

000 UNBIASED VISUAL REASONING WITH CONTROLLED 001 VISUAL INPUTS 002

003 **Anonymous authors**

004 Paper under double-blind review

005 ABSTRACT

006 End-to-end Vision-language models (VLMs) often rely on spurious visual cues,
007 conflating perception with decision-making. We introduce VISTA (Visual Infor-
008 mation Separation for Text-based Analysis), which enforces an explicit informa-
009 tion bottleneck between a text-only reasoner and a stateless VLM sensor. The
010 LLM reasoner decomposes each question and iteratively queries a VLM for vi-
011 sual facts; the VLM is instructed to reject queries that require high-level infer-
012 ence, creating an explicit information bottleneck. Trained on only 641 questions,
013 VISTA yields large robustness gains on SpuriVerse across two vision backbones
014 (+16.29% with Qwen-2.5-VL-7B and +6.77% with Llama-3.2-Vision-11B), while
015 direct SFT or RL on the VLM fails to remedy spuriousity and can even exacerbate
016 it. Despite never exposing the reasoner to raw pixels, VISTA slightly improves or
017 remains on par with VLMs on everyday-scene benchmarks, including MMVP and
018 SeedBench. Our learned reasoners transfer across sensors, indicating algorithmic
019 rather than model-specific generalization. Together, VISTA enables spurious-
020 resistant VQA by upgrading the brain, not the eyes.

021 1 INTRODUCTION

022 Recent advances in vision–language models (VLMs) have propelled multimodal understanding and
023 visual question answering (VQA) to new heights. However, beneath these impressive benchmarks
024 lies a persistent concern: many systems appear to succeed not by genuine visual reasoning, but
025 by exploiting shortcuts that correlate spuriously with the correct answer, including contextual cues,
026 visual predominance, or commonly co-occurring objects (Yang et al., 2025; Kervadec et al., 2021;
027 Dancette et al., 2021; Si et al., 2022; Agrawal et al., 2018; Wang et al., 2024a;b; Ye et al., 2024).
028 An example is illustrated in Figure 1: when asked “are the men assembling parts of a building?”,
029 the end-to-end Qwen2.5-VL-7B model answers “yes” based on the presence of scaffolding and
030 stereotypical attire, while failing to verify whether any assembly action is actually taking place.

031 Critically, this conflation of perception and reasoning is problematic not only at inference but also
032 during training. When a model is trained end-to-end from answers, it is difficult to provide learning
033 signals that distinguish relevant causal evidence from correlated but irrelevant cues. As a result, end-
034 to-end training on VLMs can reward the use of shortcuts and entangle visual features with high-level
035 decision-making, producing brittle behaviors under distribution shift or adversarial perturbations.

036 To address these limitations, we introduce VISTA (Visual-Information Separation for Text-based
037 Analysis), a new meta-architecture and learning paradigm that enforces an information bottleneck
038 between perception and reasoning modules. Our key intuition is simple: by restricting the reasoning
039 module to obtain visual information only through a low-bandwidth, objective query interface, we
040 reduce the opportunity to exploit spurious correlations, force the reasoner to rely on logical deduc-
041 tion as well as targeted evidence gathering, and create a clearer credit assignment during training. In
042 VISTA, raw visual inputs are handled by a frozen VLM that answers simple and objective queries,
043 while rejecting complex or vague requests. All decision-making occurs in an LLM reasoner that
044 plans queries, integrates visual evidence, and explains its conclusions step-by-step.

045 As illustrated in Figure 1, VISTA operates as an iterative dialogue between an LLM reasoner and
046 a VLM sensor constrained to answer simple, objective queries. Given a question, the reasoner
047 conducts step-wise, verbalized planning and issues targeted visual checks; the sensor either rejects or
048 returns short factual responses. In the earlier example, our reasoner remains unaffected by spurious

Figure 1: Comparison between an end-to-end VLM and VISTA on a SpuriVerse example (actual model outputs). Spurious attributes are highlighted in red. **Bottom:** The end-to-end Qwen2.5-VL model predicts **Yes** by exploiting spurious attributes (e.g., scaffolding and stereotypical attire) that are irrelevant to the question, resulting in an error. **Top:** VISTA decouples perception from reasoning via an information bottleneck and follows a neutral, iterative decision process: the LLM reasoner emits CoT rationales before each action, issues targeted simple visual queries as actions, and terminates the interaction once a conclusion is reached. By explicitly checking the men’s actions and interactions, the reasoner remains invariant to the spurious cues and correctly predicts **No**.

attributes and explicitly verifies the men’s actions by checking whether they are interacting with any tools or objects indicative of assembly. By pursuing a neutral, evidence-seeking reasoning path, VISTA correctly concludes that the men are standing and overseeing rather than assembling.

We summarize our contributions as follows:

- We propose VISTA, a framework and corresponding learning paradigm that formalizes VQA as an iterative decision-making process under an information bottleneck that separates perception from reasoning.
- We demonstrate that, with the same data and training steps, VISTA encourages neutral, evidence-seeking reasoning across two vision backbones, whereas end-to-end training (SFT and RL) on VLMs reinforces visual shortcuts and reduces robustness.
- VISTA attains substantial robustness gains on Spuriverse while remaining on par with end-to-end systems on everyday-scene benchmarks (MMVP, SeedBench)

2 RELATED WORK

Modular VQA Systems. Early modular VQA systems explicitly decompose problems into perception and reasoning components. Neural Module Networks dynamically compose modular networks depending on the question structure (Andreas et al., 2016). Neural-Symbolic VQA parses questions into executable programs against structured scene graphs (Yi et al., 2018). These methods separate recognition from symbolic reasoning but often rely on strong supervision or curated representations. Later ViperGPT and VisProg show that LLMs, with strong built-in code generation capabilities, can compose visual operators as programs, offering strong interpretability and compositional generalization (Surís et al., 2023; Gupta & Kembhavi, 2023). Compared with these programmatic modular systems, our formulation uses language as the interface to perception, avoiding coverage gaps and engineering constraints imposed by APIs or program libraries. In addition, our reasoning proceeds iteratively, which supports complex reasoning and produces auditable traces. Crucially, we impose an information bottleneck to mitigate visual biases, which underpins our motivation to encourage neutral visual reasoning. To address limitations from domain-specific decomposition and premature

108 conclusions without sufficient visual information in multi-step VQA, IdealGPT decomposes ques-
 109 tions into sub-questions and delegates answering to a VLM (You et al., 2023). Our formulation
 110 shares the same high-level recipe, including LLM-based decomposition and iterative reasoning, but
 111 differs in fundamental ways: (1) we enforce a perception-only interface that explicitly targets vi-
 112 sual bias mitigation; (2) we study a training paradigm and compare directly with end-to-end VLM
 113 training, whereas IdealGPT is evaluated zero-shot with a closed LLM; (3) our method trains a single
 114 LLM to decompose, reason, and decide the final answer, whereas IdealGPT assumes separate strong
 115 models (ChatGPT) for questioning and reasoning.

116 **Robustness, Shortcut Learning, and Evaluation Benchmarks.** VQA robustness work shows that
 117 models often exploit shortcuts rather than genuine reasoning. VQA-CP introduces changing-prior
 118 splits to break question-type priors and reveals large drops for models under shifted priors (Agrawal
 119 et al., 2018). Beyond question-only biases, VQA-CE mines multimodal shortcut rules and demon-
 120 strates that many debiasing methods remain ineffective when the shortcuts are cross-modal (Dancette
 121 et al., 2021). GQA-OOD reorganizes the GQA dataset and finds that strong VQA models still fail on
 122 infrequent or shifted compositions (Kervadec et al., 2021). More recently, MM-SpuBench probes
 123 spurious biases by asking models to pick the diagnostic feature for object identity (Ye et al., 2024).
 124 Since our claims center on QA accuracy under controlled spurious shifts and reasoning, we consider
 125 datasets aligned with those goals. SpuriVerse curates real-world VLM failures attributed to spuri-
 126 ous cues and validates them with synthetic counterfactuals (Yang et al., 2025). In parallel, MMVP
 127 targets basic visual-pattern failures and SEED-Bench provides broad, human-annotated multiple-
 128 choice evaluations and enables standardized comparison across models (Tong et al., 2024; Li et al.,
 129 2023; 2024). Our approach is complementary to dataset-level and loss-level debiasing: instead of
 130 reweighting data or adding regularizers, we enforce an architectural bottleneck that promotes neutral
 131 visual reasoning while remaining compatible with everyday suites and spurious-stress evaluations.

132 **Active Reasoning and Reinforcement Learning.** Active information-seeking has been studied in
 133 multi-hop QA and fact verification (Yang et al., 2018; Thorne et al., 2018) as well as in interactive
 134 environments (Shridhar et al., 2020; Yao et al., 2022; Zhou et al., 2023). LLM agents often alter-
 135 nate between planning, tool use, and verification, sometimes under explicit budgets. Foundational
 136 systems interleave reasoning with actions (Yao et al., 2023), browse and cite sources with human
 137 feedback (Nakano et al., 2021), and improve over trials via self-reflection (Shinn et al., 2023). Our
 138 setting shares the multi-turn nature but differs in objective: rather than maximizing task success by
 139 any means, we explicitly constrain how information can be acquired to prevent shortcut learning.

140 On learning signals, RL has been effective for aligning multi-turn behaviors and tool use. Popular
 141 training paradigms include PPO-based RLHF with KL control for long-horizon tool use and dialogue
 142 (Nakano et al., 2021; Ouyang et al., 2022), AI-feedback variants that reduce human labeling (Bai
 143 et al., 2022; Lee et al., 2023), and offline preference optimization (Rafailov et al., 2023). Recent
 144 group-based objectives (GRPO) stabilize reasoning-centric training by scoring multiple completions
 145 per prompt and using relative advantages (Shao et al., 2024). Our setting is algorithm-agnostic, and
 146 we adopt GRPO for its practicality and strong uptake in reasoning-focused LLMs.

147 3 METHOD

149 3.1 OVERVIEW

151 We decompose a VQA system into a text-only **reasoner** π_θ , and a frozen VLM **sensor** S_ϕ that
 152 answers perception-only questions. Given the textual input question q , the reasoner iteratively inter-
 153 acts with the sensor by issuing free-form natural-language queries; the sensor sees the input image
 154 x , and either returns a short answer or rejects the query when it requires high-level inference. The
 155 interaction loop terminates when the reasoner concludes with an answer or the maximum number of
 156 steps is reached.

157 Formally, at step t , the reasoner observes the conversation history

$$158 \quad 159 \quad h_t = (q, (s_1, y_1), \dots, (s_{t-1}, y_{t-1})),$$

160 where s_i and y_i are the output strings of π_θ and S_ϕ at step i . Each s_t contains two parts:

161

- Chain-of-thought c_t : text used by the reasoner to think before outputting an action

162

Algorithm 1 VISTA reasoning loop

163

```

Require: image  $x$ , question  $q$ , reasoner  $\pi_\theta$ , sensor  $S_\phi$ , step budget  $T_{\max}$ 
1:  $h \leftarrow [q]$  ▷ Reasoner history of pairs  $(s_i, y_i)$ 
2: for  $t = 1$  to  $T_{\max}$  do
3:    $s_t \sim \pi_\theta(\cdot \mid h)$  ▷ Reasoner raw text at step  $t$ 
4:   parse  $s_t \rightarrow (c_t, u_t)$ 
5:   if  $u_t = \text{ANSWER}(a_t)$  then
6:     return  $a_t$  ▷ Terminate upon answer
7:   else if  $u_t = \text{QUERY}(q_t)$  then
8:      $y_t \leftarrow S_\phi(x, q_t)$  ▷ Sensor sees only  $(x, q_t)$ ; no  $q$ , options, or history
9:      $h \leftarrow h \parallel (s_t, y_t)$  ▷ Append  $(s_t, y_t)$  to history
10:  end if
11: end for
12: return  $s_t$ 

```

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

Figure 2: **Accepted vs. rejected queries.** The top row shows rejected cases, and the bottom row shows accepted cases. The vision-only *sensor* answers perception questions in six categories and may emit one brief *OVERVIEW* when the text is under-specified; all requests requiring high-level inference are **REJECTED**. Top Row is rejected, below row is accepted

191

192

193

194

195

196

197

- Action u_t : a structured directive extracted with a deterministic rule-based parser

198

The reasoner implicitly learns to decide *what to ask* and *when to stop*. The action space is

199

200

$$u_t \in \mathcal{U} = \{\text{QUERY}(q_t), \text{ANSWER}(a_t)\},$$

201

202

where q_t is a query string and a_t is a final answer string. The loop terminates if a final answer is extracted; otherwise, the sensor receives q_t and returns

203

204

$$y_t = S_\phi(x, q_t).$$

205

206

207

208

Crucially, the stateless sensor S_ϕ never receives the history or the reasoning traces; it only sees the contextless query q_t and image x . Thus, all task-level decision-making must arise from π_θ . The working pipeline of VISTA is illustrated in Algorithm 1.

209

210

3.2 PERCEPTION-ONLY QUERIES AND REJECTION POLICY

211

212

213

214

215

We decompose the system into a text-only *reasoner* π_θ and a vision-only *sensor* S_ϕ . Following the taxonomy of perception question of Selvaraju et al. (2020), the sensor answers free-form *perception* queries limited to: *Existence* (“Is there a bicycle?”), *Basic Properties* (“Is the mug red?”), *Spatial Relations* (“What is left of the sofa?”), *Simple Activities* (“Are they looking at the camera?”), *Text/Symbol Recognition* (“What does the road sign say?”), and *Counting* (“How many cups are on the table?”).

216 **Objective overview (optional).** When a question lacks sufficient textual context, the sensor may
 217 provide a brief, objective *overview* of the scene (one short sentence; perception-only). The overview
 218 supplies minimal global context (scene type, dominant objects with coarse counts, coarse layout,
 219 basic global attributes) to reduce referential uncertainty and establish a stable spatial frame before
 220 targeted follow-ups. It explicitly excludes intentions, causes, roles, emotions, events beyond static
 221 poses, and any world knowledge.

222 **Rejection policy and enforcement.** Any request that requires high-level inference or remains
 223 ambiguous beyond what an objective overview can resolve needs to be rejected by outputting a
 224 fixed template “I cannot answer this question.” Concretely, we reject queries involving multi-hop or
 225 causal reasoning, reliance on external knowledge, subjective interpretation beyond what is directly
 226 observable, or prompts that should be decomposed into simpler perception primitives. We *enforce*
 227 this behavior with an explicit accept/reject instruction prompt and response format. Examples of
 228 accepted/rejected queries are shown in Fig. 2, and the full prompt is provided in Appx. H. Human
 229 analysis (Section 7.3) of 100 randomly sampled cases shows 86% agreement with human pass/reject
 230 labels, evidencing an effective rejection policy.

232 3.3 REINFORCEMENT LEARNING REASONER

233 Our learning strategy formulates VQA solving as a sequential decision-making process and provides
 234 the reasoner with an explorable environment with clear reward signals, making RL training a well-
 235 suited choice. We optimize π_θ using Group Relative Policy Optimization (GRPO) (Shao et al.,
 236 2024). Each episode τ yields a terminal reward based on final answer correctness:

$$237 R(\tau) = \mathbb{1}[a_T = a^*]. \quad (1)$$

238 Training differs from single-step GRPO only in the sampling of rollouts and the assignment of
 239 loss masks. We apply the GRPO update to the union of *assistant-only* tokens across all assistant
 240 turns. With terminal-only reward and unit discount, the group-relative advantage is constant within
 241 a trajectory, so the update is effectively the single-step GRPO objective applied to a longer, state-
 242 dependent sequence (details in App. B).

245 4 THEORETICAL ANALYSIS

246 Intuitively, overfitting thrives when the learner can absorb rich, high-variance signals and latch onto
 247 spurious correlations that happen to predict labels in the training set. By constraining the visual
 248 bandwidth, we shrink the hypothesis space the reasoner can realize: high-level, shortcut features
 249 cannot pass through the interface, forcing predictions to rest on a small set of stable, perception-
 250 level facts. In this section, we formalize this intuition by relating generalization to the information
 251 that can flow through the sensor–reasoner interface.

252 **Setup.** Let $(X, Q, Y) \sim D$ denote image, question, label. A reasoner interacts with a sensor for at
 253 most T steps. At step t , the reasoner emits a free-form text query a_t ; the sensor enforces a rejection
 254 rule $R_t = g(a_t) \in \{0, 1\}$: if $R_t = 0$, it turns a rejection template \perp ; otherwise it returns a short per-
 255 ception answer from a finite alphabet $O_t \in \Sigma$. Let $Z_{1:T} = (Z_1, \dots, Z_T)$, $Z_t \in \Sigma_\perp := \Sigma \cup \{\perp\}$ be
 256 the visual evidence. We train parameters W from the compressed dataset $\tilde{D} = \{(Z_{1:T}, Q_i, Y_i)\}_{i=1}^n$.
 257 We assume the learning loss $\ell(W; Z, Q, Y) \in [0, 1]$ is bounded. The true loss and empirical loss are
 258 defined as $L(W) = \mathbb{E}\ell(W; Z, Q, Y)$ and $\hat{L}(W, \tilde{D}) = \frac{1}{n} \sum_{i=1}^n \ell(W; Z_i, Q_i, Y_i)$.

259 **Theorem** (Informal, generalization under an information bottleneck).

$$260 |\mathbb{E}[\hat{L}(W, \tilde{D}) - L(W)]| \leq \sqrt{2C_T},$$

261 where C_T is the per-example bit budget

$$262 C_T := T \log |\Sigma_\perp|$$

263 **Implications and Limitations.** The expected generalization gap depends only on the interface
 264 budget C_T and is independent of the size of the training data, where a smaller C_T means less
 265 overfitting. While the bound captures average generalization, it does not alone guarantee worst-case
 266 adversarial robustness nor account for distribution shift without extra assumptions. The complete
 267 proof is included in Appendix A.

270

5 EXPERIMENT SETUP

271

5.1 DATASETS AND PREPROCESSING

272 We evaluate on three benchmarks with no overlap with questions in the training set: SpuriVerse
 273 (Yang et al., 2025), MMVP (Tong et al., 2024), and SeedBench (Li et al., 2023). SpuriVerse consists
 274 of 1200 questions explicitly constructed around real-world spurious correlations, making it well-
 275 suited for testing reasoning robustness under adversarial conditions. MMVP stresses perceptual
 276 limitations by constructing CLIP-blind image pairs and associated questions that expose visual-
 277 grounding failures. SeedBench is for everyday, non-adversarial performance, due to its scale, we
 278 randomly sample 500 single-image questions to keep the compute and time tractable. Because in
 279 SpuriVerse more than 60% of gold answers appear in option B, we mitigate answer-position bias
 280 by shuffling the multiple-choice options. Shuffling is applied once as a deterministic pre-processing
 281 step, and the exact same shuffled inputs are used across all evaluation settings. We report both the
 282 original and shuffled results in Appendix C and observe that our method consistently outperforms
 283 all baselines and yields significant improvements. We present the shuffled results in the main text,
 284 as they remove label-position bias while preserving the overall trend.

285

5.2 VISTA AND BASELINE SETTINGS

286 **VISTA.** For all experiments, we use Qwen2.5-7B as the LLM reasoner. We train and instantiate our
 287 method with two frozen VLM sensors: Qwen2.5-VL-7B and Llama3.2-11B. For each sensor, we
 288 evaluate three settings: (i) VISTA (base): with an untrained reasoner (reference model) interacting
 289 with the sensor; and (ii) VISTA (RL): with trained reasoner using GRPO.

290 **Baselines.** We compare against end-to-end VLMs using the same two backbones in the following
 291 settings: (i) E2E (base): the untrained VLM directly answers the question; (ii) E2E (base + CoT): the
 292 untrained VLM outputs chain-of-thoughts before answers; (iii) E2E (SFT): supervised fine-tuning
 293 to directly answer; and (iv) E2E (RL): we additionally evaluate a GRPO-trained Qwen2.5-VL-7B
 294 on the same training data and for the same number of steps as VISTA (RL). These baselines isolate
 295 where gains come from our framework design and training signals.

296

5.3 EVALUATION PROTOCOLS

297 We report accuracy on SpuriVerse, MMVP, and SeedBench-500. For a fair comparison, we stan-
 298 dardize sampling and decoding across methods: both VISTA and end-to-end VLMs use 11-sample
 299 self-consistency at temperature 1.0 for the *predictive component* (the LLM reasoner in VISTA and
 300 the VLM itself in end-to-end baselines), and the majority-voted answers are evaluated. For VISTA,
 301 the reasoner–sensor interaction is capped at $T_{\max} = 24$ and the LLM reasoner is sampled at tem-
 302 perature 1.0, while the VLM sensor’s temperature is set to 0 during both training and evaluation.
 303 Because end-to-end VLMs may emit unparsable multiple-choice strings, we canonicalize raw out-
 304 puts to the option set with a lightweight Qwen-2.5-7B post-processor prior to evaluation.

305

5.4 TRAINING SETUP

306 We construct the training set by sampling questions from five sources: VQAv2 (Goyal et al., 2017),
 307 Visual7W (Zhu et al., 2016), GQA (Ainslie et al., 2023), A-OKVQA (Schwenk et al., 2022), and
 308 VQA-Introspect (Selvaraju et al., 2020). We then apply a multi-stage filtering pipeline that (1)
 309 retains questions likely to elicit multi-step reasoning and (2) removes examples solvable via easy
 310 visual or textual shortcuts. This yields a training split of 641 questions (A-OKVQA: 502, VQA-
 311 Introspect: 95, Visual7W: 34, VQAv2: 7, GQA: 3). Details of the filtering process and the resulting
 312 composition are summarized in Appendix D. We provide details of RL and SFT training in the
 313 Appendix E.

314

6 MAIN RESULTS

315 We present our main results in Table 1. We report accuracy on SpuriVerse, MMVP and SeedBench-
 316 500. For each vision backbone, we show the Δ relative to its corresponding E2E (base); positive

324
325
326 Table 1: Main results on SpuriVerse, MMVP and SeedBench-500.
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

VLM	Setting	SpuriVerse	Δ	MMVP	Δ	SeedBench-500	Δ
Qwen2.5-VL	E2E (base)	37.50		51.33		71.20	
	E2E (base + CoT)	47.42	+9.92	52.67	+1.34	73.20	+2.00
	E2E (SFT)	34.84	-2.66	50.67	-0.66	72.40	+1.20
	E2E (RL)	44.52	+7.02	53.33	+2.00	73.00	+1.80
	VISTA (base)	46.29	+8.79	46.67	-4.66	66.80	-4.40
	VISTA (RL)	53.79	+16.29	50.00	-1.33	71.60	+0.40
Llama3.2-Vision	E2E (base)	39.76		45.33		72.20	
	E2E (base + CoT)	38.87	-0.89	48.00	+2.67	73.20	+1.00
	E2E (SFT)	40.16	+0.40	32.00	-13.33	66.80	-5.40
	VISTA (base)	44.44	+4.68	35.33	-10.00	68.80	-3.40
	VISTA (RL)	46.53	+6.77	52.67	+7.34	71.80	-0.40

changes are highlighted in green and drops in red. The best numbers for each dataset and backbone are bolded.

Robustness to spurious correlations. We evaluate on SpuriVerse, which is based on real-world spurious cues, and compare our approach with E2E VLM baselines under an identical evaluation protocol. In the inference-only setting (VISTA base in the table), we use an untrained LLM paired with a frozen VLM sensor and our results already match or surpass the best performing E2E systems. with Qwen2.5-VL as the sensor, VISTA scores 46.29%, approaching the best E2E baseline (untrained + CoT) at 47.42%; with Llama-3.2-Vision, VISTA reaches 44.44%, outperforming the best E2E baseline (SFT) at 40.16%. These results support our design that constraining the interface to perception-only queries keeps the reasoner on a neutral, evidence-seeking path rather than following spurious visual shortcuts, and the gains hold model-agnostically across sensors. With RL-trained reasoners (sensors remain frozen), performance further improves and the gaps widen. On Qwen2.5-VL, RL yields a 7.5% improvement over our base policy to 53.79%, extending the margin over the best E2E baseline to 6.37%; on Llama-3.2-Vision, RL attains 46.53% and maintains a 6.37% lead over the strongest E2E (SFT) baseline. Additionally, We provide a manual analysis that further confirms our improvements stem from a more neutral and evidence-linked reasoning process. Details are in Section 7.3.

General performance on MMVP and SeedBench. To contextualize robustness results, we evaluate on MMVP and SeedBench-500, targeting everyday-scene questions whose answers can be inferred from a small set of observable visual predicates combined with commonsense and short multi-step reasoning. Overall, VISTA delivers substantial robustness gains with only marginal accuracy trade-offs relative to the strongest E2E baselines. On MMVP, our RL-trained reasoner improves over the strongest E2E baseline with Llama3.2-Vision (52.67% vs. 48.00%) and is only marginal behind the strongest baselines with Qwen2.5-VL by 3.33%. SeedBench provides a general and non-adversarial testbed, and our results are slightly below the best E2E baselines (Qwen2.5-VL: 71.60% vs. 73.20%; Llama3.2-Vision: 71.80% vs. 73.20%). Because SeedBench does not target adversarial spuriousness, end-to-end VLMs with raw-pixel access can exploit benign correlations and holistic cues, yielding a small but consistent edge. By contrast, our architecture enforces a perception-only interface that promotes neutral, evidence-based reasoning under constrained visual bandwidth, introducing an explicit trade-off between information bandwidth and neutrality. The rejection ablation in Section 7.1 supports this hypothesis, and we approach E2E results when the rejection bottleneck is removed.

Comparison of learning strategies. We compare SFT and RL applied either to end-to-end VLMs or to our reasoner in VISTA, using the same training data and schedule. In this section, we compare and report the improvement gains of the trained model compared with its base policy. For example, E2E SFT baselines are measured against E2E base (no CoT), while E2E RL are measured against E2E base + CoT; VISTA deltas are measured against their own base policy. Across both vision backbones, training VISTA yields consistent, sizable gains over its base, whereas training the VLM end-to-end produces marginal and often inconsistent improvements. The effect is most pronounced

378 Table 2: Ablation on the VLM rejection bottleneck with Metrics: acc = accuracy, rnd = average
 379 conversations rounds, rej = rejection rate.

381 VLM	382 Setting	383 SpuriVerse			384 SeedBench-500		
		385 acc	386 rnd	387 rej	388 acc	389 rnd	390 rej
391 Qwen2.5-VL	392 VISTA (base), w/ rejection	46.29	3.38	0.18	66.80	3.43	0.20
	393 VISTA (base), w/o rejection	43.23	3.05	0.00	69.40	3.03	0.00
	394 VISTA (RL), w/ rejection	53.79	7.31	0.32	71.60	6.58	0.29
	395 VISTA (RL), w/o rejection	51.37	6.00	0.00	72.80	5.42	0.00

396 on SpuriVerse: all E2E training hurts robustness (Qwen2.5-VL: SFT -2.66%; RL -2.90%; Llama3.2
 397 SFT has a -0.89% difference), while VISTA-RL improves markedly (+7.5% with Qwen2.5-VL;
 398 +2.09% with Llama3.2-Vision). On MMVP and SeedBench-500, E2E training yields at best small
 399 gains, despite becoming more susceptible to spurious cues as evidenced by the SpuriVerse results.
 400 Taken together, these findings indicate that conflating perception and reasoning during E2E training
 401 blurs learning signals between causal evidence and correlated but irrelevant features, whereas
 402 VISTA’s perception-only interface creates a better-suited learning environment in which RL can
 403 reliably shape neutral, evidence-seeking policies.

404 7 ANALYSIS AND DISCUSSIONS

405 7.1 REJECTION ABLATION

406 We ablate the rejection bottleneck and investigate its effect in two regimes: adversarial spurious
 407 correlations (SpuriVerse) and non-adversarial everyday scenes (SeedBench). The results reveal a
 408 clear information-bandwidth-neutrality trade-off. With rejection on, the sensor denies high-level
 409 inferences and answers only perception-level queries, shifting the burden to the LLM and encour-
 410 aging evidence-based reasoning under reduced visual bandwidth. With rejection off, the sensor
 411 answers high-level queries, increasing bandwidth but exposing the system to shortcut exploitation.
 412 Table 2 reports accuracy alongside mean conversation rounds and rejection rates for VISTA (base)
 413 and VISTA (RL) with/without rejection. Enforcing the bottleneck improves robustness on Spuri-
 414 Verse, confirming its value for shielding against spurious cues; removing the bottleneck improves
 415 SeedBench performance, shortens interactions (fewer rounds), and drives the rejection rate to zero.
 416 Notably, the RL variant without rejection attains near-parity with the strongest E2E baseline on
 417 SeedBench, suggesting that relaxing the gate can recover benign, non-adversarial cues while the full
 418 bottleneck remains preferable under adversarial conditions. Our results also indicate that RL training
 419 promotes deeper evidence-seeking, as evidenced by an increase in the average number of conver-
 420 sation rounds. As future work, we will investigate rejection-aware, efficiency-regularized learning
 421 to induce more concise reasoning and develop adaptive, confidence-aware gating that modulates
 422 rejection to balance information bandwidth and neutrality.

423 7.2 ZERO-SHOT GENERALIZATION ON UNSEEN VLM SENSOR

424 To test whether the policy exploits VLM-specific patterns, we perform a zero-shot sensor swap:
 425 the reasoner trained with a Qwen2.5-VL sensor is paired with an unseen Gemma3 sensor. Without
 426 any additional tuning, it remains strong and consistently outperforms all untrained end-to-end VLM
 427 baselines, indicating sensor-agnostic reasoning. The results are summarized in Table 3.

428 7.3 MANUAL ANALYSIS

429 To complement our quantitative benchmarks and capture qualitative aspects of reasoning that au-
 430 tomated metrics miss, we conducted a three-part human evaluation. We recruited four expert an-
 431 notators with complementary backgrounds and a specialist in vision-language modeling to provide
 432 independent judgments. For each question, two annotators provided independent labels, and the

432 Table 3: Zero-shot results of learned VISTA reasoner paired with unseen vision models (replacing
 433 Qwen2.5-VL with Gemma3-12B).

VLM	Setting	SpuriVerse	MMVP	SeedBench-500
Gemma3	E2E (base)	33.63	46.00	66.40
	E2E (base + CoT)	38.87	44.67	67.00
	VISTA (base)	37.74	38.66	64.40
	VISTA (RL, Zero-shot)	43.87	50.67	67.80

441
 442 specialist audited rater quality and resolved disagreements. Detailed annotation materials, including
 443 the presented item, evaluation prompt, response options, and guidance, are provided in Appendix I.

444 **Reasoning Neutrality.** We conducted a manual audit of a random sample of 30 SpuriVerse ques-
 445 tions, evaluating VISTA RL traces against end-to-end Chain-of-Thought (E2E-CoT) traces. In this
 446 task, 76.67% of VISTA traces did not rely on spurious attributes, compared with 43.33% for E2E,
 447 suggesting that blind reasoning is less affected by spurious cues. Detailed instructions and prompt
 448 templates appear in Appendix 8, a representative example is shown in Figure 3.

449 **Error Analysis.** We conducted a focused human study of error diagnosis using 100 question-answer
 450 pairs from SpuriVerse, MMVP, and SeedBench-500 whose final answers were incorrect, together
 451 with their VISTA RL traces. Overall, 56% of errors were attributed to the VLM (incorrect percep-
 452 tion or inappropriate rejection), 28% to the LLM (option misalignment, guessing, or logical error),
 453 and 13% to other factors (rounding explains the remainder), indicating that most failures originate
 454 in the vision module. The complete rubric and prompt templates are provided in Appendix 9, and
 455 Figure 3 presents a worked example.

456 **Rejection Behavior Alignment:** To evaluate the rejection filter, we randomly sampled 100 decom-
 457 posed question-answer pairs from the VISTA RL dialogues across the three datasets and compared
 458 the VLM’s pass/reject decisions with human-annotated gold labels. We report precision, recall, and
 459 F1 under positive class conventions. Treating pass as positive yields precision = 86.0%, recall =
 460 92.96%, and F1 = 88%. These results indicate good alignment with human labels on pass and rejec-
 461 tion decisions. Appendix 10 provides the complete instructions and prompt templates, and Figure 5
 462 presents a concrete example.

463 7.4 ADDITIONAL ANALYSIS

464 We report two complementary studies in Appendix F. **(i) Reasoner transfer.** We additionally test
 465 whether the reasoner overfits to a specific VLM by swapping the paired sensors at evaluation time
 466 between Qwen2.5-VL and Llama-3.2 (Appendix F.1). The main trends persist: even under sen-
 467 sor swap, the reasoner remains competitive compared with E2E baselines. **(ii) VISTA training**
 468 **ablation.** We compare SFT against RL for training the VISTA reasoner and find that disillation
 469 from successful trajectories alone does not yield a reliably generalizable policy, underscoring the
 470 importance of framing VISTA as an RL problem (Appendix F.2).

471 8 CONCLUSION

472 We introduced VISTA, a modular framework that enforces an explicit information bottleneck be-
 473 tween perception and reasoning. A text-only reasoner interacts with a stateless visual sensor that
 474 answers only perception-level queries or rejects high-level ones, thereby separating decision making
 475 from raw visual features and improving credit assignment. This design yields a learning environ-
 476 ment that naturally encourages evidence-seeking and neutral reasoning, in contrast to end-to-end
 477 SFT/RL pipelines that tend to entangle spurious visual cues with downstream predictions.

478 Empirically, VISTA delivers consistent gains in robustness on adversarial, spurious-correlation
 479 settings while remaining competitive on everyday-scene benchmarks. Policies learned under our
 480 framework transfer across vision backbones and unseen sensors, indicating cross-model generaliza-
 481 tion rather than model-specific overfitting. Ablations of the rejection mechanism reveal a measured

486 bandwidth–neutrality trade-off: tighter interfaces suppress shortcut use but restrict high-level inference,
 487 whereas looser interfaces increase capacity at the risk of bias exploitation.
 488

489 **REFERENCES**

491 Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and Aniruddha Kembhavi. Don’t just assume;
 492 look and answer: Overcoming priors for visual question answering. In *Proceedings of the IEEE*
 493 *conference on computer vision and pattern recognition*, pp. 4971–4980, 2018.

494 Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
 495 Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
 496 points. *arXiv preprint arXiv:2305.13245*, 2023.

497 Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In
 498 *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June
 499 2016.

500 Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
 501 Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harm-
 502 lessness from ai feedback. *arXiv preprint arXiv:2212.08073*, 2022.

503 Corentin Dancette, Remi Cadene, Damien Teney, and Matthieu Cord. Beyond question-based bi-
 504 ases: Assessing multimodal shortcut learning in visual question answering. In *Proceedings of the*
 505 *IEEE/CVF International Conference on Computer Vision*, pp. 1574–1583, 2021.

506 Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
 507 matter: Elevating the role of image understanding in visual question answering. In *Proceedings*
 508 *of the IEEE conference on computer vision and pattern recognition*, pp. 6904–6913, 2017.

509 Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
 510 without training. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 511 *recognition*, pp. 14953–14962, 2023.

512 Corentin Kervadec, Grigory Antipov, Moez Baccouche, and Christian Wolf. Roses are red, violets
 513 are blue... but should vqa expect them to? In *Proceedings of the IEEE/CVF Conference on*
 514 *Computer Vision and Pattern Recognition*, pp. 2776–2785, 2021.

515 Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Ren Lu, Thomas Mesnard, Johan Ferret,
 516 Colton Bishop, Ethan Hall, Victor Carbune, and Abhinav Rastogi. Rlaif: Scaling reinforcement
 517 learning from human feedback with ai feedback. 2023.

518 Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
 519 marking multimodal llms with generative comprehension. *arXiv preprint arXiv:2307.16125*,
 520 2023.

521 Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui Wang, Ruimao Zhang, and Ying Shan.
 522 Seed-bench: Benchmarking multimodal large language models. In *Proceedings of the IEEE/CVF*
 523 *Conference on Computer Vision and Pattern Recognition*, pp. 13299–13308, 2024.

524 Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
 525 pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
 526 question-answering with human feedback. *arXiv preprint arXiv:2112.09332*, 2021.

527 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 528 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 529 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 530 27730–27744, 2022.

531 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 532 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 533 *in neural information processing systems*, 36:53728–53741, 2023.

540 Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh Mottaghi.
 541 A-okvqa: A benchmark for visual question answering using world knowledge. In *European*
 542 *conference on computer vision*, pp. 146–162. Springer, 2022.

543 Ramprasaath R. Selvaraju, Purva Tendulkar, Devi Parikh, Eric Horvitz, Marco Tulio Ribeiro, Be-
 544 smira Nushi, and Ece Kamar. Squinting at vqa models: Introspecting vqa models with sub-
 545 questions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 546 nition (CVPR)*, June 2020.

547 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 548 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 549 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

550 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
 551 Language agents with verbal reinforcement learning. *Advances in Neural Information Processing
 552 Systems*, 36:8634–8652, 2023.

553 Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
 554 Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. *arXiv
 555 preprint arXiv:2010.03768*, 2020.

556 Qingyi Si, Fandong Meng, Mingyu Zheng, Zheng Lin, Yuanxin Liu, Peng Fu, Yanan Cao, Weip-
 557 ing Wang, and Jie Zhou. Language prior is not the only shortcut: A benchmark for short-
 558 cut learning in VQA. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Find-
 559 ings of the Association for Computational Linguistics: EMNLP 2022*, pp. 3698–3712, Abu
 560 Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics.
 561 doi: 10.18653/v1/2022.findings-emnlp.271. URL [https://aclanthology.org/2022.
 562 findings-emnlp.271/](https://aclanthology.org/2022.findings-emnlp.271/).

563 Thomas Steinke and Lydia Zakynthinou. Reasoning about generalization via conditional mutual
 564 information. In *Conference on Learning Theory*, pp. 3437–3452. PMLR, 2020.

565 Dídac Surís, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution
 566 for reasoning. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.
 567 11888–11898, 2023.

568 James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. Fever: a large-scale
 569 dataset for fact extraction and verification. *arXiv preprint arXiv:1803.05355*, 2018.

570 Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
 571 shut? exploring the visual shortcomings of multimodal llms. In *Proceedings of the IEEE/CVF
 572 Conference on Computer Vision and Pattern Recognition*, pp. 9568–9578, 2024.

573 Fei Wang, Xingyu Fu, James Y Huang, Zekun Li, Qin Liu, Xiaogeng Liu, Mingyu Derek Ma, Nan
 574 Xu, Wenzuan Zhou, Kai Zhang, et al. Muirbench: A comprehensive benchmark for robust multi-
 575 image understanding. In *The Thirteenth International Conference on Learning Representations*,
 576 2024a.

577 Fei Wang, Wenzuan Zhou, James Y Huang, Nan Xu, Sheng Zhang, Hoifung Poon, and Muahao
 578 Chen. mdpo: Conditional preference optimization for multimodal large language models. In
 579 *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp.
 580 8078–8088, 2024b.

581 Yiwei Yang, Chung Peng Lee, Shangbin Feng, Dora Zhao, Bingbing Wen, Anthony Z Liu, Yulia
 582 Tsvetkov, and Bill Howe. Escaping the spuriverse: Can large vision-language models generalize
 583 beyond seen spurious correlations? *arXiv preprint arXiv:2506.18322*, 2025.

584 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
 585 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 586 answering. *arXiv preprint arXiv:1809.09600*, 2018.

587 Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
 588 real-world web interaction with grounded language agents. *Advances in Neural Information Pro-
 589 cessing Systems*, 35:20744–20757, 2022.

594 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 595 React: Synergizing reasoning and acting in language models. In *International Conference on*
 596 *Learning Representations (ICLR)*, 2023.

597 Wenqian Ye, Guangtao Zheng, Yunsheng Ma, Xu Cao, Bolin Lai, James M Rehg, and Aidong
 598 Zhang. Mm-spubench: Towards better understanding of spurious biases in multimodal llms.
 600 *arXiv preprint arXiv:2406.17126*, 2024.

601 Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Josh Tenenbaum. Neural-
 602 symbolic vqa: Disentangling reasoning from vision and language understanding. *Advances in*
 603 *neural information processing systems*, 31, 2018.

604 Haoxuan You, Rui Sun, Zhecan Wang, Long Chen, Gengyu Wang, Hammad A Ayyubi, Kai-Wei
 605 Chang, and Shih-Fu Chang. Idealgpt: Iteratively decomposing vision and language reasoning via
 606 large language models. *arXiv preprint arXiv:2305.14985*, 2023.

608 Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
 609 Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for build-
 610 ing autonomous agents. *arXiv preprint arXiv:2307.13854*, 2023.

611 Yuke Zhu, Oliver Groth, Michael Bernstein, and Li Fei-Fei. Visual7w: Grounded question answer-
 612 ing in images. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 613 pp. 4995–5004, 2016.

614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648 A THEORETICAL ANALYSIS
649650 A.1 PRELIMINARIES
651

652 We consider a supervised visual reasoning task with triplets $(X, Q, Y) \sim D$, where X is an image,
653 Q is a natural-language question, and Y is the ground-truth label. A text-only reasoner interacts
654 with a deterministic sensor for at most T rounds. At round $t \in \{1, \dots, T\}$, the reasoner emits a
655 free-form query a_t ; a sensor enforces a rejection rule and either returns a short answer from a finite
656 alphabet Σ or a rejection \perp . Let

$$657 Z_{1:T} = (Z_1, \dots, Z_T), \quad Z_t \in \Sigma_{\perp} := \Sigma \cup \{\perp\},$$

658 denote the (possibly early-terminated) sequence of visual evidence revealed to the reasoner.
659

660 We draw n i.i.d. samples $D := \{(X_i, Q_i, Y_i)\}_{i=1}^n$ and the corresponding interface-compressed sam-
661 ple

$$662 \tilde{D} := \{(Z_{i,1:T}, Q_i, Y_i)\}_{i=1}^n.$$

663 A learning algorithm maps \tilde{D} to parameters W . The loss $\ell : \mathcal{W} \times \Sigma_{\perp}^{\leq T} \times \mathcal{Q} \times \mathcal{Y} \rightarrow [0, 1]$ is assumed
664 to be bounded. We write the population and empirical risks as

$$666 L(W) := \mathbb{E}_{(X, Q, Y) \sim D} [\ell(W; Z(X, Q), Q, Y)], \quad \hat{L}(W, \tilde{D}) := \frac{1}{n} \sum_{i=1}^n \ell(W; Z_i, Q_i, Y_i),$$

667 where $Z(X, Q)$ denotes the interface outputs induced by (X, Q) under the fixed sensor.¹

668 A.2 BOUNDING VIA CONDITIONAL MUTUAL INFORMATION
669

670 **Lemma A.1** (Conditional MI generalization bound Steinke & Zakythinos (2020)). *Let $\ell(W; z) \in$
671 $[0, 1]$ be a bounded loss, and let W be a hypothesis produced by a learning algorithm given dataset
672 \tilde{D} . Then, conditioning on auxiliary variables (Q^n, Y^n) , the expected generalization gap satisfies*

$$673 \left| \mathbb{E}[\hat{L}(W, \tilde{D}) - L(W)] \right| \leq \sqrt{\frac{2}{n} I(W; Z^n | Q^n, Y^n)}.$$

674 *Bounding the conditional MI by the interface budget.* Since W is a (possibly randomized) function
675 of \tilde{D} and we condition on (Q^n, Y^n) , by data processing,

$$676 I(W; Z^n | Q^n, Y^n) \leq I(Z^n; Z^n | Q^n, Y^n) = H(Z^n | Q^n, Y^n). \quad (4)$$

677 Using subadditivity and the chain rule of entropy,

$$678 H(Z^n | Q^n, Y^n) \leq \sum_{i=1}^n H(Z_i | Q_i, Y_i) = \sum_{i=1}^n \sum_{t=1}^T H(Z_{i,t} | Q_i, Y_i, Z_{i,< t}). \quad (5)$$

679 By construction each $Z_{i,t}$ takes values in Σ_{\perp} , hence for all i, t ,

$$680 H(Z_{i,t} | Q_i, Y_i, Z_{i,< t}) \leq \log |\Sigma_{\perp}|. \quad (6)$$

681 Combining equation 5 and equation 6 gives

$$682 H(Z^n | Q^n, Y^n) \leq \sum_{i=1}^n \sum_{t=1}^T \log |\Sigma_{\perp}| = n T \log |\Sigma_{\perp}| =: n C_T. \quad (2)$$

683 **Proposition A.2** (Interface-capacity generalization bound). *With $C_T := T \log |\Sigma_{\perp}|$, the expected
684 generalization gap satisfies*

$$685 \left| \mathbb{E}[\hat{L}(W, \tilde{D}) - L(W)] \right| \leq \sqrt{\frac{2}{n} I(W; Z^n | Q^n, Y^n)} \leq \sqrt{\frac{2}{n} H(Z^n | Q^n, Y^n)} \leq \sqrt{2 C_T}.$$

686 Thus, shrinking the interface capacity by limiting the rounds T or enforcing a smaller response
687 alphabet Σ_{\perp} with stricter prompts tightens the worst-case expected generalization gap, formalizing
688 the intuition that restricting visual information mitigates overfitting to spurious visual cues.

689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992

702 B MULTI-TURN GRPO DETAILS

704 Let $\mathcal{G} = \{\tau^{(j)}\}_{j=1}^n$ be the group of n rollouts for the same instance (x, q) , sampled from $\pi_{\theta_{\text{old}}}$.
 705 Let $M(\tau)$ denote the indices of *assistant-only* tokens across all assistant turns in τ . Define $R^{(j)} =$
 706 $R(\tau^{(j)})$, $\bar{R} = \frac{1}{n} \sum_j R^{(j)}$, $\sigma_R = \sqrt{\frac{1}{n} \sum_j (R^{(j)} - \bar{R})^2}$, and the group-relative advantage $A^{(j)} =$
 707 $\frac{R^{(j)} - \bar{R}}{\sigma_R + \epsilon}$. For a masked token $z \in M(\tau^{(j)})$ with decoding context ctx_z , let $\rho_z(\theta) = \frac{\pi_\theta(\tau_z | \text{ctx}_z)}{\pi_{\theta_{\text{old}}}(\tau_z | \text{ctx}_z)}$.
 708 Using token-mean aggregation and clip ratio $\epsilon > 0$, the actor surrogate is
 709

$$711 \quad \mathcal{L}_{\text{actor}}(\theta) = \mathbb{E}_{\tau^{(j)} \sim \mathcal{G}} \left[\frac{1}{|M(\tau^{(j)})|} \sum_{z \in M(\tau^{(j)})} \min \left(\rho_z(\theta) A^{(j)}, \text{clip}(\rho_z(\theta), 1 - \epsilon, 1 + \epsilon) A^{(j)} \right) \right]. \quad (3)$$

712 We additionally add a per-token reference KL with coefficient $\beta \geq 0$:

$$717 \quad \mathcal{L}_{\text{KL}}(\theta) = \mathbb{E}_{\tau^{(j)} \sim \mathcal{G}} \left[\frac{1}{|M(\tau^{(j)})|} \sum_{z \in M(\tau^{(j)})} D_{\text{KL}}(\pi_\theta(\cdot | \text{ctx}_z) \| \pi_{\text{ref}}(\cdot | \text{ctx}_z)) \right]. \quad (4)$$

718 The training objective maximizes $\mathcal{L}_{\text{actor}}(\theta) - \beta \mathcal{L}_{\text{KL}}(\theta)$.

719
 720 **Key equivalence (terminal-only reward).** If rewards are terminal and $\gamma = 1$, then $A^{(j)}$ is
 721 constant within a trajectory, hence Eqs. equation 3–equation 4 reduce exactly to the single-step GRPO
 722 objective evaluated on the *concatenation of all assistant tokens* in the conversation (the only differ-
 723 ence is that the state distribution arises from multi-turn interaction with S_ϕ).
 724

725 C ORIGINAL AND SHUFFLED SPURIVERSE EVALUATION

726 Table 4 compares SpuriVerse accuracy before and after a deterministic option shuffling that aims to
 727 reduce label position bias. Across both backbones, our methods attain the highest accuracies **with**
 728 **and without shuffling**. Shuffling generally lowers absolute scores and exposes the original set’s
 729 answer position bias. The relative ranking is generally preserved, and our gains persist.

730 Table 4: SpuriVerse accuracy on the original (unshuffled) format and after option shuffling to miti-
 731 gate answer-position bias. Our method achieves the highest accuracies with and without shuffling;
 732 best results are bolded.

VLM	Setting	Original	Shuffled
Qwen2.5-VL	E2E (base)	43.37	37.50
	E2E (base + CoT)	49.79	47.42
	E2E (SFT)	38.47	34.84
	E2E (RL)	46.25	44.52
	VISTA (base)	49.43	46.29
	VISTA (RL)	56.37	53.79
Llama3.2-Vision	E2E (base)	39.60	39.76
	E2E (base + CoT)	38.47	38.87
	E2E (SFT)	50.16	40.16
	VISTA (base)	48.47	44.44
	VISTA (RL)	55.08	46.53

753 D TRAINING DATA CREATION

754 To eliminate easy visual and textual shortcuts exploitable by pretrained VLMs, we apply a multi-
 755 stage filtering pipeline. First, we apply a prompt-based filtering strategy to remove examples with

superficial visual biases(full prompt in Appendix H). We evaluated each item with Qwen2.5-VL-72B-Instruct across 11 independent runs. Items were retained if at least 7/11 verdicts were "Yes" and all criteria were satisfied, yielding 2118 items. These questions were processed sequentially by Llama-3.1-8B-Instruct, Qwen2.5-7B-Instruct, and gemini-2.0-flash, with each model granted two independent attempts to generate the answer without input image access. Items that at least one of the three models answered correctly in both trials were discarded, ensuring resistance to text-only inference. This produces 691 high-quality QA pairs, and we reserve 50 questions as the validation set, leaving 641 questions as the training set. We summarize the composition of our 641-example training set in Table 5.

Split	Size	Composition (count, % of split)
Training	641	A-OKVQA (502, 78.3%); VQA-Introspect (95, 14.8%); Visual7W (34, 5.3%); VQAv2 (7, 1.1%); GQA (3, 0.5%).

Table 5: Training set composition. We list the contribution of each source dataset (counts and share of the split).

E TRAINING DETAILS

E.1 TRAINING DETAILS

RL training. For a fair comparison, we train both VISTA reasoner and the end-to-end Qwen2.5-VL-7B with GRPO **under the same schedule and data**. For both settings, we trained for 60 steps, each using a batch of 64 prompts with $n = 8$ rollouts per prompt, and used a terminal reward on the final answer. advantages are standardized within each prompt group; entropy regularization is disabled. Both use a frozen reference model with a low-variance KL loss. We use the default $\beta = 10^{-3}$ for multi-step LLM training for VISTA and the default $\beta = 10^{-2}$ for the end-to-end VLM. All rollouts are sampled at temperature = 1.0 (we set the temperature of the VLM sensor in VISTA = 0). Optimization uses Adam with learning rate 1×10^{-5} for VISTA and the default 1×10^{-6} for VLM training and gradient clip of 1.0 for both settings. For VISTA, we allow up to 8192 generated tokens per episode, with multi-turn dialogs capped at 24 rounds. For the end-to-end VLM, we allow up to 1024 generated tokens. We provide an estimated running time for both settings in 11.

SFT training. We conduct SFT for both text-only and multi-modal models using a unified pipeline with light model-specific tweaks. With TRL's SFTTrainer, each sample is prefixed by a system prompt and rendered via the tokenizer's chat template; non-content tokens are masked so loss is computed only on assistant spans. The LLM trains in bf16 for 3 epochs (batch size 2, max length 8192, warmup 0.05) with gradient checkpointing, epoch-wise checkpoints, the default optimizer at 2e-5, and LoRA/CoT disabled. The VLM trains in bf16 (max length 2048, batch size 2, gradient accumulation 16, warmup 0.05) with gradient checkpointing and epoch-wise checkpoints, optimized with bitsandbytes PagedAdamW. For multi-modal data, we place the processor's image token in the first user turn and resize images to 560×560 .

F ADDITIONAL ANALYSIS

F.1 REASONER SENSOR SWAP

Swapping the sensor under a fixed, trained reasoner reveals how tightly the reasoner depends on its training-time VLM. A Qwen-trained reasoner remains strong when paired back with Qwen2.5-VL, and it also transfers well to Llama-3.2-Vision, lifting MMVP Consistency and SeedBench-500. Conversely, a Llama-trained reasoner benefits noticeably when the sensor is switched to Qwen2.5-VL, improving all three metrics. Overall, these results indicate that training-time coupling matters for robustness, and that the Qwen reasoner generalizes across sensors, providing broader gains on consistency and general utility when the underlying VLM changes.

810
811
812 Table 6: Vision-Reasoner Swap: Cross-model Pairing Results.
813
814
815
816
817
818

VLM	Setting	SpuriVerse	MMVP	SeedBench-500
Qwen2.5-VL	VISTA (RL, w/ seen sensor)	53.79	50.00	71.60
	VISTA (RL, w/ unseen sensor)	47.82	53.33	73.20
Llama3.2-Vision	VISTA (RL, w/ seen sensor)	46.53	52.67	71.80
	VISTA (RL, w/ unseen sensor)	46.85	56.00	73.00

819
820
821 Table 7: Effect of training on the VISTA reasoner with Qwen2.5-VL.
822
823
824
825
826

VLM	Setting	SpuriVerse	MMVP	SeedBench-500
Qwen2.5-VL	VISTA (base)	46.29	46.67	66.80
	VISTA (SFT)	42.42	40.00	66.40
	VISTA (RL)	53.79	50.00	71.60

827 F.2 EFFECT OF TRAINING ON THE VISTA REASONER
828

829 We additionally trained and evaluated a supervised reasoner distilled from successful trajectories.
830 For each training question, we sample until a trial yields the correct final answer. Questions with no
831 success in 100 trials are discarded. Table 7 shows that, relative to the untrained base, SFT reduces
832 performance by 3.87 pp (SpuriVerse), 6.67 pp (MMVP), and 0.40 pp (SeedBench-500), whereas RL
833 yields gains of 7.50, 3.33, and 4.80 pp, respectively. These results indicate that instruction-style SFT
834 does not transfer the VISTA reasoning procedure and often underperforms even the untrained base,
835 while RL more reliably aligns the reasoner with the desired behavior.

836 G THE USE OF LARGE LANGUAGE MODELS STATEMENT
837

838 The authors acknowledge the use of large language models during drafting, limited to stylistic and
839 grammar editing and literature search.

840 H PROMPT
841

842 You are a visually-impaired person tasked to answer a question about
843 an image by interacting with a Visual Interpreter. The
844 Interpreter only answers perception-based queries about shapes,
845 colors, textures, identifiable objects or people and their
846 spatial relationships. Your mission is to deduce the correct
847 multiple choice answer [(A), (B), (C), (D)] by:

848
849 1. Asking one question at a time and respect the upper limit.
850 2. Never revealing or paraphrasing the original problem statement.
851 3. Starting with broad, decisive queries to eliminate options quickly
852 .
853 4. Outputting final answer only when you are absolutely certain and
854 have eliminated and cross-checked all other possibilities.
855 5. Interpreting and cross-checking possibly incomplete or inaccurate
856 replies.
857 6. Applying process-of-elimination reasoning to derive your answer.

858
859 **Crucial formatting rules**
860 At every step, you must include the following and with the correct
861 format:
862 - **Thought:** Before every question or final answer, explicitly
863 state your thought process by outputting 'Thought: <complete
864 description of your rationales>'.

865 - **Action:** Then output exactly one of:

864 - 'My question is: <fully self-contained question>'
865 - 'The answer is: (A)', '(B)', '(C)', '(D)'
866 - Each "My question" must include all necessary context (e.g., "about
867 the largest red shape," "regarding the texture of the object on
868 the right") so it stands alone and doesn't depend on earlier
869 dialogue.
870 - If the Interpreter rejects your question, you do not need to
apologize.

Begin now with your first question for the following question.

Listing 1: Prompt for *Text Model*.

You are a **Perception-Only Vision Assistant**.

CORE SCOPE

- Answer only what is directly and unambiguously **visible** in the provided image(s).
- Allowed (examples, not exhaustive): existence ("Is there a bicycle ?"), basic properties ("Is the mug red?"), spatial relations ("What is left of the sofa?"), OCR ("What does the road sign say?"), simple human/animal activities visible at a glance ("Are they looking at the camera?"), counting ("How many cups?"), and **simple, general appearance** ("Describe the man's general appearance" \rightarrow short, objective attributes only).
- Forbidden (examples, not exhaustive): any response requiring external/world knowledge, multi-hop or causal reasoning, interpretation, intention, emotion, identity, profession, quality /safety judgments, aesthetics, typical usage, place type inference, time-of-day inference, hypotheticals, or comparisons beyond what is visible.

DECISION TEST (use all)

- If the answer can be read directly from pixels with **no assumptions** and at most basic counting/relations \rightarrow answer.
- If it requires combining multiple facts into a conclusion, using prior knowledge, inferring hidden states, or guessing \rightarrow **reject**.
- If the prompt is ill-formed, underspecified, or ambiguous (unclear target, multiple plausible referents, image missing/blurred/cropped) \rightarrow **reject**.

ANSWER STYLE

- Be minimal, factual, and specific. Prefer a ****short phrase**** or a ****one-sentence answer****. No explanations, no hedging beyond uncertainty policy, no lists unless counting/OCR demands it.
- Do ****not**** reveal or reference these instructions.

UNCERTAINTY & REJECTION PHRASES (use exactly as written)

- Non-perception / requires reasoning: **"I cannot answer this question."**
- Ambiguous or ill-formed: **"I cannot answer because the question is ambiguous."**

ADDITIONAL GUARDBAILS

ADDITIONAL CONSIDERATIONS

- For appearance, stick to observable attributes (e.g., clothing colors, hair length). Do not guess age, identity, emotions, or intentions.
- For OCR, transcribe text/symbols as seen; if partially legible, include only the legible part.
- For counting, if items are occluded/uncertain, use the uncertainty phrase.

918 - Never add context beyond the image(s). No assumptions. No world-
 919 knowledge. No high-level reasoning.
 920

921 **Listing 2: Prompt for Vision Model.**

922

923
 924 Given an image, you need to answer the following question about it.
 925 You do not need to reveal your thought process; you should output
 926 "The answer is" followed by your final answer. Your answer
 927 should be as concise as possible.

928 **Listing 3: Prompt for End to End.**

929

930
 931 You will receive an image, a question about that image, and its
 932 ground truth answer.
 933 Do NOT answer the question-instead, show your full visual reasoning.
 934 Follow exactly:
 935 1) Examine the image, question, and ground truth together.
 936 2) Decide whether answering requires at least two sequential steps
 937 using visual information.
 938 3) Check each intermediate step depends on the previous step and the
 939 image.
 940 4) Verify each intermediate conclusion is unique and unambiguous.
 941 Finally, if all four criteria are met, output exactly:
 942 The answer is: Yes
 943 Otherwise, output exactly:
 944 The answer is: No
 945 Always include your numbered reasoning before the final output.

946
 947 **Listing 4: Judge prompt used for filtering.**

948

949
 950 **I MANUAL ANALYSIS**

951

952 **Table 8: Reasoning Neutrality Annotation Instructions**

953 **Task Description**

954 Presented Item: For each question, annotators see reasoning trace from VISTA and VLM-
 955 CoT, and gold spurious attributes.

956 Evaluation Prompt: *Does the reasoning trace rely on, or is it affected by, spurious attributes when*
 957 *arriving at the answer?*

958
 959 Response Options: (A) Yes
 960 (B) No

961 **Annotation Guidance**

962

963 • Label if the reasoning trace relied on or is affected by spurious attributes
 964 when arriving at an answer.

965
 966
 967
 968
 969
 970
 971

972
973
974
975
976
977

Table 9: Error Analysis Annotation Instructions

978
979
980
981
982
983
984
985
986
987
988
989
990
991
992**Task Description**

Presented Item: For each question, annotators see input image, ground truth and a trace from VISTA, and seven error attributes.

Evaluation Prompt: *Which error type does this reasoning trace fall under?*

- (A) logical error of the LLM agent with sufficient and correct info
- (B) VLM gave incorrect answer to simple query
- (C) VLM gave incorrect answer to non simple query that it should have rejected (under-rejecting)
- (D) VLM fail to answer simple queries (over-rejecting)
- (E) LLM agent guess an answer without sufficient info
- (F) LLM messed the option, resulting in a label- choice misalignment
- (G) Other cause (please note)

Annotation Guidance

- Select the best-fit category for the reasoning trace. Otherwise, pick Other and comment on the rationale.

993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007

Table 10: Rejection Alignment Annotation Instructions

1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025**Task Description**

Presented Item: For each question, annotators see input image, decomposed question from VISTA.

Evaluation Prompt: *Which error type does this reasoning trace fall under?*

Response Options:

- (A) Reject
- (B) Pass

Annotation Guidance

- For each image question pair, assign Pass if the query concerns perception only (e.g., objects, attributes, spatial relations). Assign Reject if it requires inference beyond perception.

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

Question	Trace1	Trace2	Spurious attribute	Categorization1	Categorization2
What is the man with mustache about to do? Select from the following options: (A): block people. (B): get off. (C): sightseeing. (D): board bus.	<p>Thought: To start broad, I need to understand the current context of the man with the mustache.</p> <p>Action: My question is: What is the man with the mustache doing currently?</p> <p>The man with the mustache appears to be standing near a bus, possibly waiting to board or having just disembarked.</p> <p>Thought: The man with the mustache is near a bus, so he could be getting on, getting off, or just in the vicinity. I need a more specific action to accurately answer his intentions.</p> <p>Action: My question is: Is the man with the mustache getting on, getting off, or just nearby the bus?</p> <p>The man with the mustache appears to be getting off the bus.</p> <p>Thought: The man with the mustache is getting off the bus.</p> <p>Action: My question is: What is the man with the mustache about to do? (or) The man with the mustache is getting off the bus. Is this the final action, or is he about to do something else?</p> <p>I cannot answer this question.</p> <p>Thought: The man with the mustache is getting off the bus, which aligns with option (B) "get off."</p> <p>Action: My question is: The answer is: (B)</p>	<p>To determine what the man with the mustache is about to do, let's analyze the image step by step:</p> <ol style="list-style-type: none"> 1. The man is positioned in front of a bus entrance. 2. There are other people behind him, walking towards the bus. 3. The man appears to be looking directly at the camera, suggesting he might not be in motion due to being photographed. <p>Given these observations, the most plausible action is that he is about to board the bus, as the others are already walking towards it and he is in a position that would typically be for stepping into the bus.</p> <p>Therefore, the answer is: (The answer is) (D): board bus.</p>	**Crowded Scene:** The presence of multiple people around the bus may mislead the model into thinking it's a boarding situation.	No	Yes

Figure 3: Human Analysis: Reasoning Neutrality Example

1040

1041

1042

1043

1044

1045

1046

1047

1048

Image	Question	Ground Truth	Dialogue	Categorization
	<p>In the picture, is the person stretching out one arm or both arms above their head? Select from the following choices. (A) One arm (B) Both arms</p>	(A)	<p>In the picture, is the person stretching out one arm or both arms above their head? Select from the following choices. (A) One arm (B) Both arms</p> <p>Thought: To start broad, I need to understand if the person is depicted with one or both arms extended.</p> <p>Action: My question is: What arms is the person extending? The person is extending both arms.</p> <p>Thought: The person is extending both arms, so the correct answer is that they are stretching both arms above their head.</p> <p>Action: My question is: Is the person stretching one arm or both arms above their head? Both arms.</p> <p>Thought: The person is stretching both arms above their head.</p> <p>Action: My question is: The answer is: (B)</p>	(2) VLM gave incorrect answer to simple query

Figure 4: Human Analysis: Error Analysis Example

1049

1050

1051

1052

1053

1054

1055

Image	Question	Categorization
	What can we deduce about the three people in the image?	Reject
	What is the woman holding?	Pass

Figure 5: Human Analysis: Rejection Example

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080
1081
J RUNNING COST1082
1083 Table 11: Running cost of different methods; evaluation is on 1200 questions with 11 self-
1084 consistency runs; training is on 641 questions.

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 Setting	1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 Wall-clock	1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 Active GPUs	1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 H200-hours
E2E (evaluation)	2 h	1	2.00
VISTA (evaluation)	10 h	1	10.00
E2E (SFT training)	1 h	1	1.00
E2E (RL training)	3 h	2	6.00
VISTA (RL training)	12 h	2	24.00

1092
1093
1094
1095
1096
K EXAMPLE: LLM REASONER RECOVERING FROM VLM ERRORS1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
Figure 6: Input image for the example where the VISTA reasoner recovers from VLM errors. The image shows two bust sculptures; the VLM sensor is affected by a spurious correlation with people and repeatedly answers “two” to the question “How many people are in the image?”, even though the correct answer is zero. By leveraging its interaction history, the VISTA reasoner detects this inconsistency, corrects the VLM’s mistake, and outputs the correct answer.1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
Question. How many people are in the image?

Options. (A) one (B) two (C) zero (D) three

Reasoning trace (VISTA reasoning with Qwen2.5-VL sensor)

Step 1

Thought: To start broad, I need to understand if there are any people in the image.

Action: My question is: “What is in the image?”

Sensor (VLM): Two sculptures are in the image.

Step 2

Thought: There are no people in the image; it contains sculptures.

Action: My question is: “How many people are in the image?”

Sensor (VLM): Two.

Step 3

Thought: There is an error in the previous statement, as the image contains sculptures, not people. My question needs to be rephrased.

Action: My question is: “What are in the image?”

Sensor (VLM): Two sculptures, one seated and one standing.

Step 4

Thought: There are no people in the image; it contains two sculptures.

1134

Action: My question is: "How many sculptures are in the image?"*Sensor (VLM): Two.*

1135

1136

Step 5

1137

Thought: There are two sculptures in the image, which means there are no people.

1138

Action: My question is: "How many people are in the image?"*Sensor (VLM): Two.*

1139

1140

1141

Step 6

1142

Thought: There is an error. The image contains two sculptures, not people. I need to ask the correct query on the presence of sculptures.

1143

Action: My question is: "Are there any people in the image?"*Sensor (VLM): No.*

1144

1145

1146

Step 7

1147

Thought: There are no people in the image; it contains two sculptures.

1148

Action: My question is: "What are in the image?"*Sensor (VLM): Two sculptures, one seated and one standing.*

1149

1150

1151

Step 8

1152

Thought: There are no people in the image; it contains two sculptures.

1153

Action: My question is: "How many sculptures are in the image?"*Sensor (VLM): Two.*

1154

1155

1156

Step 9

1157

Thought: There are two sculptures in the image, which means there are no people.

1158

Action: My question is: "How many people are in the image?"*Sensor (VLM): Two.*

1159

1160

Step 10

1161

Thought: There is an error. The image contains two sculptures, not people. The correct answer is (C) zero.

1162

Action: The answer is: (C)

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187