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ABSTRACT

The widely used expected utility theory has been shown to be empirically incon-
sistent with human preferences in the psychology and behavioral economy liter-
atures. Cumulative Prospect Theory (CPT) has been developed to fill in this gap
and provide a better model for human-based decision-making supported by em-
pirical evidence. It allows to express a wide range of attitudes and perceptions
towards risk, gains and losses. A few years ago, CPT has been combined with
Reinforcement Learning (RL) to formulate a CPT policy optimization problem
where the goal of the agent is to search for a policy generating long-term returns
which are aligned with their preferences. In this work, we revisit this policy op-
timization problem and provide new insights on optimal policies and their nature
depending on the utility function under consideration. We further derive a novel
policy gradient theorem for the CPT policy optimization objective generalizing
the seminal corresponding result in standard RL. This result enables us to design
a model-free policy gradient algorithm to solve the CPT-RL problem. We illustrate
the performance of our algorithm in simple examples motivated by traffic control
and electricity management applications. We also demonstrate that our policy gra-
dient algorithm scales better to larger state spaces compared to the existing zeroth
order algorithm for solving the same problem.

1 INTRODUCTION

In classical reinforcement learning (RL), rational agents make decisions to maximize their expected
cumulative rewards through interaction with their environment. This paradigm has largely been
prescribed by the expected utility theory model which has dominated decision making. Besides this
risk-neutral setting, risk-seeking and risk-averse behaviors can also be individually modelled within
the same expected utility maximization paradigm by considering the expectation of a modified utility
function as a policy optimization objective (see e.g. Prashanth et al. (2022) for a recent survey).

However, human decision makers might not act rationally due to psychological biases and personal
preferences, their decisions might not necessarily be dictated by expected utility theory. Consider
this simple example as a first illustration: A player must choose between (A) receiving a payoff of 80
and (B) participating in a lottery and receive either 0 or 200 with equal probability. The player’s pref-
erence depends on their attitude towards risk. While a risk-neutral agent will be satisfied with the
immediate and safe payoff of 80, another individual might want to try to obtain the much higher 200
payoff. In particular, different agents might perceive the same utility and the same random outcome
differently. Furthermore, they can exhibit both risk-seeking and risk-averse behaviors depending on
the context. Therefore, due to its failure to capture such settings as a descriptive model, the stan-
dard expected utility theory has been called into question by the pioneering behavioral psychologist
Daniel Kahneman together with his colleague Amos Tversky (Kahneman & Tversky, 1979). In
particular, Daniel Kahneman has been awarded the Nobel Prize in Economic Sciences in 2002 ”for
having integrated insights from psychological research into economic science, especially concern-
ing human judgment and decision-making under uncertainty”. In their seminal works combining
cognitive psychology and economics, they laid the foundations of the so-called prospect theory and
its cumulative version later on (Tversky & Kahneman, 1992) to explain several empirical obser-
vations invalidating the standard expected utility theory. Let us illustrate this in a simple example
borrowed from Ramasubramanian et al. (2021) (example 2 in section IV therein) for the purpose of
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our exposition. Consider a game where one can either earn $100 with probability (w.p.) 1 or earn
10000 w.p. 0.01 and nothing otherwise. A human might rather lean towards the first option which
gives a certain gain. In contrast, if the situation is flipped, i.e., a loss of 100 w.p. 1 versus a loss of
$10000 w.p. 0.01, then humans might rather choose the latter option. In both settings, the expected
gain or loss has the same value (100). The CPT paradigm allows to model the tendency of humans
to perceive gains and losses differently. Moreover, the humans tend to deflate high probabilities and
inflate low probabilities (Tversky & Kahneman, 1992; Barberis, 2013). For instance, as exposed in
L.A. et al. (2016), humans might rather choose a large reward, say 1 million dollars w.p. 10−6 over
a reward of 1 w.p. 1 and the opposite when rewards are replaced by losses.

Inspired by Kahneman and Tversky’s findings, CPT has been used in a number of applications in
the stateless setting such as energy retrofit decision for home renovations (Ebrahimigharehbaghi
et al., 2022) and smart home energy management Dorahaki et al. (2022), building evacuation (Gao
et al., 2023), shared parking services (Yan et al., 2020) and financial decision making (Ladrón de
Guevara Cortés et al., 2023; Luxenberg et al., 2024) to name a few. We refer the reader to appendix C
for an extended discussion regarding applications. Recently, a line of research initiated by L.A. et al.
(2016) has combined CPT with RL to better account for the human behavior in decision making
(Borkar & Chandak, 2021; Ramasubramanian et al., 2021; Danis et al., 2023; Ethayarajh et al.,
2024). As highlighted in Borkar & Chandak (2021), this is particularly important in applications
directly involving humans in the loop such as e-commerce, crowdsourcing and recommendation
to name a few. As empirically demonstrated and discussed in Tversky & Kahneman (1992), CPT
allows to capture two specific features of human decision making: Humans tend to (a) be risk-
seeking with potential losses and risk-averse with possible gains, this is modelled via using an S-
shaped non-linear transformation of the utility function; (b) overestimate the probability of rare
events and underestimate the probability of frequent events. CPT uses for this a weighting function
to distort the cumulative probability distribution function, inflating low probabilities and deflating
high probabilities. In this work, we focus on the policy optimization problem where the objective
is the CPT value of the cumulative sum of rewards, induced by a parametrized policy in a Markov
Decision Process. Our main contributions are as follows:

About optimal policies in CPT-RL. We provide theoretical insights about the nature of an optimal
policy for CPT policy optimization. Unlike in standard MDPs, an optimal policy is stochastic and
non-Markovian in general. When we set the probability distortion function to identity, we show
that the policy search set can be significantly reduced to a much smaller policy class when solv-
ing (CPT-PO). In this same setting, we also characterize a family of utility functions (affine and
exponential utility functions) for which the CPT value objective can be maximized with a Marko-
vian policy. However, we prove that this characterization does not hold anymore when considering
nontrivial probability distortion and (nonlinear) utilities together in (CPT-PO).

Policy gradient theorem and algorithm for CPT-RL. We establish a policy gradient theorem pro-
viding a closed form expectation expression for the gradient of our CPT-value objective w.r.t. the
policy parameter under suitable regularity conditions on the utility and probability distortion func-
tions. This result generalizes the standard policy gradient theorem in RL. Building on this theorem,
we design a policy gradient algorithm to solve the CPT policy optimization problem. The stochas-
tic policy gradient we use involves a challenging integral term to be computed and we propose a
tailored estimation procedure to approximate it.

Experiments. We perform simulations to illustrate our theoretical results on simple examples. In
particular, we test our PG algorithm in two CPT-RL applications: a traffic control application with
finite discrete state action spaces and an electricity management task in a continuous state action
setting. We also compare the performance of our PG algorithm to the previously proposed zeroth
order algorithm to show the robustness and scalability of our algorithm to higher dimensional MDPs.

2 PRELIMINARIES: FROM CLASSICAL RL TO CPT-RL

Markov Decision Process. A discrete-time discounted Markov Decision Process (MDP) (Puter-
man, 2014) is a tuple M = (S,A,P, r, ρ, γ), where S,A are respectively the state and action
spaces, supposed to be finite for simplicity, P : S ×A×S → [0, 1] is the state transition probability
kernel, r : S × A → [−rmax, rmax] is the reward function which is bounded by rmax > 0, ρ is the
initial state probability distribution, and γ ∈ (0, 1) is the discount factor. A randomized stationary
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Markovian policy, which we will simply call a policy, is a mapping π : S → ∆(A) which specifies
for each s ∈ S a probability measure over the set of actions A by π(·|s) ∈ ∆(A) where ∆(A) is
the simplex over the finite action space A. Each policy π induces a discrete-time Markov reward
process {(st, rt := r(st, at))}t∈N where st ∈ S represents the state of the system at time t and rt
corresponds to the reward received when executing action at ∈ A in state st ∈ S. We denote by Pρ,π

the probability distribution of the Markov chain (st, at)t∈N generated by the MDP controlled by the
policy π with initial state distribution ρ. We use Eρ,π (or often simply E instead) to denote the ex-
pectation w.r.t. the distribution of the Markov chain (st, at)t∈N. At each time step t ≥ 0, the agent
follows its policy π by selecting an action at drawn from the action distribution πt(·|st) where st is
the environment state at time t. Then the environment transitions to a state st+1 sampled from the
state distribution P(·|st, at) given by the state transition kernel P and the agent obtains a reward rt.
In traditional RL, the goal of the agent in discounted MDPs is to find a policy π maximizing the ex-
pected cumulative discounted rewards, i.e. the so-called expected return J(π) := Eρ,π[

∑H−1
t=0 γtrt]

where s0 follows the initial state distribution ρ and H ≥ 1 is a finite horizon. Any fixed policy π and
any initial state distribution ρ induce together a state occupancy measure dπρ recording the visitation
frequency of each state, it is defined at each state s ∈ S by dπρ (s) :=

∑H−1
t=0 γtPρ,π(st = s) . The

corresponding state-action occupancy measure is defined for every state-action pair (s, a) ∈ S ×A
by µπ

ρ (s, a) := dπρ (s)π(a|s) . Recall that J(π) = ⟨µπ
ρ , r⟩ :=

∑
s∈S,a∈A µπ

ρ (s, a)r(s, a) for any
policy π and any initial state distribution ρ.

Policy classes. We now introduce different sets of policies which will be important for stating our
results. Each policy class is defined according to the information history the policies have access to
for selecting actions. Here, a history ht ∈ H is a finite sequence of successive states, actions and re-
wards: (s0, a0, r0, ...., st−1, at−1, rt−1) .

1 More specifically, throughout this work, we will consider
the following sets of policies: ΠNM := {H → ∆(A)} is the set of non-(necessarily)Markovian
policies, ΠΣ,NS := {S × R × N → ∆(A)} is the set of policies that only depend on the
current state, the timestep and the sum of rewards accumulated so far (i.e. π(s,

∑t−1
k=0 rk, t)),

ΠΣ,S := {S × R → ∆(A)} is the set of policies that only depend on the state and the sum
of rewards (i.e. π(s,

∑t−1
k=0 rk)), ΠM,NS := {S × N → ∆(A)} is the set of Markovian policies

(i.e. π(s, t)) and ΠM,S := {S → ∆(A)} is the set of stationary Markovian policies, i.e. Markovian
policies which are time-independent. Deterministic policies assign a single action to each state. For
each set of policies defined above, we define their corresponding subset of deterministic policies:
ΠD

NM ,ΠD
Σ,NS ,Π

D
Σ,S ,Π

D
M,NS and ΠD

M,S . With some flexibility on the notation, deterministic poli-
cies can either be written as functions with values in ∆(A) like their nondeterministic counterparts,
or directly as functions with values in A.
Remark 1. ΠM,S ⊆ ΠM,NS ⊆ ΠΣ,NS ⊆ ΠNM and ΠM,S ⊆ ΠΣ,S ⊆ ΠΣ,NS ⊆ ΠNM (Fig. 4).

Cumulative Prospect Theory Value. Instead of the expected return, CPT prescribes to consider the
CPT value which will be defined in this paragraph. As previously mentioned, CPT relies on three
distinct elements which we further detail in the following:

(a) A reference point. The human agent has a reference attainable reward value in comparison to
which they evaluate their possible reward outcomes. Rewards larger than the reference are perceived
as gains whereas lower values are viewed as losses.

(b) A utility function U : R → R+. The agent’s utility is a continuous and non-decreasing function
which is not necessarily linear w.r.t. the total reward received by the agent. We consider the func-
tion u+ : R → R+ describing the gains and defined for every x ∈ R by u+(x) = U(x) if x ≥ x0

and zero otherwise. Similarly, the function u− : R → R+ which encodes the losses is defined by
u−(x) = −U(x) if x ≤ x0 and zero otherwise. Here, x0 denotes the reference point. Typically,
the utility function is concave (respectively convex) for positive (resp. negative) rewards w.r.t. the
reference point, i.e. u+ is concave on R+ and −u− is convex on R−. For concreteness, we will use
Kahneman & Tversky (1979)’s utility function as a running example: U(x) = (x− x0)

α if x ≥ x0

and U(x) = −λ(x−x0)
α if x < x0, where λ = 2.25, α = 0.88 are recommended hyperparameters.

See Fig. 6 for an illustration with x0 = 0 .

(c) A probability distortion function w : [0, 1] → [0, 1]. This is a continuous non-decreasing
weight function that distorts the probability distributions of the gain and loss variables. This func-

1Rewards can be discarded from the history when they are deterministic functions of state-action pairs.
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tion typically captures the human tendency to overestimate the probability of rare events and under-
estimate the probability of more certain ones. Similarly to the utility function, we denote by w+

(resp. w−) the function that warps the cumulative distribution function for gains (resp.for losses).
Both functions are required to be defined on [0, 1], with values in [0, 1] and to be non-decreasing,
continuous, with w+(0) = w−(0) = 0 and w−(1) = w−(1) = 1. Examples of such weights
functions in the litterature include w : p 7→ pη(pη + (1 − p)η)−

1
η (Kahneman & Tversky (1979))

and w : p 7→ exp(−(− ln(p)η) (Prelec (1998)) where η ∈ (0, 1) is a hyperparameter. We refer the
reader to appendix E.2 for examples and plots of utility and probability weight functions.

Following the exposition in L.A. et al. (2016), we use the notation C(X) to denote the CPT value of
a real-valued random variable X:

C(X) =

∫ +∞

0

w+(P(u+(X) > z))dz −
∫ +∞

0

w−(P(u−(X) > z))dz , (1)

where appropriate integrability assumptions are assumed. While the CPT value C(X) accounts
for the human agent’s distortions in perception, it also recovers the expectation E(X) with weight
functions w+, w− and utility functions u+ (resp. −u−) restricted to R+ (resp. R−) are set to be
the identity functions. In addition, several risk measures are also particular cases of CPT values:
Variance, Conditional Value at Risk (CVar), distortion risk measures to name a few. See appendix E
for proofs of these facts and Table 1 therein for a synthetic view of the settings captured by CPT.

Problem formulation: CPT-RL. In this work, we will focus on the policy optimization problem
where the objective is the CPT value of the random variable X =

∑H−1
t=0 rt recording the cumulative

rewards induced by the MDP and the policy π for the finite horizon H ≥ 1:

max
π∈ΠNM

C

[
H−1∑
t=0

rt

]
. (CPT-PO)

We will also be concerned with the particular case of (CPT-PO) in which w+, w− are set to the
identity, namely the expected utility objective where only returns are distorted by the utility function:

max
π∈ΠNM

E

[
U

(
H−1∑
t=0

rt

)]
. (EUT-PO)

Similar problem variants for total cost and infinite horizon discounted settings can also be formu-
lated. Notice that standard RL policy optimization problems and their risk-sensitive variants are
clearly particular cases of (CPT-PO).

Example: Personalized Treatment for Pain Management. We illustrate our problem formulation
with a concrete example in healthcare to give the reader more intuition about the different features
of CPT-RL, its importance in applications when human perception and behavior matter and its dif-
ferences compared to risk-sensitive RL. The goal is to help a physician manage a patient’s chronic
pain by suggesting a personalized treatment plan over time. The challenge here is to balance pain
relief and the risk of opioid dependency or other side effects that might be due to the treatment, i.e.
short-term relief and longer term risks. We propose to train a CPT-RL agent to help the physician.

1. Why sequential decision making? (a) The physician needs to adjust treatment at each time step
depending on the patient’s reported pain level as well as the observed side effects. Note here that
this is relevant to dynamic treatment regimes in general (such as for chronic diseases, see e.g. Yu
et al. (2021) for a survey) in which considering delayed effects of treatments is also important
(and RL does account for such effects). (b) Decisions clearly impact the patient’s immediate pain
relief, dependency risks in the future and their overall health condition.

2. Why CPT-RL? Patients and clinicians make decisions influenced by psychological biases. We
illustrate the importance of each one of the three features of CPT as introduced in our paper in
section 2 (reference point, utility and probability distortion weight functions) via this example:

(a) Reference points: Patients assess and report pain levels according to their subjective (psy-
chologically biased) baseline. Incorporating reference point dependence leads to a more
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realistic model of human decision-making taking into account perceived gains and losses.
In our example, reducing pain from a level of 7 to 5 is not perceived the same way if the
reference point of the patient is 3 of it is 5. In contrast, risk-sensitive RL treats every pain
reduction as a uniform gain, regardless of the patient’s starting reference pain level.

(b) Utility transformation: Patients might often show a loss averse behavior, i.e., they might
perceive pain increase or withdrawal symptoms as worse than equivalent gains in pain re-
lief. Note here that loss aversion should not be confused with risk aversion. In short, loss
aversion can be defined as a cognitive bias in which the emotional impact of a loss is more
intense than the satisfaction derived from an equivalent gain. For instance, in our example,
a 2-point increase in pain might be seen as much worse than a 2-point reduction even if
the change is the same in absolute value. This loss aversion concept is a cornerstone of
Kahneman and Tversky’s theory. In contrast, risk aversion rather refers to the rational be-
havior of undervaluing an uncertain outcome compared to its expected value. Risk sensitive
approaches might be less adaptive to a patient’s subjective preferences if they deviate from
objective risk assessments.

(c) Probability weighting: Low probability events such as severe side effects (e.g., opioid over-
dose or dependency) might be overweighted or underweighted based on the patient’s psy-
chology.

Challenges. To conclude this section, we describe the challenges we face in solving CPT-PO. First,
the CPT value does not satisfy a Bellman equation due to the nonlinearity of the utility and weight
functions which breaks the additivity and linearity of the standard expected return. Second, CPT-PO
is a nonconvex problem involving several nonconvex functions: The utility itself is nonconvex in
general (recall the utility is convex w.r.t. gains and concave w.r.t. losses) and the probabilities are
also distorted by a nonconvex weight function. While the standard policy optimization problem is
already nonconvex in the policy, CPT-PO further introduces additional nonconvexity.

3 ABOUT OPTIMAL POLICIES IN CPT POLICY OPTIMIZATION

In this section, we investigate the properties of optimal policies to (CPT-PO) when they exist. We
focus on constrasting our results with existing known results for solving standard MDPs to high-
light the peculiarities of our CPT-RL problem. Understanding the properties of optimal policies are
important in view of designing efficient policy search algorithms.

We start our discussion by pointing out a stark difference between optimal policies in standard
MDPs and (CPT-PO). While there exists an optimal deterministic stationary policy for MDPs (see
e.g. Thm. 6.2.10 in Puterman (2014)), this is not the case in general for (CPT-PO).

Proposition 2. There does not always exist an optimal policy for (CPT-PO) in ΠD
NM (i.e. deter-

ministic non-Markovian).

Proposition 2 tells us that the stochasticity of the policy is essential in solving our CPT-RL prob-
lem. The proof of this result is deferred to Appendix F.2: we construct a simple problem instance
where an optimal policy needs to be stochastic as any deterministic policy is necessarily and clearly
suboptimal. Our example is built around a w+ function that puts special emphasis on the 10% of
the best outcomes. As a consequence, the optimal policy needs to be randomized to take advantage
of this and obtain the highest returns with some probability without suffering from bad outcomes
by deterministically committing to this riskier strategy. It has been briefly mentioned in L.A. et al.
(2016) that the policy needs to be random in general for (CPT-PO), see also the organ transplant
example in Lin et al. (2018).

The next result shows that the need for stochasticity in the optimal policy is clearly due to the proba-
bility distortions in the definition of the CPT value. Indeed, when setting the probability weight dis-
tortion function w to the identity, i.e. when considering the particular case (EUT-PO) of (CPT-PO),
it appears that an optimal policy is not necessarily stochastic.

Proposition 3. There exists an optimal policy for (EUT-PO) in ΠD
Σ,NS .

5
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Proposition 3 allows to safely restrict our policy search to ΠΣ,NS which is a much smaller policy
space than the set of non-Markovian policies ΠNM . The fact that an optimal deterministic policy
exists is a fundamental difference with the general (CPT-PO) setting. Whether there are specific
weight functions (apart from the identity) for which there always exist a deterministic optimal policy
remains an open question that we leave for future work. Proposition 3 also shows that (EUT-PO) is
simpler than the more general single-trial RL problem (Mutti et al., 2023a) in which one needs to
look for an optimal policy in a much larger policy set ΠD

NM than ΠD
Σ,NS in general. See appendix E.4

for the connection between both problems.

We now ask the next natural question: Can we further restrict our policy search to a smaller policy
class compared to ΠΣ,NS ? In particular, are there specific utility functions for which the resulting
(EUT-PO) problem has optimal Markovian policies? We provide a positive answer by establishing
a precise characterization of such utility functions which turn out to be either affine or exponential.

Theorem 4. Let U be continuous and increasing. The following statements are equivalent:

1. For any MDP, there exists an optimal policy for (EUT-PO) in ΠM,NS .
2. There exists a function φ : R2 → R such that:

∀x, a, b ∈ R, b ̸= 0,U(x+ a)− U(x) = φ(a, b)(U(x+ b)− U(x)) .

3. There exists a function µ : R2 → R such that:

∀y, c, d ∈ R,U(y + c)− U(c) = µ(c, d)(U(y + d)− U(d)) .

4. There exist A,B,C ∈ R s.t. U(x) = Ax+B or U(x) = A+B exp(Cx) for all x ∈ R .

A few comments are in order regarding Theorem 4:

• So far, we have highlighted the importance of the probability distortion function in determining
the nature of optimal policies for (CPT-PO). Theorem 4 is rather concerned with the role of the
(nonlinear) utility functions in (CPT-PO).

• The theorem is reminiscent of the following known folklore result: The only memoryless contin-
uous probability distribution is the exponential distribution.

• Theorem 4 shows that the only utility functions leading to optimal Markovian policies are the
affine and exponential utilities. The affine utility makes (CPT-PO) boil down to a standard RL
problem whereas the exponential criterion is a well-known objective used in the risk-sensitive
control and RL literatures (see section 6 and appendix B for a discussion).

Theorem 4 is concerned with the (EUT-PO) problem which is a particular case of (CPT-PO). How-
ever, these results cannot be extended to (CPT-PO) in general as we show next.

Proposition 5. There exist instances of (CPT-PO) where U is of the form x 7→ A+B exp(Cx)
for positive constants A,B,C and (CPT-PO) does not admit an optimal policy in ΠM,NS .

4 POLICY GRADIENT ALGORITHM FOR CPT-VALUE MAXIMIZATION

In this section, we propose a policy gradient algorithm for solving (CPT-PO). From this section on,
we parametrize policies π ∈ ΠNM by a vector θ ∈ Rd and we denote by πθ the parametrized policy.
As a consequence, the CPT objective in (CPT-PO) becomes a function of the policy parameter θ and
we use the shorthand notation J(θ) for the corresponding CPT objective value.

Policy Gradient Theorem for CPT-RL. Our key result enabling our algorithm design is a PG
theorem for CPT value maximization.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Theorem 6. Suppose that the utility functions u−, u+ are continuous and that the weight func-
tions w−, w+ are Lipschitz and differentiable. Assume in addition that the policy parametriza-
tion θ 7→ πθ(a|h) (for any h, a ∈ H × A) are both differentiable. Then, for every θ ∈ Rd, the
gradient of the (CPT-PO) objective J w.r.t. the policy parameter θ is given by:

∇J(θ) = E

[
φ (R(τ))

H−1∑
t=0

∇θ log πθ(at|ht)

]
,

where φ(v) :=
∫max(v,0)

z=0
w′

+(P(u+(R(τ)) > z))dz −
∫max(−v,0)

z=0
w′

−(P(u−((R(τ) >

z))dz,∀v ∈ R , w′
+, w

′
− denoting the derivatives and R(τ) :=

∑H−1
t=0 rt with τ :=

(st, at, rt)0≤t≤H−1 is a trajectory of length H generated from the MDP by following policy πθ .
a

aThe integral φ(R(τ)) is finite under our continuity assumptions since the return R(τ) is bounded.

We provide a few comments regarding this result. Theorem 6 recovers the celebrated policy gradient
theorem for standard RL (Sutton et al., 1999) by setting w+ (resp. w−) to the identity function (on
R+ (resp. R−) in which case w′

+ is the constant function equal to 1 and hence φ(R(τ)) = R(τ) .
We stated the theorem in the general setting where the policy is non-Markovian. In practice, it is
also possible to use a parametrization of a smaller policy set such as ΠΣ,NS or even ΠM,S in which
the policy is a function of (t, st,

∑t−1
k=0 rk) or only st respectively.

Stochastic Policy Gradient Algorithm for CPT-RL. In the light of Theorem 6, we will perform a
policy gradient ascent on the objective J to solve (CPT-PO). Our general policy gradient algorithm
is presented in Algorithm 1. As usual, since we only have access to sampled trajectories from
the MDP, we need a stochastic policy gradient to estimate the true unknown gradient given by the
theorem. In particular, we need an approximation of φ(R(τ)) for any sampled trajectory τ from
the MDP following policy πθ. In the particular case of (EUT-PO) in which w is the identity, the
unknown quantity φ(R(τ)) reduces to U(R(τ)) which can be easily computed as U is known and
R(τ) is the cumulative reward.

Algorithm 1 CPT-Policy Gradient Algorithm (CPT-PG) for (CPT-PO)

1: Input: θ0 ∈ Rd, utility functions u+, u−, weight functions w+, w−, step size α > 0 .
2: for k = 0, · · · ,K, do

/Policy gradient estimation
3: Sample a trajectory τ := (st, at, rt)0≤t≤H−1, with s0 ∼ ρ following πθk

// Quantile estimation
4: Sample n trajectories τj := (sjt , a

j
t , r

j
t )0≤t≤H−1, 1 ≤ j ≤ n with sj0 ∼ ρ following πθk

5: Compute and order R(τj), label them as R(τ[1]) < R(τ[2] < · · · < R(τ[n])

6: ξ̂+i
n

= u+(R(τ[i])); ξ̂−i
n

= u−(R(τ[i]))

//Approximation of ϕ(R(τ))

7: ϕ̂+
n =

∑jn−1
i=0 w′

+

(
i
n

) (
ξ̂+n−i

n

− ξ̂+n−i−1
n

)
+ w′

+

(
jn
n

) (
R(τ)− ξ̂+n−jn−1

n

)
8: ϕ̂−

n =
∑jn−1

i=0 w′
−
(
i
n

) (
ξ̂−n−i

n

− ξ̂−n−i−1
n

)
+ w′

−
(
jn
n

) (
R(τ)− ξ̂−n−jn−1

n

)
9: ĝk = (ϕ̂+

n − ϕ̂−
n )
∑H−1

t=0 ∇θ log πθk(at|ht,Σ
t−1
k=0rk, t)

/Policy gradient update
10: θk+1 = θk + α ĝk
11: end for

In the more general setting, the approximation task becomes more challenging since we need to
compute the integral term

∫
w′

+(P(u+(R(τ)) > z)dz (and likewise for the second integral term).
We address this challenge using the following result which is a slight variation of Proposition 6
in L.A. et al. (2016) in which the integral is taken over a bounded interval. Accordingly, we end
up with a different approximation formula which is tailored to the present setting. Intuitively, the
approximation is a Riemann scheme approximation of the integral using simple staircase functions.
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Proposition 7. Let X be a real-valued random variable. Suppose that the functions w′
+, w

′
− are

Lipschitz and that u+(X), u−(X) have bounded first moments. Let ξ+i
n

and ξ−i
n

denote the i
n th

quantile of u+(X) and u−(X), respectively. Then, we have for any v ≥ 0,∫ v

0

w′
+(P(u+(X) > z))dz = lim

n→∞

jn−1∑
i=0

w′
+

(
i

n

)(
ξ̂+n−i

n

− ξ̂+n−i−1
n

)
+w′

+

(
jn
n

)(
v − ξ̂+n−jn−1

n

)
(2)

where jn ∈ [0, n − 1] is s.t. v ∈ [ξ+n−jn−1
n

, ξ+n−jn
n

] . The same identity holds when replacing

u+(X), ξ+α , w+ by u−(X), ξ−α , w− where ξ−α is the αth quantile of u−(X) .

While L.A. et al. (2016) use this result to approximate the CPT value, we intend to use it for approx-
imating our special integral terms involving the derivatives of the weight functions as they appear in
the policy gradient. Using Proposition 7, we approximate the integral using a finite sum with a given
number of samples n. As for the quantiles ξ+i

n

we compute them using the standard order statistics
procedure also used in L.A. et al. (2016). Similarly to (L.A. et al., 2016, Theorem 1), our algo-
rithm can be shown to enjoy a similar asymptotic convergence result to the set of stationary points
of the (CPT-PO) objective. This is because we can also employ the same stochastic approximation
artillery upon noticing that we are also approximating the same policy gradient differently and the
induced bias in our case will also vanish with a large enough number of trajectories n (by Thm. 6
and Prop. 16). Notice that we can also remove the projection therein upon assuming that the rewards
and the score function in the policy gradient are both bounded. These fairly standard assumptions in
the analysis of vanilla PG methods guarantee that the policy gradient will remain bounded.

Comparison to the CPT-SPSA-G algorithm in L.A. et al. (2016). Our algorithm is specifically
designed for maximizing the CPT value of a (discounted) sum of rewards generated by an MDP
while the CPT-SPSA-G algorithm in L.A. et al. (2016) can be used for a larger class of problems
to maximize the CPT value of any real-valued random variable. However, we highlight that (a)
this cumulative reward return structure is natural and ubiquitous in RL and economics applications
and foremost (b) thanks to this particular problem structure, our algorithm is a policy gradient algo-
rithm leveraging first-order information whereas CPT-SPSA-G only uses zeroth order information,
i.e. CPT value estimations. This difference is crucial as zeroth order optimization algorithms are
known to suffer from the curse of dimensionality. Our algorithm can scale better to higher dimen-
sional problems as it is notoriously known for policy gradient algorithms in classic RL. We provide
empirical evidence of this fact in section 5 to further support the benefits of our algorithm.

5 EXPERIMENTS

We demonstrate the performance of our CPT-PG algorithm in three different settings: (a) we con-
sider a traffic control application to show the influence of the probability distortion function, (b)
we illustrate the better scalability of our PG algorithm to larger state spaces compared to the exist-
ing zeroth order algorithm in a grid environment with increasing state space size and (c) we show
the applicability and performance of our algorithm in a continuous state-action space setting via an
electricity management application. See appendix 3 for more details (Table 2 therein) and additional
simulations illustrating some of our theoretical findings of section 3 (Proposition 2 and Theorem 4).

(a) Traffic Control. We consider a car agent which would like to reach a given destination at the
other side of the city. Passing through the city center is faster on average but carries a small risk of
incurring a very large delay. We model the setting as a n × n grid (see fig. 1 center). Central roads
can get cluttered and peripheral roads take constant time to get through. We run our PG algorithm,
the training curves are reported in Fig. 2 (center). In the risk-neutral case, we observe that the total
expected return is higher than in the CPT case. This is because the risk averse policy compromises
return in order to get certainty by going around the risky city center. These examples show that our
algorithm is successful at finding different optimal strategies for different weight functions w.

Influence of the utility function. We consider a 4x4 grid for our illustration purpose. Our agent
starts on a random square on one of the three upper rows of the grid, and can move in all four direc-
tions. Any move to an empty square will award it a random reward of −1 with probability 1

2 and of

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 1: (Left) Scaling grid example. (Center) Traffic control: red roads in the city center are
prone to congestion. (Right) Electricity management: Arrows refer to electricity flow.
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Figure 2: Returns along the iterations of our PG algorithm for (CPT-PO) for: (Left) different utility
functions with the same distortion w in the grid environment, (center) traffic control. Shaded areas
indicate a range of ± one standard deviation over 20 runs. (Right) Density of the empirical returns
obtained by deploying different trained PG policies (from different initializations) for electricity
management, density is computed using 10000 runs for each curve. See appendix H for details.

+0.8 with probability 1
2 . Therefore, longer trajectories are slightly costly in expectation, and gener-

ate significant variance. In two corners of the grid, we add cells that yields rewards of +5 for one or
+6 for the other, and conclude the episode. Illegal moves (attempting to leave the grid) are punished
by a negative reward. Our parameterized policy is a neural network whose last layer is activated
with softmax and has 4 coordinates corresponding to the 4 different possible moving actions. We
consider solving (CPT-PO) with different utility functions: risk-neutral identity utility, risk-averse
KT utility, as well as exponential utility function. The obtained policies differ depending on the
utility function. For examples of risk-neutral/averse policies obtained, see Fig. 16b in appendix H.4.

(b) Scalability to larger state spaces. We now compare our PG algorithm to the zeroth-order
algorithm of L.A. et al. (2016) (CPT-SPSA-G). We consider a family of MDPs where the state space
is a n×n grid for a given integer parameter n. The agent starts in the top right corner and has always
four possible actions (up,down,left,right). Taking a step yields a reward of −1

n , attempting to leave
the grid yields −2

n , and reaching the anti-diagonal ends the episode with a positive reward. All cells
on the anti-diagonal yield the same expected reward, but with different levels of risk; the least risky
reward is the deterministic one, in the center of the grid. We consider tabular policies and the initial
policy is a random policy assigning the probability 1/4 to each action. We test the sensitivity of the
performance of both algorithms to the size of the state space. The steps sizes of both algorithms
have been tuned through trial and error in an effort to approach their possible performance; we wish
to draw attention not to the absolute performance of either algorithm on any particular example, but
rather to the evolution of the performance of both as the size of the problem increases. We observe
that the performance of CPT-SPSA-G suffers for larger state space size whereas our PG algorithm
is robust to state space scaling. While both algorithms are gradient ascent based algorithms in
principle, our stochastic policy gradients are different.

(c) Electricity management. Our goal now is to show the performance of our algorithm in a contin-
uous state and action space setting. We consider an electricity management system for an individual

9
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Figure 3: Compared performance of our algorithm and CPT-SPSA-G for n = 3, 5, 9. The shaded
area is a range of ± one standard deviation over 10 independent runs.

home which has solar panels for producing electricity and a battery. The intensity of the solar panel’s
electricity production follows a sinusoidal function during daytime hours and vanishes at night. The
home consumes a random and varying amount of electricity and can buy and sell electricity to the
outer grid. The selling price varies during the day whereas the buying price is fixed and significantly
higher than the selling prices. We use public data for selling prices recorded on the French electric-
ity network (see appendix for further details). We consider a 24h time frame starting at 6 am and
we divide the day into twelve two-hour time slots. For each time slot, the agent has to decide how
much to buy or sell to the grid given the production, the battery’s charge, the price on the market
and the consumption. We run the algorithm with three different objectives, changing the w function:
a risk-neutral one, a risk-averse one and a risk-seeking one (see Table 2). We consider a Gaussian
policy in which the mean is parameterized by a neural network. We report the results for running
our algorithm in Fig. (2) (right). The most rewarding time to sell our electricity is around 4pm (see
electricity prices in appendix H.6, Fig. 19, right). However, selling too much too soon exposes us to
the risk of falling short of battery during the night and risking to buy it later for a higher price.

The risk-averse policy avoids selling a lot of electricity and tends to keep it stored until the end of
the day. Conversely, the risk-seeking policy aggressively sells energy when the markets are high at
the cost of possibly having to buy it again later in the day. We can see on Fig. 2 (right), where we
plot the distribution of total returns for various trained models with different w functions and a few
different random initializations each, that, as we would wish to see, the risk-averse policy has the
distribution with the best left tail (worst cases are not too bad), the risk-seeking distribution has the
best right tail (best cases are particularly good). The risk-neutral policy has the best mean value.

6 RELATED WORK

We refer the reader to appendix B for an extended related work discussion including CPT-RL, convex
RL and risk-sensitive RL. See also appendix E.1 for a diagram relating them.

7 CONCLUSION

We investigated a CPT variant of the standard RL problem to model human decision making. We
provided new insights on optimal policies in such problems to highlight their peculiarity compared to
classical RL. Then, we designed a novel PG algorithm for CPT-PO. Finally, we showed the benefits
of our algorithm in terms of scalability compared to prior work and we illustrated its performance
in applications including electricity management and traffic control. Our work opens the way to
interesting avenues for future work. Using CPT usually requires to know the utility and distortion
functions (or to posit models thereof) a priori. Can we learn such functions to align with the pref-
erences of the human decision maker involved? Looking forward, investigating incentive design
problems in which human agents are collectively modelled using CPT would be interesting. We
hope our work will stimulate further research in better capturing the behavior and preferences of
human agents in real-world decision making applications beyond expected utility.

10
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Alejandro Balbás, José Garrido, and Silvia Mayoral. Properties of distortion risk measures. Method-
ology and Computing in Applied Probability, 11(3):385–399, 2009. 20

Anas Barakat, Ilyas Fatkhullin, and Niao He. Reinforcement learning with general utilities: Simpler
variance reduction and large state-action space. In Proceedings of the 40th International Con-
ference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp.
1753–1800. PMLR, 23–29 Jul 2023. 16

Nicholas C Barberis. Thirty years of prospect theory in economics: A review and assessment.
Journal of economic perspectives, 27(1):173–196, 2013. 2, 16

Marc G Bellemare, Will Dabney, and Mark Rowland. Distributional reinforcement learning. MIT
Press, 2023. 16

S. Bhatnagar, H. Prasad, and L. Prashanth. Gradient Schemes with Simultaneous Perturbation
Stochastic Approximation, pp. 41–76. Springer London, London, 2013. 16

Vivek S Borkar. Q-learning for risk-sensitive control. Mathematics of operations research, 27(2):
294–311, 2002. 16

Vivek S Borkar and Siddharth Chandak. Prospect-theoretic q-learning. Systems & Control Letters,
156:105009, 2021. 2, 16

Yinlam Chow and Mohammad Ghavamzadeh. Algorithms for cvar optimization in mdps. Advances
in neural information processing systems, 27, 2014. 16

Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained rein-
forcement learning with percentile risk criteria. Journal of Machine Learning Research, 18(167):
1–51, 2018. 16

Dominic Danis, Parker Parmacek, David Dunajsky, and Bhaskar Ramasubramanian. Multi-agent
reinforcement learning with prospect theory. 2023 Proceedings of the Conference on Control and
its Applications (CT), pp. 9–16, 2023. 2, 16

Riccardo De Santi, Manish Prajapat, and Andreas Krause. Global reinforcement learning : Beyond
linear and convex rewards via submodular semi-gradient methods. In Forty-first International
Conference on Machine Learning, 2024. 16

Sobhan Dorahaki, Masoud Rashidinejad, Seyed Farshad Fatemi Ardestani, Amir Abdollahi, and
Mohammad Reza Salehizadeh. A home energy management model considering energy storage
and smart flexible appliances: A modified time-driven prospect theory approach. Journal of
Energy Storage, 48:104049, 2022. 2, 17

Shima Ebrahimigharehbaghi, Queena K Qian, Gerdien de Vries, and Henk J Visscher. Application
of cumulative prospect theory in understanding energy retrofit decision: A study of homeowners
in the netherlands. Energy and Buildings, 261:111958, 2022. 2, 17

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Model align-
ment as prospect theoretic optimization. In Forty-first International Conference on Machine
Learning, 2024. 2, 16, 19

Dongli Gao, Wei Xie, Ruifeng Cao, Jingwen Weng, and Eric Wai Ming Lee. The performance
of cumulative prospect theory’s functional forms in decision-making behavior during building
evacuation. International Journal of Disaster Risk Reduction, pp. 104132, 2023. 2, 17

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015. 15
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Munos, and Olivier Pietquin. Concave utility reinforcement learning: The mean-field game view-
point. In Proceedings of the 21st International Conference on Autonomous Agents and Multiagent
Systems, AAMAS ’22, pp. 489–497, 2022. 16

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
exploration. In International Conference on Machine Learning, pp. 2681–2691. PMLR, 2019. 16

Cheng Jie, LA Prashanth, Michael Fu, Steve Marcus, and Csaba Szepesvári. Stochastic optimization
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A NOTATION FOR POLICY CLASSES

Figure 4: Policy classes (see Rem. 1).

Throughout this work, we will consider the following sets of policies:

• ΠNM := {H → ∆(A)} is the set of non-Markovian policies,2

• ΠΣ,NS := {S × R× N → ∆(A)} is the set of policies that only depend on the current state, the
timestep and the sum of discounted rewards accumulated so far: The RL agent in state s at timestep
t following policy π ∈ ΠΣ,NS samples its next action from the distribution π(s,

∑t−1
k=0 γ

krk, t),

• ΠΣ,S := {S × R → ∆(A)} is the set of policies that only depend on the state and the sum of
discounted rewards: The RL agent in state s at timestep t following policy π ∈ ΠΣ,S samples its
next action from the distribution π(s,

∑t−1
k=0 γ

krk),

• ΠM,NS := {S × N → ∆(A)} is the set of Markovian policies: An agent in state s at timestep t
following policy π ∈ ΠM,NS samples its next action from the distribution π(s, t).

• ΠM,S := {S → ∆(A)} is the set of stationary Markovian policies, i.e. Markovian policies which
are time-independent.

B EXTENDED RELATED WORK DISCUSSION

Risk-sensitive RL. There is a rich literature around risk sensitive control and RL that we do not hope
to give justice to here. We refer the reader to recent comprehensive surveys on the topic (Garcıa &
Fernández, 2015; Prashanth et al., 2022) and the references therein. Let us briefly mention that
there exist several approaches to risk sensitive RL. These include formulations such as constrained
stochastic optimization to control the tolerance to perturbations and stochastic minmax optimization
to model robustness with respect to worst case perturbations for instance. Another approach which
is more relevant to our paper discussion consists in regularizing or modifying objective functions.

2By ‘non-Markovian’, we mean ‘non necessarily Markovian’ policies including Markovian ones. Elements
of ΠNM − ΠM,NS can be designated as ‘stricly non-Markovian’ policies. Likewise, by ‘non stationary’, we
mean ‘non necessarily stationary’, and by ‘stochastic’ we mean ‘non necessarily deterministic’.
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Such modifications are based on considering different statistics of the return deviating from the
standard expectation such as the variance or the conditional value at risk (e.g. Tamar et al. (2012);
Chow & Ghavamzadeh (2014); Chow et al. (2018)) or even considering the entire distribution of
the returns like distributional RL (Bellemare et al., 2023). Another popular objective modification
consists in maximizing an exponential criterion (e.g. Borkar (2002); Noorani et al. (2022)) to obtain
robust policies w.r.t noise and perturbations of system parameters or variations in the environment.
Noorani et al. (2022) designed a model-free REINFORCE algorithm and an actor-critic variant of the
algorithm leveraging an (approximate) multiplicative Bellman equation induced by the exponential
objective criterion. Moharrami et al. (2024) recently proposed and analyzed similar PG algorithms
for the same exponential objective. Vijayan & LA (2023) introduced a PG algorithm for solving
risk-sensitive RL for a class of smooth risk measures including some distortion risk measures and
a mean-variance risk measure. Their approach is based on simultaneous perturbation stochastic
approximation (SPSA) (Bhatnagar et al., 2013) using zeroth-order information to estimate gradients.
Our CPT-PO problem covers several of the aforementioned objectives including smooth distortion
risk measures and exponential utility as particular cases (see appendix E for more details).

Convex RL/RL with General Utilities. In the last few years, convex RL (a.k.a. RL with general
utilities) (Hazan et al., 2019; Zhang et al., 2020; Zahavy et al., 2021; Geist et al., 2022) has emerged
as a framework to unify several problems of interest such as pure exploration, imitation learning or
experiment design. More precisely, this line of research is concerned with maximizing a given func-
tional of the state(-action) occupancy measure w.r.t. a policy. To solve this problem, several policy
gradient algorithms have been proposed in the literature (Zhang et al., 2021; Barakat et al., 2023).
Mutti et al. (2022b;a; 2023a) challenged the initial problem formulation and proposed a finite trial
version of the problem which is closer to practical concerns as it consists in maximizing a functional
of the empirical state(-action) distribution rather than its true asymptotic counterpart. The particular
case of our CPT policy optimization problem without probability distortion (see (EUT-PO) below)
coincides with a particular case of the single trial convex RL problem (Mutti et al., 2023b) in which
the function of the empirical visitation measure is a linear functional of the reward function (see
appendix E.4 for details). However, our general problem is not a particular case of convex RL which
does not account for probability distortions. Furthermore, our utility function is in general non-
convex in our setting (see example in Fig 6) and our policy gradient algorithm is model-free. More
recently, De Santi et al. (2024) introduced a global RL problem formulation where rewards are glob-
ally defined over trajectories instead of locally over states and used submodular optimization tools
to solve the resulting non-additive policy optimization problem. While global RL allows to account
for trajectory-level global rewards, it does not take into consideration probability distortions. In
addition, their investigation is restricted to the setting where the transition model is known whereas
our PG algorithm is model-free.

Cumulative Prospect Theoretic RL. Motivated by Prospect Theory and its sibling CPT (Kahne-
man & Tversky, 1979; Tversky & Kahneman, 1992; Barberis, 2013), L.A. et al. (2016) first pro-
posed to combine CPT with RL to obtain a better model for human decision making. Following
this first research effort, only few isolated works (Borkar & Chandak, 2021; Ramasubramanian
et al., 2021; Ethayarajh et al., 2024) considered a similar CPT-RL setting. In particular, Borkar &
Chandak (2021) proposed and analyzed a Q-learning algorithm for CPT policy optimization. Ra-
masubramanian et al. (2021) further developed value-based algorithms for CPT-RL by estimating
the CPT value of an action in a given state via dynamic programming. More precisely, they were
concerned with maximizing a sum of CPT value period costs which is amenable to dynamic pro-
gramming. In contrast to their accumulated CPT-based cost (see their remark 1), our CPT policy
optimization problem formulation is different: we maximize the CPT value of the return of a policy
(see (CPT-PO)). In particular, this objective does not enjoy an additive structure and hence does
not satisfy a Bellman equation. Moreover, their work relying on value-based methods is restricted
to finite discrete state action spaces. Our PG algorithm is also suitable for continuous state action
settings as we demonstrate in our experiments. More recently, Ethayarajh et al. (2024) incorporated
CPT (without probability distortion) into RL from human feedback for fine-tuning large language
models. CPT has also been recently exploited for multi-agent RL (Danis et al., 2023). Our work is
complementary to this line of research, especially to L.A. et al. (2016) and its extended version Jie
et al. (2018) which are the most closely related work to ours. While their algorithm design makes
use of simultaneous perturbation stochastic approximation (SPSA) (Spall, 1992) using only zeroth
order information, we rather propose a PG algorithm exploiting first-order information thanks to our
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special problem structure involving the CPT value of a cumulative sum of rewards. See section 4
for further details regarding this comparison.

We refer the reader to Appendix E.1 for a summarizing diagram illustrating the relationships be-
tween CPT-RL, convex RL and risk-sensitive RL.

C APPLICATIONS OF CPT

In this section, we provide a discussion regarding the applications where CPT has already been suc-
cessfully used (mainly in the static stateless setting) and potential applications in the dynamic (RL)
setting with state transitions.

We highlight that CPT has been tested and effectively used in a large number of compelling be-
havioral studies that we cannot hope to give justice to here. Besides the initial findings of Tversky
and Kahneman for which the latter won the Nobel Prize in economics in 2002, please see a few
recent references below for a broad spectrum of real-world applications ranging from economics to
transport, security and energy, mostly in the stateless (static) setting.

• Risk preferences across 53 countries worldwide in an international survey (Rieger et al., 2017).
Estimates of CPT parameters from data illustrate economic and cultural differences whereas prob-
ability weighting also reflects gender differences as well as economic and cultural impacts. Note
here the explainability feature of CPT.

• A study of homeowners in the Netherlands to investigate energy retrofit decision using CPT
(Ebrahimigharehbaghi et al., 2022). CPT is shown to predict the number of homeowners deci-
sions to renovate their homes more accurately than Expected Utility Theory (EUT).

• Application of CPT to building evacuation (Gao et al., 2023). CPT allows to take into account
individual psychology and irrational behavior in modeling evacuations via pedestrian movement
modeling. This is particularly important for designing and optimizing emergency and safety man-
agement strategies.

• Understanding private parking space owners’ propensity to share their parking spaces by consid-
ering their psychological concerns as well as their socio-demographic and revenue characteristics
for instance (Yan et al., 2020). This might be useful to help developing shared parking services.

• Home energy management (Dorahaki et al., 2022). This work proposes a behavioral home energy
management model to increase the user’s satisfaction.

• Empirical study about financial decision making in two universities in Argentina (Ladrón de Gue-
vara Cortés et al., 2023). In particular, it is shown that the financial decisions of the participants
under uncertainty are more consistent with Prospect Theory than expected utility theory.

Our CPT-RL problem formulation finds applicatons in a number of diverse areas. A nonexhaustive
list includes:

• Traffic control. We refer the reader to our toy example in the main part. simulations for specific
CPT-RL applications in simple settings for traffic control, electricity management and financial
trading that we will not discuss again here.

• Electricity management. Please see simulations in the main part (section 5 and appendix H.6) in
a simple example setting to illustrate our methodology.

• Finance: portfolio optimization, risk management, behavioral asset pricing (e.g. influence of
investor sentiment on price dynamics via e.g. over-weighting of low-probability events, including
their preferences). For recent applications of CPT to finance, we refer the reader to a recent paper
Luxenberg et al. (2024) using CPT for portfolio optimization (in a stateless static setting). We also
applied our methodology to financial trading (see Appendix H.7).

• Health: personalized treatment plans, (e.g. health insurance design for specific groups modeling
risk and factoring perceived fairness).

On a more high-level note, we would like to mention that CPT-RL is of practical relevance for
finance and healthcare for several reasons: in short, CPT allows for (a) modeling human biases,
(b) factoring risk, and (c) capturing individual preferences for personalization. All these three
points are essential in the above applications.
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D CPT-RL AND TRAJECTORY-BASED REWARD RL AS PREFERENCE
LEARNING PARADIGMS

In this section, we compare the CPT-RL and trajectory-based reward RL (using a single reward for
the entire trajectory, such as Reinforcement Learning from Human Feedback) seen as preference
learning paradigms. In particular, we also discuss the pros and cons of each one of them.

Regarding the structure of the final reward and the metric learning you mention, this is a fair point
and we agree that Our present work requires so far access to utility and weight functions whereas
trajectory-based reward RL learns the metric to be optimized using human preference data. How-
ever, let us mention a few points:

(a) These can be readily available in specific applications (for risk modeling or even chosen at will
by the users themselves);

(b) CPT relies on a predefined model, this can be beneficial in applications such as portfolio opti-
mization or medical treatment where trade-offs have to be made and models might be readily
available;

(c) Furthermore, we argue that having such a model allows it to be more explainable compared to
a model entirely relying on human feedback and fine tuning, let alone the discussion about the
cost of collecting human feedback. We also note that some of the most widely used algorithms
in RLHF (e.g. DPO) do rely on the fact that the reward follows a Bradley-Terry model for
instance (either for learning the reward or at least to derive the algorithm to bypass reward
learning);

(d) Let us mention that one can also learn the utility and weight functions. We mentioned this
promising possibility in our conclusion although we did not pursue this direction in this work.
One can for instance represent the utility and weight functions by neural networks and train
models to learn them using available data with relevant losses, jointly with the policy optimiza-
tion task. One can also simply fit the predefined functions (say e.g. Tversky and Kahneman’s
function) to the data by estimating the parameters of these functions (see η with our notations
and exponents of the utility function in Table 1 for the CPT row). This last approach is already
commonly used in practice, see e.g. Rieger et al. (2017).

CPT vs RLHF: General comparison. CPT has been particularly useful when modeling specific
biases in decision making under risk to account for biased probability perceptions. It allows to
explicitly model cognitive biases. In contrast, RLHF has been successful in training LLMs which
are aligned with human preferences where these are complex and potentially evolving and where
biases cannot be explicitly and reasonably modeled. RLHF has been rather focused on learning
implicit human preferences through interaction (e.g. using rankings and/or pairwise comparisons).
Overall, CPT can be useful for tasks where risk modeling is essential and critical whereas RLHF
can be useful for general preference alignment although RLHF can also be adapted to model risk if
human preferences are observable and abundantly available at a reasonable cost. This might not be
the case in healthcare applications for instance, where one can be satisfied with a tunable risk model.
On the other hand, so far CPT does not have this ability to adapt to evolving preferences over time
unlike RLHF which can do so via feedback.

CPT and RLHF: Pros and cons. To summarize the pros and cons of both approaches, we provide
the following elements. As for the pros, CPT directly models psychological human biases in deci-
sion making via a structured framework which is particularly effective for risk preferences. RLHF
can generalize to different scenarios with sufficient feedback and handle complex preferences via
learning from diverse human interactions, it is particularly useful in settings where preferences are
not explicitly defined such as for LLMs for aligning the systems with human preferences and val-
ues. As for the cons, CPT is a static framework since the utility and probability weight functions
are fixed, it is hence less adaptive to changing preferences. It uses a predefined model of human
behavior which is not directly using feedback. It also requires to estimate model parameters pre-
cisely, often for specific domains. As for RLHF on the other hand, the quality and the quantity of the
human feedback is essential and this dependence on the feedback clearly impacts performance. This
dependence can also cause undesirable bias amplification which is present in the human feedback.
We also note that training such models is computationally expensive in large scale applications.
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CPT and RLHF are not mutually exclusive. While CPT and trajectory-based RL (say e.g. RLHF)
both offer frameworks for incorporating human preferences into decision making, we would like to
highlight that CPT and RLHF are not mutually exclusive. We can for instance use CPT to design an
initial reward structure reflecting human biases, then refine it with RLHF. We can also consider to
further relax the requirement of sum of rewards (which already has several applications on its own)
and think about incorporating CPT features to RLHF. Some recent efforts in the literature in this di-
rection that we mentioned in our paper include the work of Ethayarajh et al. (2024) which combines
prospect theory with RLHF (without probability weight distortion though, which limits its power).
Note that the ideas of utility transformation and probability weighting are not crucially dependent
on the sum of rewards structure and can also be applied to trajectory-based rewards or trajectory
frequencies for instance. We believe this direction deserves further research, one interesting point
would be how to incorporate risk awareness from human behavior to such RLHF models using ideas
from CPT.

E COMPLEMENTS ABOUT CPT VALUES AND CPT POLICY OPTIMIZATION

E.1 POSITIONING CPT-RL IN THE LITERATURE

Figure 5: A Venn Diagram representing our framework and some other frameworks in the literature

Remark 8. For the infinite horizon discounted setting, the objective becomes the CPT value of
the random variable X =

∑+∞
t=0 γ

trt recording the cumulative discounted rewards induced by the
MDP and the policy π . The policy can further be parameterized by a vector parameter θ ∈ Rd .

E.2 CPT VALUE EXAMPLES

Figure 6: Various examples of probability weight functions (left) and utility functions (right).
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Setting Utility function w+ w−

CPT Any Any Any

CPT (Functions pro-
posed by Kahneman and
Tversky)

{
(x− x0)

α if x ≥ 0,

−λ(x− x0)
α if x < 0

pη

(pη+(1−p)η)
1
η

pδ

(pδ+(1−p)δ)
1
δ

EUT Any Identity function Identity function
Distortion risk measure Identity function Any 1− w+(1− t)

CVaR* (Balbás et al.
(2009))

Identity function 1− w−(1− t)

{
x

1−α if 0 ≤ x < 1− α,

1 if 1− α ≤ x ≤ 1

VaR* (Balbás et al.,
2009)

Identity function 1− w−(1− t)

{
0 if 0 ≤ x < 1− α,

1 if 1− α ≤ x ≤ 1

Risk-sensitive RL with
exponential criteria
(Noorani et al., 2022)

1
β exp(βx), β > 0 Identity function Identity function

Table 1: CPT value examples. *: w+ and w− are often required to be continuous, which would
exclude VaR and CVaR.

E.3 PROOF: CVAR, VAR AND DISTORTION RISK MEASURES ARE CPT VALUES

For a random variable X and a non-decreasing function g : [0, 1] → [0, 1] with g(0) = 0 and
g(1) = 1, the distortion risk measure (Sereda et al., 2010) is defined as:

ρg(X) :=

∫ 0

−∞
g̃(F−X(x))dx−

∫ +∞

0

g(1− F−X(x))dx ,

where F−X : t 7→ P(−X ≤ t) and g̃ : t 7→ 1− g(1− t) .

Proposition 9. Any distortion risk measure of a given random variable X can be written as a CPT
value with u+ = id+, u− = −id−, w+ = g̃ and w− = g .

Proof. It follows from the definition of the distortion risk measure together with a simple change of
variable x 7→ −x that:

ρg(X) =

∫ 0

−∞
g̃(F−X(x))dx−

∫ +∞

0

g(1− F−X(x))dx

= −
∫ 0

+∞
g̃(F−X(−x))dx−

∫ +∞

0

g(1− F−X(x))dx

=

∫ +∞

0

g̃(F−X(−x))dx−
∫ +∞

0

g(1− F−X(x))dx

=

∫ +∞

0

g̃(P(−X ≤ −x))dx−
∫ +∞

0

g(1− P(−X ≤ x))dx

=

∫ +∞

0

g̃(P(X ≥ x))dx−
∫ +∞

0

g(P(−X > x))dx .

Since g(P(−X > x)) = g(P(−X ≥ x)) almost everywhere (in a measure theoretic sense) on
[0,+∞(, and g is bounded, we obtain:

ρg(X) =

∫ +∞

0

g̃(P(X ≥ x))dx−
∫ +∞

0

g(P(−X ≥ x))dx .

We recognize the CPT-value of X with u+ = id+, u− = −id−, w+ = g̃ and w− = g .

Remark 10. When X admits a density function, Value at Risk (VaR) and Conditional Value at Risk
(CVaR) (Wirch & Hardy (2001)) have been shown to be special cases of distortion risk measures
and are therefore also instances of CPT-values.
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E.4 CONNECTION TO GENERAL UTILITY RL AND CONVEX RL IN FINITE TRIALS

In this section, we elaborate in more details on one of the connections we noticed (and mentioned in
related works) between our (CPT-PO) problem of interest and the literature of generality utility RL.

The general utility RL problem consists in maximizing a (non-linear in general) functional of the
occupancy measure induced by a policy. More formally, the general utility RL can be written as
follows:

max
π

F (dπρ ) , (3)

where F is the real valued utility function defined on the set of probability measures over the state
or state-action space, ρ is the initial state distribution and dπρ is the state (or sometimes state-action)
occupancy measure induced by the policy π . This problem captures the standard RL problem as
a particular case by considering a linear functional F defined using a fixed given reward function.
Recently, motivated by practical concerns, Mutti et al. (2023b) argued for the relevance of a variation
of the problem under the qualification of convex RL in finite trials. They introduce for this the
empirical state distributions dn ∈ ∆(S) defined for every state s ∈ S by:

dπn(s) =
1

nT

n∑
i=1

T−1∑
t=0

1(st,i = s) , (4)

where st,i is the state at time t resulting from the interaction with the MDP (with policy π) in the
i-th episode, among n independent trials. Their policy optimization problem is then as follows:

max
π

ξn(π) := E[F (dπn)] . (5)

Note that dπn is a random variable as it is an empirical state distribution. Observe also that
limn→∞ ξn(π) = F (dπρ ) under mild technical conditions (e.g. continuity and boundedness of F ).
This shows the connection between the above final trial convex RL objective and the general utility
RL problem (3). The interesting differences between both problem formulations arise for small val-
ues of n. Of particular interest, both in this paper and in Mutti et al. (2023b), is the single trial RL
setting where n = 1.

Setting the probability distortion function w to be the identity, our (CPT-PO) problem becomes
(EUT-PO), i.e.:

max
π

E

[
U

(
H−1∑
t=0

rt

)]
, (6)

which is of the form ξ1(π), the single-trial RL objective as defined in Mutti et al. (2023b). Indeed,
it suffices to write the following to observe it:

U

(
H−1∑
t=0

rt

)
= U(⟨dπ1 , r⟩) , (7)

where r is the reward function seen as a vector in R|S| , ⟨·, ·⟩ is the standard Euclidean product
in R|S| . Therefore, it appears that the above objective is indeed a functional of the empirical distri-
bution dπ1 . Single trial general utility RL is more general than (EUT-PO) since it does not necessarily
consider an additive reward inside the non-linear utility and can accommodate any (convex) func-
tional of the occupancy measure. However, (CPT-PO) does not appear to be a particular case of
single trial convex RL because of the probability distortion function introduced.

F PROOFS FOR SECTION 3

F.1 UNWINDING MDPS FOR CPT-RL

In this section, we describe an equivalent MDP construction that will be used in some of our proofs
such as for Proposition 3. For any CPT-MDP (S,A, r, P ) with utility function U , we can formally
define an equivalent ‘unwinded’ MDP3 that can be solved using classical RL techniques. For any

3This terminology is not standard, we adopt it here to describe our approach.
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state s ∈ S is the original MDP and any timestep t ≤ H − 1 with cumulative reward
∑t

k=0 rk,
we associate a state s̃ := (s, t,

∑t
k=0 rk) and the rewards in the unwinded MDP are adjusted as to

reflect the difference in utility between two consecutive states:

r̃t = U

(
t+1∑
k=1

rk

)
− U

(
t∑

k=1

rk

)
. (8)

We observe that all the information needed at any given timestep to take a decision on the next action
to take is contained in s̃. This implies that any CPT-value that can be achieved by a non-Markovian
strategy on the original MDP can also be achieved by a Markovian policy on the unwinded MDP.

The reader might notice that the size of the unwinded MDP grows with the horizon length and might
blow up depending on the original MDP structure. As a consequence, learning in this unwinded
MDP might become intractable. If the original MDM can be represented as a finite directed acyclic
graph, the unwinded MDP is also a finite directed acyclic graph. If the underlying MDP contains a
cycle, even if it is finite, its unwinded version may contain an infinite number of states. In the case
of a stochastic tree MDP, the unwinded MDP has the exact same shape as the original one.

Note that we will only be using the unwinded MDP as a theoretical construction to prove some of
our results and we do not perform any learning task in this unwinded MDP.

F.2 PROOF OF PROPOSITION 2

To prove the proposition, we consider a simple MDP with only two states (an initial state and a
terminal one) and two actions (A and B). See Fig. 12a below. We choose the identity as utility.
Action A yields reward 1 with probability 1 and action B yields either 0 or 3

2 with probability 1
2

each. We further consider the following probability distortion function w+ : [0, 1] → [0, 1] defined
for every x ∈ [0, 1] as follows:

w+(x) =

{
5x if x ≤ 0.1,
1
2 + 5

9 (x− 0.1) otherwise ,
(9)

and we set w− = 0. All the policies can be described with a single scalar p ∈ [0, 1], the probability
of choosing B instead of A.

The CPT value of the reward X is:

C(X) = w+
(
1− p

2

)
+

1

2
w+
(p
2

)
. (10)

There are only two possible deterministic policies:

• For the policy corresponding to p = 0, C(X) = 1 .

• For the policy corresponding to p = 1, C(X) = 3
2w

+( 12 ) =
13
12 ≈ 1.08 .

However, with the non-deterministic policy p = 0.2, we get:

C(X) = w+(0.9) +
1

2
w+(0.1) =

17

18
+

1

4
=

43

36
≈ 1.19

which is larger than the CPT values of both deterministic policies. We conclude that there are no
deterministic policies solving the CPT problem in this case.

Remark 11. We provided a counterexample with random rewards, but there also exist counterex-
amples with deterministic rewards. One way to build such a counterexample is to start from the
MDP we just studied and ‘transfer’ the randomness from the reward functions to the probability
transition, by constructing a larger -but equivalent- MDP, with intermediate states like in Fig. 8.
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(a) The MDP

(b) The w+ function (c) The t 7→ P(X > t) function

Figure 7: Problem instance for the proof of Proposition 2.

Figure 8: An equivalent example with deterministic rewards

F.3 PROOF OF PROPOSITION 3

We build a classical MDP which is equivalent to our CPT-MDP following the procedure described
in more details in appendix F.1. In summary, we expand every state s in our CPT MDP into several
states encoding the state, partial sum of rewards and timestep all at once, i.e. s̃ = (s, t,

∑t−1
k=0 rk).

We encode all the dynamics of our CPT MDP into our new conventional MDP, and the reward in our
new MDP when going from a state s̃a = (sa, σa, ta) to another state s̃b = (sb, σb, ta + 1) is simply
defined as U(σb)−U(σa). We see that any non-Markovian policy in the CPT MDP can be rewritten
as a non-Markovian policy in the new classical MDP and reciprocally, any non-Markovian policy
in the new, classical MDP can be rewritten as a non-Markovian policy in the original CPT MDP.
Moreover, choosing 1 as a discounting factor in the new MDP, we note that by telescoping sum,
the total reward in the new MDP corresponds exactly to the total utility of the sum of rewards in the
CPT MDP. Since it is a classical MDP, our new MDP admits a Markovian optimal policy (Puterman,
2014). This optimal policy is at least as good as any other non-Markovian policy in the new MDP
with regards to the expected total reward and therefore at least as good as any other non-Markovian
policy in the old CPT MDP with regards to expected utility of the total reward. When translating this
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optimal policy to a policy in the CPT MDP, we notice it only depends on (s,
∑t−1

k=0 rk, t), meaning
it is indeed an element of ΠΣ,NS . This concludes the proof.

F.4 PROOF OF THEOREM 4

We will prove the following extended version of Theorem 4.

Theorem 12. Let U be continuous and (strictly) increasing. The following statements are equiv-
alent:

1. For any MDP, there exists an optimal policy for (EUT-PO) in ΠM,NS .
2. There exists a function φ : R2 → R such that:

∀x, a, b ∈ R, b ̸= 0,U(x+ a)− U(x) = φ(a, b)(U(x+ b)− U(x)) .

3. There exists α ∈ R s.t. U ′′(x) = αU ′(x) for all x ∈ R .

4. There exist A,B,C ∈ R s.t. U(x) = Ax+B or U(x) = A+B exp(Cx) for all x ∈ R .

5. There exists a function µ : R2 → R such that:

∀y, c, d ∈ R,U(y + c)− U(c) = µ(c, d)(U(y + d)− U(d)) .

We prove a series of implications and equivalences. It can be easily verified from combining all
these results that 1 =⇒ 2 =⇒ 3 =⇒ 4 =⇒ 5 =⇒ 1 , which proves all the equivalences of
the theorem. We proceed to prove each one of our implications in the rest of this section.

Proof of 3 ⇔ 4, 4 ⇒ 2, and 4 ⇒ 5.

The equivalence 3 ⇔ 4 is obtained simply by solving the differential equation for one implication
and a simple calculation for the other implication. The implications 4 ⇒ 2 and 4 ⇒ 5 follow from
simple algebraic verification.

Proof of 5 ⇒ 2.

We suppose 5 holds. For any given a, b ∈ R such that b ̸= 0, we define φ(a, b) := U(1+a)−U(1)
U(1+b)−U(1) .

Notice that this quantity is well defined since U being (strictly) increasing (and b ̸= 0) implies that
U(1 + b)− U(1) ̸= 0 . Then, we use 5 to obtain that for every x ∈ R,

U(x+ b)− U(x) = µ(x, 1)(U(1 + b)− U(1)) . (11)

We conclude the proof of the implication by writing:

U(x+ a)− U(x) = µ(x, 1)(U(1 + a)− U(1)) (again by 5)
= φ(a, b)µ(x, 1)(U(1 + b)− U(1)) (using the above definition of φ(a, b))
= φ(a, b)(U(x+ b)− U(x)) . (using Eq. (11))

This shows that 2 holds and concludes the proof.

Proof of 2 ⇒ 4. Consider a fixed integer k. Let Ck := φ(2 · 2−k, 2−k) and un := U(n2−k) for
every n ∈ N. We have the following recurrence relation for all n ∈ N:

un+2 − un = Ck(un+1 − un) .

That is to say for every n ∈ N,

un+2 − Ckun+1 + (Ck − 1)un = 0 .

This recurrence relation can be solved by examining the characteristic polynomial:

x2 − Ckx+ (Ck − 1) = 0 .

The roots are obtained using the quadratic formula: r± =
Ck±

√
C2

k−4(Ck−1)

2 = Ck±(Ck−2)
2 .

• If Ck = 2, there is only one root, 1, and ∃Dk, Ek ∈ R,∀n, un = (Dkn+ Ek)1
n = Dkn+ Ek

• Otherwise, there are two real roots, (Ck − 1) and 1, and un is of the form, un = Dk(Ck − 1)n +
Ek · 1n = DkC

n
k + Ek .
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This proves that for all k, there exists a function in {x 7→ Ax + b, (A,B) ∈ R2}
⋃
{x 7→ A +

B exp(Cx), (A,B) ∈ R2} that coincides with U on the set { x
2k
, x ∈ N}.

Importantly, all these functions have to be the same (across different values of k, i.e. all Dk constants
are the same and all Ek constants do also coincide), due to the structure of {x 7→ Ax+ b, (A,B) ∈
R2}

⋃
{x 7→ A + B exp(Cx), (A,B) ∈ R2} and because they all coincide on all the integers with

the corresponding value of the same (fixed) utility function U at the relevant integer. This means that
there exists a single function f in {x 7→ Ax+ b, (A,B) ∈ R2}

⋃
{x 7→ A+B exp(Cx), (A,B) ∈

R2} which coincides with U on all of { x
2y , x ∈ N, y ∈ N+}. By continuity of U , we obtain that 4

holds.

Proof of 4 ⇒ 1.

If U is an affine function x 7→ Ax + B (for some A,B ∈ R), then solving the (EUT-PO) prob-
lem boils down to solving a traditional MDP in which an optimal Markovian policy always exists
(Puterman, 2014).

Let us now assume that the utility function is of the form x 7→ A+B exp(Cx) for some A,B,C ∈
R. Without loss of generality, we can simply ignore the constant A in the optimization prob-
lem (EUT-PO) and just assume we are maximizing U(x) = B exp(Cx). Recall that we are con-
sidering a finite-horizon setting with horizon length H . For any 0 ≤ T ≤ H , we say that a policy
π ∈ ΠΣ,NS is Markovian in the last T steps if there exists a function f defined from S × N (into
the set of policies) such that:

∀σ ∈ R,∀t ≥ H − T, ∀s ∈ S, π(s, σ, t) = f(s, t) .

Using again the unwinded MDP construction like in the proof of Proposition 3, we can find
a policy π⋆ ∈ ΠD

Σ,NS which is ”totally” optimal: that is to say, starting from any (s, σ, t),

E
[
U(σ +

∑H−1
k=t rk)

]
is maximal when following policy π⋆. We proceed by induction to prove

the assertion PT : ‘There exists a deterministic totally optimal policy πT which is Markovian in the
last T steps’ for any T ≤ H , especially for T = H which is the desired result.

Initialization: P0 is true with π0 = π⋆.

Induction: Let us suppose PT is true for some T < H . We define πT+1 by:

πT+1(s, σ, t) :=

{
πT (s, 0, t) if t = H − T − 1

πT (s, σ, t) otherwise .

We see that πT+1 is a deterministic policy that is Markovian in the last T +1 steps. We also see that
for any t ≥ H − T and any σ ∈ R, s ∈ S, starting from (s, σ, t), E

[
U(σ +

∑H−1
k=t rk)

]
is maximal

when following policy πT+1. We need to prove it for others values of t. i.e. t ≤ H − T − 1.

Because πT+1 is Markovian in the last T + 1 steps, the probability distribution on future states,
actions and rewards starting from (s, σ,H − T − 1) does not depend on σ.

We know that it optimizes E
[
U(0 +

∑H−1
k=t rk)

]
, and we want to show that it optimizes

E
[
U(σ +

∑H−1
k=H−T−1 rk)

]
for all σ ∈ R. This is where we use the form of the utility function

to remark that

E

[
U

(
σ +

H−1∑
k=H−T−1

rk

)]
= E

[
exp(Cσ)U

(
H−1∑

k=H−T−1

rk

)]
= exp(Cσ)E

[
U

(
H−1∑

k=H−T−1

rk

)]

and a maximizer for σ = 0 is therefore a maximizer for all σ.

We know now that πT+1 is optimal starting from any (s, σ, t) if t ≥ H −T − 1. Note that now, step
H − T − 1 is included.
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Starting from (s, σ, t) with t < H−T −1, we know that πT maximizes E
[
U(σ +

∑H−1
k=t rk)

]
. We

notice, using the tower rule:

E

[
U

(
σ +

H−1∑
k=t

rk

)]
= E

[
U

(
σ +

H−T−2∑
k=t

rk +

H−1∑
k=H−T−1

rk

)]

= E

E
U
σ +

H−T−2∑
k=t

rk︸ ︷︷ ︸
σ′

+

H−1∑
k=H−T−1

rk

 |σ +

H−T−2∑
k=t

rk︸ ︷︷ ︸
σ′

, sH−T−1


 .

Because πT+1 is as good as πT at maximizing E
[
U
(
σ′ +

∑H−1
k=H−T−1 γ

krk

)]
starting from

(σ′, SH−T−1, T −H − 1), we conclude that πT+1 performs as well as πT , because the inner con-
ditional expectation is the same and the first steps are the same.

Therefore, PT+1 is true.

Conclusion: PH is true, which is our desired result.

Proof of 1 ⇒ 2.

Let us show ¬2 ⇒ ¬1. ¬2 means that for any function φ : R2 7→ R, there exists x, a, b ∈ R such
that b ̸= 0 and U(x+ a)− U(x) ̸= φ(a, b)(U(x+ b)− U(x)) .

Define now φ : R2 7→ R by φ(α, β) = U(α)−U(0)
U(β)−U(0) for all α ∈ R, β ̸= 0 and φ(α, β) = 1 for

β = 0. It follows that there exist x, a ∈ R, b ̸= 0 (given by ¬2 above) such that U(x+ a)−U(x) ̸=
φ(a, b)(U(x+ b)− U(x)) .

As a consequence, we obtain U(x+a)−U(x)
U(x+b)−U(x) ̸= U(a)−U(0)

U(b)−U(0) . Our idea now is to exploit this difference
in utility to build a situation in which a non-Markovian strategy is clearly more profitable in view of
our (EUT-PO) policy optimization problem.

Suppose without loss of generality that b > a > 0 and U(x+a)−U(x)
U(x+b)−U(x) > U(a)−U(0)

U(b)−U(0) without loss of
generality. In the other cases, the inequalities might get reversed but the gist of the proof stays the
same. We define p as the halfpoint

p :=
1

2

(
U(x+ a)− U(x)
U(x+ b)− U(x)

+
U(a)− U(0)
U(b)− U(0)

)
. (12)

Since U is strictly increasing, we have that p ∈ (0, 1) .

We now consider an MDP with three states s0, s1, s2 where s2 is a terminal state that leads to
nowhere and s0 is the starting state. Whatever action is taken in s0, we transition to s1, with reward x
with probability 1

2 and reward y with probability 1
2 . Once in state s1, we can take action A, which

yields reward a with probability 1, or take action B, which yields reward b with probaility p and
0 otherwise. Both lead to s2 and the end of the episode with certainty. Here, to maximize the
(EUT-PO) objective, one has to adopt a non-Markovian strategy in s1, hence disproving assertion 1.
Indeed, knowing the reward achieved in the past step (between states s0 and s1) allows to decide
whether to take more risks or not to achieve a higher EUT return.

We elaborate on this claim in what follows. Observe first that
U(x+ a)− U(x)
U(x+ b)− U(x)

> p >
U(a)− U(0)
U(b)− U(0)

. (13)

What is the best action to choose if we are in state s1 and have had return 0 so far? We know there
is a deterministic best action to take. Action 1 yields total reward U(a). Choosing action 2 yields:

E(U(r0+r1)|r0 = 0) = E(U(r1)) = pU(b)+(1−p)U(0) = p(U(b)−U(0))+U(0) > U(a) , (14)

where the strict inequality follows from using (13). So it is strictly better to choose action 2 over
action 1 if we are in s1 and have had a return 0 so far.
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What is the best action to choose if we are in state s1 and have had return x so far? We know again
that there is a deterministic best action to take. Action 1 yields total reward U(x + a). Choosing
action 2 yields:

E(U(r0 + r1)|r0 = x) = E(U(r1 + x)) = pU(b+ x) + (1− p)U(x)
= p(U(b+ x)− U(x)) + U(x) < U(a+ x) , (15)

where the strict inequality follows from using again (13). So it is strictly better to choose action 1
over action 2 if we are in s1 and have had a return x so far.

We conclude from both cases that there is no optimal Markovian policy.

Figure 9: MDP serving as counterexample for the proof of the last implication. While this example
has random rewards, another counterexample with random transitions and deterministic rewards can
be designed, in the same way as in Remark 11.

F.5 PROOF OF PROPOSITION 5

(a) The MDP

(b) The w+ function (c) The t 7→ P(X > t) function

Figure 10: Figures for the proof of Proposition 5

We proceed in the same way as for Proposition 2 by providing a counterexample. We consider the
utility function U : x 7→ 1 − exp(−βx) with β = 1

2 , and the same w+ function as in the proof of
Proposition 2:

w+(x) =

{
5x if x ≤ 0.1,
1
2 + 5

9 (x− 0.1) otherwise.

We also set w− = 0. However, we consider another MDP. Our MDP has three states: an initial
state s0, an intermediate state s1, and a terminal state s2. There are two actions: A and B. All
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trajectories start in s0. Any action from s0 leads to s1 with probability 1 and yields reward +1 with
probability 1

2 and 0 otherwise. The action taken when in s0 is completely irrelevant. Any action
taken in s1 leads to s2 with probability 1 and the episode stops as soon as s2 is reached. When taking
action A in s1, the reward is either 0 or +2, with probability 1

2 each. When taking action B in s1,
the reward is +1 with probability 1. All policies in ΠNM can be described by (pstart, p0, p1), where
pstart is the probability of choosing action A when in s0, p0 is the probability of choosing action A
in s1 if the transition from s0 to s1 yielded reward 0 and p1 is the probability of choosing action A
in s1 if the transition from s0 to s1 yielded reward 1. pstart is irrelevant to the performance of the
policy so we can ignore it. The set of Markovian policies here is the set of policies such as p0 = p1.
C(π) is a piecewise affine function of p0 and p1 and it can therefore be directly maximized. We omit
the calculations here: one can check that the best achievable CPT value for Markovian policies is
≈ 0.616 for p0 = p1 = 0.4 but that a CPT value of ≈ 0.625 is achievable for p0 = 0 and p1 = 0.4,
proving the lemma.

G PROOFS AND ADDITIONAL DETAILS FOR SECTION 4

G.1 PROOF OF THEOREM 6

The CPT value is a difference between two integrals (see definition in (1)). In what follows, we
compute the derivative of the first integral assuming that the second one is zero in the CPT value.
A similar treatment can be applied to the second integral. We skip these redundant details for
conciseness.
Remark 13. As we consider a finite horizon setting with finite state and action spaces, the integral
on trajectories τ are in fact finite sums, allowing us to differentiate freely. We still write the proof with∫

signs, signalling our hope that, under some technical assumptions, our proof could be generalized
to a setting with infinite horizon and/or infinite state and action spaces.

Using the shorthand notation X =
∑H−1

t=0 rt, we first observe that:

C(X) =

∫ +∞

z=0

w(P(U(X) > z)dz =

∫ +∞

z=0

w

(∫
τ such as U(R(τ))>z

ρθ(τ)dτ

)
dz , (16)

where ρθ is the trajectory probability distribution induced by the policy πθ defined for any H-length
trajectory τ = (s0, a0, · · · , sH−1, aH−1) as follows:

ρθ(τ) = p(s0)

H−1∏
t=0

πθ(at|ht)p(st+1|ht, at) . (17)

Remark 14. Recall that we have ignored the second integral in the CPT value definition for con-
ciseness.

Starting from the above expression (16), it follows from using the chain rule that:

∇θC(X) =

∫ +∞

z=0

w′(P(U(X > z))∇θ

(∫
τ such as U(R(τ))>z

ρθ(τ)dτ

)
dz (18)

=

∫ +∞

z=0

w′(P(U(X > z))

∫
τ such as U(R(τ))>z

∇θρθ(τ)dτdz (19)

=

∫
τ

∫ U(R(τ))

z=0

w′(P(U(X) > z))∇θρθ(τ)dzdτ (20)

=

∫
τ

ϕ(U(R(τ)))∇θρθ(τ)dτ , (21)

where ϕ(t) :=
∫ t

z=0
w′(P(U(X) > z))dz for any real t .

We now use the standard log trick to rewrite our integral as an expectation:

∇θC(X) =

∫
τ

ϕ(U(R(τ)))ρ(τ)∇θ log ρ(τ)dτ = Eτ∼ρ[ϕ(U(R(τ)))∇θ log ρ(τ)] .
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Furthermore, we can expand the gradient of the score function using (17) as follows:

log ρθ(τ) = log p(s0) +

H−1∑
t=0

log πθ(at|ht) +

H−1∑
t=0

log p(st+1|ht, at) , (22)

∇θ log ρθ(τ) =

H−1∑
t=0

∇θ log πθ(at|ht) , (23)

where the last step follows from observing that only the policy terms involve a dependence on the
parameter θ. Combining (21) and (23) leads to our final policy gradient expression:

∇θC(X) = E

[
ϕ

(
H−1∑
t=0

rt

)
H−1∑
t=0

∇θ log πθ(at|ht)

]
. (24)

Note that we have used the notation ϕ above instead of φ used in Theorem 6 to avoid the confusion
with the full definition of φ which involves both integrals.

G.2 ALTERNATIVE PRACTICAL PROCEDURE FOR COMPUTING STOCHASTIC POLICY
GRADIENTS

In this section, we discuss an alternative approximation procedure to the one proposed in section 4
for computing stochastic policy gradients. More precisely, we seek to approximate φ(R(τ)) without
the need for estimating quantiles and using order statistics for this. This alternatively procedure will
be especially useful in practice when the probability distortion w is not necessarily differentiable
or smooth. As discussed in the main part, one of the key challenges to compute stochastic policy
gradients is to compute the integral terms appearing in the policy gradient expression. Our idea here
is to approximate the probability distortion function w by a piecewise (linear or quadratic) function,
leveraging the following useful lemma which shows that the integral is simple to compute when w
is quadratic for instance.

Lemma 15. Let X be a real-valued random variable and suppose that the weight function w is
quadratic on an interval [a, b] for some positive constants a, b, hence there exist α, β ∈ R s.t. for
all x ∈ [a, b], w′(x) = αx + β. Let Ya,b := min(max(U(X) − a, b − a), 0) . Then, we have that∫ b

a
w′(P(U(X) > z)dz = αE[Ya,b] + β(b− a) .

Proof. For any a, b ∈ R s.t. a ≤ b, we have∫ b

a

w′(P(U(X) > z)dz =

∫ b−a

0

w′(P(U(X)− a > v))dv

=

∫ b−a

0

(α(P(U(X)− a > v)) + β)dv

= α

∫ b−a

0

P(U(X)− a > v)dv + β(b− a)

= α

∫ b−a

0

P(Ya,b > v)dv + β(b− a)

= α

∫ +∞

0

P(Ya,b > v)dv + β(b− a)

= αE[Ya,b] + β(b− a) .

This result is convenient: Instead of estimating an entire probability distribution, we just have to
estimate an expectation, which is much easier. However, we cannot reasonably approximate an ar-
bitrary weight function by a quadratic function. Therefore, we consider the larger class of piecewise
quadratic functions for which Lemma 15 extends naturally.
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Proposition 16. Let w be piecewise quadratic: there exists q1 < q2 < .... < qk, with
q1 = 0 and qk = 1, as well as reals α1, ...., αk, β1, ...., βk and δ1, ...., δk such as w(x) =∑k−1

i=1 1[qi,qi+1[(t)(
1
2αit

2 + βit + δi). For all 1 ≤ i ≤ k − 1, define the i-th quantile of U(X)
as q̃i := sup{t ∈ R ∪ {+∞,−∞},P(U(X) > t) ≥ qi}. Then, for any given t ∈ [q̃j+1, q̃j [:∫ t

0

w′(P(U(X) > z)dz =

k−1∑
i=j+1

(αiE(Yq̃i+1,q̃i) + βi(q̃i − q̃i+1)) + αjE(Yq̃j ,t) + βj(t− q̃j+1) .

Proof. We simply apply Lemma 15 to each segment:∫ t

0

w′(P(U(X) > z)dz =

k−1∑
i=j+1

∫ q̃i

q̃i+1

w′(P(U(X) > z))dz +

∫ t

q̃j+1

w′(P(U(X) > z))dz

=

k−1∑
i=j+1

(αiE(Yq̃i+1,q̃i) + βi(q̃i − q̃i+1)) + αjE(Yq̃j ,t) + βj(t− q̃j+1) .

The above lemma shows that we would have to estimate several quantiles and expectations to use this
result. In particular, the expectation E(Yq̃j ,t) introduces some undesired computational complexity
as the term differs for every t. However, if we rather consider a simpler piecewise affine approxi-
mation of w which can be computed once before any computation (independently from the rest) if
the probability distortion function w is priorly known (which we implicitly suppose throughout this
work), the expression is greatly simplified, yielding Lemma 17.
Lemma 17. Suppose that the weight function w : [0, 1] 7→ [0, 1] is piecewise affine, i.e. there exists
q1 < q2 < .... < qk, with q1 = 0 and qk = 1, as well as reals β1, ...., βk and δ1, ...., δk s.t. w(x) =∑k−1

i=1 1[qi,qi+1[(x)(βix + δi) for any x ∈ [0, 1]. Let q̃i := sup{t ∈ R ∪ {+∞,−∞},P(U(X) >
t) ≥ qi} for any i = 1, · · · , k . Then for any 1 ≤ j ≤ k − 1 and any t ∈ [q̃j+1, q̃j [,∫ t

0

w′(P(U(R(τ)) > z)dz =

k−1∑
i=j+1

(βi(q̃i − q̃i+1)) + βj(t− q̃j+1) .

H MORE DETAILS ABOUT SECTION 5 AND ADDITIONAL EXPERIMENTS

Environment Utility function w+ function Figure Comment
Grid Various 3-segment piecewise affine function Fig. 2 and

Apdx H.4
We observe convergence and various be-
haviours for various utility functions

Traffic Control Identity Risk averse (wra) Apdx. H.5 The policy goes around the city center
Traffic Control Identity Risk neutral (Id.) Apdx. H.5 The policy goes through the city center
Traffic Control Identity Risk averse (wra) / Risk-neutral (Id.) Apdx. H.5 Same behavior, entropy regularization

needed
Scalable Grid Identity Risk-averse (wra) Fig. 3 Our algorithm converges faster than CPT-

SPSA-G for large grids
Electricity Management Identity Very risk averse (wvra) / Very risk

seeking (wvrs) / Risk-neutral (Id.)
Fig. 2 Convergence to different reward distribu-

tions in accordance to behavior to risk
Fig. 14 Exponential,

Kahneman-
Tversky

Risk-neutral (Id.) Fig. 18 The result illustrates Theorem 4

Fig. 12a Identity Risk-seeking (wrs) Fig. 13 The result illustrates Proposition 2

Table 2: Summary of experiments

Table 2 recaps the various experimental settings. The risk-neutral w+ function is simply the identity
function. As for the definition of other probability distortion functions w+ we use for experiments,
we define:

wra(x) :=

{
0.5x if x ≤ 0.9,

5.5x− 4.5 otherwise.
wrs(x) :=

{
5x if x ≤ 0.1,
1
2 + 5

9 (x− 0.1) otherwise.

wsra(x) :=

{
0.1x if x ≤ 0.9,

9.1x− 8.1 otherwise.
wsrs(x) :=

{
9x if x ≤ 0.1,
1
9x+ 8

9 otherwise.
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Instead of vanilla stochastic gradient descent, we use the Adam optimizer to speed up convergence.
In our Python implementation, we use the same batch of trajectories for estimating the function φ
and for the performing the stochastic gradient ascent step. We have run the experiments on a laptop
with a 13th Gen Intel Core i7-1360P2.20 GHz CPU and 32 GB of RAM.

We use the tanh activation function before the last softmax layer to encourage exploration and reduce
the risk of converging to local optima which may occasionally occur for some runs.

H.1 ADDITIONAL FIGURE

Figure 11: Illustration of the flexibility of CPT compared to the Distortion Risk Measure. Notice
how w− is distinct from both w+ and p 7→ 1− w+(1− p).

H.2 ILLUSTRATION OF PROPOSITION 2: ABOUT THE NEED FOR STOCHASTIC POLICIES IN
CPT-RL

(a) The MDP (b) The w+ function

Figure 12: Setting of the experiment on non-deterministic policies and batch size influence

We illustrate Proposition 2 and study experimentally the behavior of our algorithm with regards to
small batch sizes.

Setting. We use the barebones setting (Figure 12) introduced in the proof of Proposition 2 with its w
function that aggressively focuses on the 10% of favorable outcomes. Denoting by p the probability
of choosing A for a given policy, we look at the value of p at convergence (1000 optimization steps)
for various batch sizes. The optimal policy corresponds to p = 0.8.

Insights. For each batch size we test, we run and plot a hundred training rounds (Figure 13). We fist
observe that the policy we obtain with our algorithm indeed approaches the optimal p = 0.8 policy.
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Figure 13: Results of the experiment on non-deterministic policies and batch size influence, over 100
runs. The black dots are the medians and the shaded area represents the interquartile range.

The estimation error (w.r.t. the optimal theoretical value of p = 0.8) appears to be of order 1√
batch size

.
It was to be expected that a small batch size would lead to a bias in CPT value and CPT gradient
estimation, and, finally, in policy, as a small batch size renders impossible an accurate estimation
of the probability distribution of the total return function. The fact that this bias appears to be
proportional to the inverse of the square root of the batch size is in line with the standard statistical
intuition (as e.g. per the central limit theorem). In our particular example, the estimated p is below
(and not above) the theoretical p. This is likely because our w function places a strong weight on
the top 10% of outcomes. Hence there is an imbalance between the impact of overestimating and
underestimating the proportion of good outcomes in a given run: if we underestimate the probability
of getting +1.5 with a given policy due to sampling, the effect will be stronger than the opposite
effect we would get by overestimating the probability of the same error. As the batch size grows,
the estimation error is reduced and the effect vanishes.

H.3 ILLUSTRATION OF THEOREM 4: MARKOVIAN VS NON-MARKOVIAN POLICIES FOR
CPT-RL

Figure 14: The environment for the experiment on non-Markovian policy

To illustrate the fundamental difference between memoryless utility functions studied in Theorem 4
and the others we conduct a small experiment on a simple setting (Figure 14), similar to the one
introduced in the proof of the theorem. We consider three states and three actions. From the starting
state, any action leads to the second state with probability 1 and yields a reward of +1 with probabil-
ity 1

2 and of −1 with probability 1
2 . Once in the second state, the first action yields reward +1 with

probability 1, the second action yields 0 or 3 with probability 1
2 each, and the third action always

yields 0. We compare the performance of a policy parametrized in ΠΣ,NS and one in ΠM,NS .

Insights. The results (Figure 18) illustrate indeed the performance advantage of the non-Markovian
policy compared to the Markovian one in the case of a non-affine, non-exponential utility function,
and the absence thereof in the exponential setting.
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Figure 15: Comparison of Markovian and Non-Markovian policy performances for non-exponential
(left) and exponential (right) utility functions. Shaded areas represent a range of ± one standard
deviation over 20 runs.

H.4 GRID ENVIRONMENT

↓ ↓ ↓ ↓
→ ↓ ↓ ↓
→ → → ↓
+5 → → +6

(a) A risk-neutral optimal policy obtained with our
algorithm

↓ ↓ ↓ ↓
↓ ↓ ↓ ↓
↓ → → ↓

+5 → → +6

(b) An optimal policy obtained by training with
the risk-averse utility U : x 7→

√
x

Figure 16: Comparison of optimal policies under risk-neutral and risk-averse scenarios

Exploration. To avoid our gradient ascent algorithm getting stuck in a local optimum, we have to
ensure enough exploration is going on. Therefore, we tweak the last layer of the neural network to
prevent every action’s probability from vanishing too soon. We choose a parameter α, choose our
last layer as x 7→ softmax(α tanh(x/α)), and we let α slowly grow with the iterations. A small
α forces exploration, larger α allows for more exploitation: this is similar to an ϵ-greedy scheme
(with ϵ decaying as α grows), as it forces every action to be chosen with at least a small probability.

H.5 TRAFFIC CONTROL

Figure 17: The probability distortion function w+ used for the traffic control experiment.
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0 1 2
0 → → ↓
1 ↑ ?
2 ↑ ? ↑

(a) Training with our w func-
tion for traffic control (3 × 3)

0 1 2
0 → → ↓
1 → →
2 → → ↑

(b) Risk-neutral reference

0 1 2 3
0 → → ? ↓
1 ↑ ? → ↓
2 ↑ ↑ →
3 ↑ ↑ ? →

(c) Training with our w func-
tion for traffic control (4 × 4)

0 1 2 3
0 → → → ↓
1 → → → ↓
2 → → →
3 → → → ↑

(d) Risk-neutral reference

Figure 18: Examples of policies obtained with our algorithm. Question marks indicate a non-
deterministic action selection in a given state.

Implementation details. In both cases, the risk-neutral optimal solution (going around the city
center) is also a local optimum for the risk-averse objective, and, because it is a shorter path, is
easier to stumble upon by chance when exploring the MDP. This means we have to implement
special measures to force exploration. The algorithm used as is is prone to get stuck from time to
time in local minima on this example. It would seem that our w function, which is aggressively
risk-averse, hinders exploration. To mitigate this, we introduce an entropy regularization term that
we add to the score function with a decaying regularization weight in the policy gradient found in
Theorem 6, see appendix H for further details. We incorporate entropy regularization in the policy
gradient as follows:

E

φ(H−1∑
t=0

rt

)
H−1∑
t=0

∇θ

(
log πθ(at|st) + αnH(πθ(at|st))︸ ︷︷ ︸

Entropy regularization term

) , (25)

where αn is the weight of the regularization. We found that a decaying αn yielded the best results.

On the 4× 4 grid, we also start by pretraining our model with a risk-neutral method for a few steps,
to accelerate training and avoid some bad local optima we can stumble upon due to unlucky policy
initialization, before carrying on with our risk-aware method.
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H.6 ELECTRICITY MANAGEMENT

Public data is available online.4

Figure 19: Electricity prices in a typical day, the blue line (right-hand side scale) records the electric-
ity price on the European market, the shaded area (left-hand side scale) represents the total electricity
production in France.

4www.services-rte.com/en/view-data-published-by-rte/
france-spot-electricity-exchange.html
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H.7 TRADING IN FINANCIAL MARKETS

We discuss here an application of our methodology to financial trading. The goal is to train RL
trading agents using our general PG algorithm in the setting of our CPT-RL framework.

Environment: general description. We consider a gym trading environment available on-
line, all the details about this environment are available here: https://gym-trading-env.
readthedocs.io/en/latest/. This environment simulates stocks and allows to train RL
trading agents. For the interest of the reader, we provide a brief summary explaining how the envi-
ronment works. The environment is build from a given dataframe and a list of possible positions.
The dataframe contains market data throughout a given period. The list of possible positions will
represent the set of possible actions the agent can take, We provide more details about our specific
environment in the following paragraph.

Our trading environment. We use data from the Bitcoin USD (BTC-USD) market between May
15th 2018 and March 1st 2022 available in the aforementioned website. We note that the data used
follows the same pattern as publicly available data after a few preprocessing steps, the reader can
find such data examples at https://finance.yahoo.com/quote/BTC-USD/history
including the date, a few extracted features (‘open’, ’high’, ’low’, ’close’) which respectively repre-
sent the open price, i.e. the price at which the first trade occurred for the asset at the beginning of
the time period, the highest, lowest and last such prices, and the volume in USD which is the total
value of all trades executed in a given time period. In particular, we will consider static features
(computed once at the beginning of the data frame preprocessing) and dynamic features (computed
at each time step) such as the last position taken as introduced by the Gym Trading Environment.

• State space: We consider a seven dimensional continuous state space. Features are constructed
from the raw stock market data as previously explained. State transitions are described using the
provided time series. See the publicly available code of the environment for more details.

• Action space: We consider three classical types of positions the trader can take in a financial
market: SHORT, OUT and LONG. These positions constitute the set of actions. These actions
refer to whether the trader expects the price of an asset to rise or fall and how they are positioned
to profit from that fluctuation. Extending this setting to a setting with a larger set of positions is
straightforward as the environment implementation also supports more complex positions.

• Rewards: The rewards we consider are given by the log values of the ratio of the portfolio valu-
ations at times t and t − 1 . Borrowing interest rates and trading fees are also considered in the
computation. The reward function can also be easily modified in the environment thanks to the im-
plementation of the Gym Trading Environment which builds on the standard Gym environments.

Remark 18. One can easily build their own environment by downloading their own dataframe for
any historical stock market data and performing their desired preprocessing as for the features they
would like to consider to build their states.

Experimental setting. We have tested several utility and probability weighting functions including
a risk averse exponential of the form x 7→ 1

β (1 − exp(−βx)) with different values of β as well as
the KT (Kahneman and Tversky) function as defined in the main part with different values of the
reference point x0 to illustrate its influence.

Hyperparameters. We used the following set of parameters to conduct the experiments:

Table 3: Hyperparameters

Hyperparameter Value
Optimizer Adam

Learning rate 0.05
Number of episodes 100

Batch size 5
Number of steps per episode 25

Additional hyperparameters used are directly reported in the legends of the figures below.

Results. We refer the reader to Fig. 20 and Fig. 21 below. We make a few observations:
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• Influence of the reference point: It can be seen that the reference point shifts the values of the
achieved CPT returns: The smaller the reference point, the larger are the returns. This is because
only values larger than the reference point are perceived as positive returns given the definition of
the KT utility. This illustrates how the subjective perception of the agent of the returns is taken
into account by the model.

• Different return trajectories for different risk averse functions: Different values of β lead to dif-
ferent trajectories overall which can translate to different levels of risk aversion. In particular, the
curves do not match the identity utility case in the first episodes and show more or less risk taken
towards optimizing the CPT returns.

• Influence of the parameter α in KT’s utility (Fig. 21): Observe that the exponent α in the utility
distorts the function and shifts the returns significantly. Lower values of α lead to higher returns
in this setting where the returns (as per the ratio definition of the reward) are smaller than 1.
This parameter α provides a degree of freedom to model the behavior of the agent as per their
perception of the returns. Different values of α modify the curvature of the utility function (w.r.t.
the reference point which is x0 = 0 here) which is concave for gains and convex for losses.
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Risk-averse exp. (beta = 0.8)
Risk-averse exp. (beta = 1.5)
KT (x0 = 0)
KT (x0 = 0.01)
KT (x0 = 0.02)
KT (x0 = 0.03)

Figure 20: Performance of our PG algorithm on a financial trading application. KT refers to Kah-
neman and Tversky’s utility function, x0 is the reference point used in that utility, exp. refers to
exponential. Shaded areas are interquantile (25-75%) margins and curves report the median values
over 10 different runs.
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Figure 21: Performance of our PG algorithm on the same financial trading application. KT refers
to Kahneman and Tversky’s utility function, alpha is the parameter used in the definition of KT’s
utility, exp. refers to exponential. Shaded areas are interquantile (25-75%) margins and curves report
the median values over 10 different runs.
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H.8 CONTROL ON MUJOCO ENVIRONMENTS

In this section we test our algorithm on the INVERTEDPENDULUM-V5 environment (Todorov et al.,
2012) to demonstrate that our PG algorithm is also applicable to other control benchmarks with
continuous state and action spaces.

Hyperparameters. We used the following set of parameters to obtain our results:

Table 4: Hyperparameters

Hyperparameter Value
Optimizer Adam

Learning rate 1e-4
Number of episodes 2000

Batch size 32
Maximum number of steps per episode 200
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Figure 22: Performance of our PG algorithm on the INVERTEDPENDULUM-V5 environment
(Todorov et al., 2012). KT refers to Kahneman and Tversky’s utility function, alpha is the parame-
ter used in the definition of KT’s utility, exp. refers to exponential. Shaded areas are interquantile
(25-75%) margins and curves report the median values over 10 different runs. All the CPT return
curves are obtained with the same probability weighting function w which is piecewise affine with
three segments (hence different from the standard RL identity setting).
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Figure 23: Performance of our PG algorithm on the INVERTEDPENDULUM-V5 environment
(Todorov et al., 2012). This figure complements Fig 22 with the CPT returns using a KT utility
with α = 1.4. Notice that a much higher CPT return is achieved in that case. We also provide
Fig. 22 for scaling purposes, the CPT returns being much higher for KT (α = 1.4).
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