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ABSTRACT

Large Language Models (LLMs) have demonstrated strong performance across gen-
eral NLP tasks, but their utility in automating numerical experiments of complex
physical system—a critical and labor-intensive component—remains underex-
plored. As the major workhorse of computational science over the past decades,
Computational Fluid Dynamics (CFD) offers a uniquely challenging testbed for
evaluating the scientific capabilities of LLMs. We introduce CFDLLMBench, a
benchmark suite comprising three complementary components—CFDQuery, CFD-
CodeBench, and FoamBench—designed to holistically evaluate LLM performance
across three key competencies: graduate-level CFD knowledge, numerical and
physical reasoning of CFD, and context-dependent implementation of CFD work-
flows. Grounded in real-world CFD practices, our benchmark combines a detailed
task taxonomy with a rigorous evaluation framework to deliver reproducible re-
sults and quantify LLM performance across code executability, solution accuracy,
and numerical convergence behavior. CFDLLMBench establishes a solid founda-
tion for the development and evaluation of LLM-driven automation of numerical
experiments for complex physical systems.

1 INTRODUCTION

Recent advances in large language models (LLMs) have shown remarkable performance across
general natural language processing tasks (Grattafiori et al., 2024; Achiam et al., 2023). However,
their potential as scientific assistants—specifically, their ability to automate numerical simulation
workflows—remains largely underexplored (Bran et al., 2023; Kumar et al., 2023).

Computational Fluid Dynamics (CFD) is critical in domains such as urban physics (Blocken et al.,
2011; Blocken, 2015), aerospace (Slotnick et al., 2014), climate (Shah et al., 2023), aerial (Shi et al.,
2019), underwater robotics (Lee et al., 2023a), and has labor-intensive workflows for computationally
expensive numerical simulations of fluid dynamics. CFD workflows involve multiple steps, such as
mesh generation, setup of boundary and initial conditions, and solver configuration. Such scientific
workflows require an understanding of highly specialized knowledge (Wang et al., 2023a), numerical
and physical reasoning (Tian et al., 2024), and have context-dependent implementations involving
domain-specific tool calling (Jacobs & Pollice, 2025).

In this paper, we introduce CFDLLMBench (Figure 1), the first LLM benchmark for CFD composed of
curated datasets designed to holistically evaluate LLMs’ performance across three key competencies:

Graduate-level CFD knowledge: Understanding of fluid mechanics and concepts of numerical
analysis relevant to CFD.

Numerical and physical reasoning: Applying advanced math and physics knowledge to solve diffi-
cult problems. For example, selecting a suitable numerical method that solves the governing equation,
with the appropriate boundary conditions and initial conditions.

Context-dependent implementation of CFD workflows: Selecting and configuring CFD prepro-
cessing and numerical solver settings according to the physical context.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Overview of CFDLLMBench: As the first ever LLM benchmark designed to holistically evaluate
LLM’s capabilities for CFD, it consists of three different tasks and datasets. (1) CFDQuery: Graduate-level
CFD QA. (2) CFDCodeBench: Coding questions about solving common linear/nonlinear PDEs encountered in
CFD. (3) FoamBench: Configuring OpenFOAM case files for simulating realistic engineering scenarios such as
incompressible flow over obstacles, supersonic flow with shockwaves, Rayleigh-Benard convection, etc.

The CFDLLMBench benchmark suite evaluates these competencies using three benchmark tasks: 1)
CFDQuery: 90 multiple-choice questions curated from graduate-level CFD lecture notes that assess
LLM’s ability in the conceptual understanding of CFD knowledge. 2) CFDCodeBench: 24 CFD
programming tasks designed to assess an LLM’s ability to generate correct simulation code from
descriptions of physical problems. 3) FoamBench: 110 basic and 16 advanced numerical simulation
tasks, drawn from practical engineering problems, designed to assess the LLM’s ability to implement
OpenFOAM (Weller et al., 1998) workflows. OpenFOAM projects typically have 6-7 configuration
files, totaling ∼300-600 lines of code per case.

Although strong performance on CFDQuery indicates excellent recall of relevant CFD knowledge,
success in solving CFDCodeBench and FoamBench would suggest that LLM possesses reasoning
and workflow implementation capabilities near the proficiency of a competent CFD assistant. To
support a holistic evaluation of these diverse benchmark tasks, we equip each benchmark task with
one or more tailored metrics, which are developed in collaboration with CFD experts.

We use CFDLLMBench to evaluate both state-of-the-art proprietary and open-source LLMs. Despite
relatively strong performance on CFDQuery, the results highlight the challenge of the latter two
tasks (see Figure 2): the best performing model achieves only 14% on CFDCodeBench and 34% on
FoamBench. In the more complex FoamBench Advanced split, generally, performance is poor, e.g.,
Gemini 2.5 Flash drops to 0%. In FoamBench, all models show major improvement when deployed
in a multi-agent framework, as opposed to zero-shot prompting (near 0 performance).

The remainder of the paper is organized as follows. Section 2 describes related work. Section 3
presents our holistic CFD benchmark. Section 4 summarizes our experimental setup and results,
which are discussed in Section 5. Section 6 has limitations and Section 7 concludes the paper.

2 RELATED WORK

LLMs for science & engineering LLMs are becoming increasingly proficient at knowledge-
intensive tasks in general science (Taylor et al., 2022; Beltagy et al., 2019; Luo et al., 2022; Singhal
et al., 2025) and engineering (Jadhav & Farimani, 2024), aided by dedicated pretraining on scientific
corpora. The development of language agents with tool-use (Qin et al., 2023; Boiko et al., 2023; Bran
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Figure 2: Success Rate comparison of different models across the three tasks. Success Rate is the fraction of
cases in the benchmark that produce physically accurate results (higher is better). The detailed definition of
Success Rate for each benchmark task can be found in section 3.3. The results for FoamBench are produced
using the Foam-Agent framework with RAG, Reviewer, and Sonnet 3.5. There is a steep drop in performance
from graduate-level knowledge (CFDQuery) to practical simulation workflow automation FoamBench.

et al., 2023; Narayanan et al., 2024) further enhances LLMs’ capabilities, enabling them to integrate
with complex scientific and engineering software (Cherian et al., 2024).

Recent work explores the use of LLMs to generate input files in domain-specific languages for
quantum chemistry (Jacobs & Pollice, 2025) and building energy (Jiang et al., 2024) simulators,
tasks which demand substantial time from a researcher to master. LLMs are also accelerating
workflow automation in computational physics. MyCrunchGPT (Kumar et al., 2023) demonstrates
the use of automated scientific machine learning workflows to optimize airfoils in aerodynamics.
MetaOpenFOAM (Chen et al., 2024a), OpenFOAMGPT (Pandey et al., 2025), and Foam-Agent (Yue
et al., 2025) exemplify this trend by automatically configuring and conducting complex CFD simula-
tions based on human requests. These examples highlight the critical need for effective workflow
automation benchmarking.

LLM benchmarks for science & engineering Recent interest in the use of LLMs in science and
engineering has led to benchmarks measuring specific advanced LLM capabilities such as graduate-
level scientific problem solving (Rein et al., 2024; Wang et al., 2023b; Glazer et al., 2024; Zhang
et al., 2025) and long-context reasoning (Lee et al., 2023b; Cui et al., 2025). Our benchmark aims at
practicality, providing a holistic evaluation that includes a real-world numerical simulation workflow
automation task. Other related workflow benchmarks focus on paper reproduction (Starace et al.,
2025; Bogin et al., 2024; Siegel et al., 2024) or data analysis workflows (Chen et al., 2024b; Majumder
et al., 2024; Mitchener et al., 2025). Paper reproduction, data analysis, and simulation automation
(ours) are all critical workflows in the scientific discovery life cycle. Differently, our benchmark
uniquely evaluates numerical and physical reasoning, an underexplored capability in LLMs. Thus,
these benchmarks assess distinct yet complementary capabilities for scientific workflow automation.
The most closely related benchmark is FEABench (Li et al., 2025), which evaluates the ability of
LLMs as agents for solving PDEs using COMSOL, a commercial finite element analysis software
that requires a license of several thousand dollars per year. In contrast, our work is a comprehensive
benchmark that consists of domain-specific knowledge, reasoning, and OpenFOAM (Jasak et al.,
2007)workflow automation, one of the most widely used open-source numerical simulation software.

LLM benchmarks for code generation Code generation benchmarks such as MBPP (Austin
et al., 2021), HumanEval (Chen et al., 2021), DS-1000 (Lai et al., 2023), and SWE-Bench (Jimenez
et al., 2023) evaluate general coding yet lack the complexity of scientific and engineering tasks.
These require understanding advanced concepts and implementing sophisticated algorithms that
involve specialized libraries. SciCode (Tian et al., 2024) is a related scientific coding benchmark, but
their CFD examples-1D heat transfer and 1D Burgers equation-are far from enough to represent the
algorithmic, physical, and geometrical complexity in CFD. There is a clear need for a comprehensive
code generation benchmark that meets the scientific standards for CFD.
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3 CFDLLMBENCH: A BENCHMARK SUITE FOR EVALUATING LLMS IN CFD

We present CFDLLMBench, which holistically assesses three capabilities of LLMs necessary to
perform CFD-related tasks (Figure 1). We begin with CFDQuery which evaluates graduate-level
conceptual understanding, after which the benchmark progresses to the application of this knowledge
through CFDCodeBench, where LLMs must use numerical and physical reasoning over a description
of a physical problem to correctly generate CFD code in Python. Finally, the most practical and
challenging benchmark task is FoamBench, where LLMs write input files for a CFD software suite
that must correctly pre-process, configure, and execute simulations given physical context expressed
in natural language.

OpenFOAM OpenFOAM (Weller et al., 1998) is an open-source, license-free CFD software suite
(a collection of software for fluid-flow simulation that covers meshing, solving, and post-processing)
widely used in academia and industry. OpenFOAM projects have a precise file organization and
various configuration and source files arranged in a strict folder hierarchy. OpenFOAM’s accessibility,
extensibility, and rich community resources make it an attractive platform for an LLM benchmark.
However, automating OpenFOAM workflows poses significant challenges for language models
and agents. Writing code for OpenFOAM requires long-context understanding to track simulation
parameters across multiple files, domain-specific tool usage, and accurate implementation of complex
physical models. The third benchmark task in our suite, FoamBench, uses OpenFOAM as the
underlying CFD software suite.

3.1 DATASETS OVERVIEW

CFDQuery This dataset consists of 90 multiple-choice questions pertaining to CFD curated by
three domain experts. These questions probe core concepts in fluid mechanics, linear algebra, and
numerical methods, with source materials adapted from both web-scraped content and CFD lecture
notes. The solution to these problems require the LLMs to have deep knowledge about topics in CFD
like linear algebra, numerical methods and fluid dynamics.

CFDCodeBench This dataset consists of 24 CFD problems that require LLMs to generate Python
code for their numerical solution. Each problem is described in natural language and specifies
the governing Partial Differential Equation (PDE), boundary and initial conditions, the spatial and
temporal domain, and the target variable(s) to be computed and saved. The dataset includes both 1D
and 2D problems, spanning linear and nonlinear PDEs, representative of those encountered in the
CFD domain. Reference solutions are provided either as closed-form analytical expressions or as
expert-authored Python implementations. Further details can be found in Appendix A.3.2. Our 24
coding problems span fluid mechanics, thermal transport, and turbulence, include both 1D and 2D
simulation scenarios, extending beyond prior work in terms of complexity, which only evaluates the
1D heat transfer and 1D Burgers’ equation (Tian et al., 2024), in both scope and complexity. Solving
these problems requires not only reasoning about the physics but also integrating numerical methods,
discretization schemes, and data handling into coherent, executable Python scripts containing 70 lines
of code on average per problem.

FoamBench This task requires LLMs to generate all input files for an OpenFOAM simulation
using the proper project folder structure and for the simulation to execute correctly, producing a
physically accurate result with respect to a reference project. It consists of 126 OpenFOAM cases
spread over more than 15 distinct geometric and physics scenarios. This dataset is further divided
into two. (1) FoamBench Basic: This consists of 110 OpenFoam cases obtained from 11 tutorial
cases (Weller et al., 1998). We create variations within them by altering the boundary conditions and
the parametric values on a case-specific basis (more details can be found in Appendix A.3.3). (2)
FoamBench Advanced: This consists of 16 challenging OpenFOAM cases, which are not similar to
the tutorials and are hand-crafted by CFD experts. Unlike Basic, the Advanced split tasks LLMs
with choosing a proper turbulence model, creating a new geometry, and creating an appropriate mesh,
based on the natural language input, without potentially relying on a tutorial project for guidance. For
example, in the Advanced flow over double square case, the prompt specifies two square obstacles
with details of their location and size. The LLM must correctly understand this prompt, then use
appropriate one or more meshing tools from the OpenFOAM suite (e.g. blockMesh) to generate

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

a valid computational mesh. Such cases bring us closer to real-world scenarios, where engineers
analyze flow over complex geometries based on design specifications. Further details of the cases are
provided in Appendix A.3.3.

For each case in FoamBench, the prompt (Appendix A.3.3) is designed to be concise and sufficient.
The prompt contains (1) a clear description of the problem (e.g., flow over a cylinder), physical
scenario (compressible or incompressible), geometry including computational domain and obstacle
locations (with retrieval mechanisms handling complex geometries) and specifies the exact Open-
FOAM solver for consistency; (2) the boundary conditions, relevant parameters (viscosity, Prandtl
number), turbulence models (e.g., k − ϵ, SA, LES), and specifies the timestep and solution-saving
intervals for comparison against reference solutions.

3.2 DATASET CREATION

In this section, we describe the dataset curation process. Due to the complex and technical nature of
our benchmark, we relied on human experts at several stages during the creation of CFDLLMBench,
involving them in both curation of data from existing sources, as well as authoring new content for
the benchmark. A complete description of our process is presented in Appendix A.3.

Expert contributors For all three datasets, human experts curated or authored the initial set of
problems. Our team included six domain experts with advanced degrees and professional experience
in the field of CFD. Despite being experts in CFD, they were still provided an orientation ahead
of the curation process. For CFDQuery, the human experts created the multiple choice problems,
and for CFDCodeBench, the human experts authored descriptions for the advanced problems by
reviewing the source code. For FoamBench, the experts curated the dataset by varying parameters
and boundary conditions for the tutorial problems, designing novel geometries for the non-tutorial
cases, and authoring corresponding prompts based on the case files to guide LLMs in generating
valid simulation setups. While the nature of the human work did not warrant an IRB review, we
nevertheless followed all ethical norms and standards of the host academic institute when performing
the human tasks for this dataset.

Data sources For this benchmark, we ensured that we only used highly vetted data sources. The
CFDQuery dataset was created exclusively for this benchmark, but the reference sources include
university-level CFD lecture notes and vetted online sources. The problems in CFDCodeBench
were curated from publicly available GitHub repositories and established numerical solver packages,
including CFD Python: the 12 Steps to Navier-Stokes Equations repository (Barba & Forsyth, 2018)
and ENGR 491 - Computational Fluid Dynamics, while more challenging scenarios were curated
from the Dedalus Project (Burns et al., 2020). For FoamBench, we curated the dataset based on the
11 OpenFOAM tutorials (Weller et al., 1998).

Quality assessment Since the solutions to our problems include objective, scientific answers, we
did not perform traditional measures of human agreement. Rather, we went through an iterative
process of review and revision of human work by independent experts to ensure the quality of the
work. This review included both human-curated and human-authored portions of the benchmark.

3.3 EVALUATION METRICS

Here we define expert-informed metrics used to assess performance on CFDLLMBench.

CFDQuery We evaluate multiple choice accuracy using a single standard accuracy metric, Success
Rate, defined as ratio of the number of correctly answered questions to the total number of questions.

CFDCodeBench We evaluate an LLM’s ability to generate executable and physically accurate
python code for the numerical solution of a given CFD problem using four metrics. The holistic
metric we use has three components: code executability, relative numerical error, and numerical
convergence. We aggregate these three into a single score, which we call the Success Rate. 1)
Executability (Mexec): This is a binary metric which takes on a value of 1 if the LLM generated
python code executes successfully and 0 if it is a failure. This metric is akin to the common pass@1
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metric (Chen et al., 2021). 2) Relative Error (MNMSE): We compare the LLM generated solution
to the reference solution at the final time of the prescribed simulation interval. A normalized mean
squared error percentage is calculated and a score is assigned based on the value of the NMSE
percentage given by

NMSE% =

∑N
i=1(yi − ŷi)

2∑N
i=1 y

2
i

× 100, MNMSE =


1, NMSE ≤ 10% ,

0.5, 10% < NMSE ≤ 30% ,

0, NMSE > 30% .

(1)

An MNMSE of 0 means the solution is not physically accurate, a score of 0.5 is considered partial
success and a score of 1 means the solution is acceptably accurate. The NMSE thresholds of 10%
and 30% are not chosen arbitrarily, instead they are grounded in engineering practice and further
supported by an empirical sensitivity analysis with details provided in Appendix A.2. 3) Numerical
convergence (Mconv): To evaluate the numerical convergence of the solution generated by the
LLM, we refine both the spatial and temporal discretization and assess the corresponding change
in relative error. If the error decreases with mesh and time-step refinement, the solution is deemed
convergent and awarded a score of 1; otherwise, it receives a score of 0. Unlike conventional LLM
code generation benchmarks, we cannot rely on code similarity with respect to a reference solution,
as numerical simulation code can vary significantly in implementation while yielding identical or
equivalent solutions. 4) Success Rate: We also define a stringent criterion to assess successful runs
by looking at the fraction of problems where all three metrics achieve a score of 1. Specifically,
defined for each problem i:

M (i)
success =

{
1, M

(i)
exec = 1 ∧ M

(i)
NMSE = 1 ∧ M

(i)
conv = 1 ,

0, otherwise,
Success Rate =

1

K

K∑
i=1

M (i)
success,

(2)
where K is the total number of problems. This provides us with a stringent measure of the percentage
of problems within the benchmark where the model was able to produce an executable, physically
accurate, and convergent solution.

FoamBench This task requires an LLM to create the required OpenFOAM input files, save them
in appropriate directories, and call different tools within OpenFOAM to run a physically accurate
simulation, all based on a natural language prompt. Prior work (Chen et al., 2024a) focuses only on
the ability of LLMs to generate files that produces a successful execution of OpenFOAM. Though
executability is important, it does not capture the physical accuracy of the generated solution and
thus fails to provide insights into whether the solution satisfies the user requirements. Text similarity
metrics are widely used in comparing LLM-generated text to human text. For code generation, this is
a useful metric for giving us an idea of how complete the files generated by LLMs are in comparison
to the reference files, but again fails to provide the complete picture.

To tackle these challenges, we use four metrics to evaluate the LLM generated code, capturing code
quality and physical accuracy of the solution, plus a holistic statistic, Success Rate. The details
are as follows. 1) Executability (Mexec): Similar to CFDCodeBench, we assign a value of 1 for
successful execution of OpenFOAM using LLM generated case files and 0 otherwise. 2) Folder and
File Structure (Mstruct): Generating the correct files and placing them in their respective folders
is critical to the successful and accurate execution of the simulation workflow. The absence or
misplacement of files can lead to failed execution of the case and/or inaccuracy of the generated
output. Here, we use the ROUGE similarity metric (Lin, 2004) to compare the reference folder
structure of the OpenFOAM cases with the LLM generated folder structure and provide a score
between 0 and 1. 3) File Similarity (Mfile): This metric compares the content of the generated files
with the reference OpenFOAM files using the ROUGE metric. 4) Relative Error (MNMSE): We use
the same approach as CFDCodeBench Equation (1), comparing the LLM generated solution to a
reference solution at the final time of the prescribed simulation window. 5) Success Rate: We define
Success Rate as the fraction of cases where just Mexec and MNMSE achieves a score of 1.

4 EXPERIMENTS

In this section, we present results across a wide range of LLMs and agent frameworks that demonstrate
the difficulty and realism of our benchmark.
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Figure 3: Average metric score and Success Rate for CFDCodeBench. The Success Rate for even the best
performing models are around 14%, suggesting the challenging nature of the problems in this benchmark.

4.1 EXPERIMENTAL SETUP

For benchmark tasks, we compare the performance of five closed-weight models including Claude
Sonnet 3.5 (Anthropic, 2024), o3-mini (OpenAI, 2024b), Gemini 2.5 Flash (DeepMind, 2025),
Claude Haiku 3.5 (Anthropic, 2024), and GPT-4o (OpenAI, 2024a), and one open-source model
Gemma-2-9B-IT (Team, 2024). The temperature parameter is set to 0.0 for the models in evaluation
in all experiments, except for o3-mini, which does not allow us to change the default temperature
parameters and the value of this parameter is undisclosed. On CFDQuery and CFDCodeBench,
LLMs use a standard zero-shot prompt template that describes the task and the output format. For
FoamBench, we evaluate LLMs zero-shot, as well as with agentic frameworks (described next). We
use OpenFOAM v10 for all experiments.

Agentic frameworks for FoamBench Automating OpenFOAM using LLM is a complicated task,
which we find benefits from agentic frameworks. Hence, for FoamBench, we not only compare
various LLMs, but we also compare two agentic frameworks: MetaOpenFoam (Chen et al., 2024a) and
Foam-Agent (Yue et al., 2025). Both of them assign agent roles for Retrieval-Augmented Generation
(RAG) (Lewis et al., 2020) , file generation, running, and reviewing (Reviewer). These components
enable the system to retrieve files from similar simulations to use as exemplars and to get intermediate
feedback for re-attempting file generation if necessary. To assess the individual contributions of
these components, we benchmark three configurations: (1) with RAG, with Reviewer; (2) with RAG,
without Reviewer (3) without RAG, with Reviewer. The absence of RAG and Reviewer indicates
zero-shot LLM prompting-based generation, which is used as a baseline to compare the improvements
due to these agent roles.

4.2 RESULTS

The Success Rate of different models for the three benchmark tasks is shown in Figure 2. The
FoamBench results are from the Foam-Agent framework, consisting of RAG and Reviewer, and using
Sonnet 3.5, as this configuration yielded the strongest performance in our evaluations. Detailed
FoamBench results are shown in Table 7. All closed-weight models perform well on CFDQuery,
while the open sourced model could only answer 60% of the questions correctly. O3-mini performs
the best in this task, which is not unexpected as it excels at logical reasoning and structured responses,
producing 92% correct answers. On CFDCodebench and FoamBench, we see a drastic fall in Success
Rate dropping to 14% in CFDCodeBench and 34% in FoamBench Basic and 25% in FoamBench
Advanced for the best performing models. It is interesting to note that Sonnet 3.5 performs the best
among other models by some margin in FoamBench, which is not seen in the other tasks. However, it
costs higher per run on average ($6.56) than, e.g., GPT-4o ($0.42)-see Table 8.

CFDCodeBench Figure 3 illustrates the breakdown of metric scores and Success Rate as defined
in Section 3.3 for different models. The accuracy and convergence metrics highlight the importance
of holistic evaluation beyond syntactic correctness, which is often lacking in studies.
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Table 1: Zero-shot prompt LLM performance with Sonnet 3.5 (best performing model) on FoamBench Basic
and Advanced.

Dataset Mexec Mstruct Mfile MNMSE Success Rate

FoamBench Basic 0.064 0.670 0.506 0.050 0.045
FoamBench Advanced 0.017 0.773 0.573 0.009 0.007

Table 2: Component-wise mean scores and Success Rate for Claude Sonnet 3.5 on FoamBench Basic and
Advanced, comparing MetaOpenFOAM vs. Foam-Agent.

Dataset Variation MetaOpenFOAM Foam-Agent

Mexec Mstruct Mfile MNMSE

Success
Rate Mexec Mstruct Mfile MNMSE

Success
Rate

FoamBench
Basic

RAG + Reviewer 0.555 0.883 0.763 0.173 0.136 0.836 0.879 0.778 0.427 0.336
RAG + No Reviewer 0.064 0.810 0.728 0.023 0.009 0.373 0.668 0.599 0.232 0.200
No RAG + Reviewer 0.400 0.747 0.522 0.195 0.145 0.473 0.862 0.647 0.291 0.245

FoamBench
Advanced

RAG + Reviewer 0.125 0.775 0.599 0.125 0.125 0.625 0.792 0.621 0.406 0.250
RAG + No Reviewer 0.000 0.743 0.594 0.000 0.000 0.188 0.771 0.609 0.156 0.125
No RAG + Reviewer 0.375 0.655 0.451 0.344 0.187 0.250 0.806 0.592 0.188 0.125

Figure 4: Average metric score and Success Rate for different models on FoamBench using Foam-Agent
framework with RAG and reviewer. The Success Rate for even the best performing model (Sonnet 3.5) is 34%
in basic dataset and 25% in the advanced dataset.

FoamBench Average metric scores and Success Rate of different models using the Foam-Agent
framework with RAG and Reviewer is shown in Figure 4. Sonnet 3.5 was found to the best performing
model for FoamBench tasks. The results of non-agentic zero-shot prompting with Sonnet 3.5
is provided in Table 1 to serve as a baseline for improvements due to the RAG and Reviewer
roles (Table 2). This table also shows a comprehensive comparison between the two frameworks,
MetaOpenFOAM and Foam-Agent, on FoamBench Basic and Advanced datasets. Detailed results on
the impact of different models, framework and variations are provided in Appendix A.4.1.

5 DISCUSSION

Importance of physical and numerical accuracy metrics While all models demonstrate strong
performance on CFDQuery—with Success Rate ranging from 60% (Gemma-2-9B-IT) to 92% (o3-
mini), performance significantly declines on tasks requiring physical and numerical accuracy. To
provide a holistic evaluation of model performance in CFDCodeBench and FoamBench, we reported
multiple metrics and the stricter Success Rate. The latter aggregates success across code executability
Mexec, numerical convergence Mconv, and physical accuracy MNMSE, offering a practical view of
model capabilities. From Figure 3, it is evident that most closed-weights models produce executable
Python code in over 60% of cases, but these numbers are significantly worse for physical and
numerical accuracy. For instance, in FoamBench Basic, the best Foam-Agent (Table 2) achieves good
coding metrics Mexec = 0.836, Mstruct = 0.879, Mfile = 0.778, but the Success Rate is only 34%
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because of low physical accuracy. We see that the LLMs often fail to fully understand the prompts and
lack domain-specific reasoning required to correctly apply fundamental CFD concepts—such as flux
discretization schemes, appropriate time integration strategies, and consistent boundary treatments.
This highlights a critical gap in current models’ capabilities when it comes to generating reliable and
physically consistent CFD code.

Zero-shot prompting for OpenFOAM Zero-shot prompting produces close to 0% Success Rate
even for the best performing model (Sonnet 3.5) as shown in Table 1, highlighting the need for agentic
frameworks when it comes to running OpenFOAM. For example, it is difficult for current LLMs
to produce all of the required input files in a zero-shot manner. Even with prompt engineering the
increment in success rate under zero-shot setting is only marginal (0.007 to 0.012), for Claude Sonnet
3.5 with further details in Appendix A.4.4. We observe that Sonnet 3.5 and o3-mini (Appendix A.4.1)
have the most successful zero-shot runs.

Role of RAG and Reviewer RAG provides the framework with similar simulation files and the
Reviewer allows for a trial and error approach to running OpenFOAM cases, mimicking human
troubleshooting. The absence of either decreases the Success Rate by approximately 10% (Table 2),
underscoring their critical roles in achieving optimal performance within the proposed framework.

Spatial reasoning The CFD simulation workflows in FoamBench have preprocessing steps where
a correct geometry and mesh file must be generated by the LLM. To handle real-world workflows,
LLMs should be able to extrapolate to novel geometries. We highlight a particular case from
FoamBench Advanced, doubleSquare, which is an incompressible flow over two square obstacles.
The geometry produced by the Foam-Agent, in comparison to the reference geometry, is visualized in
Figure 5. The prompt clearly defines the location of the obstacles, but the lack of spatial reasoning
capabilities in LLMs appears to produce an incorrect geometry and mesh. We highlight that the
ability of LLMs to understand geometry is a major area in need of improvement.

Figure 5: Comparison of the geometry and mesh generated by the Foam-Agent (Yue et al., 2025) (RAG and
Reviewer) with Sonnet 3.5 for the doubleSquare case against human expert.

6 CONCLUSION

In this work, we introduced CFDLLMBench, the first benchmark to holistically evaluate graduate-
level knowledge, numerical and physical reasoning, and practical simulation capabilities of LLMs
for CFD. We accomplish this by structuring the benchmark into three progressively challenging
tiers, namely, CFDQuery, CFDCodeBench, and FoamBench. Our results highlight both the promise
and the current limitations of LLMs in solving advanced scientific workflow automation problems,
which require software expertise such as tool-calling and long-context understanding, as well as
accurate physical modeling. We expect that CFDLLMBench will serve as a valuable testbed for
advancing LLM capabilities in scientific computing, and encourage future work on domain-grounded,
execution-based benchmarks across other areas of science and engineering.

9
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7 REPRODUCIBILITY STATEMENT

All problems in our benchmark were collected from open, publicly available sources or were authored
specifically for this benchmark. Accordingly, CFDLLMBench is released under the terms of the
BSD 3-Clause License, making it free to use, modify, and redistribute, including for commercial
purposes, provided that the license conditions are met. Our benchmark pipeline relies exclusively on
free and open-source software, ensuring that it is accessible to all users without the need for paid
subscriptions. Furthermore, we release not only the dataset (prompts), but also the complete codebase,
fully containerized with Docker, to enable reproducibility. The code to run the benchmark is attached
as supplementary material and can also be found at https://anonymous.4open.science/r/cfdllmbench-
5654. The code repository also provides instruction on how to run the benchmarks and the anonymous
private links to the dataset being used. This comprehensive release allows future researchers to easily
utilize, reproduce, or extend our benchmark with minimal overhead.

8 ETHICS STATEMENT

While the nature of the human work in this study did not warrant formal Institutional Review Board
(IRB) review, we nevertheless followed all ethical norms and standards of the host academic institution
when performing the human tasks associated with dataset creation. All human experts involved
were members of the research project and were fairly compensated for their time and expertise. No
personally identifiable or sensitive data are included in the released dataset, and all data sources
are either public or used with appropriate permissions. Large language models were used solely
for minor English editing and grammar polishing. These tools were not involved in the conception,
design, execution, analysis, or interpretation of the research.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Anthropic. Claude 3.5 sonnet model card addendum. https://www-cdn.anthropic.com/
fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf,
2024. Accessed: 2025-05-03.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Lorena A Barba and Gilbert F Forsyth. Cfd python: the 12 steps to navier-stokes equations. Journal
of Open Source Education, 2(16):21, 2018.

Iz Beltagy, Kyle Lo, and Arman Cohan. Scibert: A pretrained language model for scientific text.
arXiv preprint arXiv:1903.10676, 2019.

Bert Blocken. Computational fluid dynamics for urban physics: Importance, scales, possibilities, limi-
tations and ten tips and tricks towards accurate and reliable simulations. Building and Environment,
91:219–245, 2015.

Bert Blocken, Ted Stathopoulos, Jan Carmeliet, and Jan LM Hensen. Application of computational
fluid dynamics in building performance simulation for the outdoor environment: an overview.
Journal of building performance simulation, 4(2):157–184, 2011.

Ben Bogin, Kejuan Yang, Shashank Gupta, Kyle Richardson, Erin Bransom, Peter Clark, Ashish
Sabharwal, and Tushar Khot. Super: Evaluating agents on setting up and executing tasks from
research repositories. arXiv preprint arXiv:2409.07440, 2024.

Daniil A Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical research
with large language models. Nature, 624(7992):570–578, 2023.

10

https://anonymous.4open.science/r/cfdllmbench-5654
https://anonymous.4open.science/r/cfdllmbench-5654
https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf
https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
Schwaller. Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint
arXiv:2304.05376, 2023.

Keaton J Burns, Geoffrey M Vasil, Jeffrey S Oishi, Daniel Lecoanet, and Benjamin P Brown. Dedalus:
A flexible framework for numerical simulations with spectral methods. Physical Review Research,
2(2):023068, 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Yuxuan Chen, Xu Zhu, Hua Zhou, and Zhuyin Ren. Metaopenfoam: an llm-based multi-agent
framework for cfd. arXiv preprint arXiv:2407.21320, 2024a.

Ziru Chen, Shijie Chen, Yuting Ning, Qianheng Zhang, Boshi Wang, Botao Yu, Yifei Li, Zeyi Liao,
Chen Wei, Zitong Lu, et al. Scienceagentbench: Toward rigorous assessment of language agents
for data-driven scientific discovery. arXiv preprint arXiv:2410.05080, 2024b.

Anoop Cherian, Radu Corcodel, Siddarth Jain, and Diego Romeres. Llmphy: Complex physical
reasoning using large language models and world models. arXiv preprint arXiv:2411.08027, 2024.

Hao Cui, Zahra Shamsi, Gowoon Cheon, Xuejian Ma, Shutong Li, Maria Tikhanovskaya, Peter
Norgaard, Nayantara Mudur, Martyna Plomecka, Paul Raccuglia, et al. Curie: Evaluating llms on
multitask scientific long context understanding and reasoning. arXiv preprint arXiv:2503.13517,
2025.

Google DeepMind. Start building with gemini 2.5 flash. https://developers.googleblog.
com/en/start-building-with-gemini-25-flash/?utm_source=deepmind.google&utm_
medium=referral&utm_campaign=gdm&utm_content=, 2025. Accessed: 2025-05-03.

Elliot Glazer, Ege Erdil, Tamay Besiroglu, Diego Chicharro, Evan Chen, Alex Gunning, Caroline Falk-
man Olsson, Jean-Stanislas Denain, Anson Ho, Emily de Oliveira Santos, et al. Frontiermath: A
benchmark for evaluating advanced mathematical reasoning in ai. arXiv preprint arXiv:2411.04872,
2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Pieter Floris Jacobs and Robert Pollice. Developing large language models for quantum chemistry
simulation input generation. Digital Discovery, 2025.

Yayati Jadhav and Amir Barati Farimani. Large language model agent as a mechanical designer.
arXiv preprint arXiv:2404.17525, 2024.

Hrvoje Jasak, Aleksandar Jemcov, Zeljko Tukovic, et al. Openfoam: A c++ library for complex
physics simulations. In International workshop on coupled methods in numerical dynamics,
volume 1000, pp. 1–20. IUC Dubrovnik Croatia, 2007.

Gang Jiang, Zhihao Ma, Liang Zhang, and Jianli Chen. Eplus-llm: A large language model-based
computing platform for automated building energy modeling. Applied Energy, 367:123431, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

11

https://arxiv.org/abs/2107.03374
https://developers.googleblog.com/en/start-building-with-gemini-25-flash/?utm_source=deepmind.google&utm_medium=referral&utm_campaign=gdm&utm_content=
https://developers.googleblog.com/en/start-building-with-gemini-25-flash/?utm_source=deepmind.google&utm_medium=referral&utm_campaign=gdm&utm_content=
https://developers.googleblog.com/en/start-building-with-gemini-25-flash/?utm_source=deepmind.google&utm_medium=referral&utm_campaign=gdm&utm_content=


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Varun Kumar, Leonard Gleyzer, Adar Kahana, Khemraj Shukla, and George Em Karniadakis.
Mycrunchgpt: A llm assisted framework for scientific machine learning. Journal of Machine
Learning for Modeling and Computing, 4(4), 2023.

OKCFD Lab. Engr 491: Computational fluid dynamics. https://github.com/okcfdlab/engr491,
2024. Accessed: 2025-05-16.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data science
code generation. In International Conference on Machine Learning, pp. 18319–18345. PMLR,
2023.

Jeong Hun Lee, Mike Y Michelis, Robert Katzschmann, and Zachary Manchester. Aquarium: A
fully differentiable fluid-structure interaction solver for robotics applications. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 11272–11279. IEEE, 2023a.

Yoonjoo Lee, Kyungjae Lee, Sunghyun Park, Dasol Hwang, Jaehyeon Kim, Hong-in Lee, and Moon-
tae Lee. Qasa: advanced question answering on scientific articles. In International Conference on
Machine Learning, pp. 19036–19052. PMLR, 2023b.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Wei Li, Xin Zhang, Zhongxin Guo, Shaoguang Mao, Wen Luo, Guangyue Peng, Yangyu Huang,
Houfeng Wang, and Scarlett Li. Fea-bench: A benchmark for evaluating repository-level code
generation for feature implementation. arXiv preprint arXiv:2503.06680, 2025.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. pp. 10, 01 2004.

Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon, and Tie-Yan Liu.
Biogpt: generative pre-trained transformer for biomedical text generation and mining. Briefings in
bioinformatics, 23(6):bbac409, 2022.

Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Bhavana Dalvi Mishra, Abhi-
jeetsingh Meena, Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sabharwal, and Peter Clark.
Discoverybench: Towards data-driven discovery with large language models. arXiv preprint
arXiv:2407.01725, 2024.

Ludovico Mitchener, Jon M Laurent, Benjamin Tenmann, Siddharth Narayanan, Geemi P Wellawatte,
Andrew White, Lorenzo Sani, and Samuel G Rodriques. Bixbench: a comprehensive benchmark
for llm-based agents in computational biology. arXiv preprint arXiv:2503.00096, 2025.

Siddharth Narayanan, James D Braza, Ryan-Rhys Griffiths, Manu Ponnapati, Albert Bou, Jon Laurent,
Ori Kabeli, Geemi Wellawatte, Sam Cox, Samuel G Rodriques, et al. Aviary: training language
agents on challenging scientific tasks. arXiv preprint arXiv:2412.21154, 2024.

OpenAI. Hello gpt-4o. https://openai.com/index/hello-gpt-4o/, 2024a. Accessed: 2025-05-
03.

OpenAI. Openai o3-mini. https://openai.com/index/openai-o3-mini/, 2024b. Accessed:
2025-05-03.

Sandeep Pandey, Ran Xu, Wenkang Wang, and Xu Chu. Openfoamgpt: A retrieval-augmented large
language model (llm) agent for openfoam-based computational fluid dynamics. Physics of Fluids,
37(3), 2025.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

12

https://github.com/okcfdlab/engr491
https://openai.com/index/ hello-gpt-4o/
https://openai.com/index/openai-o3-mini/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

Muizz Shah, Stuart E Norris, Richard Turner, and Richard GJ Flay. A review of computational
fluid dynamics application to investigate tropical cyclone wind speeds. Natural Hazards, 117(1):
897–915, 2023.

Guanya Shi, Xichen Shi, Michael O’Connell, Rose Yu, Kamyar Azizzadenesheli, Animashree
Anandkumar, Yisong Yue, and Soon-Jo Chung. Neural lander: Stable drone landing control
using learned dynamics. In 2019 international conference on robotics and automation (icra), pp.
9784–9790. IEEE, 2019.

Zachary S Siegel, Sayash Kapoor, Nitya Nagdir, Benedikt Stroebl, and Arvind Narayanan. Core-
bench: Fostering the credibility of published research through a computational reproducibility
agent benchmark. arXiv preprint arXiv:2409.11363, 2024.

Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Mohamed Amin, Le Hou,
Kevin Clark, Stephen R Pfohl, Heather Cole-Lewis, et al. Toward expert-level medical question
answering with large language models. Nature Medicine, pp. 1–8, 2025.

Jeffrey P Slotnick, Abdollah Khodadoust, Juan Alonso, David Darmofal, William Gropp, Elizabeth
Lurie, and Dimitri J Mavriplis. Cfd vision 2030 study: a path to revolutionary computational
aerosciences. Technical report, 2014.

Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, et al. Paperbench: Evaluating ai’s ability
to replicate ai research. arXiv preprint arXiv:2504.01848, 2025.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia,
Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language model for science.
arXiv preprint arXiv:2211.09085, 2022.

Gemma Team. Gemma. 2024. doi: 10.34740/KAGGLE/M/3301. URL https://www.kaggle.com/
m/3301.

Minyang Tian, Luyu Gao, Shizhuo Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland Haas, Pan
Ji, Kittithat Krongchon, Yao Li, et al. Scicode: A research coding benchmark curated by scientists.
Advances in Neural Information Processing Systems, 37:30624–30650, 2024.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R
Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level
scientific problem-solving abilities of large language models. arXiv preprint arXiv:2307.10635,
2023a.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R
Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level
scientific problem-solving abilities of large language models. arXiv preprint arXiv:2307.10635,
2023b.

Henry G Weller, Gavin Tabor, Hrvoje Jasak, and Christer Fureby. A tensorial approach to com-
putational continuum mechanics using object-oriented techniques. Computers in physics, 12(6):
620–631, 1998.

Ling Yue, Nithin Somasekharan, Yadi Cao, and Shaowu Pan. Foam-agent: Towards automated
intelligent cfd workflows. arXiv preprint arXiv:2505.04997, 2025.

Xinyu Zhang, Yuxuan Dong, Yanrui Wu, Jiaxing Huang, Chengyou Jia, Basura Fernando, Mike Zheng
Shou, Lingling Zhang, and Jun Liu. Physreason: A comprehensive benchmark towards physics-
based reasoning. arXiv preprint arXiv:2502.12054, 2025.

13

https://www.kaggle.com/m/3301
https://www.kaggle.com/m/3301


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 HUMAN BASELINE INFERENCE

Establishing appropriate human references is non-trivial because performance depends strongly on
the evaluator’s domain knowledge and experience, which are difficult to standardize and quantify. A
comprehensive human study would require recruiting domain experts, designing controlled protocols,
and measuring expert effort and accuracy, an undertaking that is substantial in both organization and
time. Nevertheless, approximate human performance can be reasonably inferred from established
expectations of CFD practitioners, and these comparisons help to contextualize our results:

• CFDQuery (Conceptual Knowledge). Leading closed-source LLMs achieve 85–90%
accuracy on graduate-level CFD questions, a level comparable to or exceeding what a
typical CFD engineer would attain in a closed-book setting, where humans usually rely on
references for such broad coverage.

• CFDCodeBench (Numerical Reasoning and Code Generation). The top LLM scores only
14% on simple PDE solver tasks (e.g., diffusion, Burgers). A CFD trained graduate student
can reliably solve these with high accuracy by writing a small script or reusing existing
templates, highlighting the gap between LLM memorization and genuine reasoning/coding.

• FoamBench (Workflow Automation). Even with an agentic setup, the best model achieves
only 34% success on standard OpenFOAM tutorial cases. A CFD engineer familiar with
OpenFOAM would easily solve most of these tasks, showing that current LLMs struggle
with decomposition and physics-driven workflow generation.

Future iterations of the benchmark may incorporate formal human baselines to enable a more direct
quantitative comparison between human and model performance.

A.2 NMSE THRESHOLDS

The NMSE threshold used in this (lower bound of 10% and upper bound of 30%) were not chosen
arbitrarily but are grounded in engineering practice and further supported by an empirical sensitivity
analysis.

A.2.0.1 Engineering Practice. CFD engineering practice commonly follows the thumb rule that
an NMSE below 10% indicates an accurate simulation, while errors above 30% mark the upper limit
for accuracy. In CFD and related engineering fields, an NMSE (or relative error) below approximately
10%, typically resulting from well-configured numerical setups, is widely regarded as indicative
of an accurate and reliable simulation. Conversely, errors exceeding 30% are generally considered
practically unacceptable when validating simulations against numerical ground truth. These brackets
are routinely used in both academic validation studies and industrial verification.

A.2.0.2 Empirical Sensitivity Analysis. To further justify our choice, we conducted a sensitivity
study by varying the thresholds and observing their effect on both mean NMSE score and the true
success rate.

Table 3: Mean NMSE scores with varying lower bounds (upper bound fixed at 30%).

Lower Bound Mean NMSE Score

1% 0.3909
5% 0.4000

10% 0.4273
15% 0.4318

The tables show a clear progression, with the strongest gain observed at 10%, beyond which the
increase is marginal.

It can be seen that beyond 30%, the metric becomes overly accommodative and can include edge
cases. The combination of domain-standard brackets (10% and 30%) and our sensitivity analysis
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Table 4: Sensitivity of true success rate to different lower NMSE cutoffs (upper bound fixed at 30%).

Lower NMSE Bound True Success Rate

1% 26.4%
5% 28.2%

10% 33.6%
15% 34.5%

Table 5: Mean NMSE scores with varying upper bounds (lower bound fixed at 10%).

Upper Bound Mean NMSE Score

0.25 0.4045
0.30 0.4273
0.40 0.4955
0.45 0.5045

demonstrates that 10% is the optimal cutoff for accurately identifying correct simulations, while
30% serves as a natural upper limit for defining unacceptable solutions. These thresholds align with
established CFD practices and ensure that the metric remains interpretable and meaningful.

A.3 DATASET CURATION

A.3.1 CFDQUERY

This Question and Answer dataset spans a broad spectrum of PDEs, numerical methods and error-
analysis topics. It delves into classical finite difference and finite volume schemes applied to 1D
advection, 1D diffusion, 1D Burgers equation, etc (e.g. modified-equation analyses of central-
difference+RK3, Lax–Friedrichs dissipation, upwind bias) and proceeding through high-order
stencils (fourth-order central, compact schemes, WENO) and their dispersion/dissipation properties.
It also involves questions based on non-uniform and curvilinear grids—deriving coefficient formulas
for second derivatives on unequal spacings, analyzing truncation errors on non-orthogonal meshes,
and enforcing the geometric-conservation law. Further the questions probe multi-dimensional flows
(Poisson, Navier–Stokes channel and cavity, Rayleigh–Bénard, KdV–Burgers) with questions on
stability criteria, and leading-order error terms. Finally, the set includes advanced topics in high-order
discontinuous-Galerkin.

These questions are curated, reviewed and solved by human CFD experts before adding to the dataset.
The sources of the dataset include textbooks and online sources. Each question is self-sufficient and
provides four options to the LLM to select the right answer from. In addition we also provide a
system prompt to the LLM to assign the role it will be playing when answering the questions. The
system prompt is given below.

Prompt

You are an expert computational fluid dynamics researcher. For each multiple-choice
question, read the question and its four options, then respond with only the number
(1, 2, 3, or 4) corresponding to the correct answer.

A.3.2 CFDCODEBENCH

To construct CFDCodeBench, we curated a dataset of 24 computational fluid dynamics (CFD)
problems from publicly available GitHub repositories and established numerical solver packages.
Foundational problems were selected from the widely used CFD Python: the 12 Steps to Navier-
Stokes Equations repository (Barba & Forsyth, 2018) and other educational sources such as ENGR 491
- Computational Fluid Dynamics (Lab, 2024). These 17 problems, which include well-documented
tutorials and reference code. To introduce more challenging scenarios, we incorporated 7 advanced
problems from the Dedalus Project (Burns et al., 2020), which offers flexible PDE solvers based on
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spectral methods. These problems lacked detailed tutorials, so CFD experts reviewed the source code
and authored accompanying descriptions. All problem descriptions and corresponding solutions were
manually validated to ensure correctness and consistency.

• 1D Burgers Equation: Simulates 1D viscous Burgers equation with Dirichlet boundaries.
• 1D Diffusion Equation: Models scalar diffusion over time with piecewise constant initial

conditions in a 1D domain.
• Euler’s equation for compressible flow in a shock tube: Simulates shock propagation in

a 1D shock tube using the Euler equations with reflective boundaries. The solution to this
equation is highly susceptible to numerical instabilities.

• 1D linear convection Equation: Solves undamped linear convection of a Gaussian wave
with periodic boundaries.

• 1D non-linear convection Equation: Captures nonlinear wave propagation with sinusoidal
initial conditions and periodic boundaries.

• 2D Burgers Equation: Simulates viscous flow in both x and y directions using the 2D
Burgers’ equation with Dirichlet boundaries.

• 2D Convection Equation: Models 2D inviscid convection of a velocity disturbance with
constant boundary conditions.

• 2D Diffusion Equation: Solves a 2D scalar diffusion problem with fixed values on all
boundaries and an initial high-temperature patch.

• 2D inviscid Burgers Equation: Captures shock formation in a 2D inviscid Burgers’ flow
using a square domain and periodic boundaries.

• 2D Laplace Equation: Solves a steady-state potential problem with mixed Dirichlet and
Neumann conditions.

• 2D Linear Convection Equation: Simulates scalar convection in two directions from a
localized initial disturbance.

• 2D Navier-Stokes equation in a cavity: Computes incompressible viscous flow in a
lid-driven cavity setup using the Navier-Stokes equations.

• Channel Flow with Navier–Stokes: Solves channel flow with periodic inlet/outlet, no-slip
top/bottom, and constant body force.

• 2D Poisson Equation: Solves the 2D Poisson equation with localized sources and Dirichlet
boundaries.

• 2D Steady Heat Equation: Models steady-state heat conduction on a rectangular plate with
fixed temperatures on all edges.

• 2D Unsteady Heat Equation: Simulates time-dependent heating with a Gaussian source
term and fixed boundaries.

• Fully-developed turbulent flow in a channel: Uses a Cess turbulence model to compute
velocity profiles in a turbulent channel with effective viscosity.

• 1D Korteweg-de Vries / Burgers Equation: Models the combined effects of diffusion and
dispersion in wave dynamics using the KdV-Burgers equation.

• 2D horizontally-periodic Rayleigh-Benard convection Equation: Simulates buoyancy-
driven convection with temperature gradients and periodic lateral boundaries.

• 2D periodic incompressible shear flow with a passive tracer field: Models shear flow
evolution and passive tracer transport with periodic boundaries.

• Flow past circular cylinder: Simulates vortex shedding behind a cylinder using
streamfunction-vorticity formulation in polar coordinates.

• Lane-Emden Equation: Solves a spherically symmetric nonlinear Poisson equation used
in astrophysics.

• Incompressible Navier Stokes equations in a lid-driven cavity: Captures recirculating
flow in a square cavity driven by a moving top wall.

• Linear stability eigenvalue problem for pipe flow: Solves the linear stability eigenvalue
problem of pipe flow using the linearized Navier–Stokes equations.
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A.3.2.1 Prompt Design and Methodology for CFDCodeBench

Structured Prompt Generation We adopt a structured, JSON-to-natural language pipeline for
prompt generation. Each PDE problem is described in a JSON object with fields such as:

• equation: The governing PDE, formatted using LATEX, e.g., ∂u
∂t + u∂u

∂x = ν ∂2u
∂x2 .

• boundary conditions: A description of boundary behavior, written in either LaTeX or
plain text, e.g., periodic boundary conditions such as u(0) = u(2π).

• initial conditions: The initial state of the solution field, typically in compact LaTeX

format, e.g., u(x, 0) =
{
2, if 0.5 ≤ x ≤ 1

1, otherwise
.

• domain: The spatial and temporal domain of the problem, for instance, x ∈ [0, 2π], t ∈
[0, 0.14π].

• save values: A list of solution variables (e.g., u, v, p) that should be saved at the final
time step.

• numerical method (optional): Specifies the numerical scheme to be used, e.g., finite
difference method (FDM), finite volume method (FVM), or finite element method (FEM).
This field may be omitted when using FDM as the default method.

Example Problem Description in JSON Format

Problem Description (JSON Format)

{
"1D_Burgers_Equation": {

"equation": "\\[\n \\frac{\\ partial u}{\\ partial t} + u \\
frac{\\ partial u}{\\ partial x} = \\nu \\frac{\\ partial^2 u
}{\\ partial x^2}\n\\]\n\nwhere:\n- \\( u(x,t) \\) is the
velocity field\n- \\( \\nu = 0.07 \\) is the viscosity
coefficient\n- \\( x \\) is the spatial coordinate\n- \\(
t \\) is time",

"boundary conditions": "Periodic boundary conditions:\n\\[\n
u(0) = u(2\\pi)\n\\]",

"initial conditions": "\\[\n u = -\\frac{2\\nu}{\\phi} \\frac
{\\ partial \\phi}{\\ partial x} + 4\n\\]\nwhere:\n\\[\n \\
phi = \\exp\\left (\\ frac{-x^2}{4\\nu}\\right) + \\exp\\
left (\\ frac{-(x - 2\\pi)^2}{4\\nu}\\right)\n\\]",

"domain": "- Spatial domain: \\( x \\in [0, 2\\pi] \\), -
Temporal domain: (t \\in [0, 0.14\\pi])",

"save values": "u",
"numerical method": "finite difference method"

},
}

Prompt Generation Function

Following the construction of the problem description in JSON format, we systematically generate
structured user prompts for the LLM based on the provided information. The conversion from JSON
to natural language is automated through a prompt generation function, which formats the fields (e.g.,
equation, boundary conditions, initial conditions, domain, save values, and numerical method) into a
coherent and standardized instruction. This structured prompt explicitly communicates the problem
setup and expected outputs, ensuring consistency across different tasks and minimizing ambiguity
during code generation. The generated prompts follow a fixed template to guarantee reproducibility
and comparability throughout the benchmark.

The prompt is designed to achieve the following goals:

Deterministic and parseable: The generated prompts follow a consistent structure, enabling easy
parsing and reproducibility.
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Clear separation of problem components: Each prompt explicitly isolates the problem definition,
including the partial differential equation (PDE), boundary conditions (BC), initial conditions (IC),
and domain specifications.

Specification of code generation requirements: Prompts clearly define additional requirements
such as the numerical method, output format, and variables to be saved.

Solver-agnostic design: While prompts recommend a numerical method (e.g., finite difference
method (FDM)), they remain flexible and do not enforce dependence on a particular solver framework.

Prompt Generation Function

def generate_prompt(data):
parts = [

"You are given the following partial differential equation (PDE) problem:\n",

"**Equation:**\n" + data.get("equation", "") + "\n",
"**Boundary Conditions:**\n" + data.get("boundary conditions", "") + "\n",
"**Initial Conditions:**\n" + data.get("initial conditions", "") + "\n",
"**Domain:**\n" + data.get("domain", "") + "\n",
"**Numerical Method:**\n" + data.get("numerical method", "") + "\n"

]

# Check for ’save_values’ and add to task description
save_values = data.get("save_values", [])
save_values_str = ", ".join(save_values) if save_values else "the relevant

variables specified for the problem"
# Always end with task specification for the code
parts.append(

"### Task:\n"
"- Write Python code to numerically solve the given CFD problem. Choose an

appropriate numerical method based "
"on the problem characteristics.\n"
"- If the problem is **unsteady**, only compute and save the **solution at

the final time step**.\n"
"- For each specified variable, save the final solution as a separate ‘.npy‘

file using NumPy:\n"
" - For **1D problems**, save each variable as a 1D NumPy array.\n"
" - For **2D problems**, save each variable as a 2D NumPy array.\n"
"- The ‘.npy‘ files should contain only the final solution field (not

intermediate steps) for each of the "
"specified variables.\n"
"- **Save the following variables** at the final time step:\n"
+ save_values_str + "\n"

"(Each variable should be saved separately in its own ‘.npy
‘ file, using the same name as "

"provided in ‘save_values‘).\n"
"- Ensure the generated code properly handles the solution

for each specified variable "
"and saves it correctly in ‘.npy‘ format.\n"
"- **Return only the complete, runnable Python code** that

implements the above tasks, "
"ensuring no extra explanations or information is included.

"
)

return "\n".join(parts)

Example Generated User Prompt
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Generated User Prompt

{
"1D_Burgers_Equation": "You are given the following partial

differential equation (PDE) problem:\n\n** Equation:**\n\\[\n
\\frac{\\ partial u}{\\ partial t} + u \\frac{\\ partial u}{\\
partial x} = \\nu \\frac{\\ partial^2 u}{\\ partial x^2}\n\\]\n\
nwhere:\n- \\( u(x,t) \\) is the velocity field\n- \\( \\nu =
0.07 \\) is the viscosity coefficient\n- \\( x \\) is the
spatial coordinate\n- \\( t \\) is time\n\n** Boundary
Conditions:**\ nPeriodic boundary conditions:\n\\[\n u(0) = u(
2\\pi)\n\\]\n\n** Initial Conditions:**\n\\[\n u = -\\frac{2\\
nu}{\\phi} \\frac{\\ partial \\phi}{\\ partial x} + 4\n\\]\
nwhere:\n\\[\n \\phi = \\exp\\left (\\ frac{-x^2}{4\\nu}\\right
) + \\exp\\left (\\ frac{-(x - 2\\pi)^2}{4\\nu}\\right)\n\\]\n\n
** Domain:**\n- Spatial domain: \\( x \\in [0, 2\\pi] \\), -
Temporal domain: (t \\in [0, 0.14\\pi])\n\n** Numerical Method:
**\ nfinite difference method\n\n### Task:\n- Write Python code
to numerically solve the given CFD problem. Choose an

appropriate numerical method based on the problem
characteristics .\n- If the problem is ** unsteady **, only
compute and save the ** solution at the final time step **.\n-
For each specified variable, save the final solution as a
separate ‘.npy ‘ file using NumPy:\n - For **1D problems **,
save each variable as a 1D NumPy array.\n - For **2D problems
**, save each variable as a 2D NumPy array.\n- The ‘.npy ‘
files should contain only the final solution field (not
intermediate steps) for each of the specified variables .\n- **
Save the following variables ** at the final time step:\nthe
relevant variables specified for the problem\n(Each variable
should be saved separately in its own ‘.npy ‘ file, using the
same name as provided in ‘save_values ‘).\n- Ensure the
generated code properly handles the solution for each
specified variable and saves it correctly in ‘.npy ‘ format .\n-
** Return only the complete, runnable Python code** that

implements the above tasks, ensuring no extra explanations or
information is included .",

}

System Prompt In addition to the user prompt, we employ a fixed system prompt to explicitly
define the role of the LLM. For models that do not support system prompts natively, the system
prompt is appended to the beginning of the user prompt to ensure consistent behavior across different
models.
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System Prompt

"You are a highly skilled assistant capable of generating Python code
to solve CFD problems "

"using appropriate numerical methods ."
"Given the problem description, you should reason

through the problem and determine the best "
"approach for discretizing and solving it,"
"while respecting the specified boundary conditions

, initial conditions, and domain .\n"
"For unsteady problems, save only the solution at

the final time step. For 1D problems, "
"save a 1D array; for 2D problems, save a 2D array

.\n"
"Ensure the code follows the user ’s specifications

and saves the requested variables exactly "
"as named in ‘save_values ‘.\n"
"Your task is to generate the correct, fully

runnable Python code for solving the problem "
"without additional explanations ."

Task Execution Protocol We evaluate code generation performance across a range of large lan-
guage models (LLMs). When configurable, we set the decoding temperature to 0 to minimize
randomness and encourage deterministic outputs. For models where temperature is fixed by the
provider, we use the default setting. We do not explicitly constrain the maximum number of generated
tokens; however, we note that some models impose an internal context window limit of approximately
8000 tokens, which encompasses both prompt and output. No additional stop sequences or length
truncation strategies are applied.

Execution and Output Validation For each generated response, we extract the Python code
and execute it in a controlled environment. The resulting numerical solution is saved as a NumPy
array and compared against the expert-provided reference solution. To quantify the accuracy of the
generated results, we compute the Normalized Mean Squared Error (NMSE) between the predicted
and true solution arrays. In cases where the shapes of the predicted and reference arrays do not match,
we apply interpolation to align the dimensions before comparison. Additionally, we visualize both the
predicted and reference solutions as images to qualitatively assess agreement and identify structural
discrepancies. All code execution is sandboxed with timeouts (default to be 60 seconds) to prevent
infinite loops or excessive resource usage.

A.3.3 FOAMBENCH

This class of benchmark study focuses on OpenFOAM dataset. Being an open source framework,
there are multitudes of cases available. However, scraping through all such available cases to generate
the dataset can create additional challenges in evaluating the effectiveness of such frameworks. Also,
OpenFOAM is capable of simulating complex geometries that we see in real life scenarios (e.g. flow
over an airplane or automobile), which requires creation of a CAD geometry outside of OpenFOAM
using specialized tools and further creating a computational mesh, which is then imported into
OpenFOAM for further CFD analysis. In the current benchmark, we want to evaluate an end to
end usage of OpenFOAM, where it can generate its own geometry and mesh and further do the
required numerical analysis. Hence we stick with geometries that can be easily described using
natural language and/or part of the tutorial. With these guidelines in mind we curate FoamBench
Basic and FoamBench Advanced dataset.

A.3.3.1 FoamBench Basic The basic dataset consists of tutorial problems with regards to the
physics, geometry and models. We picked out 11 different tutorial problems namely:

BernardCells Simulates Rayleigh-Bénard convection within a rectangular cavity, driven by a
temperature gradient between the hot bottom wall and the cold top wall. It models buoyancy-driven
flow and thermal instabilities using Boussinesq approximation.
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Cavity Classic lid-driven cavity problem with a square geometry and a moving top wall. It is used
to validate laminar incompressible solvers and study vortex formation.

counterFlowFlame2D Models a 2D counter-flow diffusion flame with detailed combustion and
chemistry. The domain consists of opposing inlets where fuel and oxidizer meet, ideal for flame
structure studies.

Cylinder Simulates flow past a stationary cylinder in a 2D channel. Demonstrates vortex shedding
and drag, and is widely used for benchmarking turbulence models.

damBreakWithObstacle A multiphase VOF (Volume of Fluid) simulation of a dam break in the
presence of a central obstacle. Tests free-surface dynamics and wave-obstacle interactions.

forwardStep Compressible flow over a sudden forward-facing step in a duct. Used to observe
shock reflections, expansion fans, and flow separation at high Mach numbers.

obliqueShock This case simulates compressible, inviscid supersonic flow over a flat domain,
leading to the formation of an oblique shock wave. Unlike classic textbook setups that use a physical
wedge to induce the shock, this case creates an oblique shock by imposing different velocity and
temperature conditions at the inlet boundary of a flat channel.

pitzDaily Simulates turbulent flow in a channel with a backward-facing step. It is a standard test
case for turbulence model validation due to its separation and reattachment zones.

shallowWaterWithSquareBump Uses the shallow water equations to model surface flow over a
square bump. Tests numerical schemes for water surface deformation and hydraulic jumps.

squareBend Involves internal flow through a 90-degree square bend. Demonstrates secondary flow
effects caused by pressure gradients in curved channels.

wedge An axisymmetric setup often used for supersonic flow around wedges. Useful for studying
inviscid compressible flows with symmetry assumptions.

We create 10 variations for each of these 11 datasets by varying parameters such as inlet velocity,
viscosity, boundary temperature values etc. This gives us 110 distinct OpenFOAM case files which
can be used as reference. The benchmark dataset consists of reference human made OpenFOAM case
files and a prompt for the agentic framework describing the problem to be solved. We provide an
example from our basic benchmark dataset for the forwardStep case. The reference folder structure
in which the files are to be organized is shown below.
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Case Folder Structure

forwardStep

0

U

p

T

constant

momentumTransport

physicalProperties

system

controlDict

blockMeshDict

fvSchemes

fvSolution

We show the details of these files which is used as reference in Figure 6, Figure 7 and Figure 8

Figure 6: OpenFoam reference case files defining the initial and boundary conditions.

Finally the prompt that is input to the frameworks is shown below. Since they are tutorial problems,
we do not describe the geometry in great lengths and assume the RAG should be able to pick it out
based on the description.
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Figure 7: OpenFoam reference case files defining the physical propereties and turbulence models.
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Figure 8: OpenFoam reference case files defining the solver configurations, geometry and mesh.
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Prompt

Do a laminar, compressible flow over a forward-facing step using the rhoCentralFoam
solver. Boundary conditions include a fixed velocity of 3 m/s and temperature of 1K
at the inlet and slip conditions on the obstacle. Use a timestep of 0.002 and output
every 0.1. Final time is 4.

A.3.3.2 FoamBench Advanced The advanced dataset consists of cases that are not part of the
tutorial. These cases are used to evaluate the LLMs capabilities in piecing together the information
from available tutorials and extrapolating to major changes that the user requests in the following
categories:

• Turbulence Model Changes: Changes in turbulence models requires the LLM to understand
the required file changes and parameter changes. Shifting from one turbulence model to
another not only requires simple option changes in files but may also involve additional file
to be created in the initial and boundary condition folders specifying the parameters for the
given turbulence model.

• Geometric Modifications: We ask the LLM to make changes to the geometry in tutorial
problems in changing the size of the domain. This requires the LLM to understand spatial
configuration of a given problem and make the required changes to the domain configuration
in the geometry definition.

• Unseen Geometry: In these tasks we ask LLM to create new obstacle shapes within the
flow domain. Such tasks can be quite complex in nature, requiring the LLM to understand
the new geometric requirements of the user and piece together information from its own
knowledge and tutorial cases and perform sptaial reasoning to generate these geometries.

We have curated a total of 16 cases, covering the above mentioned aspects of extrapolation. A sample
prompt given as the input to the framework is shown below

Prompt

Perform an incompressible turbulent flow simulation over a 2D diamond obstacle using
the k-epsilon RANS turbulence model and pimpleFoam solver. The computational domain
spans 0 to 15 in x direction and 0 to 5 in y direction and -0.5 to 0.5 in z direction.
The diamond obstacle is a square rotated by 45 degrees with diagonal length of 1 unit
centered at 2.5 x 2.5 x 0.0. Use one cell in z direction making the geometry effectively
2D. Refine the mesh near to diamond. Use sufficient grid points to discretize the
domain and dont use more than 10000 cells in your mesh. The left boundary is the
inlet which uses a uniform velocity of (1,0,0) m/s. The right boundary is the outlet
using zero gradient pressure condition. Top and bottom boundaries are fixed walls with
nop-slip condition. The front and back faces are empty. The diamond obstacle also has
no-slip boundary condition on its surface. The kinematic viscosity is 2e-6 m2/s. Use
a deltaT of 0.5 s and run till a final time of 5 s. Write the results at every 0.5 s.
Use a maximum Courant number of 1.0.

Unlike FoamBench Basic these are unseen geometries. Hence the prompt is made descriptive enough
for the LLM to understand the user need and generate the relevant blockMeshDict file containing
the geometric details and mesh information. Since it is difficult to perform mesh control over natural
language we only specify the maximum number of cells to be used and required refinement near the
obstacle.

A.4 AGENTIC FRAMEWORK

A.4.1 DETAILED PERFORMANCE COMPARISON
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Table 6: Performance of Zero Shot Pure LLM on FoamBench Basic and FoamBench Advanced.

Variation Model FoamBench Basic FoamBench Advanced
Mexec Mstruct Mfile MNMSE Success Rate Mexec Mstruct Mfile MNMSE Success Rate

Zero Shot
Pure LLM

Sonnet 3.5 0.064 0.670 0.506 0.050 0.045 0.017 0.773 0.573 0.009 0.007
o3-mini 0.009 0.788 0.529 0.009 0.009 0.000 0.707 0.408 0.000 0.000
Gemini 2.5 Flash 0.000 0.828 0.573 0.000 0.000 0.000 0.666 0.406 0.000 0.000
Haiku 3.5 0.000 0.905 0.629 0.000 0.000 0.000 0.801 0.492 0.000 0.000
GPT-4o 0.000 0.819 0.589 0.000 0.000 0.000 0.735 0.466 0.000 0.000
Gemma-2-9B-IT 0.000 0.735 0.460 0.000 0.000 0.000 0.670 0.390 0.000 0.000

Table 7: Component-wise mean scores and true-Success Rates for each model and framework on FoamBench
Basic (top) and Advanced (bottom).

Variation Model MetaOpenFOAM Foam-Agent

Mexec Mstruct Mfile MNMSE

Success
Ratio Mexec Mstruct Mfile MNMSE

Success
Ratio

RAG
+

Reviewer

Sonnet 3.5 0.555 0.883 0.763 0.173 0.136 0.836 0.879 0.778 0.427 0.336
o3-mini 0.491 0.872 0.664 0.236 0.227 0.573 0.883 0.772 0.291 0.264
Gemini 2.5 Flash 0.245 0.841 0.695 0.091 0.082 0.182 0.568 0.496 0.141 0.136
Haiku 3.5 0.218 0.845 0.701 0.095 0.091 0.518 0.921 0.797 0.205 0.191
GPT-4o 0.173 0.801 0.715 0.105 0.091 0.591 0.878 0.765 0.309 0.282
Gemma-2-9B-IT 0.000 0.690 0.540 0.000 0.000 0.000 0.710 0.590 0.000 0.000

RAG
+

No Reviewer

Sonnet 3.5 0.064 0.810 0.728 0.023 0.009 0.373 0.668 0.599 0.232 0.200
o3-mini 0.055 0.823 0.651 0.027 0.027 0.436 0.837 0.744 0.273 0.255
Gemini 2.5 Flash 0.009 0.793 0.682 0.009 0.009 0.191 0.811 0.685 0.145 0.136
Haiku 3.5 0.055 0.806 0.708 0.027 0.027 0.182 0.915 0.799 0.100 0.091
GPT-4o 0.045 0.796 0.710 0.018 0.018 0.455 0.843 0.738 0.286 0.255
Gemma-2-9B-IT 0.000 0.680 0.540 0.000 0.000 0.000 0.720 0.590 0.000 0.000

No RAG
+

Reviewer

Sonnet 3.5 0.400 0.747 0.522 0.195 0.145 0.473 0.862 0.647 0.291 0.245
o3-mini 0.045 0.623 0.347 0.000 0.000 0.009 0.811 0.549 0.009 0.009
Gemini 2.5 Flash 0.009 0.609 0.364 0.009 0.009 0.000 0.829 0.571 0.000 0.009
Haiku 3.5 0.000 0.587 0.346 0.000 0.000 0.009 0.910 0.633 0.009 0.009
GPT-4o 0.000 0.557 0.341 0.000 0.000 0.000 0.017 0.012 0.000 0.000
Gemma-2-9B-IT 0.000 0.420 0.220 0.000 0.000 0.000 0.600 0.480 0.000 0.000

Variation Model MetaOpenFOAM Foam-Agent

Mexec Mstruct Mfile MNMSE

Success
Ratio Mexec Mstruct Mfile MNMSE

Success
Ratio

RAG
+

Reviewer

Sonnet 3.5 0.125 0.775 0.599 0.125 0.125 0.625 0.792 0.621 0.406 0.250
o3−mini 0.125 0.665 0.484 0.125 0.125 0.312 0.734 0.597 0.219 0.187
Gemini 2.5 Flash 0.000 0.796 0.586 0.000 0.000 0.062 0.692 0.511 0.000 0.000
Haiku 3.5 0.062 0.646 0.498 0.031 0.000 0.188 0.840 0.609 0.188 0.187
GPT−4o 0.000 0.514 0.430 0.000 0.000 0.375 0.805 0.634 0.312 0.250
Gemma-2-9B-IT 0.000 0.540 0.410 0.000 0.000 0.000 0.630 0.450 0.000 0.000

RAG
+

No Reviewer

Sonnet 3.5 0.000 0.743 0.594 0.000 0.000 0.188 0.771 0.609 0.156 0.125
o3−mini 0.000 0.746 0.535 0.000 0.000 0.000 0.702 0.566 0.000 0.000
Gemini 2.5 Flash 0.000 0.688 0.518 0.000 0.000 0.000 0.666 0.496 0.000 0.000
Haiku 3.5 0.000 0.654 0.518 0.000 0.000 0.000 0.801 0.583 0.000 0.000
GPT−4o 0.000 0.733 0.603 0.000 0.000 0.000 0.744 0.594 0.000 0.000
Gemma-2-9B-IT 0.000 0.530 0.400 0.000 0.000 0.000 0.610 0.440 0.000 0.000

No RAG
+

Reviewer

Sonnet 3.5 0.375 0.655 0.451 0.344 0.187 0.250 0.806 0.592 0.188 0.125
o3−mini 0.250 0.649 0.372 0.062 0.000 0.000 0.710 0.420 0.000 0.000
Gemini 2.5 Flash 0.000 0.685 0.407 0.000 0.000 0.000 0.702 0.410 0.000 0.000
Haiku 3.5 0.000 0.718 0.456 0.000 0.000 0.000 0.825 0.511 0.000 0.000
GPT−4o 0.188 0.658 0.415 0.000 0.000 0.000 0.710 0.443 0.000 0.000
Gemma-2-9B-IT 0.000 0.500 0.360 0.000 0.000 0.000 0.590 0.400 0.000 0.000

A.4.2 REASONS FOR FAILURE

We examine the common reasons for failure of execution for the cases in FoamBench Basic dataset
for the two frameworks with the best performing model (Sonnet 3.5) in Figure 9. The mentioned
reasons can be further elaborated as:

• Inconsistent Patch or Patch Field: This error means that certain boundaries that was defined
in the boundary conditions file does not exist in the mesh file.
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• File Not Found: This happens when a certain file, example: blockMeshDict, controlDict
etc, required for the OpenFoam run is not found among the case files.

• Undefined keyword: This happens when certain keywords like the flux schemes or parameter
values are not defined appropriately. The LLM will good knowledge about the OpenFoam
to decided, which flux schemes are to be defined based on the solver that is being used and
the variables that are being solved for.

• Numerical Instability: This occurs when the chosen numerical schemes, time step size, or
boundary/initial conditions lead to unstable simulations, often causing divergence or NaN
values in the solution. It typically arises from violating stability criteria (e.g., CFL condition)
or poor discretization choices that amplify numerical errors during time integration.

• Geometry/Mesh Error: These errors stem from issues in mesh generation or geometry
definition, such as non-orthogonal cells, skewed elements, or overlapping/missing faces.
They can cause solver initialization to fail or lead to inaccurate or unphysical results during
the simulation.

(a) MetaOpenFoam (b) Foam-Agent

Figure 9: Common Reasons for execution failure found in MetaOpenFoam and Foam-Agent with RAG and
Reviewer and using Sonnet 3.5 as the prompt model.

A.4.3 TOKEN USAGE

The token usage statistics of the two frameworks in combination with the different models is shown
in Table 8.

A.4.4 PROMPT ENGINEERING

We investigated the role of prompting through a focused experiment on FOAMBENCH Advanced.
Human-authored prompts were iteratively refined using the O3 reasoning model, and five validated
variants were tested on Claude Sonnet 3.5 in a zero-shot setting (i.e., without retrieval augmentation
and/or the Reviewer). The best variant improved success rate only marginally—from 0.007 to 0.012
Table 9, indicating that the original prompts were already effective and that extensive manual tuning
provided limited additional benefit.

We have not conducted an extensive ablation study on prompt engineering. While prompt optimization
is typically useful in large language model applications, our experience indicates that advanced
methods such as retrieval-augmented generation (RAG) and the Reviewer tool have a substantially
larger impact on downstream success rates. Indeed, these components increase Claude Sonnet 3.5’s
success on FOAMBENCH to roughly 0.25, far exceeding the modest gains achievable through manual
prompt refinement. Nevertheless, to ensure fair comparison, all models were evaluated under identical
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Table 8: Average total token usage, API cost ($) as of May 2025, and loop counts per model variant for each
agentic framework. Average is over all cases in FoamBench.

Variation Model MetaOpenFOAM Foam-Agent

Prompt Completion Cost ($) Loop Prompt Completion Cost ($) Loop

RAG + Reviewer

Sonnet 3.5 63061.55 8337.20 1.19 7 378848.37 9346.10 6.56 2
o3-mini 60273.86 45325.69 0.29 8 197334.74 6549.15 0.27 4
Gemini 2.5 Flash 50603.35 8454.29 0.01 9 47929.00 4127.96 0.01 2
Haiku 3.5 29021.51 6499.74 0.06 9 426189.16 18235.88 0.43 5
GPT-4o 73603.88 9109.8 0.28 9 147011.94 5702.80 0.42 9
Gemma-2-9B-IT 35487.00 7322.00 - 10 331582.00 10322.00 - 10

RAG + No Reviewer

Sonnet 3.5 10922.04 5526.07 0.13 1 278880.44 7358.98 5.0 1
o3-mini 10128.16 24162.77 0.12 1 121070.15 3154.96 0.16 1
Gemini 2.5 Flash 129137.86 5935.76 0.02 1 129137.86 5935.76 0.02 1
Haiku 3.5 11103.52 5563.83 0.06 1 110582.05 7818.34 0.50 1
GPT-4o 9251.12 4662.87 0.07 1 80967.33 4389.14 0.24 1
Gemma-2-9B-IT 8722.00 6670.00 - 1 98431.00 8888.00 - 1

No RAG + Reviewer

Sonnet 3.5 39030.58 13369.42 0.54 9 92618.95 13369.42 1.28 4
o3-mini 47062.19 47868.35 0.33 10 89131.14 5319.50 0.15 4
Gemini 2.5 Flash 50253.88 10123.70 0.01 10 40675.74 6415.07 0.01 2
Haiku 3.5 24907.50 6663.95 0.04 10 111263.76 14704.62 0.61 4
GPT-4o 52901.2 7958.66 0.21 10 202418 10972 0.55 4
Gemma-2-9B-IT 29888.00 7799.00 - 10 95112.00 16444.00 - 10

Table 9: FoamBench Advanced metrics for the best prompt variant (zero-shot, no RAG/Reviewer).

Dataset Mexec Mstruct Mfile MNMSE Success Rate

FoamBench Advanced 0.034 0.769 0.588 0.012 0.012

prompt settings, so that differences in performance reflect model capability and auxiliary tooling
rather than prompt variability.
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A.5 SOLUTION COMPARISON

A.5.1 CFDQUERY

Question:
Which of the following is closest to the correct modified equation for the discretized 1D
advection equation using second-order central difference in space and third-order Runge-
Kutta (RK3) in time?
Options:

1.
∂u

∂t
+ a

∂u

∂x
=

a∆x2

6

∂3u

∂x3
+O(∆x3)

2.
∂u

∂t
+ a

∂u

∂x
=

a∆x2

2

∂2u

∂x2
+O(∆x3)

3.
∂u

∂t
+ a

∂u

∂x
= −a∆x2

6

∂3u

∂x3
+

a∆t2

6

∂3u

∂t3
+O(∆x3)

4.
∂u

∂t
+ a

∂u

∂x
=

a∆x2

6

∂3u

∂x3
− a3∆t2

6

∂3u

∂x3
+O(∆x3)

Correct Answer: Option 4
Model Responses:

• Sonnet 3.5: Option 4 ✓

• o3-mini: Option 3 ✗

• Gemini 2.5 Flash: Option 4 ✓

• Haiku 3.5: Option 1 ✗

• GPT-4o: Option 3 ✗

• Gemma-2-9B-IT: Option 1 ✗

A.5.2 CFDCODEBENCH

The visual comparison of the model produced results and the ground truth solution at the final
timestep for the 1D Burgers equation is shown in Figure 10 and for the 2D convection equation is
given in Figure 11. Models such as o3-mini, Haiku 3.5 and Gemini 2.5 Flash is able to closely match
the ground truth solution for the 1D Burgers equation. Sonnet 3.5 is able to match the solution near
the shock, but does not get the boundary conditions right.

In the solution for 2D convection, Sonnet 3.5 seems to have some numerical instability, while the
other models seems to have a decent prediction of the x directional velocity.

A.5.3 FOAMBENCH

Figure 12 and Figure 13 shows the comparison between the results from the two frameworks
(MetaOpenFOAM and Foam-Agent) for the Cavity and forwardStep case respectively. The results
from Foam-Agent is more similar to the ground truth in the Cavity case, while both the frameworks
does well in the case of forwardStep.
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Figure 10: Solution comparison at the final time step for 1D Burgers equation

Figure 11: X direction velocity (u) comparison at the final time step for 2D Convection equation

Figure 12: Comparison of velocity magnitude at the final timestep for 2D Cavity case.
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Figure 13: Comparison of velocity magnitude at the final timestep for 2D forwardStep case.
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