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Abstract. Accurate classification of Ictal-Interictal-Injury Continuum
(IIIC) patterns is essential for neurological assessment in intensive care
units, yet remains challenging due to limitations in capturing inter-
lead correlations and addressing class imbalance. To tackle this, we pro-
pose ESCAViT, a multi-stream Transformer-based EEG classification
framework. ESCAViT leverages the Video Vision Transformer with spe-
cialized feature extraction mechanisms to model spatiotemporal EEG
patterns, while applying domain-adaptive learning to enhance data di-
versity and mitigate heterogeneous Other class(HOC) effects. Experi-
mental results on the IIIC dataset show that ESCAViT outperforms
state-of-the-art models, achieving 21.9% improvement in mean accu-
racy per class (mACC) and 22.6% in F1-score. Our method signifi-
cantly enhances LRDA classification by over over 20%, thereby ad-
dressing classification bias. ESCAViT demonstrates consistent perfor-
mance across different IIIC patterns and imbalanced distributions, con-
firming its effectiveness in EEG classification. The code is available at
https://github.com/limshmai/ESCAViT.git

Keywords: IIIC Pattern Classification · EEG Transformer · Inter-Lead
Contrastive Learning · Class Imbalance Mitigation.

1 Introduction

Electroencephalogram (EEG) monitoring plays a vital role in detecting and man-
aging neurological injuries in intensive care units (ICUs) [1]. Among various EEG
patterns, IIIC patterns are frequently observed in critically ill patients. These
patterns, which include Seizure, Lateralized Periodic Discharges (LPD), General-
ized Periodic Discharges (GPD), Lateralized Rhythmic Delta Activity (LRDA),
and Generalized Rhythmic Delta Activity (GRDA), provide crucial diagnostic
insights into subclinical seizures and seizure-like electrical events, aiding early
neurological injury detection [2].

However, IIIC pattern classification remains challenging due to two key fac-
tors:

https://github.com/limshmai/ESCAViT.git
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1. Inter-lead relationships & spatial dependencies—In IIIC classification, Lat-
eralized patterns are confined to one hemisphere, while Generalized patterns
manifest symmetrically across both hemispheres. This hemispheric symme-
try is crucial for distinguishing seizures from non-ictal activity, yet existing
methods fail to effectively model these inter-lead correlations [3, 4].

2. Data ambiguity & class imbalance—Expert disagreement and severe class
imbalance (Other: 7,205 vs. LRDA: 936 ) introduce significant classification
bias [5, 6].

To address these challenges, we propose ESCAViT, a multi-stream Transformer-
based EEG classification framework that explicitly models EEG lead symmetry
and enhances feature robustness through domain-adaptive learning. Unlike con-
ventional Video Vision Transformer (ViViT) architecture [7], which struggles
with local representation, ESCAViT introduces the following key contributions:

1. Lead-Aware Feature Extraction: Pairwise Attention and Lead Attention
are incorporated to explicitly capture inter-lead dependencies, improving
spatial-temporal EEG representation.

2. Domain-Specific Learning Strategies: To mitigate class imbalance and
HOC issues and enhance feature generalization, we design a unified frame-
work that integrates Adaptive EEG Spectrogram Mixup (AES-Mix) and
Lead Interrelation-Guided Contrastive Learning (LIGCL).

3. Multi-Pathway Feature Integration: Overlapping Convolutional Pro-
jection and Multi-Stream Architecture enable fine-grained seizure pattern
detection while preserving global EEG structure.

Through these innovations, ESCAViT significantly enhances IIIC pattern
classification, particularly in capturing symmetrical relationships between left
and right hemisphere leads, outperforming existing methods.

2 Related Work

EEG classification presents unique challenges due to its high-dimensional, noisy,
and ambiguous nature, making traditional spectrum analysis and wavelet-based
methods suboptimal [8]. Recent deep learning approaches have demonstrated su-
perior performance across various EEG-related tasks, including seizure detection
and neurodegenerative disease diagnosis [9].
Hybrid GNN-CNN Models.. Hybrid GNN-CNN models [3] and spatial multi-
scale attention mechanisms [10] have been introduced to address these limita-
tions. However, these methods still face challenges in modeling dynamic feature
interactions due to the structural rigidity of GNN-based graph representations.
Transformer-Based EEG Analysis. Transformers leverage self-attention mech-
anisms for long-range feature extraction [4], yet lack explicit spatial priors, lim-
iting their ability to model local EEG variations and inter-lead correlations.
ViT-based architectures [11] show promise in EEG classification but struggle to
capture fine-grained seizure morphology changes.
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Fig. 1. Architecture of ESCAViT. (a) EEG preprocessing: 20 raw leads compressed into
four key leads (LL, LP, RL, RP) and converted to Mel-Spectrograms. (b) ESCAViT
structure: integration of ViViT-based inter-channel modeling and hemisphere-specific
3D ResNet pathways. (c) Lead-Attention and (d) Pairwise Attention mechanisms for
modeling inter-lead relationships and enhancing spatial-spectral feature extraction.

Motivation for ESCAViT. Existing EEG models fail to comprehensively ad-
dress lead symmetry, class imbalance, and data ambiguity. To resolve these is-
sues, we propose ESCAViT, which integrates ViViT-based multi-stream feature
learning with domain-specific techniques for effective IIIC pattern classification.

3 Methodology

3.1 Overview

The preprocessing pipeline of ESCAViT comprises two stages, as illustrated in
Fig. 1(a). Initially, the Banana Montage technique [12] reduces the original 20
EEG leads to four key leads (LL, LP, RL, RP), thereby reducing computa-
tional complexity while preserving spatial relationships. Subsequently, each lead
is transformed into a Mel-Spectrogram [13] with a temporal axis of 256 sec-
onds to facilitate time-frequency analysis. In the lead notation, the first letter
denotes the Left/Right hemisphere, while the second letter indicates the Lat-
eral/Parasagittal position.

As shown in Fig. 1(b) and (c), (d), ESCAViT integrates ViViT-based inter-
channel modeling with hemisphere-specific spatiotemporal feature extraction to
overcome the limitations of conventional ViViT models. The architecture con-
sists of a ViViT-based pathway for global feature extraction and two 3D ResNet
pathways that independently learn spatiotemporal EEG representations from
each cerebral hemisphere. Convolutional Projection and Lead Attention mecha-
nisms are incorporated to explicitly capture inter-lead dependencies. Addition-
ally, ESCAViT applies a unified framework that integrates AES-Mix for data
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augmentation and LIGCL for contrastive learning to improve class separability
and robustness against data ambiguity.

3.2 Feature Extraction with Lead Attention

Seizure EEG signals are characterized by the sudden appearance of distinct spec-
tral patterns at specific time points. To effectively capture these temporal and
spectral fluctuations, we propose a Lead Attention mechanism based on spatial
attention [14]. Unlike CBAM, which employs 2D spatial pooling, Lead Atten-
tion explicitly models inter-lead dependencies and EEG-specific time-frequency
variations while preserving temporal information through 3D convolutions.

Lead Attention dynamically learns the importance of four leads at each time
frame. By extracting mean and maximum values from the time-frequency rep-
resentations of each lead and generating attention weights through 3D convo-
lutions, the mechanism can selectively focus on specific leads exhibiting seizure
activity. Pairwise Attention groups left hemisphere leads (LL, LP) and right
hemisphere leads (RL, RP) to explicitly model inter-hemispheric symmetry.

For lead-wise feature extraction, the AST architecture employs DeiT-Base
(12 layers, 768 dimensions, 12 attention heads) applied to each lead, dividing
mel-spectrograms into 16 × 16 patches. Unlike standard AST models, ESCAViT
incorporates Overlapping Convolutional Projection to overcome the limitations
of ViT-based models in capturing fine-grained seizure morphology [15, 16]. As
illustrated in Fig. 1(d), Lead Attention extracts mean and maximum values
along the frequency and time axes and generates attention weights through a
3D convolutional network. These weights refine the AST-based representations
to enhance localized seizure pattern detection.

3.3 Feature Integration

Extracted features from each lead are integrated using a Global Feature Trans-
former (Fig. 1(b)), which is a ViT-Base model pretrained on ImageNet. The
Global Feature Transformer integrates four leads as 2 × 1 patches and employs
learnable absolute position embeddings at all stages. This integration leverages
Convolutional Projection [16] for enhanced local feature encoding and overlap-
ping patch embeddings to maintain critical long-range dependencies.

Pairwise Attention (Fig. 1(c)) models hemispheric relationships by distin-
guishing left-right asymmetries, thereby improving seizure pattern detection.
Through these mechanisms, ESCAViT effectively integrates spatial and spec-
tral EEG features, outperforming traditional methods in capturing inter-lead
dependencies.

3.4 Domain Robust Technique

ESCAViT integrates two domain-adaptive learning strategies, AES-Mix and
LIGCL, to address data ambiguity, HOC issues, and class imbalance in EEG
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Table 1. Comparison of EEG models on IIIC classification performance. 1D models are
trained on raw EEG data, while 2D models use EEG spectrograms as input features.

Input Model Type Method ACC F1 KLD TPS mACC

1D
Graph 1D GNN-CNN [19] 0.394 0.246 0.830 0.192 0.248

Transformer EEG Conformer [20] 0.351 0.298 0.869 0.337 0.341
1D-based SPaRCNet [21] 0.636 0.546 0.698 0.447 0.511

2D
Transformer

AST(Tiny) [15] 0.503 0.421 0.766 0.378 0.411
w/ DRT 0.554 0.462 0.741 0.453 0.457

Domain-Adaptive
Learning

DANN [22] 0.495 0.280 0.816 0.163 0.284
w/ DRT 0.659 0.556 0.714 0.539 0.552

3D
3D CNN

ResNet3D [23] 0.670 0.600 0.670 0.576 0.592
w/ DRT 0.744 0.684 0.623 0.692 0.685

Ours
ESCAViT(base) 0.719 0.662 0.628 0.663 0.653
ESCAViT(w/ DRT) 0.758 0.714 0.605 0.700 0.704

classification. Each technique targets specific challenges through complementary
mechanisms.

AES-Mix addresses class imbalance by selectively augmenting minority classes
(LPD, GRDA, LRDA) to resolve feature learning failures in underrepresented
patterns [17]. Since RDA exhibit diagnostic features in 1-4Hz band, mixing is
restricted to this range to preserve critical characteristics [18].

LIGCL targets data ambiguity from low inter-rater agreement through adap-
tive contrastive learning. It uses mixup ratio λ as weights—higher for original-like
samples to maintain boundaries, lower for mixed samples to control ambiguity.

Their synergistic integration overcomes individual limitations: AES-Mix alone
dilutes majority class features while LIGCL alone over-sharpens minority class
boundaries. Combined, they enable robust performance on imbalanced and am-
biguous IIIC patterns.

4 Experimental Results

4.1 Dataset and Experimental Setup

We used the publicly available harmful brain activity in electroencephalogra-
phy (EEG) dataset (https://www.kaggle.com/competitions/hms-harmful-brain-
activity-classification, [24]). The dataset consists of 17,089 EEG segments from
2,711 patients, annotated by 20 neurophysiology experts into five IIIC-related
patterns (Seizure, LPD, GPD, LRDA, GRDA) and an Other category.

The dataset exhibits severe class imbalance, with the Other class comprising
42% while LRDA accounts for only 5%. Expert agreement varies significantly
across patterns, with LRDA and GPD showing the lowest consensus (0.73 and
0.80, respectively), indicating high inter-observer variability. These imbalances
and ambiguities highlight the necessity for domain-adaptive learning strategies.

https://www.kaggle.com/competitions/hms-harmful-brain-activity-classification
https://www.kaggle.com/competitions/hms-harmful-brain-activity-classification
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For the experimental setup, we divided the 17,089 samples into training,
validation, and testing sets using stratified splitting in an 8:1:1 ratio. All models
were trained on one NVIDIA GeForce RTX A6000 48GB GPU using the AdamW
optimizer with a learning rate of 1e-4, weight decay of 1e-3, batch size of 8, and
50 epochs.

4.2 Baseline Models and Evaluation Metrics

ESCAViT was evaluated against five types of state-of-the-art EEG classification
models. These include 1D-based approaches (SPaRCNet [21]), graph-based mod-
els (GNN-CNN [19]), Transformer-based architectures (EEG Conformer [20],
AST [15]), domain-adaptive learning (DANN [22]), and 3D CNN (ResNet3D [23]).

TPS =

∑
i 1(predi = truei) · 1(classi ̸= other)∑

i 1(classi ̸= other)
(1)

To assess model performance, we used multiple metrics including Accuracy
(ACC), macro-averaged F1-score, Mean Accuracy per Class (mACC), Target
Pattern Sensitivity (TPS), and KL Divergence (KLD). The mACC [25] measures
per-class accuracy to mitigate majority-class bias effects. TPS (Eq. 1) evaluates
classification accuracy excluding the majority Other class, focusing on IIIC-
related patterns. These two metrics served as primary indicators for evaluating
classification performance under class imbalance.

4.3 Performance Evaluation and Comparative Analysis

As shown in Table 1, conventional 1D and 2D models struggle with IIIC pattern
classification due to their limited ability to capture lead symmetry and seizure-
specific patterns. Even SpaRCNet, a model specialized for IIIC, shows predic-
tion bias with mACC and TPS below 51%. ResNet3D improves performance by
leveraging spatial correlations but remains suboptimal due to its limitations in
long-range feature extraction. In contrast, ESCAViT effectively captures inter-
lead features through Pairwise Attention and ViViT-based architecture while
extracting local features of seizure patterns via AST transfer learning, Lead
Attention, and Convolutional Projection. This results in average performance
improvements of 25.6% in F1, 30% in TPS, and 25.2% in mACC, demonstrat-
ing its ability to effectively capture seizure patterns while learning inter-lead
correlations.

DRT further improves ESCAViT, achieving over 70% in mACC and TPS,
confirming its effectiveness in mitigating prediction bias. Notably, DRT also en-
hances other spectrogram-based models, with DANN achieving a 16% accuracy
increase. This demonstrates DRT’s robustness in handling data ambiguity and
class imbalance.

4.4 Visualization of Model Behavior

We analyzed model behavior using confusion matrices, T-SNE visualizations,
and cluster-separation bar plots (Fig. 2). Compared to SpaRCNet, ESCAViT
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Fig. 2. Quantitative and qualitative comparison of models. (a) SpaRCNet from Table
1, (b) ESCAViT Base. Each model shows confusion matrix, t-SNE projection, and
cluster-separation bar plot. Bar plots report mean intra-class distance (dark bars, ± 1
SD), mean inter-class distance (light bars), and separation ratio (inter/intra distance).
Separation Ratio > 1 indicates well-separated clusters.

significantly reduced misclassifications into the Other class (397 → 187) and
achieved 31.4% improvement in seizure classification through Lead Attention
and Convolutional Projection. Pairwise Attention enhanced inter-lead symmetry
modeling, reducing LRDA-GRDA misclassification errors from 26 to 19.

The superior cluster separation performance of ESCAViT was confirmed
through T-SNE visualizations and bar plots. SpaRCNet exhibited high variance
in intra-class cohesion (intra metric), while ESCAViT achieved smaller Intra-
Distance than Inter-Distance for all classes except LRDA, demonstrating high
intra-class cohesion. ESCAViT achieved a separation ratio 0.747 points higher
than SpaRCNet.

Occlusion sensitivity analysis [26] (Fig. 3) confirmed ESCAViT’s ability to
capture hemispheric relationships. Unlike ResNet3D, which fails to consider left-
right correlations, ESCAViT effectively highlights symmetrical EEG features,
improving classification of ambiguous patterns.

4.5 Ablation Study

To confirm that the interaction between AES-Mix and LIGCL is essential in
the proposed DRT, we conducted experiments by individually applying each
technique to ESCAViT (base). As shown in Table 2, individual application of
each technique resulted in performance degradation. When only AES-Mix was
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Fig. 3. Occlusion sensitivity analysis (patch size: 32×32, stride: 16×16). (a) Mel-
Spectrogram visualization of an LRDA sample. Black boxes indicate regions where
frequency and amplitude differences are observed between left and right channels.
Right and left signals show similar patterns within each hemisphere. (b) ResNet3D
and (c) ESCAViT feature importance heatmaps. Red boxes show ResNet3D assigning
different importance values to the same time-frequency regions within right signals.
Green boxes highlight ESCAViT assigning consistent importance, effectively capturing
inter-lead symmetry.

applied, insufficient representation of the Other class led to approximately a 5.4%
decrease in majority class accuracy. Conversely, applying only LIGCL caused
excessive boundary sharpening, resulting in a 5.2% decline in mACC score. This
demonstrates that only the combined application of both techniques in DRT can
effectively address class imbalance and enhance model performance.

5 Conclusions

In this paper, we propose ESCAViT, a ViViT-based model for IIIC pattern clas-
sification. To enhance inter-lead correlation learning, we introduce AST Transfer
Learning, Convolutional Projection, and Lead Attention mechanisms, along with
a DRT combining AES-Mix and LIGCL to address data ambiguity and class im-
balance. Experimental results demonstrate that the proposed model achieves
superior performance in classification and seizure pattern recognition compared
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Table 2. Performance comparison of individual and combined application of AES-Mix
and LIGCL in the proposed DRT. DRT represents the combined use of both techniques,
while w/o AES-Mix indicates LIGCL only and w/o LIGCL indicates AES-Mix only.
OthACC represents the accuracy of the Other class, which is the majority class.

Method ACC F1 KLD TPS mACC OthACC

DRT 0.758 0.714 0.605 0.700 0.704 0.795
w/o AES-Mix 0.707 0.654 0.639 0.683 0.666 0.764
w/o LIGCL 0.723 0.663 0.628 0.692 0.652 0.741

to existing approaches. DRT effectively mitigates class imbalance and strength-
ens model generalization across diverse EEG patterns. ESCAViT shows how
domain-adaptive modeling of biosignals can enhance the reliability of clinical
decision support tools and contribute to developing generalizable AI systems
suitable for real-world clinical deployment. For future work, we plan to validate
the model’s robustness on large-scale clinical datasets including long-term ICU
recordings.
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