, τ 0) exp
[
ν0θ

T τ 0 − ν0A(θ)
]
. (3)

Let s = 1
n

∑n
i=1 ϕ(xi). Then the posterior of θ can be represented in the same form as the prior

p(θ|x) ∝ exp
[
θT (ν0τ 0 + ns)− (ν0 + n)A(θ)

]
= P

(
θ|ν0 + n,

ν0τ 0 + ns

ν0 + n

)
,

where P
(
θ|ν0 + n, ν0τ0+ns

ν0+n

)
is the conjugate prior with parameters ν0 + n and ν0τ0+ns

ν0+n .

Then if the prior and the posteriors are in an exponential family, the integral PMI score can be
expressed as follows using the normalization function g(·).
Lemma B.5. If the model distributions are in an exponential family, so that the prior and all the
posterior of θ can be written in the form

p(θ) = P(θ|ν0, τ 0) = g(ν0, τ 0) exp
[
ν0θ

T τ 0 − ν0A(θ)
]
,

p(θ|D) = P(θ|νD, τD) and p(θ|T ) = P(θ|νT , τT ), then the pointwise mutual information can be
expressed as

PMI(D,T ) =
g(νD, τD)g(νT , τT )

g(ν0, τ 0)g(νD + νT − ν0,
νDτD+νT τT−ν0τ0

νD+νT−ν0
)
.

However, finding the function g(·) is not straightforward and may involve solving a complex integral.
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C MISSING PROOFS IN SECTION 3

C.1 PROOF OF PROPOSITION 3.2

Let D and T be two datasets induced by the data generating process described in Section 2, and
let f(D) be any strategic data curation method so that θ → D → f(D) forms a Markov chain.
We want to show that the Shannon mutual information I(f(D), T ), if computable, is a desirable
scoring function, in other words, I(f(D), T ) ≤ I(D,T ). Due to Lemma 3.1, it suffices to prove that
T → D → f(D) forms a Markov chain.

Since θ → D → f(D) forms a Markov chain, which means that θ and f(D) are independent
conditioned on D, and D and T are independent conditioned on θ by the data generating process, it
follows that T and f(D) are independent conditioned on D,

p(T, f(D)|D)

=

∫
θ

p(T, f(D),θ|D) dθ

=

∫
θ

p(T, f(D)|θ, D)p(θ|D) dθ

=

∫
θ

p(T |f(D),θ, D)p(f(D)|θ, D)p(θ|D) dθ

=

∫
θ

p(T |θ)p(f(D)|D)p(θ|D) dθ

=p(f(D)|D)

∫
θ

p(T |θ)p(θ|D) dθ

=p(f(D)|D)p(T |D).

Therefore T → D → f(D) forms a Markov chain as well, and by Lemma 3.1, the Shannon mutual
information of the curated dataset and the test dataset I(f(D), T ) will be a desirable scoring function
if computable.

C.2 PROOF OF THEOREM 3.4

To prove the theorem, we first prove the following lemma.
Lemma C.1. Let D and T be two random variables that are independent conditional on random
variable θ, that is, p(D,T |θ) = p(D|θ)p(T |θ). Then we have for any η ∈ Θ, d ∈ D, and t ∈ T ,

p(T = t|D = d)

p(T = t)
=

p(θ = η|D = d) · p(θ = η|T = t)

p(θ = η) · p(θ = η|D = d, T = t)
.

The proof of Lemma C.1 mainly relies on Bayes’ rule and the conditional independence condition.

Proof. Since D,T are independent conditional on θ, for any η ∈ Θ we have
p(θ = η|D = d, T = t)

=
p(D = d, T = t|θ = η) · p(θ = η)

p(D = d, T = t)

=
p(D = d|θ = η) · p(T = t|θ = η) · p(θ = η)

p(D = d, T = t)

=
p(θ = η|D = d) · p(θ = η|T = t) · p(D = d) · p(T = t)

p(θ = η) · p(D = d, T = t)
.

Then we have
p(θ = η|D = d) · p(θ = η|T = t)

p(θ = η) · p(θ = η|D = d, T = t)
=

p(D = d, T = t)

p(D = d) · p(T = t)

=
p(T = t|D = d)

p(T = t)
.
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With this equation, we can apply the logarithmic scoring rule to get a truthful valuation function,
which gives the valuation function in Theorem 3.4. The proof is as follows.

Proof. According to Lemma C.1, U(d, t) = log p(T = t|D = d)/P (T = t). Then the expected
score is maximized by reporting d because

ET [Uη(d, T )|D = d]− ET [Uη(d
′, T )|D = d]

=

∫
t

p(t|D = d) log p(t|D = d) dt−
∫
t

p(t|D = d) log p(t|D = d′) dt

=

∫
t

p(t|D = d) log
p(t|D = d)

p(t|D = d′)
dt

= DKL

(
p(t|D = d), p(t|D = d′)

)
≥ 0.

And when truthful reporting, the expected score E[Uη(D,T )] is just the Shannon mutual information

I(D,T ) = ED,T

[
log p(D,T )

p(D)p(T )

]
.

C.3 PROOF OF COROLLARY 3.5

When the posteriors are in an exponential family and the datasets have bounded sufficient statistics,
the PMI will be bounded such that Uη(D̂i, Ti) ≤ M . Then the concentration bound can be easily
derived using the Chernoff bound. The expected square error is just the variance of the estimator
since the estimator is unbiased, which decrease as O(1/k).

C.4 LOGISTIC REGRESSION WITH GAUSSIAN APPROXIMATION

Consider logistic regression with likelihood function p(y|x,θ) = Ber(y|Sigm(θTx)), and consider
Bayesian logistic regression with Gaussian approximation (see Murphy (2012) Chapter 8) where a
Gaussian prior p(θ) = N (0,Σ0) is assumed. Then given a dataset (X,y), (where matrix X is the
input data with each column being a data feature and vector y is the observed labels,) the approximate
posterior is given by p(θ|X,y) ≈ N (µ,Σ) with

µ = argmin
w

E(w), Σ−1 = ∇2E(w)|µ,

where E(w) = −(log p(y|X,w) + log p(w)). Then µ can be solved by gradient descent and the
Hessian matrix Σ−1 can be computed in closed form. In particular, if we pick Σ0 = I, then we have
Σ−1 = XTSX + I, where S = diag

(
Sigm(µTxi)(1 − Sigm(µTxi))

)
. Therefore as long as the

data collector knows the prior N (0,Σ0), she will be able to compute the posterior given any dataset,
and thus our PMI score can be computed by Corollary C.2. Again, we do not need to assume the
distribution of the feature p(x|θ) and our PMI score can be used when the test data and the evaluated
data have different feature distributions.

Gaussian models. We provide the closed-form solution for the widely-used Gaussian models below.
Consider a Gaussian model with a normal prior p(θ) = N (µ0,Σ0) and normally distributed poste-
riors p(θ|D = d) = N (µa,Σa), p(θ|T = t) = N (µb,Σb), p(θ|D = d, T = t) = N (µab,Σab).
We demonstrate that to compute our PMI score, it is sufficient to evaluate just two posteriors:
p(θ|D = d) = N (µa,Σa) and p(θ|T = t) = N (µb,Σb). The parameters of the joint posterior
µab,Σab can be derived from µa,Σa, µb,Σb. Consequently, even if data providers are unable to share
the entire dataset due to privacy concerns, the PMI score can still be computed as long as the data
provider submits µa and Σa.
Corollary C.2. Suppose we have p(θ|D = d) = N (µa,Σa), p(θ|T = t) = N (µb,Σb), and the
prior p(θ) = N (µ0,Σ0), then our PMI score equals

Uη(d, t) =
1

2

(
log

det(Σ0) det(Σ̃)

det(Σa) det(Σb)
+ µT

0 Σ
−1
0 µ0 + µ̃T Σ̃−1µ̃− µT

aΣ
−1
a µa − µT

b Σ
−1
b µb

)
,

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where Σ̃ = (Σ−1
a +Σ−1

b − Σ−1
0 )−1 and µ̃ = Σ̃

(
Σ−1

a µa +Σ−1
b µb − Σ−1

0 µ0

)
. In addition, we have

p(θ|D = d, T = t) = N (µ̃, Σ̃).

Proof. We consider Gaussian models with posteriors p(θ|D = d) = N (µa,Σa), p(θ|T = t) =
N (µb,Σb), p(θ|D = d, T = t) = N (µab,Σab), and the prior p(θ) = N (µ0,Σ0). Then the PMI
score with η = 0 is equal to

U0(d, t) =
1

2

(
log

det(Σ0) det(Σab)

det(Σa) det(Σb)
+ µT

0 Σ
−1
0 µ0 + µT

abΣ
−1
ab µab − µT

aΣ
−1
a µa − µT

b Σ
−1
b µb

)
.

(4)

Then it suffices to prove that Σab = (Σ−1
a + Σ−1

b − Σ−1
0 )−1 and µab =

Σab

(
Σ−1

a µa +Σ−1
b µb − Σ−1

0 µ0

)
. Due to conditional independence and according to the

proof of Lemma C.1, we have

p(θ|d, t) ∝ p(θ|d)p(θ|t)
p(θ)

=
N (θ;µa,Σa)N (θ;µb,Σb)

N (θ;µ0,Σ0)

∝ exp
(
− 1

2
g(θ)

)
where

g(θ) := (θ − µa)
TΣ−1

a (θ − µa) + (θ − µb)
TΣ−1

b (θ − µb)− (θ − µ0)
TΣ−1

0 (θ − µ0)

Here, g(θ) can be further simplified as g(θ) = (θ − µ̃)T Σ̃−1(θ − µ̃) + Z2 where

Σ̃ = (Σ−1
a +Σ−1

b − Σ−1
0 )−1

µ̃ = Σ̃
(
Σ−1

a µa +Σ−1
b µb − Σ−1

0 µ0

)
Z2 = µT

aΣ
−1
a µa + µT

b Σ
−1
b µb − µT

0 Σ
−1
0 µ0 − µ̃T Σ̃−1µ̃.

Then p(θ|d, t) must be the Gaussian distribution with mean µ̃ and covariance matrix Σ̃.

D INTERPRETATION OF PMI

Our expression in Theorem 3.4 uncovers the relationship between the PMI of two datasets and the
predictions they induce about θ. Using this expression, we demonstrate that the PMI of two datasets
can be decomposed into the sum of two terms: (1) a term that measures the similarity between the
outcomes obtained from two datasets, i.e., p(θ|D) and p(θ|T ); (2) a term that measures how much
D,T boost the confidence of our estimation of θ.

We first present the interpretation for Gaussian models and then extend it to general distributions.
When the prior p(θ) is uninformative compared to p(θ|d) and p(θ|t), the PMI dataset score for
Gaussian models can be represented as the sum of two terms: (1) a term quantifying the similarity
between p(θ|D) and p(θ|T ), characterized by the dual skew G-Jensen-Shannon divergence (Nielsen,
2019) between p(θ|D) and p(θ|T ); (2) a term assessing how much D,T boost the confidence of
our estimation of θ, which is equal to how much d and t reduce the (logarithm of the generalized)
variance of our belief about θ.

Given two distributions p and q, the dual skew G-Jensen-Shannon divergence between p and q is their
total KL divergence to their geometric mean.

Definition D.1 (Dual skew G-Jensen-Shannon divergence (Nielsen, 2019)). The dual skew G-Jensen-
Shannon divergence of two distributions p, q for parameter α ∈ [0, 1] is defined as JSGα

∗ (p∥q) =
(1−α)DKL(Gα(p, q)∥p) +α ·DKL(Gα(p, q)∥q), where Gα(p, q) is the weighted geometric mean
of p and q with Gα(p, q)(x) ∝ p(x)1−αq(x)α.
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Then the PMI dataset score can be expressed as follows.
Theorem D.2. When the prior p(θ) is uninformative, our PMI dataset score for Gaussian models
has

U(d, t) =
1

2
log

|Σ0|
|Σ̃|

− 2 · JSGα
∗ (N (µa,Σa)∥N (µb,Σb))− k log 2

with α = 1/2, where N (µa,Σa) = p(θ|d), N (µb,Σb) = p(θ|t), and N (µ̃, Σ̃) = p(θ|d, t).

The negative dual skew G-Jensen-Shannon divergence indicates the similarity between p(θ|D)

and p(θ|T ). Besides the constant term −k log 2, the term 1
2 log |Σ0|/|Σ̃| = 1

2 (log |Σ0| − log |Σ̃|)
corresponds to the difference in (the logarithm of) the generalized variances of p(θ) and p(θ|d, t),
as the determinant of the covariance matrix is the generalized variance of a Gaussian distribution.
In other words, it could be interpreted as how much d and t reduce the uncertainty or increase the
confidence of our estimation. Therefore 1

2 log |Σ0|/|Σ̃| can be interpreted as how much datasets d
and t reduce uncertainty and increase confidence in our estimation.

For general distributions, if we similarly define DKL(p(θ|d, t)∥p(θ|d)) + DKL(p(θ|d, t)∥p(θ|t))
as the divergence and DKL(p(θ|d, t)∥p(θ)) as the confidence increase, the approximation holds
at equality. See Appendix D.3 for the proof and the details. In addition, this KL divergence
representation can be interpreted as the “mutual information” of d and t regarding θ. Due to space
constraints, we discuss this interpretation in Appendix D.1.

D.1 INTERPRETATION BY POINTWISE MUTUAL PARAMETER INFORMATION

Firstly, our score can be represented as d and t’s mutual information regarding θ, where the amount
of information regarding θ in a dataset is measured by how much the dataset decreases the KL
divergence defined below.
Definition D.3 (Pointwise parameter information of datasets). Given two datasets d, t, and a prior
p(θ), define the pointwise parameter information of a dataset s as

PId,t(s) = DKL(p(θ|d, t)∥p(θ))−DKL(p(θ|d, t)∥p(θ|s)),
which represents how much observing s reduces the KL divergence to p(θ|d, t) from our belief about
θ. Similarly, we define the conditional pointwise parameter information of a dataset s given another
dataset r as

PId,t(s|r) =DKL(p(θ|d, t)∥p(θ|r))−DKL(p(θ|d, t)∥p(θ|s, r)),
which represents how much observing s reduces the KL divergence to p(θ|d, t) if we have already
observed r.

Then our score can be represented as “mutual information” similar to the Shannon mutual information
I(X,Y ) = H(X)+H(Y )−H(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) with the entropy
H(·) replaced by our pointwise parameter information.
Theorem D.4. Our PMI score equals

Uη(d, t) = PId,t(d) + PId,t(t)− PId,t(d ∪ t) ≜ PMId,t(d, t),

which we define as the pointwise mutual parameter information of d and t. In addition, we have

PMId,t(d, t) = PId,t(d)− PId,t(d|t) = PId,t(t)− PId,t(t|d).

See the proof in Appendix D.2. Theorem D.4 also suggests that our PMI score can be computed by
computing/estimating KL divergence between the posteriors.

D.2 PROOF OF THEOREM D.4

We prove the theorem by proving the following lemma.
Lemma D.5. When D and T are independent conditional on θ, we have

Uη(d, t) = DKL(p(θ|d, t)∥p(θ))−DKL(p(θ|d, t)∥p(θ|d))−DKL(p(θ|d, t)∥p(θ|t)).
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Proof. The right side of the equation equals

DKL(p(θ|d, t)∥p(θ))−DKL(p(θ|d, t)∥p(θ|d))−DKL(p(θ|d, t)∥p(θ|t))

=

∫
p(θ|d, t) log p(θ|d, t)

p(θ)
dθ −

∫
p(θ|d, t) log p(θ|d, t)

p(θ|d)
dθ −

∫
p(θ|d, t) log p(θ|d, t)

p(θ|t)
dθ

=

∫
p(θ|d, t) log p(θ|d)p(θ|t)

p(θ|d, t)p(θ)
dθ

= log
p(t|d)
p(t)

= Uη(d, t).

The third equation is due to Theorem 3.4, that is, we have p(θ|d)p(θ|t)
p(θ|d,t)p(θ) =

p(t|d)
p(t) for all θ.

Then according to our definition of pointwise parameter information, we have

Uη(d, t) = DKL(p(θ|d, t)∥p(θ))−DKL(p(θ|d, t)∥p(θ|d))−DKL(p(θ|d, t)∥p(θ|t))
=
(
DKL(p(θ|d, t)∥p(θ))−DKL(p(θ|d, t)∥p(θ|d))

)
+
(
DKL(p(θ|d, t)∥p(θ))−DKL(p(θ|d, t)∥p(θ|t))

)
−
(
DKL(p(θ|d, t)∥p(θ))−DKL(p(θ|d, t)∥p(θ|d, t))

)
= PId,t(d) + PId,t(t)− PId,t(d ∪ t)

≜ PMId,t(d, t).

And by our definition of conditional pointwise parameter information, we have

Uη(d, t) =
(
DKL(p(θ|d, t)∥p(θ))−DKL(p(θ|d, t)∥p(θ|d))

)
−
(
DKL(p(θ|d, t)∥p(θ|t))−DKL(p(θ|d, t)∥p(θ|d, t))

)
= PId,t(d)− PId,t(d|t).

Similarly, we have Uη(d, t) = PId,t(t)− PId,t(t|d).

D.3 PROOF OF THEOREM D.2

Recall that the dual skew G-Jensen-Shannon divergence is defined as follows.

Definition D.6 (Dual skew G-Jensen-Shannon divergence (Nielsen, 2019)). The dual skew G-Jensen-
Shannon divergence of two distributions p, q for parameter α ∈ [0, 1] is defined as JSGα

∗ (p∥q) =
(1−α)DKL(Gα(p, q)∥p) +α ·DKL(Gα(p, q)∥q), where Gα(p, q) is the weighted geometric mean
of p and q with Gα(p, q)(x) ∝ p(x)1−αq(x)α.

Nielsen (2019) solved the dual skew G-Jensen-Shannon divergence JSG
∗ between two multivariate

Gaussian, which is equal to the following.

Lemma D.7 (Nielsen (2019) Corollary 1). The dual skew G-Jensen-Shannon divergence JSGα
∗

between two multivariate Gaussian N (µ1,Σ1) and N (µ2,Σ2) with α = 1
2 is equal to

JSGα
∗ (N (µ1,Σ1)∥N (µ2,Σ2)) =

1

4

(
µT
1 Σ

−1
1 µ1 + µT

2 Σ
−1
2 µ2 − 2µTΣ−1µ+ log

|Σ1||Σ2|
|Σ|2

)
,

where Σ = 2(Σ−1
1 +Σ−1

2 )−1 and µ = 1
2Σ(Σ

−1
1 µ1 +Σ−1

2 µ2).

Then suppose we have p(θ|D = d) = N (µa,Σa), p(θ|T = t) = N (µb,Σb), the prior p(θ) =

N (µ0,Σ0), and p(θ|D = d, T = t) = N (µ̃, Σ̃) with Σ̃ = (Σ−1
a +Σ−1

b −Σ−1
0 )−1 ≈ (Σ−1

a +Σ−1
b )−1

and µ̃ = Σ̃
(
Σ−1

a µa +Σ−1
b µb − Σ−1

0 µ0

)
≈ Σ̃

(
Σ−1

a µa +Σ−1
b µb

)
. By definition, we have

JSGα
∗ (N (µa,Σa)∥N (µb,Σb)) =

1

4

(
µT
aΣ

−1
a µa + µT

b Σ
−1
b µb − 2µTΣ−1µ+ log

|Σa||Σb|
|Σ|2

)
,
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where Σ = 2(Σ−1
a + Σ−1

b )−1 ≈ 2Σ̃ and µ = 1
2Σ(Σ

−1
a µa + Σ−1

b µb) ≈ µ̃. Then Uη(d, t) defined
in Corollary C.2 has

Uη(d, t) + 2 · JSGα
∗ (N (µa,Σa)∥N (µb,Σb)) ≈

1

2
log

det(Σ0) det(Σ̃)

det(Σa) det(Σb)
+

1

2
log

det(Σa) det(Σb)

det(2Σ̃)2

=
1

2
log

det(Σ0) det(Σ̃)

det(2Σ̃)2

=
1

2
log

det(Σ0) det(Σ̃)

4k · det(Σ̃)2

=
1

2
log

det(Σ0)

det(Σ̃)
− k log 2.

For general distributions, we can get a similar interpretation using Lemma D.5. Similar to the
definition of the dual skew G-Jensen-Shannon divergence, we define 1

2DKL(p(θ|d, t)∥p(θ|d)) +
1
2DKL(p(θ|d, t)∥p(θ|t)) as the divergence of p(θ|d) and p(θ|t), where p(θ|d, t) is viewed as the
geometric mean of p(θ|d) and p(θ|t). In addition, we define DKL(p(θ|d, t)∥p(θ)) as the coun-
terpart of 1

2 log
det(Σ0)

det(Σ̃)
− k log 2, representing confidence increase/uncertainty reduction. Then

by Lemma D.5, the PMI dataset score Uη(d, t) equals the confidence increase DKL(p(θ|d, t)∥p(θ))
minus the divergence DKL(p(θ|d, t)∥p(θ|d)) +DKL(p(θ|d, t)∥p(θ|t)).

E SIMULATIONS

E.1 DETAILED EXPERIMENT SETUP IN SECTION 4.1

We randomly sample dataset pairs containing images of 0s and 1s from MNIST. First, we randomly
select two correlated numbers, rD, rT ∈ {0.2, 0.8}, such that their mutual information can be
computed.

rD = 0.2 rD = 0.8
rT = 0.2 ρ 1

2 − ρ
rT = 0.8 1

2 − ρ ρ

These numbers represent the proportion of data points with the label 0 in datasets D and T , re-
spectively. Next, we generate a random vector LD ∈ {0, 1}ND , where each element is 0 with
probability rD, and a similar vector LT ∈ {0, 1}NT , where each element is 0 with probability rT .
Each value in LD and LT corresponds to a label for an image. To simplify analysis while preserving
the overall dataset composition, we make a minor modification: we replace the last bit of LD by
⊕ND−1

j=1 LD(i) ⊕ 1(rD = 0.2) so that the XOR sum of LD reveals the value of rD. Similarly, we
adjust the last bit of LT so that the XOR sum of LT reveals rT . Finally, we replace each label in LD

and LT with a randomly selected image matching the label, resulting in two correlated datasets D
and T .
Fact 2. The mutual information of the generated datasets I(D,T ) = I(rD, rT ) increases in ρ for
0.25 ≤ ρ ≤ 0.5.

Proof. By Theorem 4 in (Gowri et al., 2024), I(D,T ) = I(LD, LT ) assuming that H(LD|D) = 0
and H(LT |T ) = 0. Again, since LD and LT fully reveals rD and rT , which means H(rD|LD) = 0
and H(rT |LT ) = 0, Theorem 4 in (Gowri et al., 2024) implies that I(LD, LT ) = I(rD, rT ).
Therefore I(D,T ) = I(LD, LT ) = I(rD, rT ).

To estimate the mutual information, we generate k dataset pairs (D1, T1), . . . , (Dk, Tk) and compute
the average PMI using our formula Theorem 3.4 or Monte Carlo integration. We repeat the process
for m times using different parameters 0.25 ≤ ρ1, . . . , ρm ≤ 0.5 and estimate the ranking of mutual
information (using our method or Monte Carlo integration). The accuracy of the methods is assessed
by the rank correlation between the estimated and true rankings.
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Setting. We selected ten values of ρ corresponding to mutual information values ranging from
0.1 to 1.0 (in increments of 0.1) for evaluation. For each ρ, we tested the performance of our PMI
estimator under different regularization strengths C.

To fit the dataset, we employed the Bayesian logistic regression with Gaussian approximation outlined
in Appendix C.4. We use the LogisticRegression function from the sklearn library. The
model utilizes the L2 norm as the regularization term, with the regularization strength controlled by
C. The logistic regression model is configured with a maximum number of iterations set to 5000
(max iter = 5000) and no intercept fitting (fit intercept = False), while all other parameters are set
to their default values. The range of C is tuned via cross-validation.

Then for each ρ, we computed the estimated mutual information using our PMI formula, averaged
over 1000 repeated trials, and calculated the Kendall τ rank correlation between the estimated mutual
information rankings and the true rankings of ρ.

As a baseline, we used Monte Carlo integration to estimate the mutual information for each ρ. Each
Monte Carlo integration involved sampling 1000 points. Similarly, we computed the Kendall τ rank
correlation between the rankings derived from the baseline’s estimated mutual information and the
true ρ rankings.

E.2 DETAILED EXPERIMENT SETUP IN SECTION 4.2

E.2.1 COLORED MNIST

Experimental Settings:

In this study, we evaluate a logistic regression model with varying regularization strengths C on
a colorized MNIST dataset under three scenarios: (1) Data Denoising, (2) Data Duplication, and
(3) Data Removal. The training and test sets consist of samples from four categories: blue-label-
0, blue-label-1, green-label-0, and green-label-1. blue-label-0 refers to images with a blue
background and a label of 0, blue-label-1 refers to images with a blue background and a
label of 1, green-label-0 refers to images with a green background and a label of 0, and
green-label-1 refers to images with a green background and a label of 1.

The logistic regression model is implemented using the LogisticRegression function from
the sklearn library. It employs the L2 norm as the regularization term, with the strength of
regularization controlled by C. The model is configured with a maximum number of iterations set to
5000 (max iter = 5000) and no intercept fitting (fit intercept = False), while all other parameters
are set to their default values. The range of C is tuned via cross-validation.

In all scenarios, the experiment is repeated 1,000 times for each value of C, and the mean changes
in the PMI score and the test accuracy are computed. To compute our PMI scoring function, we
employed the Bayesian logistic regression with Gaussian approximation outlined in Appendix C.4.
This process is independently repeated 10 times, resulting in 10 groups of mean values (each group
based on 1,000 repetitions). From these groups, the overall mean (averaged across all 10,000
experiments) and standard deviation (from the 10 groups) are calculated.

1. Data Denoising: For this scenario, we introduce noise by flipping the labels of 10 training samples
prior to model training. After training, the mislabeled samples are corrected, and the model is
retrained. Results are presented in Table 2 and Table 4.

2. Data Duplication: In this scenario, additional blue-label-0 and green-label-1 samples are dupli-
cated in the training set to match the ratio of four categories of the test set. The model is retrained,
and the changes in PMI Score, Loss, and Accuracy are recorded. Results are presented in Table 2 and
Table 4.

3. Data Removal: Here, blue-label-0 and green-label-1 samples are removed from the training set
to match the ratio of four categories of the test set. The model is retrained, and the changes in PMI
Score, Loss, and Accuracy are recorded. Results are presented in Table 2 and Table 4.
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C Change in PMI Score Change in Accuracy (%)
Data Denoising

10 7.8126 ± 0.9157 0.92 ± 0.08
20 7.8239 ± 1.0087 0.74 ± 0.05
50 6.2547 ± 0.9763 1.29 ± 0.09

100 14.5329 ± 1.3924 0.20 ± 0.02
200 11.9261 ± 1.1762 0.09 ± 0.02

Data Duplication
10 -2.2345 ± 1.1247 4.50 ± 0.74
20 -1.5895 ± 1.0426 2.95 ± 0.71
50 -1.3916 ± 1.0483 3.21 ± 0.68

100 -0.4248 ± 0.2519 1.61 ± 0.54
200 -1.7580 ± 0.8914 0.97 ± 0.34

Data Removal
10 -7.2140 ± 0.9073 0.41 ± 0.03
20 -7.5783 ± 1.1306 0.19 ± 0.01
50 -6.5111 ± 1.1430 0.21 ± 0.02

100 -7.1336 ± 0.9251 0.20 ± 0.02
200 -14.1899 ± 1.7394 0.67 ± 0.03

Table 4: Changes in PMI score function and test accuracy after three data curation methods with
different regularization strengths C in the Colored MNIST dataset. The original training set, sampled
from a larger dataset, consists of samples from four categories, with sizes of 50 or 150 per category,
and the test set has sizes of 50, 150, 150, 50. To introduce noise, a certain percentage of the training
labels are flipped. The Denoising method removes flipped data points, with a training set size of
50 samples per category and a test set size of 50 samples per category. The Duplication method
adjusts the training set to match the test set’s category ratios via duplication, resulting in sizes of
50, 100, 100, 50 for the test categories. Finally, the Removal method reduces the training set size
to match the test set category ratios, resulting in training sizes of 100, 50, 50, 100. The experiment
was repeated 1, 000 times to compute the mean changes in PMI scores and accuracy and repeated 10
times to compute final means and variances.
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E.2.2 CORRUPTED CIFAR

Experimental Settings. We set up the following three experiments to compare the performance of
our PMI score function against the standard evaluation approach on the corrupted CIFAR dataset in
evaluating three different data curation methods. We choose two classes as labels 0 and 1 among all
classes in the CIFAR-10 datasets and select two corruption types (brightness and contrast)
as bias in the datasets. More details of corruption design can be found in Hendrycks & Dietterich
(2019).

Using the label and bias of data, we sample with different ratios in four cate-
gories: brightness-label-0, contrast-label-0, brightness-label-1,
contrast-label-1. brightness-label-0 refers to images with brightness
corruption and a label of 0. contrast-label-0 refers to images with contrast corruption
and a label of 0. brightness-label-1 refers to images with brightness corruption and a
label of 1. contrast-label-1 refers to images with contrast corruption and a label of 1.
We sample training sets with ratio 1:1:1:1 and test sets with ratio 1:2:2:1 or 1:3:3:1 with respect to
four categories.

In each experiment, we extract image embeddings using ResNet18 pre-trained on ImageNet (with
the last layer removed) and flip 10% labels of the sampled training dataset to introduce noise. Then
we train logistic regression models on these embeddings with varying regularization strengths C
ranging from 10000 to 100000. To further clarify, the logistic regression model is implemented using
the LogisticRegression function from the sklearn library. It employs the L2 norm as the
regularization term, with the strength of regularization controlled by C. The model is configured
with a maximum number of iterations set to 5000 (max iter = 5000) and no intercept fitting
(fit intercept = False), while all other parameters are set to their default values. Here we add a
dimension in embeddings where each entry is 1 and omit the bias term to integrate the bias into the
weight vector. The range of C is tuned via cross-validation.

For each value of C, the experiment is repeated 1,000 times, and we compute the mean changes
in PMI Score and test accuracy across these 1,000 runs. To compute our PMI we employed the
Bayesian logistic regression with Gaussian approximation outlined in Appendix C.4. This process is
independently repeated 10 times, producing 10 groups of mean values (each group based on 1,000
repetitions). From these 10 groups, we calculate the overall mean (averaging across all 10,000
experiments) and the standard deviation (calculated from the 10 groups of mean values). The results
are summarized in Tables 3 and 5.

1. Data Denoising. In this experiment, we check the change of PMI score function and test accuracy
after removing the mislabeled data. We directly remove the data points whose labels are flipped.

2. Data Duplication. In this experiment, we check the change of PMI score function and test
accuracy after duplicating part of training dataset to match the ratio of four categories of test dataset
which is a non-essential feature irrelevant to the model.

3. Data Removal. In this experiment, we check the change of PMI score function and test accuracy
after removing part of training dataset to match the ratio of four categories of test dataset which is a
non-essential feature irrelevant to the model.
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C Change in PMI Score Change in Accuracy (%)
Data Denoising

10000 2.1175±0.1916 7.38±0.11
20000 1.9854±0.1680 7.29±0.14
30000 1.9894±0.2097 7.36±0.15
50000 1.8297±0.1332 7.26±0.14

100000 1.5816±0.1717 7.31±0.09
Data Duplication

10000 -0.2901±0.0757 0.84±0.07
20000 -0.3753±0.0793 0.86±0.06
30000 -0.5194±0.1152 0.84±0.06
50000 -0.5766±0.0758 0.86±0.06

100000 -0.8050±0.0973 0.86±0.05
Data Removal

10000 -6.1685±0.0608 1.83±0.12
20000 -6.8668±0.1173 2.00±0.14
30000 -7.3100±0.1357 1.85±0.12
50000 -7.8402±0.1086 1.86±0.14

100000 -8.3621±0.1293 1.92±0.09

Table 5: Changes in PMI score function and test accuracy after three data curation methods with
different regularization strengths C in Corrpted CIFAR dataset. The original training set, sampled
from a larger dataset, consists of images from four categories, each with size 30, and the test set
has sizes 20, 60, 60, 20. To introduce noise, 10% of the training labels are flipped. The Denoising
method simply removes flipped data points, while Duplication and Removal adjust the training set
to match the test set’s category ratios via copy or delete operations, resulting in sizes of 30, 90, 90, 30
and 10, 30, 30, 10, respectively. The experiment, repeated 1,000 times to compute mean changes in
PMI scores and accuracy and repeated 10 times to obtain final means and variances.
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