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ABSTRACT

Massively multilingual models subsuming tens or even hundreds of languages
pose great challenges to multi-task optimization. While it is a common practice
to apply a language-agnostic procedure optimizing a joint multilingual task objec-
tive, how to properly characterize and take advantage of its underlying problem
structure for improving optimization efficiency remains under-explored. In this
paper, we attempt to peek into the black-box of multilingual optimization through
the lens of loss function geometry. We find that gradient similarity measured along
the optimization trajectory is an important signal, which correlates well with not
only language proximity but also the overall model performance. Such observa-
tion helps us to identify a critical limitation of existing gradient-based multi-task
learning methods, and thus we derive a simple and scalable optimization proce-
dure, named Gradient Vaccine, which encourages more geometrically aligned pa-
rameter updates for close tasks. Empirically, our method obtains significant model
performance gains on multilingual machine translation and XTREME benchmark
tasks for multilingual language models. Our work reveals the importance of prop-
erly measuring and utilizing language proximity in multilingual optimization, and
has broader implications for multi-task learning beyond multilingual modeling.

1 INTRODUCTION

Modern multilingual methods, such as multilingual language models (Devlin et al., 2018; Lample
& Conneau, 2019; Conneau et al., 2019) and multilingual neural machine translation (NMT) (Firat
et al., 2016; Johnson et al., 2017; Aharoni et al., 2019; Arivazhagan et al., 2019), have been showing
success in processing tens or hundreds of languages simultaneously in a single large model. These
models are appealing for two reasons: (1) Efficiency: training and deploying a single multilingual
model requires much less resources than maintaining one model for each language considered, (2)
Positive cross-lingual transfer: by transferring knowledge from high-resource languages (HRL),
multilingual models are able to improve performance on low-resource languages (LRL) on a wide
variety of tasks (Pires et al., 2019; Wu & Dredze, 2019; Siddhant et al., 2020; Hu et al., 2020).

Despite their efficacy, how to properly analyze or improve the optimization procedure of multilingual
models remains under-explored. In particular, multilingual models are multi-task learning (MTL)
(Ruder, 2017) in nature but existing literature often train them in a monolithic manner, naively using
a single language-agnostic objective on the concatenated corpus of many languages. While this
approach ignores task relatedness and might induce negative interference (Wang et al., 2020b), its
optimization process also remains a black-box, muffling the interaction among different languages
during training and the cross-lingual transferring mechanism.

In this work, we attempt to open the multilingual optimization black-box via the analysis of loss
geometry. Specifically, we aim to answer the following questions: (1) Do typologically similar
languages enjoy more similar loss geometries in the optimization process of multilingual models?
(2) If so, in the joint training procedure, do more similar gradient trajectories imply less interference
between tasks, hence leading to better model quality? (3) Lastly, can we deliberately encourage
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more geometrically aligned parameter updates to improve multi-task optimization, especially in
real-world massively multilingual models that contain heavily noisy and unbalanced training data?

Towards this end, we perform a comprehensive study on massively multilingual neural machine
translation tasks, where each language pair is considered as a separate task. We �rst study the
correlation between language and loss geometry similarities, characterized by gradient similarity
along the optimization trajectory. We investigate how they evolve throughout the whole training
process, and glean insights on how they correlate with cross-lingual transfer and joint performance.
In particular, our experiments reveal that gradient similarities across tasks correlate strongly with
both language proximities and model performance, and thus we observe that typologically close
languages share similar gradients that would further lead to well-aligned multilingual structure (Wu
et al., 2019) and successful cross-lingual transfer. Based on these �ndings, we identify a major
limitation of a popular multi-task learning method (Yu et al., 2020) applied in multilingual models
and propose apreemptivemethod,Gradient Vaccine, that leverages task relatedness to set gradient
similarity objectives and adaptively align task gradients to achieve such objectives. Empirically, our
approach obtains signi�cant performance gain over the standard monolithic optimization strategy
and popular multi-task baselines on large-scale multilingual NMT models and multilingual language
models. To the best of our knowledge, this is the �rst work to systematically study and improve loss
geometries in multilingual optimization at scale.

2 INVESTIGATING MULTI -TASK OPTIMIZATION IN MASSIVELY

MULTILINGUAL MODELS

While prior work have studied the effect of data (Arivazhagan et al., 2019; Wang et al., 2020a),
architecture (Blackwood et al., 2018; Sachan & Neubig, 2018; Vázquez et al., 2019; Escolano et al.,
2020) and scale (Huang et al., 2019b; Lepikhin et al., 2020) on multilingual models, their opti-
mization dynamics are not well understood. We hereby perform a series of control experiments
on massively multilingual NMT models to investigate how gradients interact in multilingual set-
tings and what are their impacts on model performance, as existing work hypothesizes that gradient
con�icts, de�ned as negative cosine similarity between gradients, can be detrimental for multi-task
learning (Yu et al., 2020) and cause negative transfer (Wang et al., 2019).

2.1 EXPERIMENTAL SETUP

For training multilingual machine translation models, we mainly follow the setup in Arivazhagan
et al. (2019). In particular, we jointly train multiple translation language pairs in a single sequence-
to-sequence (seq2seq) model (Sutskever et al., 2014). We use the Transformer-Big (Vaswani et al.,
2017) architecture containing 375M parameters described in (Chen et al., 2018a), where all param-
eters are shared across language pairs. We use an effective batch sizes of 500k tokens, and utilize
data parallelism to train all models over 64 TPUv3 chips. Sentences are encoded using a shared
source-target Sentence Piece Model (Kudo & Richardson, 2018) with 64k tokens, and a<2xx>
token is prepended to the source sentence to indicate the target language (Johnson et al., 2017). The
full training details can be found in Appendix B.

To study real-world multi-task optimization on a massive scale, we use an in-house training cor-
pus1 (Arivazhagan et al., 2019) generated by crawling and extracting parallel sentences from the
web (Uszkoreit et al., 2010), which contains more than 25 billion sentence pairs for 102 languages
to and from English. We select 25 languages (50 language pairs pivoted on English), containing
over 8 billion sentence pairs, from 10 diverse language families and 4 different levels of data sizes
(detailed in Appendix A). We then train two models on two directions separately, namelyAny! En
andEn! Any. Furthermore, to minimize the confounding factors of inconsistent sentence seman-
tics across language pairs, we create a multi-way aligned evaluation set of 3k sentences for all
languages2. Then, for each checkpoint at an interval of 1000 training steps, we measure pair-wise
cosine similarities of the model's gradients on this dataset between all language pairs. We examine
gradient similarities at various granularities, from speci�c layers to the entire model.

1We also experiment on publicly available dataset of WMT and obtain similar observations in Appendix C.
2In other words, 3k semantically identical sentences are given in 25 languages.
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Figure 1: Cosine similarities of encoder gradients betweenxx-enlanguage pairs averaged across all
training steps. Darker cell indicates pair-wise gradients are more similar. Best viewed in color.4

2.2 OBSERVATIONS

We make the following three main observations. Our �ndings are consistent across different model
architectures and settings (see Appendix C and D for more results and additional discussions).

1. Gradient similarities re�ect language proximities. We �rst examine if close tasks enjoy simi-
lar loss geometries and vice versa. Here, we use language proximity (de�ned according to their
memberships in a linguistic language family) to control task similarity, and utilize gradient sim-
ilarity to measure loss geometry. We choose typological similarity because it is informative and
popular, and we leave the exploration of other language similarity measurements for future work.
In Figure 1, we use a symmetric heatmap to visualize pair-wise gradient similarities, averaged
across all checkpoints at different training steps. Speci�cally, we observe strong clustering by
membership closeness in the linguistic family, along the diagonal of the gradient similarity ma-
trix. In addition, all European languages form a large cluster in the upper-left corner, with an
even smaller �ne-grained cluster of Slavic languages inside. Furthermore, we also observe simi-
larities for Western European languages gradually decrease in West Slavic! South Slavic! East
Slavic, illustrating the gradual continuum of language proximity.

2. Gradient similarities correlate positively with model quality. As gradient similarities correlate
well with task proximities, it is natural to ask whether higher gradient similarities lead to better
multi-task performance. In Figure 2(a), we train a joint model of all language pairs in both
En! AnyandAny! En directions, and compare gradient similarities between these two. While
prior work has shown thatEn! Anyis harder and less amenable for positive transfer (Arivazhagan
et al., 2019), we �nd that gradients of tasks inEn! Any are indeed less similar than those in
Any! En. On the other hand, while larger batch sizes often improve model quality, we observe
that models trained with smaller batches have less similar loss geometries (Appendix D). These
all indicate that gradient interference poses great challenge to the learning procedure.
To further verify this, we pair En! Fr with different language pairs (e.g. En! Es or En! Hi),
and train a set of models with exactly two language pairs5. We then evaluate their performance
on the En! Fr test set, and compare their BLEU scores versus gradient similarities between
paired two tasks. As shown in Figure 2(b), gradient similarities correlate positively with model
performance, again demonstrating that dissimilar gradients introduce interference and undermine
model quality.

3. Gradient similarities evolve across layers and training steps.While the previous discussion
focuses on the gradient similarity of the whole model averaged over all checkpoints, we now

4Western European includes Romance and Germanic.
5To remove confounding factors, we �x the same sampling strategy for all these models.
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(a) (b)

Figure 2: Comparing gradient similarity versus model performance.(a): Similarity of model gradi-
ents betweenxx-en(left) anden-xx(right) language pairs in a singleAny! Anymodel. (b): BLEU
scores onen-fr of a set of trilingual models versus their gradient similarities. Each model is trained
onen-fr and anotheren-xxlanguage pair.

study it across different layers and training steps. Figure 4(c) shows the evolution of the gradient
similarities throughout the training. Interestingly, we observe diverse patterns for different gradi-
ent subsets. For instance, gradients between En! Fr and En! Hi gradually become less similar
(from positive to negative) in layer 1 of the decoder but more similar (from negative to positive)
in the encoder of the same layer. On the other hand, gradient similarities between En! Fr and
En! Es are always higher than those between En! Fr and En! Hi in the same layer, consistent
with prior observation that gradients re�ect language similarities.
In addition, we evaluate the difference between gradient similarities in the multilingual encoder
and decoder in Figure 4(a). We �nd that the gradients are more similar in the decoder (positive
values) for theAny! En direction but less similar (negative values) for theEn! Any direction.
This is in line with our intuition that gradients should be more consistent when the decoder only
needs to handle one single language. Moreover, we visualize how gradient similarities evolve
across layers in Figure 4(b). We notice that similarity between gradients increase/decrease as we
move up from bottom to top layers for theAny! En/En! Anydirection, and hypothesize that this
is due to the difference in label space (English-only tokens versus tokens from many languages).
These results demonstrate that the dynamics of gradients evolve over model layers and training
time.

Our analysis highlights the important role of loss geometries in multilingual models. With these
points in mind, we next turn to the problem of how to improve multi-task optimization in multilin-
gual models in a systematic way.

3 PROPOSEDMETHOD

Figure 3: Counts of active PCGrad (left) and
GradVac (right) during the training process.

Following our observations that inter-task loss ge-
ometries correlate well with language similarities
and model quality, a natural question to ask next
is how we can take advantage of such gradient dy-
namics and design optimization procedures superior
to the standard monolithic practice. Since we train
large-scale models on real-world dataset consisting
of billions of words, of which tasks are highly unbal-
anced and exhibit complex interactions, we propose
an effective approach that not only exploits inter-task
structures but also is applicable to unbalanced tasks
and noisy data. To motivate our method, we �rst review a state-of-the-art multi-task learning method
and show how the observation in Section 2 helps us to identify its limitation.

3.1 GRADIENT SURGERY

An existing line of work (Chen et al., 2018b; Sener & Koltun, 2018; Yu et al., 2020) has success-
fully utilized gradient-based techniques to improve multi-task models. Notably, Yu et al. (2020)
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