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ABSTRACT

End-to-end Vision-language models (VLMs) often rely on spurious visual cues,
conflating perception with decision-making. We introduce VISTA (Visual Infor-
mation Separation for Text-based Analysis), which enforces an explicit informa-
tion bottleneck between a text-only reasoner and a stateless VLM sensor. The
LLM reasoner decomposes each question and iteratively queries a VLM for vi-
sual facts; the VLM is instructed to reject queries that require high-level infer-
ence, creating an explicit information bottleneck. Trained on only 641 questions,
VISTA yields large robustness gains on SpuriVerse across two vision backbones
(+16.29% with Qwen-2.5-VL-7B and +6.77% with Llama-3.2-Vision-11B), while
direct SFT or RL on the VLM fails to remedy spuriosity and can even exacerbate
it. Despite never exposing the reasoner to raw pixels, VISTA slightly improves or
remains on par with VLMs on everyday-scene benchmarks, including MMVP and
SeedBench. Our learned reasoners transfer across sensors, indicating algorithmic
rather than model-specific generalization. Together, VISTA enables spurious-
resistant VQA by upgrading the brain, not the eyes.

1 INTRODUCTION

Recent advances in vision–language models (VLMs) have propelled multimodal understanding and
visual question answering (VQA) to new heights. However, beneath these impressive benchmarks
lies a persistent concern: many systems appear to succeed not by genuine visual reasoning, but
by exploiting shortcuts that correlate spuriously with the correct answer, including contextual cues,
visual predominance, or commonly co-occurring objects (Yang et al., 2025; Kervadec et al., 2021;
Dancette et al., 2021; Si et al., 2022; Agrawal et al., 2018; Wang et al., 2024a;b; Ye et al., 2024).
An example is illustrated in Figure 1: when asked “are the men assembling parts of a building?”,
the end-to-end Qwen2.5-VL-7B model answers “yes” based on the presence of scaffolding and
stereotypical attire, while failing to verify whether any assembly action is actually taking place.

Critically, this conflation of perception and reasoning is problematic not only at inference but also
during training. When a model is trained end-to-end from answers, it is difficult to provide learning
signals that distinguish relevant causal evidence from correlated but irrelevant cues. As a result, end-
to-end training on VLMs can reward the use of shortcuts and entangle visual features with high-level
decision-making, producing brittle behaviors under distribution shift or adversarial perturbations.

To address these limitations, we introduce VISTA (Visual-Information Separation for Text-based
Analysis), a new meta-architecture and learning paradigm that enforces an information bottleneck
between perception and reasoning modules. Our key intuition is simple: by restricting the reasoning
module to obtain visual information only through a low-bandwidth, objective query interface, we
reduce the opportunity to exploit spurious correlations, force the reasoner to rely on logical deduc-
tion as well as targeted evidence gathering, and create a clearer credit assignment during training. In
VISTA, raw visual inputs are handled by a frozen VLM that answers simple and objective queries,
while rejecting complex or vague requests. All decision-making occurs in an LLM reasoner that
plans queries, integrates visual evidence, and explains its conclusions step-by-step.

As illustrated in Figure 1, VISTA operates as an iterative dialogue between an LLM reasoner and
a VLM sensor constrained to answer simple, objective queries. Given a question, the reasoner
conducts step-wise, verbalized planning and issues targeted visual checks; the sensor either rejects or
returns short factual responses. In the earlier example, our reasoner remains unaffected by spurious
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Are the men assembling 

parts of a building?

VQA Question Stateless VLM Sensor LLM Reasoner

Need to understand the details. What 

is happening in the image?

Two men standing on scaffolding.

… need to understand the objects men are 

working with. Wha are the men with?

They are with hard hats and safety vests.

… need to know the objects they are 

specifically handling. Describe the 
objects the men have in their hands.

One has gloves and tool bet. The other one 
is not holding anything.

… They are standing on scaffolding and 

overseeing work, not engaged 
in assembly. The answer is No.

Both men are wearing helmets and high visibility vests. They 

are standing on scaffolding, indicating that they might be 
working on a building or elevation that requires support 
structures during its construction ... The answer is Yes. Chain-of-thought reasoning
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Figure 1: Comparison between an end-to-end VLM and VISTA on a SpuriVerse example (actual
model outputs). Spurious attributes are highlighted in red. Bottom: The end-to-end Qwen2.5-
VL model predicts Yes by exploiting spurious attributes (e.g., scaffolding and stereotypical attire)
that are irrelevant to the question, resulting in an error. Top: VISTA decouples perception from
reasoning via an information bottleneck and follows a neutral, iterative decision process: the LLM
reasoner emits CoT rationales before each action, issues targeted simple visual queries as actions,
and terminates the interaction once a conclusion is reached. By explicitly checking the men’s actions
and interactions, the reasoner remains invariant to the spurious cues and correctly predicts No.

attributes and explicitly verifies the men’s actions by checking whether they are interacting with any
tools or objects indicative of assembly. By pursuing a neutral, evidence-seeking reasoning path,
VISTA correctly concludes that the men are standing and overseeing rather than assembling.

We summarize our contributions as follows:

• We propose VISTA, a framework and corresponding learning paradigm that formalizes
VQA as an iterative decision-making process under an information bottleneck that sepa-
rates perception from reasoning.

• We demonstrate that, with the same data and training steps, VISTA encourages neu-
tral, evidence-seeking reasoning across two vision backbones, whereas end-to-end training
(SFT and RL) on VLMs reinforces visual shortcuts and reduces robustness.

• VISTA attains substantial robustness gains on Spuriverse while remaining on par with
end-to-end systems on everyday-scene benchmarks (MMVP, SeedBench)

2 RELATED WORK

Modular VQA Systems. Early modular VQA systems explicitly decompose problems into percep-
tion and reasoning components. Neural Module Networks dynamically compose modular networks
depending on the question structure (Andreas et al., 2016). Neural-Symbolic VQA parses questions
into executable programs against structured scene graphs (Yi et al., 2018). These methods separate
recognition from symbolic reasoning but often rely on strong supervision or curated representations.
Later ViperGPT and VisProg show that LLMs, with strong built-in code generation capabilities, can
compose visual operators as programs, offering strong interpretability and compositional general-
ization (Surı́s et al., 2023; Gupta & Kembhavi, 2023). Compared with these programmatic modular
systems, our formulation uses language as the interface to perception, avoiding coverage gaps and
engineering constraints imposed by APIs or program libraries. In addition, our reasoning proceeds
iteratively, which supports complex reasoning and produces auditable traces. Crucially, we impose
an information bottleneck to mitigate visual biases, which underpins our motivation to encourage
neutral visual reasoning. To address limitations from domain-specific decomposition and premature
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conclusions without sufficient visual information in multi-step VQA, IdealGPT decomposes ques-
tions into sub-questions and delegates answering to a VLM (You et al., 2023). Our formulation
shares the same high-level recipe, including LLM-based decomposition and iterative reasoning, but
differs in fundamental ways: (1) we enforce a perception-only interface that explicitly targets vi-
sual bias mitigation; (2) we study a training paradigm and compare directly with end-to-end VLM
training, whereas IdealGPT is evaluated zero-shot with a closed LLM; (3) our method trains a single
LLM to decompose, reason, and decide the final answer, whereas IdealGPT assumes separate strong
models (ChatGPT) for questioning and reasoning.

Robustness, Shortcut Learning, and Evaluation Benchmarks. VQA robustness work shows that
models often exploit shortcuts rather than genuine reasoning. VQA-CP introduces changing-prior
splits to break question-type priors and reveals large drops for models under shifted priors (Agrawal
et al., 2018). Beyond question-only biases, VQA-CE mines multimodal shortcut rules and demon-
strates that many debiasing methods remain ineffective when the shortcuts are cross-modal (Dancette
et al., 2021). GQA-OOD reorganizes the GQA dataset and finds that strong VQA models still fail on
infrequent or shifted compositions (Kervadec et al., 2021). More recently, MM-SpuBench probes
spurious biases by asking models to pick the diagnostic feature for object identity (Ye et al., 2024).
Since our claims center on QA accuracy under controlled spurious shifts and reasoning, we consider
datasets aligned with those goals. SpuriVerse curates real-world VLM failures attributed to spuri-
ous cues and validates them with synthetic counterfactuals (Yang et al., 2025). In parallel, MMVP
targets basic visual-pattern failures and SEED-Bench provides broad, human-annotated multiple-
choice evaluations and enables standardized comparison across models (Tong et al., 2024; Li et al.,
2023; 2024). Our approach is complementary to dataset-level and loss-level debiasing: instead of
reweighting data or adding regularizers, we enforce an architectural bottleneck that promotes neutral
visual reasoning while remaining compatible with everyday suites and spurious-stress evaluations.

Active Reasoning and Reinforcement Learning. Active information-seeking has been studied in
multi-hop QA and fact verification (Yang et al., 2018; Thorne et al., 2018) as well as in interactive
environments (Shridhar et al., 2020; Yao et al., 2022; Zhou et al., 2023). LLM agents often alter-
nate between planning, tool use, and verification, sometimes under explicit budgets. Foundational
systems interleave reasoning with actions (Yao et al., 2023), browse and cite sources with human
feedback (Nakano et al., 2021), and improve over trials via self-reflection (Shinn et al., 2023). Our
setting shares the multi-turn nature but differs in objective: rather than maximizing task success by
any means, we explicitly constrain how information can be acquired to prevent shortcut learning.

On learning signals, RL has been effective for aligning multi-turn behaviors and tool use. Popular
training paradigms include PPO-based RLHF with KL control for long-horizon tool use and dialogue
(Nakano et al., 2021; Ouyang et al., 2022), AI-feedback variants that reduce human labeling (Bai
et al., 2022; Lee et al., 2023), and offline preference optimization (Rafailov et al., 2023). Recent
group-based objectives (GRPO) stabilize reasoning-centric training by scoring multiple completions
per prompt and using relative advantages (Shao et al., 2024). Our setting is algorithm-agnostic, and
we adopt GRPO for its practicality and strong uptake in reasoning-focused LLMs.

3 METHOD

3.1 OVERVIEW

We decompose a VQA system into a text-only reasoner πθ, and a frozen VLM sensor Sϕ that
answers perception-only questions. Given the textual input question q, the reasoner iteratively inter-
acts with the sensor by issuing free-form natural-language queries; the sensor sees the input image
x, and either returns a short answer or rejects the query when it requires high-level inference. The
interaction loop terminates when the reasoner concludes with an answer or the maximum number of
steps is reached.

Formally, at step t, the reasoner observes the conversation history

ht =
(
q, (s1, y1), . . . , (st−1, yt−1)

)
,

where si and yi are the output strings of πθ and Sϕ at step i. Each st contains two parts:

• Chain-of-thought ct: text used by the reasoner to think before outputting an action

3
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Algorithm 1 VISTA reasoning loop
Require: image x, question q, reasoner πθ, sensor Sϕ, step budget Tmax

1: h← [ q ] ▷ Reasoner history of pairs (si, yi)
2: for t = 1 to Tmax do
3: st ∼ πθ(· | h) ▷ Reasoner raw text at step t
4: parse st → (ct, ut)
5: if ut = ANSWER(at) then
6: return at ▷ Terminate upon answer
7: else if ut = QUERY(qt) then
8: yt ← Sϕ(x, qt) ▷ Sensor sees only (x, qt); no q, options, or history
9: h← h ∥ (st, yt) ▷ Append (st, yt) to history

10: end if
11: end for
12: return st

What can we deduce about the 

three people in the image?

[subjective deduction]

What is in the image? [overview]

Can you describe the time of day 

in the image?

[temporal inference]

Are there other people around the 

woman? [spatial relations]

Are there multiple dots and a 

white flag with an orange pole in 

the painting? [compound query]

Are people on a boat for fishing or 

are they preparing to go biking?

[intent prediction]

What is the color of the box? 

[basic properties]

How many individuals are 

involved with the fire? [counting]

Figure 2: Accepted vs. rejected queries. The top row shows rejected cases, and the bottom row
shows accepted cases. The vision-only sensor answers perception questions in six categories and
may emit one brief OVERVIEW when the text is under-specified; all requests requiring high-level
inference are REJECTED. Top Row is rejected, below row is accepted

• Action ut: a structured directive extracted with a deterministic rule-based parser

The reasoner implicitly learns to decide what to ask and when to stop. The action space is

ut ∈ U = {QUERY(qt),ANSWER(at)},

where qt is a query string and at is a final answer string. The loop terminates if a final answer is
extracted; otherwise, the sensor receives qt and returns

yt = Sϕ(x, qt).

Crucially, the stateless sensor Sϕ never receives the history or the reasoning traces; it only sees the
contextless query qt and image x. Thus, all task-level decision-making must arise from πθ. The
working pipeline of VISTA is illustrated in Algorithm 1.

3.2 PERCEPTION-ONLY QUERIES AND REJECTION POLICY

We decompose the system into a text-only reasoner πθ and a vision-only sensor Sϕ. Following the
taxonomy of perception question of Selvaraju et al. (2020), the sensor answers free-form perception
queries limited to: Existence (“Is there a bicycle?”), Basic Properties (“Is the mug red?”), Spatial
Relations (“What is left of the sofa?”), Simple Activities (“Are they looking at the camera?”), Tex-
t/Symbol Recognition (“What does the road sign say?”), and Counting (“How many cups are on the
table?”).

4
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Objective overview (optional). When a question lacks sufficient textual context, the sensor may
provide a brief, objective overview of the scene (one short sentence; perception-only). The overview
supplies minimal global context (scene type, dominant objects with coarse counts, coarse layout,
basic global attributes) to reduce referential uncertainty and establish a stable spatial frame before
targeted follow-ups. It explicitly excludes intentions, causes, roles, emotions, events beyond static
poses, and any world knowledge.

Rejection policy and enforcement. Any request that requires high-level inference or remains
ambiguous beyond what an objective overview can resolve needs to be rejected by outputting a
fixed template “I cannot answer this question.” Concretely, we reject queries involving multi-hop or
causal reasoning, reliance on external knowledge, subjective interpretation beyond what is directly
observable, or prompts that should be decomposed into simpler perception primitives. We enforce
this behavior with an explicit accept/reject instruction prompt and response format. Examples of
accepted/rejected queries are shown in Fig. 2, and the full prompt is provided in Appx. H. Human
analysis (Section 7.3) of 100 randomly sampled cases shows 86% agreement with human pass/reject
labels, evidencing an effective rejection policy.

3.3 REINFORCEMENT LEARNING REASONER

Our learning strategy formulates VQA solving as a sequential decision-making process and provides
the reasoner with an explorable environment with clear reward signals, making RL training a well-
suited choice. We optimize πθ using Group Relative Policy Optimization (GRPO) (Shao et al.,
2024). Each episode τ yields a terminal reward based on final answer correctness:

R(τ) = 1[aT = a∗]. (1)

Training differs from single-step GRPO only in the sampling of rollouts and the assignment of
loss masks. We apply the GRPO update to the union of assistant-only tokens across all assistant
turns. With terminal-only reward and unit discount, the group-relative advantage is constant within
a trajectory, so the update is effectively the single-step GRPO objective applied to a longer, state-
dependent sequence (details in App. B).

4 THEORETICAL ANALYSIS

Intuitively, overfitting thrives when the learner can absorb rich, high-variance signals and latch onto
spurious correlations that happen to predict labels in the training set. By constraining the visual
bandwidth, we shrink the hypothesis space the reasoner can realize: high-level, shortcut features
cannot pass through the interface, forcing predictions to rest on a small set of stable, perception-
level facts. In this section, we formalize this intuition by relating generalization to the information
that can flow through the sensor–reasoner interface.

Setup. Let
(
X,Q, Y

)
∼ D denote image, question, label. A reasoner interacts with a sensor for at

most T steps. At step t, the reasoner emits a free-form text query at; the sensor enforces a rejection
rule Rt = g(at) ∈ {0, 1}: if Rt = 0, it turns a rejection template⊥; otherwise it returns a short per-
ception answer from a finite alphabet Ot ∈ Σ. Let Z1:T =

(
Z1, . . . , ZT

)
, Zt ∈ Σ⊥ := Σ ∪ {⊥} be

the visual evidence. We train parameters W from the compressed dataset D̃ = {(Z1:T , Qi, Yi)}ni=1.
We assume the learning loss ℓ(W ;Z,Q, Y ) ∈ [0, 1] is bounded. The true loss and empirical loss are
defined as L(W ) = Eℓ(W ;Z,Q, Y ) and L̂(W, D̃) = 1

n

∑n
i=1 ℓ(W ;Zi, Qi, Yi).

Theorem (Informal, generalization under an information bottleneck).
|E[L̂(W, D̃)− L(W )]| ≤

√
2CT ,

where CT is the per-example bit budget
CT := T log |Σ⊥|

Implications and Limitations. The expected generalization gap depends only on the interface
budget CT and is independent of the size of the training data, where a smaller CT means less
overfitting. While the bound captures average generalization, it does not alone guarantee worst-case
adversarial robustness nor account for distribution shift without extra assumptions. The complete
proof is included in Appendix A.
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5 EXPERIMENT SETUP

5.1 DATASETS AND PREPROCESSING

We evaluate on three benchmarks with no overlap with questions in the training set: SpuriVerse
(Yang et al., 2025), MMVP (Tong et al., 2024), and SeedBench (Li et al., 2023). SpuriVerse consists
of 1200 questions explicitly constructed around real-world spurious correlations, making it well-
suited for testing reasoning robustness under adversarial conditions. MMVP stresses perceptual
limitations by constructing CLIP-blind image pairs and associated questions that expose visual-
grounding failures. SeedBench is for everyday, non-adversarial performance, due to its scale, we
randomly sample 500 single-image questions to keep the compute and time tractable. Because in
SpuriVerse more than 60% of gold answers appear in option B, we mitigate answer-position bias
by shuffling the multiple-choice options. Shuffling is applied once as a deterministic pre-processing
step, and the exact same shuffled inputs are used across all evaluation settings. We report both the
original and shuffled results in Appendix C and observe that our method consistently outperforms
all baselines and yields significant improvements. We present the shuffled results in the main text,
as they remove label-position bias while preserving the overall trend.

5.2 VISTA AND BASELINE SETTINGS

VISTA. For all experiments, we use Qwen2.5-7B as the LLM reasoner. We train and instantiate our
method with two frozen VLM sensors: Qwen2.5-VL-7B and Llama3.2-11B. For each sensor, we
evaluate three settings: (i) VISTA (base): with an untrained reasoner (reference model) interacting
with the sensor; and (ii) VISTA (RL): with trained reasoner using GRPO.

Baselines. We compare against end-to-end VLMs using the same two backbones in the following
settings: (i) E2E (base): the untrained VLM directly answers the question; (ii) E2E (base + CoT): the
untrained VLM outputs chain-of-thoughts before answers; (iii) E2E (SFT): supervised fine-tuning
to directly answer; and (iv) E2E (RL): we additionally evaluate a GRPO-trained Qwen2.5-VL-7B
on the same training data and for the same number of steps as VISTA (RL). These baselines isolate
where gains come from our framework design and training signals.

5.3 EVALUATION PROTOCOLS

We report accuracy on SpuriVerse, MMVP, and SeedBench-500. For a fair comparison, we stan-
dardize sampling and decoding across methods: both VISTA and end-to-end VLMs use 11-sample
self-consistency at temperature 1.0 for the predictive component (the LLM reasoner in VISTA and
the VLM itself in end-to-end baselines), and the majority-voted answers are evaluated. For VISTA,
the reasoner–sensor interaction is capped at Tmax = 24 and the LLM reasoner is sampled at tem-
perature 1.0, while the VLM sensor’s temperature is set to 0 during both training and evaluation.
Because end-to-end VLMs may emit unparsable multiple-choice strings, we canonicalize raw out-
puts to the option set with a lightweight Qwen-2.5-7B post-processor prior to evaluation.

5.4 TRAINING SETUP

We construct the training set by sampling questions from five sources: VQAv2 (Goyal et al., 2017),
Visual7W (Zhu et al., 2016), GQA (Ainslie et al., 2023), A-OKVQA (Schwenk et al., 2022), and
VQA-Introspect (Selvaraju et al., 2020). We then apply a multi-stage filtering pipeline that (1)
retains questions likely to elicit multi-step reasoning and (2) removes examples solvable via easy
visual or textual shortcuts. This yields a training split of 641 questions(A-OKVQA: 502, VQA-
Introspect: 95, Visual7W: 34, VQAv2: 7, GQA: 3). Details of the filtering process and the resulting
composition are summarized in Appendix D. We provide details of RL and SFT training in the
Appendix E.

6 MAIN RESULTS

We present our main results in Table 1. We report accuracy on SpuriVerse, MMVP and SeedBench-
500. For each vision backbone, we show the ∆ relative to its corresponding E2E (base); positive
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Table 1: Main results on SpuriVerse, MMVP and SeedBench-500.
VLM Setting SpuriVerse ∆ MMVP ∆ SeedBench-500 ∆

Qwen2.5-
VL

E2E (base) 37.50 51.33 71.20
E2E (base + CoT) 47.42 +9.92 52.67 +1.34 73.20 +2.00
E2E (SFT) 34.84 -2.66 50.67 -0.66 72.40 +1.20
E2E (RL) 44.52 +7.02 53.33 +2.00 73.00 +1.80

VISTA (base) 46.29 +8.79 46.67 -4.66 66.80 -4.40
VISTA (RL) 53.79 +16.29 50.00 -1.33 71.60 +0.40

Llama3.2-
Vision

E2E (base) 39.76 45.33 72.20
E2E (base + CoT) 38.87 -0.89 48.00 +2.67 73.20 +1.00
E2E (SFT) 40.16 +0.40 32.00 -13.33 66.80 -5.40

VISTA (base) 44.44 +4.68 35.33 -10.00 68.80 -3.40
VISTA (RL) 46.53 +6.77 52.67 +7.34 71.80 -0.40

changes are highlighted in green and drops in red. The best numbers for each dataset and backbone
are bolded.

Robustness to spurious correlations. We evaluate on SpuriVerse, which is based on real-world
spurious cues, and compare our approach with E2E VLM baselines under an identical evaluation
protocol. In the inference-only setting (VISTA base in the table), we use an untrained LLM paired
with a frozen VLM sensor and our results already match or surpass the best performing E2E sys-
tems. with Qwen2.5-VL as the sensor, VISTA scores 46.29%, approaching the best E2E baseline
(untrained + CoT) at 47.42%; with Llama-3.2-Vision, VISTA reaches 44.44%, outperforming the
best E2E baseline (SFT) at 40.16%. These results support our design that constraining the interface
to perception-only queries keeps the reasoner on a neutral, evidence-seeking path rather than follow-
ing spurious visual shortcuts, and the gains hold model-agnostically across sensors. With RL-trained
reasoners (sensors remain frozen), performance further improves and the gaps widen. On Qwen2.5-
VL, RL yields a 7.5% improvement over our base policy to 53.79%, extending the margin over the
best E2E baseline to 6.37%; on Llama-3.2-Vision, RL attains 46.53% and maintains a 6.37% lead
over the strongest E2E (SFT) baseline. Additionally, We provide a manual analysis that further con-
firms our improvements stem from a more neutral and evidence-linked reasoning process. Details
are in Section 7.3.

General performance on MMVP and SeedBench. To contextualize robustness results, we eval-
uate on MMVP and SeedBench-500, targeting everyday-scene questions whose answers can be
inferred from a small set of observable visual predicates combined with commonsense and short
multi-step reasoning. Overall, VISTA delivers substantial robustness gains with only marginal
accuracy trade-offs relative to the strongest E2E baselines. On MMVP, our RL-trained reasoner
improves over the strongest E2E baseline with Llama3.2-Vision (52.67% vs. 48.00%) and is only
marginal behind the strongest baselines with Qwen2.5-VL by 3.33%. SeedBench provides a general
and non-adversarial testbed, and our results are slightly below the best E2E baselines (Qwen2.5-VL:
71.60% vs. 73.20%; Llama3.2-Vision: 71.80% vs. 73.20%). Because SeedBench does not target
adversarial spuriousness, end-to-end VLMs with raw-pixel access can exploit benign correlations
and holistic cues, yielding a small but consistent edge. By contrast, our architecture enforces a
perception-only interface that promotes neutral, evidence-based reasoning under constrained visual
bandwidth, introducing an explicit trade-off between information bandwidth and neutrality. The
rejection ablation in Section 7.1 supports this hypothesis, and we approach E2E results when the
rejection bottleneck is removed.

Comparison of learning strategies. We compare SFT and RL applied either to end-to-end VLMs
or to our reasoner in VISTA, using the same training data and schedule. In this section, we compare
and report the improvement gains of the trained model compared with its base policy. For example,
E2E SFT baselines are measured against E2E base (no CoT), while E2E RL are measured against
E2E base + CoT; VISTA deltas are measured against their own base policy. Across both vision
backbones, training VISTA yields consistent, sizable gains over its base, whereas training the VLM
end-to-end produces marginal and often inconsistent improvements. The effect is most pronounced
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Table 2: Ablation on the VLM rejection bottleneck with Metrics: acc = accuracy, rnd = average
conversation rounds, rej = rejection rate.

VLM Setting SpuriVerse SeedBench-500

acc rnd rej acc rnd rej

Qwen2.5-VL

VISTA (base), w/ rejection 46.29 3.38 0.18 66.80 3.43 0.20
VISTA (base), w/o rejection 43.23 3.05 0.00 69.40 3.03 0.00

VISTA (RL), w/ rejection 53.79 7.31 0.32 71.60 6.58 0.29
VISTA (RL), w/o rejection 51.37 6.00 0.00 72.80 5.42 0.00

on SpuriVerse: all E2E training hurts robustness (Qwen2.5-VL: SFT -2.66%; RL -2.90%; Llama3.2
SFT has a -0.89% difference), while VISTA-RL improves markedly (+7.5% with Qwen2.5-VL;
+2.09% with Llama3.2-Vision). On MMVP and SeedBench-500, E2E training yields at best small
gains, despite becoming more susceptible to spurious cues as evidenced by the SpuriVerse results.
Taken together, these findings indicate that conflating perception and reasoning during E2E train-
ing blurs learning signals between causal evidence and correlated but irrelevant features, whereas
VISTA’s perception-only interface creates a better-suited learning environment in which RL can
reliably shape neutral, evidence-seeking policies.

7 ANALYSIS AND DISCUSSIONS

7.1 REJECTION ABLATION

We ablate the rejection bottleneck and investigate its effect in two regimes: adversarial spurious
correlations (SpuriVerse) and non-adversarial everyday scenes (SeedBench). The results reveal a
clear information-bandwidth–neutrality trade-off. With rejection on, the sensor denies high-level
inferences and answers only perception-level queries, shifting the burden to the LLM and encour-
aging evidence-based reasoning under reduced visual bandwidth. With rejection off, the sensor
answers high-level queries, increasing bandwidth but exposing the system to shortcut exploitation.
Table 2 reports accuracy alongside mean conversation rounds and rejection rates for VISTA (base)
and VISTA (RL) with/without rejection. Enforcing the bottleneck improves robustness on Spuri-
Verse, confirming its value for shielding against spurious cues; removing the bottleneck improves
SeedBench performance, shortens interactions (fewer rounds), and drives the rejection rate to zero.
Notably, the RL variant without rejection attains near-parity with the strongest E2E baseline on
SeedBench, suggesting that relaxing the gate can recover benign, non-adversarial cues while the full
bottleneck remains preferable under adversarial conditions. Our results also indicate that RL training
promotes deeper evidence-seeking, as evidenced by an increase in the average number of conver-
sation rounds. As future work, we will investigate rejection-aware, efficiency-regularized learning
to induce more concise reasoning and develop adaptive, confidence-aware gating that modulates
rejection to balance information bandwidth and neutrality.

7.2 ZERO-SHOT GENERALIZATION ON UNSEEN VLM SENSOR

To test whether the policy exploits VLM-specific patterns, we perform a zero-shot sensor swap:
the reasoner trained with a Qwen2.5-VL sensor is paired with an unseen Gemma3 sensor. Without
any additional tuning, it remains strong and consistently outperforms all untrained end-to-end VLM
baselines, indicating sensor-agnostic reasoning. The results are summarized in Table 3.

7.3 MANUAL ANALYSIS

To complement our quantitative benchmarks and capture qualitative aspects of reasoning that au-
tomated metrics miss, we conducted a three-part human evaluation. We recruited four expert an-
notators with complementary backgrounds and a specialist in vision–language modeling to provide
independent judgments. For each question, two annotators provided independent labels, and the
specialist audited rater quality and resolved disagreements. Detailed annotation materials, including
the presented item, evaluation prompt, response options, and guidance, are provided in Appendix I.

8
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Table 3: Zero-shot results of learned VISTA reasoner paired with unseen vision models (replacing
Qwen2.5-VL with Gemma3-12B).

VLM Setting SpuriVerse MMVP SeedBench-500

Gemma3

E2E (base) 33.63 46.00 66.40
E2E (base + CoT) 38.87 44.67 67.00

VISTA (base) 37.74 38.66 64.40
VISTA (RL, Zero-shot) 43.87 50.67 67.80

Reasoning Neutrality. We conducted a manual audit of a random sample of 30 SpuriVerse ques-
tions, evaluating VISTA RL traces against end-to-end Chain-of-Thought (E2E-CoT) traces. In this
task, 76.67% of VISTA traces did not rely on spurious attributes, compared with 43.33% for E2E,
suggesting that blind reasoning is less affected by spurious cues. Detailed instructions and prompt
templates appear in Appendix 8, a representative example is shown in Figure 3.

Error Analysis. We conducted a focused human study of error diagnosis using 100 question-answer
pairs from SpuriVerse, MMVP, and SeedBench-500 whose final answers were incorrect, together
with their VISTA RL traces. Overall, 56% of errors were attributed to the VLM (incorrect percep-
tion or inappropriate rejection), 28% to the LLM (option misalignment, guessing, or logical error),
and 13% to other factors (rounding explains the remainder), indicating that most failures originate
in the vision module. The complete rubric and prompt templates are provided in Appendix 9, and
Figure 3 presents a worked example.

Rejection Behavior Alignment: To evaluate the rejection filter, we randomly sampled 100 decom-
posed question-answer pairs from the VISTA RL dialogues across the three datasets and compared
the VLM’s pass/reject decisions with human-annotated gold labels. We report precision, recall, and
F1 under positive class conventions. Treating pass as positive yields precision = 86.0%, recall =
92.96%, and F1 = 88%. These results indicate good alignment with human labels on pass and rejec-
tion decisions. Appendix 10 provides the complete instructions and prompt templates, and Figure 5
presents a concrete example.

7.4 ADDITIONAL ANALYSIS

We report two complementary studies in Appendix F. (i) Reasoner transfer. We additionally test
whether the reasoner overfits to a specific VLM by swapping the paired sensors at evaluation time
between Qwen2.5-VL and Llama-3.2 (Appendix F.1). The main trends persist: even under sen-
sor swap, the reasoner remains competitive compared with E2E baselines. (ii) VISTA training
ablation. We compare SFT against RL for training the VISTA reasoner and find that disillation
from successful trajectories alone does not yield a reliably generalizable policy, underscoring the
importance of framing VISTA as an RL problem (Appendix F.2).

8 CONCLUSION

We introduced VISTA, a modular framework that enforces an explicit information bottleneck be-
tween perception and reasoning. A text-only reasoner interacts with a stateless visual sensor that
answers only perception-level queries or rejects high-level ones, thereby separating decision making
from raw visual features and improving credit assignment. This design yields a learning environ-
ment that naturally encourages evidence-seeking and neutral reasoning, in contrast to end-to-end
SFT/RL pipelines that tend to entangle spurious visual cues with downstream predictions.

Empirically, VISTA delivers consistent gains in robustness on adversarial, spurious-correlation
settings while remaining competitive on everyday-scene benchmarks. Policies learned under our
framework transfer across vision backbones and unseen sensors, indicating cross-model generaliza-
tion rather than model-specific overfitting. Ablations of the rejection mechanism reveal a measured
bandwidth–neutrality trade-off: tighter interfaces suppress shortcut use but restrict high-level infer-
ence, whereas looser interfaces increase capacity at the risk of bias exploitation.

9
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A THEORETICAL ANALYSIS

A.1 PRELIMINARIES

We consider a supervised visual reasoning task with triplets (X,Q, Y ) ∼ D, where X is an image,
Q is a natural-language question, and Y is the ground-truth label. A text-only reasoner interacts
with a deterministic sensor for at most T rounds. At round t ∈ {1, . . . , T}, the reasoner emits a
free-form query at; a sensor enforces a rejection rule and either returns a short answer from a finite
alphabet Σ or a rejection ⊥. Let

Z1:T = (Z1, . . . , ZT ), Zt ∈ Σ⊥ := Σ ∪ {⊥},
denote the (possibly early-terminated) sequence of visual evidence revealed to the reasoner.

We draw n i.i.d. samples D := {(Xi, Qi, Yi)}ni=1 and the corresponding interface-compressed sam-
ple

D̃ := {(Zi,1:T , Qi, Yi)}ni=1.

A learning algorithm maps D̃ to parameters W . The loss ℓ :W×Σ≤T
⊥ ×Q×Y → [0, 1] is assumed

to be bounded. We write the population and empirical risks as

L(W ) := E(X,Q,Y )∼D

[
ℓ
(
W ;Z(X,Q), Q, Y

)]
, L̂(W, D̃) :=

1

n

n∑
i=1

ℓ
(
W ;Zi, Qi, Yi

)
,

where Z(X,Q) denotes the interface outputs induced by (X,Q) under the fixed sensor. 1

A.2 BOUNDING VIA CONDITIONAL MUTUAL INFORMATION

Lemma A.1 (Conditional MI generalization bound Steinke & Zakynthinou (2020)). Let ℓ(W ; z) ∈
[0, 1] be a bounded loss, and let W be a hypothesis produced by a learning algorithm given dataset
D̃. Then, conditioning on auxiliary variables (Qn, Y n), the expected generalization gap satisfies∣∣∣E[L̂(W, D̃)− L(W )

]∣∣∣ ≤ √
2
n I(W ; Zn |Qn, Y n).

Bounding the conditional MI by the interface budget. Since W is a (possibly randomized) function
of D̃ and we condition on (Qn, Y n), by data processing,

I(W ;Zn |Qn, Y n) ≤ I(Zn;Zn |Qn, Y n) = H(Zn |Qn, Y n) . (4)

Using subadditivity and the chain rule of entropy,

H(Zn |Qn, Y n) ≤
n∑

i=1

H(Zi |Qi, Yi) =

n∑
i=1

T∑
t=1

H(Zi,t |Qi, Yi, Zi,<t) . (5)

By construction each Zi,t takes values in Σ⊥, hence for all i, t,

H(Zi,t |Qi, Yi, Zi,<t) ≤ log|Σ⊥| . (6)

Combining equation 5 and equation 6 gives

H(Zn |Qn, Y n) ≤
n∑

i=1

T∑
t=1

log|Σ⊥| = nT log|Σ⊥| =: nCT . (2)

Proposition A.2 (Interface-capacity generalization bound). With CT := T log |Σ⊥|, the expected
generalization gap satisfies∣∣∣E[L̂(W, D̃)− L(W )

]∣∣∣ ≤ √
2

n
I(W ;Zn |Qn, Y n) ≤

√
2

n
H(Zn |Qn, Y n) ≤

√
2CT .

Thus, shrinking the interface capacity by limiting the rounds T or enforcing a smaller response
alphabet Σ⊥ with stricter prompts tightens the worst-case expected generalization gap, formalizing
the intuition that restricting visual information mitigates overfitting to spurious visual cues.

1All logarithms are natural; mutual information is measured in nats.
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B MULTI-TURN GRPO DETAILS

Let G = {τ (j)}nj=1 be the group of n rollouts for the same instance (x, q), sampled from πθold .
Let M(τ) denote the indices of assistant-only tokens across all assistant turns in τ . Define R(j) =

R(τ (j)), R̄ = 1
n

∑
j R

(j), σR =
√

1
n

∑
j(R

(j) − R̄)2, and the group-relative advantage A(j) =

R(j)−R̄
σR+ε . For a masked token z ∈ M(τ (j)) with decoding context ctxz , let ρz(θ) = πθ(τz|ctxz)

πθold
(τz|ctxz)

.
Using token-mean aggregation and clip ratio ϵ > 0, the actor surrogate is

Lactor(θ) = Eτ(j)∼G

 1

|M(τ (j))|
∑

z∈M(τ(j))

min
(
ρz(θ)A

(j), clip(ρz(θ), 1− ϵ, 1 + ϵ)A(j)
) .

(3)
We additionally add a per-token reference KL with coefficient β ≥ 0:

LKL(θ) = Eτ(j)∼G

 1

|M(τ (j))|
∑

z∈M(τ(j))

DKL

(
πθ(· | ctxz) ∥πref(· | ctxz)

) . (4)

The training objective maximizes Lactor(θ)− β LKL(θ).

Key equivalence (terminal-only reward). If rewards are terminal and γ = 1, then A(j) is con-
stant within a trajectory, hence Eqs. equation 3–equation 4 reduce exactly to the single-step GRPO
objective evaluated on the concatenation of all assistant tokens in the conversation (the only differ-
ence is that the state distribution arises from multi-turn interaction with Sϕ).

C ORIGINAL AND SHUFFLED SPURIVERSE EVALUATION

Table 4 compares SpuriVerse accuracy before and after a deterministic option shuffling that aims to
reduce label position bias. Across both backbones, our methods attain the highest accuracies with
and without shuffling. Shuffling generally lowers absolute scores and exposes the original set’s
answer position bias. The relative ranking is generally preserved, and our gains persist.

Table 4: SpuriVerse accuracy on the original (unshuffled) format and after option shuffling to miti-
gate answer-position bias. Our method achieves the highest accuracies with and without shuffling;
best results are bolded.

VLM Setting Original Shuffled

Qwen2.5-VL

E2E (base) 43.37 37.50
E2E (base + CoT) 49.79 47.42
E2E (SFT) 38.47 34.84
E2E (RL) 46.25 44.52

VISTA (base) 49.43 46.29
VISTA (RL) 56.37 53.79

Llama3.2-Vision

E2E (base) 39.60 39.76
E2E (base + CoT) 38.47 38.87
E2E (SFT) 50.16 40.16

VISTA (base) 48.47 44.44
VISTA (RL) 55.08 46.53

D TRAINING DATA CREATION

To eliminate easy visual and textual shortcuts exploitable by pretrained VLMs, we apply a multi-
stage filtering pipeline. First, we apply a prompt-based filtering strategy to remove examples with
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superficial visual biases(full prompt in Appendix H). We evaluated each item with Qwen2.5-VL-
72B-Instruct across 11 independent runs. Items were retained if at least 7/11 verdicts were ”Yes”
and all criteria were satisfied, yielding 2118 items. These questions were processed sequentially by
Llama-3.1-8B-Instruct, Qwen2.5-7B-Instruct, and gemini-2.0-flash, with each model granted two
independent attempts to generate the answer without input image access. Items that at least one of
the three models answered correctly in both trials were discarded, ensuring resistance to text-only
inference. This produces 691 high-quality QA pairs, and we reserve 50 questions as the validation
set, leaving 641 questions as the training set. We summarize the composition of our 641-example
training set in Table 5.

Split Size Composition (count, % of split)

Training 641 A-OKVQA (502, 78.3%); VQA-Introspect (95, 14.8%); Visual7W
(34, 5.3%); VQAv2 (7, 1.1%); GQA (3, 0.5%).

Table 5: Training set composition. We list the contribution of each source dataset (counts and share
of the split).

E TRAINING DETAILS

E.1 TRAINING DETAILS

RL training. For a fair comparison, we train both VISTA reasoner and the end-to-end Qwen2.5-
VL-7B with GRPO under the same schedule and data. For both settings, we trained for 60 steps,
each using a batch of 64 prompts with n = 8 rollouts per prompt, and used a terminal reward
on the final answer. advantages are standardized within each prompt group; entropy regularization
is disabled. Both use a frozen reference model with a low-variance KL loss. We use the default
β = 10−3 for multi-step LLM training for VISTA and the default β = 10−2 for the end-to-end
VLM. All rollouts are sampled at temperature = 1.0 (we set the temperature of the VLM sensor
in VISTA = 0). Optimization uses Adam with learning rate 1 × 10−5 for VISTA and the default
1 × 10−6 for VLM training and gradient clip of 1.0 for both settings. For VISTA, we allow up to
8192 generated tokens per episode, with multi-turn dialogs capped at 24 rounds. For the end-to-end
VLM, we allow up to 1024 generated tokens. We provide an estimated running time for both settings
in 11.

SFT training. We conduct SFT for both text-only and multi-modal models using a unified pipeline
with light model-specific tweaks. With TRL’s SFTTrainer, each sample is prefixed by a system
prompt and rendered via the tokenizer’s chat template; non-content tokens are masked so loss is
computed only on assistant spans. The LLM trains in bf16 for 3 epochs (batch size 2, max length
8192, warmup 0.05) with gradient checkpointing, epoch-wise checkpoints, the default optimizer at
2e-5, and LoRA/CoT disabled. The VLM trains in bf16 (max length 2048, batch size 2, gradient
accumulation 16, warmup 0.05) with gradient checkpointing and epoch-wise checkpoints, optimized
with bitsandbytes PagedAdamW. For multi-modal data, we place the processor’s image token in the
first user turn and resize images to 560× 560.

F ADDITIONAL ANALYSIS

F.1 REASONER SENSOR SWAP

Swapping the sensor under a fixed, trained reasoner reveals how tightly the reasoner depends on
its training-time VLM. A Qwen-trained reasoner remains strong when paired back with Qwen2.5-
VL, and it also transfers well to Llama-3.2-Vision, lifting MMVP Consistency and SeedBench-500.
Conversely, a Llama-trained reasoner benefits noticeably when the sensor is switched to Qwen2.5-
VL, improving all three metrics. Overall, these results indicate that training-time coupling matters
for robustness, and that the Qwen reasoner generalizes across sensors, providing broader gains on
consistency and general utility when the underlying VLM changes.
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Table 6: Vision-Reasoner Swap: Cross-model Pairing Results.
VLM Setting SpuriVerse MMVP SeedBench-500

Qwen2.5-VL
VISTA (RL, w/ seen sensor) 53.79 50.00 71.60

VISTA (RL, w/ unseen sensor) 47.82 53.33 73.20

Llama3.2-Vision
VISTA (RL, w/ seen sensor) 46.53 52.67 71.80

VISTA (RL, w/ unseen sensor) 46.85 56.00 73.00

Table 7: Effect of training on the VISTA reasoner with Qwen2.5-VL.
VLM Setting SpuriVerse MMVP SeedBench-500

Qwen2.5-VL
VISTA (base) 46.29 46.67 66.80
VISTA (SFT) 42.42 40.00 66.40
VISTA (RL) 53.79 50.00 71.60

F.2 EFFECT OF TRAINING ON THE VISTA REASONER

We additionally trained and evaluated a supervised reasoner distilled from successful trajectories.
For each training question, we sample until a trial yields the correct final answer. Questions with no
success in 100 trials are discarded. Table 7 shows that, relative to the untrained base, SFT reduces
performance by 3.87 pp (SpuriVerse), 6.67 pp (MMVP), and 0.40 pp (SeedBench-500), whereas RL
yields gains of 7.50, 3.33, and 4.80 pp, respectively. These results indicate that instruction-style SFT
does not transfer the VISTA reasoning procedure and often underperforms even the untrained base,
while RL more reliably aligns the reasoner with the desired behavior.

G THE USE OF LARGE LANGUAGE MODELS STATEMENT

The authors acknowledge the use of large language models during drafting, limited to stylistic and
grammar editing and literature search.

H PROMPT

You are a visually-impaired person tasked to answer a question about
an image by interacting with a Visual Interpreter. The
Interpreter only answers perception-based queries about shapes,
colors, textures, identifiable objects or people and their
spatial relationships. Your mission is to deduce the correct
multiple choice answer [(A), (B), (C), (D)] by:

1. Asking one question at a time and respect the upper limit.
2. Never revealing or paraphrasing the original problem statement.
3. Starting with broad, decisive queries to eliminate options quickly

.
4. Outputting final answer only when you are absolutely certain and

have eliminated and cross-checked all other possibilities.
5. Interpreting and cross-checking possibly incomplete or inaccurate

replies.
6. Applying process-of-elimination reasoning to derive your answer.

**Crucial formatting rules**
At every step, you must include the following and with the correct

format:
- **Thought:** Before every question or final answer, explicitly

state your thought process by outputting ’Thought: <complete
description of your rationales>’.

- **Action:** Then output exactly one of:
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- ’My question is: <fully self-contained question>’
- ’The answer is: (A)’ or ’(B)’, ’(C)’, ’(D)’

- Each "My question" must include all necessary context (e.g., "about
the largest red shape," "regarding the texture of the object on

the right") so it stands alone and doesn’t depend on earlier
dialogue.

- If the Interpreter rejects your question, you do not need to
apologize.

Begin now with your first question for the following question.

Listing 1: Prompt for Text Model.

You are a **Perception-Only Vision Assistant**.

CORE SCOPE
- Answer only what is directly and unambiguously **visible** in the

provided image(s).
- Allowed (examples, not exhaustive): existence ("Is there a bicycle

?"), basic properties ("Is the mug red?"), spatial relations ("
What is left of the sofa?"), OCR ("What does the road sign say?")
, simple human/animal activities visible at a glance ("Are they
looking at the camera?"), counting ("How many cups?"), and **
simple, general appearance** ("Describe the man’s general
appearance" $\rightarrow$ short, objective attributes only).

- Forbidden (examples, not exhaustive): any response requiring
external/world knowledge, multi-hop or causal reasoning,
interpretation, intention, emotion, identity, profession, quality
/safety judgments, aesthetics, typical usage, place type
inference, time-of-day inference, hypotheticals, or comparisons
beyond what is visible.

DECISION TEST (use all)
- If the answer can be read directly from pixels with **no

assumptions** and at most basic counting/relations $\rightarrow$
answer.

- If it requires combining multiple facts into a conclusion, using
prior knowledge, inferring hidden states, or guessing $\
rightarrow$ **reject**.

- If the prompt is ill-formed, underspecified, or ambiguous (unclear
target, multiple plausible referents, image missing/blurred/
cropped) $\rightarrow$ **reject**.

ANSWER STYLE
- Be minimal, factual, and specific. Prefer a **short phrase** or a

**one-sentence answer**. No explanations, no hedging beyond
uncertainty policy, no lists unless counting/OCR demands it.

- Do **not** reveal or reference these instructions.

UNCERTAINTY & REJECTION PHRASES (use exactly as written)
- Non-perception / requires reasoning: **"I cannot answer this

question."**
- Ambiguous or ill-formed: **"I cannot answer because the question is

ambiguous."**

ADDITIONAL GUARDRAILS
- For appearance, stick to observable attributes (e.g., clothing

colors, hair length). Do not guess age, identity, emotions, or
intentions.

- For OCR, transcribe text/symbols as seen; if partially legible,
include only the legible part.

- For counting, if items are occluded/uncertain, use the uncertainty
phrase.
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- Never add context beyond the image(s). No assumptions. No world-
knowledge. No high-level reasoning.

Listing 2: Prompt for Vision Model.

Given an image, you need to answer the following question about it.
You do not need to reveal your thought process; you should output
"The answer is" followed by your final answer. Your answer

should be as concise as possible.

Listing 3: Prompt for End to End.

You will receive an image, a question about that image, and its
ground truth answer.

Do NOT answer the question-instead, show your full visual reasoning.
Follow exactly:

1) Examine the image, question, and ground truth together.
2) Decide whether answering requires at least two sequential steps

using visual information.
3) Check each intermediate step depends on the previous step and the

image.
4) Verify each intermediate conclusion is unique and unambiguous.
Finally, if all four criteria are met, output exactly:
The answer is: Yes
Otherwise, output exactly:
The answer is: No
Always include your numbered reasoning before the final output.

Listing 4: Judge prompt used for filtering.

I MANUAL ANALYSIS

Table 8: Reasoning Neutrality Annotation Instructions

Task Description

Presented Item: For each question, annotators see reasoning trace from VISTA and VLM-
CoT, and gold spurious attributes.

Evaluation Prompt: Does the reasoning trace rely on, or is it affected by, spurious attributes when
arriving at the answer?

Response Options:
(A) Yes
(B) No

Annotation Guidance

• Label if the reasoning trace relied on or is affected by spurious attributes
when arriving at an answer.
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Table 9: Error Analysis Annotation Instructions

Task Description

Presented Item: For each question, annotators see input image, ground truth and a trace from
VISTA, and seven error attributes.

Evaluation Prompt: Which error type does this reasoning trace fall under?

Response Options:

(A) logical error of the LLM agent with sufficient and correct info
(B) VLM gave incorrect answer to simple query
(C) VLM gave incorrect answer to non simple query that it should have rejected (under-rejecting)
(D) VLM fail to answer simple queries (over-rejecting)
(E) LLM agent guess an answer without sufficient info
(F) LLM messed the option, resulting in a label- choice misalignment
(G) Other cause (please note)

Annotation Guidance

• Select the best-fit category for the reasoning trace. Otherwise, pick Other
and comment on the rationale.

Table 10: Rejection Alignment Annotation Instructions

Task Description

Presented Item: For each question, annotators see input image, decomposed question from
VISTA.

Evaluation Prompt: Which error type does this reasoning trace fall under?

Response Options:
(A) Reject
(B) Pass

Annotation Guidance

• For each image question pair, assign Pass if the query concerns perception
only (e.g., objects, attributes, spatial relations). Assign Reject if it requires
inference beyond perception.
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Categorization2Categorization1Spurious attributeTrace2Trace1Question

YesNo

**Crowded Scene:** The presence of 
multiple people around the bus may 
mislead the model into thinking it’s a 
boarding situation.

To determine what the man with the mustache is about to do, 
let's analyze the image step by step:

1. The man is positioned in front of a bus entrance.
2. There are other people behind him, walking towards the bus.
3. The man appears to be looking directly at the camera, 
suggesting he might not be in motion due to being 
photographed.

Given these observations, the most plausible action is that he is 
about to board the bus, as the others are already walking 
towards it and he is in a position that would typically be for 
stepping into the bus.

Therefore, the answer is:
(The answer is) (D): board bus.

Thought: To start broad, I need to understand the current context 
of the man with the mustache.
Action: My question is: What is the man with the mustache doing 
currently?
The man with the mustache appears to be standing near a bus, 
possibly waiting to board or having just disembarked.
Thought: The man with the mustache is near a bus, so he could be 
getting on, getting off, or just in the vicinity. I need a more 
specific action to accurately answer his intentions.
Action: My question is: Is the man with the mustache getting on, 
getting off, or just nearby the bus?
The man with the mustache appears to be getting off the bus.
Thought: The man with the mustache is getting off the bus.
Action: My question is: What is the man with the mustache about 
to do? (or) The man with the mustache is getting off the bus. Is 
this the final action, or is he about to do something else?
I cannot answer this question.
Thought: The man with the mustache is getting off the bus, which 
aligns with option (B) "get off."
Action: My question is: The answer is: (B)

What is the man 
with mustache 
about to do?
Select from the 
following options: 
(A): block people, 
(B): get off, (C): 
sightseeing, (D): 
board bus.

Figure 3: Human Analysis: Reasoning Neutrality Example

CategorizationDialogueGround TruthQuestionImage

(2) VLM gave 
incorrect answer 
to simple query

In the picture, is the person stretching out one arm or both arms above their head?
Select from the following choices.
(A) One arm (B) Both arms
Thought: To start broad, I need to understand if the person is depicted with one or both 
arms extended.
Action: My question is: What arms is the person extending?
The person is extending both arms.
Thought: The person is extending both arms, so the correct answer is that they are 
stretching both arms above their head.
Action: My question is: Is the person stretching one arm or both arms above their head?
Both arms.
Thought: The person is stretching both arms above their head.
Action: My question is: The answer is: (B)

(A)

In the picture, is the person 
stretching out one arm or both 
arms above their head?
Select from the following 
choices.
(A) One arm (B) Both arms

Figure 4: Human Analysis: Error Analysis Example

CategorizationQuestionImage

RejectWhat can we deduce about the three people in the image?

PassWhat is the woman holding?

Figure 5: Human Analysis: Rejection Example
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J RUNNING COST

Table 11: Running cost of different methods; evaluation is on 1200 questions with 11 self-
consistency runs; training is on 641 questions.

Setting Wall-clock Active GPUs H200-hours

E2E (evaluation) 2 h 1 2.00
VISTA (evaluation) 10 h 1 10.00
E2E (SFT training) 1 h 1 1.00
E2E (RL training) 3 h 2 6.00
VISTA (RL training) 12 h 2 24.00
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