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Abstract

Conventional representation learning methods learn a universal representation that
primarily captures dominant semantics, which may not always align with cus-
tomized downstream tasks. For instance, in animal habitat analysis, researchers
prioritize scene-related features, whereas universal embeddings emphasize categor-
ical semantics, leading to suboptimal results. As a solution, existing approaches
resort to supervised fine-tuning, which however incurs high computational and
annotation costs. In this paper, we propose Conditional Representation Learning
(CRL), aiming to extract representations tailored to arbitrary user-specified criteria.
Specifically, we reveal that the semantics of a space are determined by its basis,
thereby enabling a set of descriptive words to approximate the basis for a cus-
tomized feature space. Building upon this insight, given a user-specified criterion,
CRL first employs a large language model (LLM) to generate descriptive texts to
construct the semantic basis, then projects the image representation into this condi-
tional feature space leveraging a vision-language model (VLM). The conditional
representation better captures semantics for the specific criterion, which could be
utilized for multiple customized tasks. Extensive experiments on classification and
retrieval tasks demonstrate the superiority and generality of the proposed CRL. The
code is available at XLearning-SCU/2025-NeurIPS-CRL.

1 Introduction

Representation learning aims at extracting meaningful patterns from raw data to create representations
that are easier to understand and process. Its impact spans a wide range of downstream tasks, such as
classification and retrieval. In classification, representation learning enhances the discrimination and
linear separability of features, significantly improving performance across diverse data modalities,
including images [29], text [41], and video [59]. Similarly, in retrieval tasks, representation learning
underpins efficient and accurate query-to-item matching, as evidenced by developments in image
retrieval [18] and cross-modal retrieval [50]. In recent years, driven by self-supervision techniques
such as contrastive learning [6, 23, 19, 7, 71] and mask prediction [9, 22, 73, 61], representation learn-
ing methods have undergone rapid advancements, leading to substantial performance improvements
across various fields, including graph [42], point-cloud [64], and skeleton [65].

Though remarkable progress has been made, a crucial yet often overlooked question remains: What
underlying criterion governs the learned representation? In fact, most existing representation
learning methods inherently impose an implicit criterion. Previous research [56] has demonstrated
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that representations learned by existing approaches exhibit a strong bias toward a single dominant
aspect, typically “shape” or “category”—as these are the most salient features in many datasets.
This inherent bias causes models to prioritize specific attributes while disregarding other potentially
informative features, such as “texture” and “color”. Consequently, the resulting universal embed-
dings predominantly capture a single prominent criterion, leading to sub-optimal performance in
downstream tasks that rely on alternative perspectives. As illustrated in Fig. 1, existing methods
primarily identify the elephant “category”, which is insufficient for customized tasks like population
monitoring or habitat analysis. In comparison, our CRL could adaptively capture “count” and “scene”
semantics, demonstrating broader generality. This narrow focus ultimately constrains the generaliza-
tion capability of representation learning methods, underscoring the need for more adaptable and
criterion-aware approaches.

Figure 1: Existing conventional representation
learning learns a universal representation that pri-
oritizes the dominant semantics while overlooking
other meaningful features, limiting their adaptabil-
ity to customized tasks. In contrast, our proposed
conditional representation learning (CRL) extracts
representations conditioned on specific criteria, en-
hancing its applicability.

To transform the image representation to align
with specific criteria, a straightforward approach
would be supervised fine-tuning [16, 35], where
models are retrained using labeled data that ad-
here to the given criterion. However, such a
paradigm is not always practical due to the sub-
stantial annotation effort required. In the un-
supervised scenario, where only images and
a user-specified criterion are provided, a fea-
sible solution is to query visual question answer-
ing (VQA) models [52, 69, 31] to extract rele-
vant attributes from each image. However, this
approach is computationally expensive and re-
quires additional representation learning steps
for the generated textual responses. With these
considerations, an efficient way of learning the
criterion-oriented image representation is highly
expected.

In recent years, researchers have also been ex-
ploring computationally efficient approaches
to learning useful representations. Goal-
conditioned works [46, 43] target learning rep-
resentations that meet the required outcomes or
goal states. An area that is more closely related
to our work is task-conditioned works [70, 2],
which aim to learns representations that reveal
the underlying correlations among different tasks. For example, taskonomy [70] computes the optimal
transfer learning paths among tasks (point matching, reshading, etc.) to minimize the amount of
required annotation. While there are certain commonalities between these works and ours, they
haven’t investigated the relationship between criteria and representations.

In this paper, we introduce Conditional Representation Learning (CRL), a novel approach that
adapts the image representation to any user-specified criterion. Unlike conventional representation
learning methods, which primarily focus on general-purpose feature extraction, CRL constructs
a customized feature space by leveraging the concept of basis transformation. The key insight
behind CRL is that the semantics of a feature space are determined by its basis. For example, in a
three-dimensional Cartesian coordinate system, the x, y, and z unit vectors define the space, allowing
for the decomposition of any vector. Similarly, in color theory, red, green, and blue serve as the
basis for the trichromatic color space, enabling the synthesis of all perceivable hues. Extending this
idea to high-dimensional semantic representations, a well-chosen set of descriptive words can form
a basis for a customized feature space, which captures specific semantic properties aligned with
a user-defined criterion. Building on this perspective, CRL formulates conditional representation
learning as a basis transformation process. Given a user-specified criterion, we first employ a large
language model (LLM) to generate a set of descriptive texts that serve as a semantic basis, spanning
the relevant feature space. We then utilize a vision-language model (VLM) to encode both the
generated texts and the images, obtaining their representations respectively. Finally, we project the
image representation into the conditional feature space with the textual representation acting as a
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basis. The transformed conditional representation would be more expressive under the specified
criterion, which could be utilized for downstream tasks that require customized semantics.

The major contributions of this paper could be summarized as follows:

• Different from conventional representation learning that primarily captures a single dominant
semantics, we propose conditional representation learning (CRL), which enables learning
representations tailored to arbitrary user-specified criteria.

• We formulate CRL as a basis transformation process, offering a computationally efficient
and highly generalizable solution. It eliminates the reliance on supervised fine-tuning while
substantially improving the applicability and interpretability of the learned representation.

• Extensive experiments validate the effectiveness and generality of CRL in customized
classification and retrieval, showcasing its superiority in seamlessly adapting to varying
criteria and tasks.

2 Related Work

2.1 Representaion Learning

Representation learning aims to extract informative features from raw data, facilitating downstream
tasks like classification and retrieval. As a classic method, autoencoder [24] learns compact repre-
sentations through unsupervised reconstruction. Building upon it, denoising autoencoders [58] and
variational autoencoders [27] have been proposed to enhance the robustness and structure of the
learned latent representations. In the past few years, the field has further evolved with self-supervised
learning techniques, which encourage models to learn semantical features by addressing pretext tasks
such as patch and rotation prediction [10, 17], solving jigsaw puzzles [44], and colorization [72]. A
notable advancement in this direction is contrastive learning, exemplified by methods like SimCLR [6]
and MoCo [23], which leverage instance discrimination to learn discriminative representations. More
recently, the emergence of large language models (LLMs) such as GPT [5] and vision-language
models (VLMs) like CLIP [48] has introduced a more interpretable approach for representation
learning. A series of works [74, 15, 47, 38, 21] have then researched using CLIP to improve zero-shot
or few-shot image classification performance. By analyzing the Vision Transformer [13] architecture
of CLIP, studies such as Text-Span [14] have shed light on the underlying semantics captured by
individual attention heads. Leveraging the strengths of LLMs and VLMs, approaches like VCD [40],
LaBo [66] and LM4CV [63] have demonstrated that interpretable representation learning can achieve
performance on par with black-box methods in downstream image classification.

Despite significant progress, most existing representation learning approaches remain centered on a
single criterion, typically “category” or “shape”, while overlooking other meaningful semantic di-
mensions. This narrow focus limits the generalizability of learned representations, often necessitating
extensive supervised fine-tuning when adapting to tasks that depend on alternative semantic cues. To
address this limitation, we advocate for a paradigm shift from universal to conditional representation
learning, an underexplored yet promising direction. Specifically, our approach first constructs a
semantic basis composed of descriptive texts aligned with a user-specified criterion. Leveraging this
customized basis, we transform the image representation to enable conditional adaptation, enhancing
the flexibility and applicability of learned features without additional laborious fine-tuning.

2.2 Conditional Similarity

Conditional similarity refers to the similarity between samples based on specific criteria. This
concept was first formalized by CSN [57], which learns multiple feature spaces to enable customized
fashion item retrieval under different criteria. With the advent of representation learning, a series of
tailored fashion retrieval approaches have been developed [39, 11, 12], significantly improving the
retrieval performance. Recently, the idea of conditional similarity has gained traction in the clustering
domain [37]. Driven by the powerful language processing capabilities of large-scale pre-trained
models, IC|TC [28] pioneers the concept of customized clustering by directly querying VLMs and
LLMs to obtain clustering results based on specific criteria. However, this approach incurs high
computational costs. To address this limitation, Multi-Map [68] introduces a more cost-efficient
alternative, injecting customized semantics from VLM and the LLM to guide the clustering process.
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Despite the success of existing methods, they are all delicately designed for specific tasks, limiting
their generalization ability to other domains. In contrast, we propose CRL, a simple yet effective
method for learning general conditional representation, which could seamlessly adapt to diverse
customized tasks.

3 Method

This section details the proposed Conditional Representation Learning (CRL) framework, which
consists of basis construction and representation transformation. As depicted in Fig. 2, given
a user-specified criterion, CRL first constructs a customized basis by querying an LLM about
descriptive words. Subsequently, CRL computes the conditional image representation through a basis
transformation operation.

3.1 Basis Construction

Mathematically, a basis refers to a set of linearly independent vectors2 that span the entire space. For
example, in the three-dimensional Cartesian coordinate system, vectors (1, 0, 0), (0, 1, 0), and (0,
0, 1), which denote the x, y, and z axes, form a basis since any vector in the space can be expressed
as a linear combination of these three vectors. Analogously, in the trichromatic color space, “red”,
“green”, and “blue” form a basis as they could compose all possible hues. From a broader view, a set
of descriptive words related to the user-specified criterion, that spans the customized feature space,
intrinsically acts as the basis as well.

To construct the basis under the specific criterion C, we query an LLM to generate the related
descriptive texts W via

W = LLM(P1, C), (1)

where P1 denotes the LLM prompt template. As a general solution, we use the following prompt for
all customized tasks:

Generate common expressions to describe the C, as many as possible.

where C is replaced with the user-specified criterion words such as “color”, “shape”, “texture”,
etc. Notably, we incorporate additional instructions to encourage the LLM to produce formatted,
comprehensive texts and avoid repetitions, which are detailed in the Appendix.

Given the prompted query, the LLM would generate texts W semantically correlated with the
user-specified criterion, transforming the abstract criterion into a concrete textual basis. Once the
descriptive texts W are obtained, we feed them into a VLM text encoder VLMtext to compute their
normalized representation T via

T = VLMtext(P2, C,W ), (2)

where P2 denotes the VLM prompt constructed as follows:

Objects with the C of W .

It is worth noting that, when prior knowledge about the dataset is available, the word “Objects” could
be replaced by more specific descriptions. The complete prompts used for all customized tasks in this
paper, as well as the LLM responses, are attached in the Appendix.

As previously discussed, the text representation T could act as the basis spanning the customized
feature space. Remarkably, compared with the basis of the classic universal feature space, the
constructed basis T enjoys superior interpretability where each dimension has an explicit physical
meaning.

3.2 Representation Transformation

After acquiring the text basis, we leverage it to transform the universal representation into the
conditional representation, by projecting data into the constructed customized feature space.

2In this paper, we relax the linear independence requirement and allow redundancy in the constructed basis.
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Figure 2: The overall framework of the proposed CRL. Given images and a user-specified criterion
(e.g., “color”), CRL first queries an LLM to generate descriptive texts semantically related to the
criterion (e.g., “red”, “green” and “blue”). Then, CRL encodes the generated texts and original images
through a VLM. Subsequently, CRL projects the original image representation (e.g., dominated by
“shape”) into the conditional feature space spanned by the textual representation. The transformed
conditional representation would be more expressive under the specified criterion and enjoy superior
interpretability, facilitating customized downstream tasks.

To be specific, we first feed the images X into the VLM image encoder VLMimage to obtain their
normalized representation I via

I = VLMimage(X). (3)

Subsequently, we transform the image representation by projecting it to the customized space spanned
by text basis T, namely,

R = IT⊤, (4)
where R denotes the transformed conditional representation. The validity of this transformation
exploits the alignment between image and text modalities in the VLM’s feature space. The conditional
representation R emphasizes the attributes related to the user-specified criterion, and thus is more
favorable in customized tasks.

The complete process of our CRL is outlined in Algorithm 1. To deliver a more intuitive understanding
of CRL’s working mechanism and underlying rationale, we provide an example about learning a
color-conditioned representation as illustrated in Fig. 2.

Consider the customized clustering task, which aims at grouping images based on their colors.
The original image representation is dominated by the most significant shape information, which
is suboptimal for color-based grouping. To build a customized feature space focusing on colors,
we first query an LLM about the common colors. Supposing the LLM outputs descriptive texts
W = {“red", “green", “blue"}, we calculate the text basis as

T = [t⊤1 , t
⊤
2 , t

⊤
3 ]

⊤, (5)

where {t1, t2, t3} denote the rows of T, corresponding to the representations of “red", “green", and
“blue".

Then we project the k-th original image representation ik to conditional representation rk via

rk = ikT
⊤ = [ik · t1, ik · t2, ik · t3]. (6)

As shown in Eq. (6), the transformed conditional representation of the k-th image refers to the
projection of its original representation onto the text basis T. Consequently, the three elements of
rk correspond to its degree of “red", “green", and “blue", respectively. In other words, rk is more
expressive than ik under the “color” criterion, leading to superior performance on the customized
clustering task.

4 Experiments

To assess the conditional representation learning performance of the proposed CRL, we apply it to
two classic downstream tasks, including classification and retrieval. Notably, different from standard
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Algorithm 1 Conditional Representation Learning (CRL)

Input: Criterion C, LLM Prompt P1, VLM Prompt P2, Images X
Output: Transformed Conditional Representation R
1: Query an LLM to generate the descriptive texts W related to the user-specified criterion C via

Eq.(1).
2: Compute the text basis T via Eq.(2).
3: Compute the original universal image representation I via Eq.(3).
4: Transform I into conditional representation R via Eq.(4), which could be then utilized for various

customized tasks.

Figure 3: A customized classification example of classifying poker cards based on the criteria of
“suit” and “number”, respectively.

representation learning, CRL focuses on learning conditional representation, and thus the downstream
classification and retrieval are based on various customized criteria. After that, parameter analysis is
conducted to investigate the robustness of CRL.

4.1 Customized Classification

As shown in Fig. 3, customized classification aims to classify samples into different semantic
categories under the specific criterion, which includes two subtasks, i.e., supervised few-shot learning
and unsupervised clustering.

4.1.1 Customized Few-shot Learning

Dataset. For this task, we utilize Clevr4-10k [56] and Cards [67] as benchmark datasets. Clevr4-10k
is a synthetic dataset consisting of 10, 531 samples and 4 distinct data partition criteria, categorized
by “shape”, “texture”, “color”, and “count”, respectively. Cards is a poker card dataset comprising
8, 029 samples, organized according to 2 criteria, i.e., “number” and “suit”.

Setup. For fair comparisons, we adopt the logistic regression function from the scikit-learn pack-
age [45] to perform few-shot learning, under the number of shots 1, 5, 10 per class, respectively. To
alleviate the influence of randomness, we stochastically select the training data 20 times for each shot
and report the mean result. As for the backbone, we adopt ViT-B/32 pre-trained on CLIP, keeping the
same with Section 4.1.2.

Metric. For the task of customized few-shot learning, we adopt accuracy (ACC) as the evaluation
metric.

Baseline. We conduct comparisons between proposed CRL and image representations of CLIP [48],
ALIGN [25] and MetaCLIP [62] across six semantic criteria.

Performance. As illustrated in Table. 1, CRL achieves a noticeable improvement over CLIP,
ALIGN and MetaCLIP across most experimental settings, with a mean accuracy gain of nearly 10%.
Particularly, CRL gains significant improvements when the target criterion differs substantially from
the originally dominant one, such as ‘color’ (nearly +40% at 1-shot). The consistent performance
advantage indicates that CRL’s representation exhibits a better generality under multiple criteria.
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Table 1: Performance on the task of customized few-shot learning.

Clevr4-10k

Method Texture Shape Color Mean

1 5 10 1 5 10 1 5 10

CLIP [48] 17.46 29.39 36.26 58.16 83.17 89.47 26.85 57.33 70.00 52.01
ALIGN [25] 18.80 34.35 45.22 73.40 91.82 95.02 20.08 41.89 56.45 53.00

MetaCLIP [62] 17.68 30.96 39.03 70.13 91.69 95.47 22.37 46.71 61.74 52.86
BLIP2 [30] 15.93 25.23 32.58 72.91 95.18 97.88 28.96 60.53 73.25 55.83

CLIP+CRL 18.76 35.54 45.54 58.67 86.61 92.29 65.28 88.89 93.08 64.96
ALIGN+CRL 20.91 41.77 54.92 63.05 92.74 96.25 60.26 87.38 92.56 67.76

MetaCLIP+CRL 18.14 34.89 44.69 66.36 92.01 95.50 62.41 88.45 92.50 66.11
BLIP2+CRL 16.35 34.67 47.28 73.22 95.12 97.90 63.75 86.16 92.13 67.40

Clevr4-10k Cards

Method Count Number Suits Mean

1 5 10 1 5 10 1 5 10

CLIP [48] 17.50 23.43 25.45 20.63 33.73 41.84 37.65 56.36 65.98 35.84
ALIGN [25] 14.64 21.63 25.16 16.97 24.70 29.15 34.67 52.75 61.78 31.27

MetaCLIP [62] 16.61 22.64 24.92 37.47 55.03 65.16 20.71 35.16 42.97 35.63
BLIP2 [30] 16.92 25.63 29.38 27.21 45.54 55.94 44.61 70.14 78.16 43.73

CLIP+CRL 23.38 29.59 32.40 17.66 44.52 51.09 37.10 67.16 72.64 41.73
ALIGN+CRL 18.16 32.62 36.80 17.39 30.61 35.93 42.13 76.36 80.11 41.12

MetaCLIP+CRL 17.36 26.29 29.93 42.32 71.88 77.32 25.30 50.53 56.90 44.20
BLIP2+CRL 23.06 34.86 39.07 23.47 61.19 70.05 49.57 80.44 84.06 51.75

Table 2: Performance on the task of customized clustering.

Clevr4-10k

Method Texture Shape Color Mean

NMI ACC ARI NMI ACC ARI NMI ACC ARI

CC [32] 0.16 11.34 0.00 94.66 96.89 93.90 16.54 11.42 0.07 36.11
SCAN [54] 0.41 11.97 0.86 90.99 89.10 84.03 0.20 11.51 0.01 32.12

Multi-Map [68] 3.77 17.25 1.81 67.48 66.01 57.40 56.83 56.46 45.73 41.42
CLIP [48] 1.11 13.09 0.41 74.22 73.19 64.15 0.83 12.23 0.27 26.61

ALIGN [25] 1.36 13.30 0.41 89.33 86.77 83.37 0.47 11.79 0.10 31.88
MetaCLIP [62] 1.44 12.75 0.42 80.54 77.17 71.58 0.32 11.85 0.06 28.46

BLIP2 [30] 0.79 12.32 0.28 86.98 85.68 81.17 0.99 11.92 0.24 31.15

CLIP+CRL 10.74 25.11 6.35 78.69 83.05 72.42 88.67 88.05 82.30 59.49
ALIGN+CRL 15.08 26.08 9.18 88.27 87.63 81.83 85.07 76.15 72.69 60.22

MetaCLIP+CRL 12.74 25.89 7.28 87.32 88.15 82.98 88.35 86.27 81.08 62.23
BLIP2+CRL 6.46 18.77 3.37 90.11 88.91 84.52 84.67 81.97 74.85 59.29

Clevr4-10k Cards

Method Count Number Suits Mean

NMI ACC ARI NMI ACC ARI NMI ACC ARI

CC [32] 2.08 14.67 1.09 24.91 26.34 12.30 24.94 39.21 16.87 18.05
SCAN [54] 3.42 14.29 1.23 11.11 18.21 17.60 15.01 32.02 9.48 13.60

Multi-Map [68] 11.38 20.13 7.67 16.32 20.61 7.95 14.02 46.65 11.08 17.31
CLIP [48] 9.50 19.02 5.70 16.84 18.91 8.44 16.52 43.74 12.93 16.84

ALIGN [25] 0.63 12.50 0.19 14.86 17.51 6.47 3.49 31.72 2.31 9.96
MetaCLIP [62] 7.62 17.27 3.97 17.39 19.78 9.04 15.48 38.72 13.11 15.82

BLIP2 [30] 6.11 16.36 3.13 24.34 25.25 13.08 31.26 47.04 22.25 20.98

CLIP+CRL 25.57 26.24 12.54 24.79 28.19 12.14 39.71 67.15 37.59 30.44
ALIGN+CRL 22.78 26.59 12.18 20.12 25.32 10.24 42.94 50.79 34.47 27.27

MetaCLIP+CRL 12.22 20.80 6.18 39.07 41.63 24.37 45.19 58.71 36.97 31.68
BLIP2+CRL 28.55 30.92 16.28 46.55 48.35 32.31 60.86 76.07 55.94 43.98

4.1.2 Customized Clustering

Dataset. We continue to perform experiments on Clevr4-10k and Cards datasets for the task of
customized clustering.

Setup. We directly conduct k-means on the representations obtained by CRL to get the clustering.
Keeping the same as the customized few-shot learning, we also perform k-means 20 times and report
the average clustering result. As for the backbone, we follow the previous method [68], adopting
ViT-B/32 pre-trained on CLIP.

Metric. Three widely used clustering metrics, namely Normalized Mutual Information (NMI),
Accuracy (ACC), and Adjusted Rand Index (ARI), are used for evaluation. Higher scores indicate
better clustering results.
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(a) Focus on an object (b) Change an object

Figure 4: Two settings of the customized similarity retrieval task.

Table 3: Performance on the task of customized similarity retrieval. The symbol ∗ means using the
fine-tuned CLIP model weights.

Method
Focus Change

Mean
R@1 R@2 R@3 R@1 R@2 R@3

CLIPimage 9.4 17.0 25.4 7.6 17.1 25.5 17.0
CLIPtext 7.4 14.0 23.0 8.1 16.4 24.7 15.6

CLIPimage+text 11.5 20.1 29.2 9.8 20.0 28.9 19.9
Pic2Word [49] 9.9 19.3 27.4 8.6 18.2 26.1 18.3
SEARLE [4] 10.8 18.2 27.9 8.3 15.6 25.8 17.8
LinCIR [20] 10.1 19.1 28.1 7.9 16.3 25.7 17.9

CIG [60] 10.6 19.2 27.4 7.9 16.9 25.4 17.9
CLIP+CRL 15.4 26.7 35.8 17.0 27.8 37.8 26.8

Combiner∗ [55] 16.6 27.7 37.2 18.0 32.2 41.6 28.9
CLIP+CRL∗ 19.7 32.7 41.3 21.0 35.9 44.8 32.6

Baseline. We first compare CRL with two traditional clustering methods, CC [32] and SCAN [54].
Furthermore, we incorporate Multi-Map [68], a customized clustering approach that leverages the
CLIP model, into the comparison. Additionally, we report the performance of k-means clustering
applied to the image representation of CLIP, ALIGN and MetaCLIP, to provide an intuitive baseline
analysis.

Performance.As shown in Table. 2, CRL gains consistent performance improvement compared with
the original CLIP, ALIGN and MetaCLIP. In particular, CRL obtains an ACC boost of CLIP over
75% on the color criterion. This improvement can be better visualized by T-SNE [53], as shown in the
Appendix. Though traditional clustering methods exhibit some superiority on the “shape” criterion,
CRL achieves consistently better results on other criteria. This implies that traditional clustering
methods have a strong bias towards a single criterion, yet lack the flexibility and capability to cluster
data based on other meaningful criteria.

4.2 Customized Retrieval

For customized retrieval, we also conduct experiments on its two subtasks, namely, customized
similarity retrieval and customized fashion retrieval. Given a query image and a condition object,
customized similarity retrieval aims to retrieve the most conditionally similar image from candidates,
as illustrated in Fig. 4. As shown in Fig. 5, customized fashion retrieval searches all candidate images
of fashion items, which share the same value as the query image under the specific criterion.

4.2.1 Customized Similarity Retrieval

Dataset. We adopt GeneCIS[55] as the benchmark for this task, which comprises two settings. As
shown in Fig. 4, (a) “Focus” setting aims to retrieve the candidate that contains both the same scene
(e.g., living room) and the condition object (e.g., table) as the query image. (b) In contrast, the
“Change" setting requires the target image to maintain the same scene (e.g., railway) as the query
image while including the condition object (e.g., tree) that is absent in the query image.

Setup. This benchmark involves two factors, namely, object (text condition) and scene (query image).
To employ CRL, we ask the LLM for the common scenes, obtaining the conditional representation of
the query and candidate images. Then we calculate and sum the similarities of these two factors for
retrieval. This operation is detailed in the Appendix. Additionally, we use ViT-B/16 pre-trained on
CLIP as the backbone, following the previous work [55].

Metric. The recall rates R@1, R@2, and R@3 serve as the evaluation metrics for this task. Higher
recall rates imply better retrieval results.
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Figure 5: An example of the customized fashion retrieval task. Given a criterion, it searches all the
candidate images that share the same value as the query image.

Table 4: Performance on the task of customized fashion retrieval. The symbol † signifies that no
training is conducted.

Method Texture Fabric Shape Part Style Mean

Random 6.69 2.69 3.23 2.55 1.97 3.38
Triplet [57] 13.26 6.28 9.49 4.43 3.33 7.36
CSN [57] 14.09 6.39 11.07 5.13 3.49 8.01

ASEN [39] 15.13 7.11 12.39 5.51 3.56 8.74
ASEN++ [11] 15.60 7.67 14.31 6.60 4.07 9.64

RPF [12] 15.62 8.30 15.02 7.38 4.77 10.22
CLIP [48] 9.14 4.68 7.86 4.26 4.48 6.08

CLIP+CRL† 11.03 6.76 11.80 5.56 4.42 7.93
CLIP+CRL 16.88 9.31 16.98 7.54 5.95 11.33

Baseline. Following [55], we first provide three simple CLIP-only baselines, namely CLIPimage,
CLIPtext and CLIPimage+text, detailed in the Appendix. In addition, we include five retrieval baselines
Pic2Word [49], SEARLE [4], LinCIR [20], CIG [60] and Combiner [55] for benchmarking. Notably,
Combiner leverages the external dataset CC3M [51] to fine-tune the CLIP model. Thus we evaluate
the performance of CRL under two scenarios: using the original CLIP weights and using the weights
fine-tuned by Combiner.

Performance. As can be observed from Table. 3, CRL demonstrates substantial improvements over
the original CLIP baselines, achieving a notable gain of 6.9% in the mean recall. When leveraging
fine-tuned CLIP weights, CRL further extends its advantage, surpassing Combiner by 3.7% in mean
recall, simultaneously maintaining consistent performance gains across all metrics.

4.2.2 Customized Fashion Retrieval

Dataset. Following previous works [39], we use the category and attribute prediction benchmark of
DeepFashion [36] as the evaluation dataset for this task, which consists of 221k / 27k / 27k images
for training / validating / testing. This benchmark has 5 criteria, namely, “texture”, “fabric”, “shape”,
“part” and “style”, with 156, 218, 180, 216, and 230 values, detailed in the Appendix.

Setup. We first obtain the embeddings by CRL in a training-free manner. After that, we seamlessly
append a two-layer MLP to the embeddings, subsequently training this MLP and the backbone. The
training process is detailed in the Appendix. In addition, following previous works, ViT-B/16 is
adopted as the backbone for this task.

Metric. Following existing works, we use the Mean Average Precision (MAP) as the evaluation
metric for the customized fashion retrieval task. Higher MAP values indicate better retrieval results.

Baseline. We first add a Random baseline, which randomly sorts all the candidate images. Moreover,
we provide a Triplet baseline, which uses the standard triplet ranking loss [57] to train a joint
embedding space. Further, we compare CRL with 5 state-of-the-art fashion retrieval methods,
including Triplet [57], CSN [57], ASEN [39], ASEN++ [11] and RPF [12]. Besides, we also provide
a CLIP baseline that embeds all the images with the image encoder.

Performance. As shown in Table 4, CRL achieves notable improvements over the CLIP baseline in a
training-free manner, with a relative mean MAP gain of 30%.

Once the training is completed, CRL establishes new state-of-the-art performance, surpassing the
best competitive method RPF by 10% relativelty in mean MAP. These results further validate CRL’s
effectiveness in customized tasks and its compatibility with model fine-tuning strategies.
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Figure 6: Performance with different numbers of texts.

4.3 Analysis on Textual Basis

To prove the robustness of CRL, we examine CRL’s performance based on the CLIP model for the
above-mentioned four customized tasks under varying levels of textual basis. To be specific, we
explicitly control the number of generated descriptive texts and report the mean value of each task
here, while the complete results can be seen in the Appendix. As Fig. 6 shows, CRL achieves stable
performance for different numbers of texts except when the number is too small. In other words,
CRL is a robust method for various tasks, as long as there is a reasonable number of descriptive texts
to establish the semantical basis for the customized space. More ablation studies can be found in the
Appendix.

5 Limitation

Based on our observations and experiments, we found that our method suffers from two main
limitations. Firstly, despite its generalizability across different criteria, it may not outperform
clustering methods like CC and SCAN under the universal criterion "shape". This is likely because
these methods employ specially targeted designs for clustering under this criterion. Anyway, we
acknowledge that CRL is not optimal on the universal criterion. Secondly, our method only roughly
approximates the basis. We’ve tried various strategies to filter the texts generated by the LLM,
but none have proven to be effective across all criteria. Nevertheless, we are confident that better
strategies could be devised to acquire the text basis.

6 Conclusion

In this paper, we identify a fundamental limitation of existing representation learning methods: they
predominantly derive universal embeddings that capture the most salient semantic features, making
them suboptimal for customized tasks that prioritize non-dominant semantics. To address this, we
propose CRL, a simple yet effective conditional representation learning method that adapts the univer-
sal representation to specific criteria through a basis transformation process. In brief, CRL utilizes a
large language model (LLM) and a vision-language model (VLM) to generate textual descriptors that
are semantically aligned with the user-specified criterion. These descriptors form an interpretable text
basis, guiding the transformation of the image representation to enhance its expressiveness under the
given criterion. Extensive experiments validate the effectiveness and generality of CRL across diverse
tasks and criteria. By shifting the focus toward conditional representation learning, an underexplored
yet promising paradigm, we hope this work could spark new insights and foster further research in
this direction.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in the Experiment section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully discloses all the information needed to reproduce the main
experimental results of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The data used in the paper is available to everyone. We are now organizing our
code and will release it soon.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies all the training and test details necessary to understand the
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: It would be too computationally expensive for us since extensive experiments
were conducted and we don’t have enough computational resources.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All experiments were conducted on a single Nvidia RTX 3090 GPU.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics
in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Proper citations are provided throughout the document and the licenses will be
included with the code when it is released.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We provide the complete prompts and the usage of the LLMs for the all
customized tasks in the Appendix.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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Appendix

In the Appendix, we provide supplementary information on the four customized tasks that are briefly
introduced in the main paper. The Appendix is organized according to these four tasks, with each
section dedicated to elaborating on one specific task. In the end, we provide ablation experiments for
different LLMs, temperatures, and prompts of the LLM and VLM.

A Customized Few-shot Learning

A.1 Dataset Description

We adopt Clevr-4 [56] and Cards [67] as benchmark datasets for this task. Based on the CLEVR
dataset [26], Clevr-4 is a synthetic benchmark that introduces four distinct yet equally valid groupings
of the data, namely, “texture”, “shape”, “color” and “count”. It employs computer graphics tools to
generate images featuring multiple objects positioned within fixed scenes, as shown in Fig. 7. As for
Cards, it contains 8,029 images of poker cards, categorized along two independent dimensions: card
number (such as Ace, King, Queen) and suit type (clubs, diamonds, hearts, spades).

Figure 7: Three examples of clevr4 dataset.

A.2 Prompt and Response

For the task of customized few-shot learning, we take the criterion of “Color" as an example.

A.2.1 LLM Prompt

Please generate common expressions to describe the color, as many as
possible, formatted as: ["...", "...", "..."]. Ensure all items
are unique and written in a single line, without any nested lists or
additional formatting. You may describe the same color in different ways,
such as "red", "crimson", or "scarlet". Only generate the list, and do
not include any additional information.

where the underlined part corresponds to some example synonyms to encourage diversity in the
generated descriptive texts.

In addition, to control the number of the generated texts by the GPT-4, we modify the prompt as
follows:

Please generate 100 expressions to describe the color, formatted as:
["...", "...", "..."]. Ensure all items are unique and written in a
single line, without any nested lists or additional formatting. You may
describe the same color in different ways, such as "red", "crimson", or
"scarlet". Only generate the list, and do not include any additional
information.

Due to the output length limitation of the LLM, we need to repeat the inquiry several times until
obtaining the specific number of generated texts. Since this modification is very slight, we only
present it here once for clarity.
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A.2.2 LLM Response

["red", "crimson", "scarlet", "ruby", "cherry", "rose", "burgundy", "cardinal", "wine",

"firetruck red", "ferrari red", "carmine", "sangria", "apple red", "poppy", "raspberry",

"pink", "blush", "fuchsia", "magenta", "hot pink", "baby pink", "coral", "peach", "apricot",

"salmon", "light pink", "powder pink", "lavender", "violet", "indigo", "purple", "amethyst",

"grape", "orchid", "eggplant", "plum", "lilac", "mauve", "periwinkle", "blue", "navy", "azure",

"sky blue", "cobalt", "cerulean", "sapphire", "electric blue", "royal blue", "baby blue",

"powder blue", "teal", "turquoise", "aqua", "seafoam", "green", "emerald", "forest green",

"mint", "lime", "olive", "kelly green", "sage", "pea green", "jade", "chartreuse", "yellow",

"gold", "lemon", "butter", "canary", "mustard", "sunflower", "cream", "ivory", "beige", "tan",

"coffee", "chocolate", "brown", "copper", "rust", "mahogany", "walnut", "espresso", "gray",

"slate", "charcoal", "pewter", "silver", "platinum", "black", "coal", "ebony", "jet black",

"onyx", "snow", "ivory", "white", "pearl", "bone", "eggshell", "vanilla"]

A.2.3 Ground Truth Label

["gray", "red", "blue", "green", "brown", "purple", "cyan", "yellow", "pink", "orange"]

A.2.4 VLM Prompt

Objects with the color of red.

Objects with the color of green.

Objects with the color of blue.

......

A.3 Experimental Setting

After multiplying the same text basis, the gap between images shrinks. To accelerate the few-shot
learning process, we normalize the transformed conditional representation to have zero mean and
unit variance.

A.4 Performance

As shown in Table 5, CRL achieves stable few-shot learning results under different numbers of
LLM-generated descriptive texts, except when the text number is too small.

B Customized Clustering

B.1 Dataset, Prompt and Response

For the task of customized clustering, we use the same datasets, prompts and LLM responses as the
customized few-shot learning task. Therefore, we omit the repeated descriptions here.

B.2 Improvement Visualization

CRL achieves the representation projection from the original feature space (which is often dominated
by the “shape” criterion) to the conditional feature space, making it more expressive under the
specified criterion. Fig. 8 shows the T-SNE visualizations of the original CLIP representation and
CRL representation, from which one can clearly observe the improvement.

B.3 Performance

CRL maintains consistent clustering performance under different quantities of LLM-generated texts,
as presented in Table 6, with a drop only when the number of texts is very limited.
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Table 5: Customized few-shot learning performance under different numbers of texts.

Clevr4-10k

Text-num Texture Shape Color Mean

1 5 10 1 5 10 1 5 10

10 16.98 25.79 29.68 52.86 71.87 78.59 47.09 70.19 75.75 52.09
20 18.02 30.04 36.25 53.51 75.78 82.79 55.02 83.05 88.02 58.05
50 18.58 34.67 44.01 56.82 82.19 88.57 61.81 86.70 91.57 62.77

100 19.19 36.73 47.11 57.47 84.64 91.13 61.86 87.12 92.20 64.16
200 20.49 39.23 50.08 54.96 84.38 91.48 66.82 89.60 93.68 65.64
300 20.37 39.64 50.82 55.04 84.62 91.34 65.80 88.90 93.28 65.53
400 20.54 39.94 51.14 55.39 84.95 91.57 65.16 88.51 93.07 65.59
500 20.36 39.83 50.98 55.09 84.86 91.59 64.44 88.11 92.83 65.34

Clevr4-10k Cards

Text-num Count Number Suits Mean

1 5 10 1 5 10 1 5 10

10 23.94 30.94 33.31 14.35 31.67 36.61 33.79 50.44 55.25 34.48
20 22.68 29.49 31.68 16.01 39.40 46.85 37.14 56.70 61.75 37.97
50 22.34 29.05 32.01 16.08 40.75 48.95 37.52 62.43 69.25 39.82

100 21.92 28.64 31.58 15.43 39.53 48.99 37.80 63.69 71.04 39.85
200 22.06 28.18 31.16 16.52 41.81 51.63 37.26 66.66 73.89 41.02
300 21.11 27.56 30.71 16.75 42.30 52.95 36.41 66.33 73.86 40.89
400 21.53 28.04 31.01 16.82 42.50 53.68 35.89 65.90 73.36 40.97
500 21.48 28.04 31.06 16.90 43.22 54.24 35.73 65.82 73.56 41.12

(a) CLIP (b) CRL

Figure 8: T-SNE visualizations of the representations obtained by CLIP and CRL, under the “color”
criterion of the Clevr4-10k dataset.

C Customized Similarity Retrieval

For this task, the criterion is “Scene." Below, we present both the prompt used and the corresponding
results generated. It’s worth noting that there are no ground truth labels for this task.

C.1 Dataset Description

In both settings, the candidate images are required to share the same scene as the query image and
satisfy the given object condition. The difference lies in the presence of the object condition in the
query image. In the “Focus on an object” setting, the query image contains the object condition,
while in the ‘Change an object’ setting, the query image doesn’t. In other words, the “Focus” setting
retrieves a positive target, while the “Change” setting searches for a negative target. Both settings
consist of 1, 960 query images sourced from the classical CoCo [33] dataset, with each query image
corresponding to 10-15 candidate images in the gallery.
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Table 6: Customized clustering performance under different numbers of texts.

Clevr4-10k

Text-num Texture Shape Color Mean

NMI ACC ARI NMI ACC ARI NMI ACC ARI

10 12.79 26.37 7.32 67.27 66.68 54.59 55.50 58.23 40.50 43.25
20 13.57 26.40 8.04 67.92 68.86 57.00 76.71 78.74 67.79 51.67
50 11.94 24.25 6.76 74.89 78.64 67.08 85.90 86.11 78.88 57.16

100 10.62 23.29 5.88 77.72 80.61 70.41 85.20 82.92 76.27 56.99
200 13.16 26.49 7.97 75.71 78.78 67.34 88.73 86.68 81.40 58.47
300 12.58 25.46 7.39 74.78 76.28 66.18 88.06 86.40 80.58 57.52
400 11.90 24.91 7.12 74.79 78.58 67.19 87.92 85.07 80.33 57.53
500 11.13 24.44 6.64 74.13 77.62 66.58 87.66 86.61 80.51 57.26

Clevr4-10k Cards

Text-num Count Number Suits Mean

NMI ACC ARI NMI ACC ARI NMI ACC ARI

10 27.14 32.08 15.30 22.50 26.72 10.54 4.61 33.72 4.18 19.64
20 25.03 27.83 12.62 18.35 22.88 9.02 24.21 50.01 19.44 23.27
50 21.33 26.13 11.57 17.86 23.03 9.47 27.14 56.68 23.78 24.11

100 21.90 25.64 11.31 16.51 21.61 8.25 27.67 57.03 24.64 23.84
200 20.41 24.51 10.19 17.70 22.72 8.90 29.84 53.96 26.86 23.90
300 15.79 22.59 7.80 16.95 22.00 8.23 28.48 53.62 25.60 22.34
400 17.58 23.71 8.66 15.79 20.47 7.57 28.35 53.17 25.26 22.28
500 17.33 23.38 8.58 15.89 20.65 7.61 28.69 53.62 25.65 22.38

(a) Focus on an object

(b) Change an object

Figure 9: Two settings of the customized similarity retrieval task.

C.2 Prompt and Response

C.2.1 LLM Prompt

Please generate common expressions to describe the scene, as many as
possible, formatted as: ["...", "...", "...", "..."]. Ensure all
items are unique and written in a single line, without any nested
lists or additional formatting. You may describe the same scene in
different ways, such as "a cozy living room", "a snug lounge", or
"a warm and inviting sitting area". Only generate the list, and do not
include any additional information.

C.2.2 LLM Response

["a spacious living room", "a cozy lounge", "a snug sitting area", "a well-lit kitchen", "a

modern dining room", "a stylish bedroom", "an airy home office", "a rustic cabin interior",

"a minimalistic studio apartment", "a vibrant indoor garden", "a home library", "a charming

balcony", "a serene patio", "a lush backyard", "a sunlit garden", "a peaceful park", "a scenic

mountain view", "a bustling city street", "a quiet suburban street", "a sunny beach", "a
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serene lakeside view", "a dense forest", "a tranquil meadow", "a wild desert landscape",

"a foggy morning in the woods", "a snowy winter scene", "a lively outdoor market", "a cozy

backyard barbecue", "a sun-drenched terrace", "a secluded countryside lane", "a colorful

street art scene", "a tropical rainforest", "a modern rooftop terrace", "an open-air café",

"a bright sunny veranda", "a quiet riverbank", "a sunny playground", "a rugged coastline", "a

picturesque vineyard", "a lively park", "a quiet pond", "a bustling urban square", "a scenic

hillside view", "a charming street corner", "an expansive field of flowers", "a peaceful

picnic spot", "a lively street festival", "a serene walking path", "a bustling town square",

"a remote mountain pass", "a tranquil beachfront cabin", "a sunny picnic area", "a dense

jungle trail", "a charming country road", "a misty hilltop view", "a windy coastal cliff", "a

lush tropical beach", "an open farm field", "a quiet coastal town", "a vibrant city plaza",

"a bustling shopping district", "a colorful flower garden", "a charming riverside walk", "a

large public park", "a peaceful countryside landscape", "a warm outdoor terrace", "an outdoor

wedding venue", "a lively amusement park", "a remote fishing village", "a scenic coastal

highway", "a green city park", "a vibrant botanical garden", "a sandy dune landscape", "a

cozy cabin porch", "a charming old town square", "a quiet beachside café", "a sunny urban

terrace", "a tranquil garden courtyard", "a vibrant farmers’ market", "a lively carnival

scene", "a remote mountain village", "a rustic barnyard", "a calm rural road", "a dramatic

cliffside view", "a lively beachfront promenade", "a peaceful lakeshore cabin", "a quiet

rural pathway", "a lush botanical park", "a scenic hiking trail", "a lively town market",

"a secluded desert oasis", "a colorful coastal town", "a quiet forest clearing", "a scenic

boat dock", "a vast open field", "a serene cliffside walk", "a lively open-air concert", "a

quiet hillside retreat", "a bright tropical beach", "a calm sandy shore", "a warm outdoor

patio", "a charming outdoor café", "a vibrant city park", "a peaceful desert sunset", "a lush

green terrace", "a rustic lakeside cabin", "a bright garden path", "a misty river valley", "a

bustling port town", "a quiet mountain retreat", "a tranquil city courtyard", "a picturesque

town harbor", "a lively street market", "a scenic desert plateau", "a quiet neighborhood

street", "a charming seaside village", "a calm beachside retreat", "a dense evergreen forest",

"a misty forest trail", "a sunny farm field", "a lively city park", "a charming cobblestone

street", "a peaceful urban courtyard", "a tranquil village square", "a vibrant mountain town",

"a lively marina", "a quiet waterfront view", "a peaceful countryside lane", "a cozy lakeside

cabin", "a bright tropical garden", "a peaceful fishing spot", "a scenic valley view", "a

lively park bench", "a quiet country lane", "a rustic vineyard", "a tropical outdoor pool",

"a peaceful city park", "a lively outdoor music venue", "a calm lakeside dock", "a vibrant

waterfront café", "a quiet garden path", "a sunny riverside park", "a scenic mountain road",

"a charming forest cabin", "a tranquil rural vista", "a lively outdoor fair", "a calm and

quiet pond", "a bustling pedestrian street", "a serene lakeside trail", "a lively street

corner", "a bright and sunny lawn", "a rustic country garden", "a quaint village street",

"a peaceful nature reserve", "a vibrant open-air market", "a scenic rural road", "a quiet

forest retreat", "a sunny city rooftop", "a cozy open-air restaurant", "a secluded beach

cove", "a lively harbor view", "a scenic lakeside trail", "a charming countryside path", "a

lively town square", "a sunny country road", "a tranquil riverside path", "a busy urban park",

"a rustic hillside cabin", "a scenic beach boardwalk", "a quiet rural farm", "a peaceful

coastal village", "a lively urban park", "a tranquil mountain valley", "a vibrant street

fair", "a charming oceanfront path", "a quiet street corner", "a lush tropical garden", "a

scenic hilltop view", "a quiet lakeside retreat", "a busy shopping district", "a calm and

quiet garden", "a lively mountain town square", "a peaceful coastal bluff", "a vibrant outdoor

market square", "a quiet nature trail", "a scenic mountain cabin", "a sunny desert trail",

"a peaceful urban garden", "a vibrant outdoor community center", "a calm lakeshore view",

"a tranquil city park", "a quiet riverside retreat", "a bustling urban plaza", "a serene

oceanfront view", "a quiet hilltop vista", "a lively carnival parade", "a vibrant beach

festival", "a peaceful orchard", "a sunny green park", "a charming beach house", "a scenic

ocean drive", "a peaceful rural countryside", "a vibrant plaza scene", "a lively downtown

street", "a quiet city park bench", "a colorful street festival", "a tranquil nature spot",

"a sunny village square", "a bustling beachside promenade", "a rustic waterfront cabin", "a

busy shopping mall entrance", "a charming lakeside promenade", "a scenic cliffside", "a quiet

street park", "a colorful beach scene", "a lively beach party", "a quiet garden café", "a calm

sandy shore", "a vibrant rooftop garden", "a serene lakeside dock", "a peaceful open field",

"a quiet scenic trail", "a lively street performer", "a rustic forest retreat", "a scenic
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city skyline view", "a peaceful ocean retreat", "a lively town gathering", "a busy seaside

boardwalk", "a scenic countryside village"]

C.2.3 VLM Prompt

A photo with a scene of a spacious living room.

A photo with a scene of a cozy lounge.

A photo with a scene of a snug sitting area.

......

C.3 Experimental Setting

This benchmark involves an object factor (text condition) and a scene factor (query image). For the
object factor, we directly compute the similarity S1 between the CLIP representations of the text
condition and candidate images. For the scene factor, we first ask the LLM for the common scenes.
Leveraging these scene texts as the text basis, we can obtain all images’ conditional representations by
Eq. (4) in the main paper. Then, we calculate the similarity S2 between the conditional representations
of the query image and the candidate images. Finally, we select the candidate with the maximum
combined similarity value S = S1 + α ∗ S2, where the weighting parameter α is set to 10.

C.4 Baseline

CLIPimage baseline employs the CLIP image encoder to generate embeddings for both query and
gallery images, subsequently retrieving the most similar gallery image to the query. CLIPtext adopts a
cross-modal approach, where the textual condition is encoded by the CLIP text encoder while gallery
images are processed through the image encoder, enabling retrieval based on text-image alignment.
CLIPimage+text computes the average of query image embeddings and condition text embeddings,
which is then used for retrieval from the gallery space.

C.5 Performance

Table 7 demonstrates that CRL performs robustly across a wide range of descriptive text quantities,
with performance degradation observed only when the number of texts is insufficient.

Table 7: Customized similarity retrieval performance under different numbers of texts.

Text-num
Focus Change

Mean
R@1 R@2 R@3 R@1 R@2 R@3

10 17.7 29.1 38.0 18.7 29.9 38.5 28.6
20 18.8 32.0 40.4 20.4 32.5 41.8 31.0
50 18.4 31.7 40.1 20.1 33.2 42.2 30.9

100 18.5 31.0 41.6 20.7 34.1 43.4 31.5
200 20.1 33.0 41.2 21.4 35.1 43.8 32.4
300 19.2 32.6 40.9 21.3 34.5 43.4 32.0
400 19.4 31.9 40.4 20.8 34.1 43.1 31.6
500 19.0 31.7 41.0 20.4 33.7 43.3 31.5

D Customized Fashion Retrieval

For the task of customized fashion retrieval, we take the criterion of “Texture" as an example. We
provide the prompts, responses and ground truth labels.

D.1 Dataset Description

DeepFashion [36] is a large-scale clothing dataset that provides four benchmarks, each tailored to a
specific task. Following previous work [39], we use the category and attribute prediction split as the
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benchmark. We provide a summary of the criteria for this dataset in Table. 8, listing some examples
for each criterion. As shown in Fig. 10, given the criterion “style”, this benchmark requires retrieving
the candidate that shares the same value (“Mickey”) as the query image.

Figure 10: An example of the customized fashion retrieval task.

Table 8: A summary of the criteria of the customized fashion retrieval benchmark.

Criterion Value Count

Texture abstract, animal, baroque, camo, circle, ... 156

Fabric acid, bead, canvas, cloud, feather, ... 218

Shape a-line, boxy, cropped, flared, shirt, ... 180

Part bell, bow, buttoned, cowl, flat, ... 216

Style baseball, bike, eagle, fox, mickey, ... 230

D.2 Prompt and Response

D.2.1 LLM Prompt

Please generate common expressions to describe the texture, as many
as possible, formatted as: ["...", "...", "..."]. Ensure all items
are unique and written in a single line, without any nested lists or
additional formatting. You may describe the same texture in different
ways, such as "baroque", "ornate", or "luxurious". Only generate the
list, and do not include any additional information.

D.2.2 LLM Response

["smooth", "rough", "silky", "velvety", "grainy", "bumpy", "fuzzy", "soft", "coarse",

"textured", "polished", "matte", "glossy", "shiny", "satin-like", "woven", "embellished",

"embroidered", "fluffy", "sheer", "lacey", "ribbed", "pleated", "crinkled", "frosted",

"distressed", "weathered", "sparkling", "glittery", "glimmering", "luxurious", "elegant",

"ornate", "ornamental", "baroque", "rustic", "vintage", "gritty", "delicate", "intricate",

"smooth-to-the-touch", "textured-to-perfection", "matte-finish", "high-gloss", "fuzzy-finish",

"heavy-duty", "soft-touch", "pebbled", "canvas-like", "embroidered", "fringed", "knitted",

"crocheted", "tight-knit", "loose-knit", "structured", "fluid", "cloud-like", "slick",

"furry", "cozy", "snug", "plush", "velvety-smooth", "sandpaper-like", "suede", "nubuck",

"grippy", "twilled", "crinkled", "slubbed", "grainy-texture", "soft-grip", "scuffed",

"weathered-leather", "textured-leather", "crinkly", "pleated-finish", "waterproof",

"thick-threaded", "gossamer", "translucent", "woven-texture", "frayed", "tightly-woven",

"loose-woven", "threadbare", "matted", "dense-weave", "open-weave", "honeycomb", "cut-out",

"quilted", "pleated-texture", "smooth-leather", "grain-leather", "burnished"]

D.2.3 Ground Truth Label

[’abstract’, ’abstract chevron’, ’abstract chevron print’, ’abstract diamond’, ’abstract

floral’, ’abstract floral print’, ’abstract geo’, ’abstract geo print’, ’abstract paisley’,

’abstract pattern’, ’abstract print’, ’abstract printed’, ’abstract stripe’, ’animal’,
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’animal print’, ’bandana’, ’bandana print’, ’baroque’, ’baroque print’, ’bird’, ’bird print’,

’botanical’, ’botanical print’, ’boxy striped’, ’breton’, ’breton stripe’, ’brushstroke’,

’brushstroke print’, ’butterfly’, ’butterfly print’, ’camo’, ’camouflage’, ’checked’,

’checkered’, ’cheetah’, ’chevron’, ’chevron print’, ’chiffon floral’, ’circle’, ’clashist’,

’classic striped’, ’colorblock’, ’colorblocked’, ’crochet floral’, ’daisy’, ’daisy print’,

’diamond’, ’diamond print’, ’ditsy’, ’ditsy floral’, ’ditsy floral print’, ’dot’, ’dots’,

’dotted’, ’embroidered floral’, ’floral’, ’floral flutter’, ’floral paisley’, ’floral pattern’,

’floral print’, ’floral textured’, ’floral-embroidered’, ’flower’, ’foil’, ’folk’, ’folk

print’, ’geo’, ’geo pattern’, ’geo print’, ’geo stripe’, ’giraffe’, ’giraffe print’, ’graphic’,

’grid’, ’grid print’, ’heart’, ’heart print’, ’heathered stripe’, ’houndstooth’, ’ikat’, ’ikat

print’, ’kaleidoscope’, ’kaleidoscope print’, ’knit stripe’, ’knit striped’, ’leaf’, ’leaf

print’, ’leave’, ’leopard’, ’leopard print’, ’linen’, ’linen-blend’, ’mandala’, ’mandala

print’, ’marble’, ’marble print’, ’marled’, ’marled stripe’, ’medallion’, ’medallion print’,

’mixed’, ’mixed print’, ’mixed stripe’, ’mosaic’, ’mosaic print’, ’multi-stripe’, ’nautical’,

’nautical stripe’, ’nautical striped’, ’ombre’, ’ornate’, ’ornate paisley’, ’ornate print’,

’paint’, ’paint splatter’, ’painted’, ’paisley’, ’paisley print’, ’palm’, ’palm print’,

’palm springs’, ’palm tree’, ’pattern’, ’patterned’, ’pinstripe’, ’pinstriped’, ’polka dot’,

’pom-pom’, ’print’, ’print shirt’, ’print woven’, ’printed’, ’ribbed stripe’, ’ringer’,

’rugby stripe’, ’rugby striped’, ’sophisticated’, ’southwestern’, ’southwestern-inspired’,

’southwestern-patterned’, ’southwestern-print’, ’speckled’, ’splatter’, ’spotted’, ’stripe’,

’striped’, ’stripes’, ’structured’, ’tonal’, ’tribal’, ’tribal-inspired’, ’two-tone’,

’varsity-striped’, ’watercolor’, ’zig’, ’zigzag’]

D.2.4 VLM Prompt

A fashion with a texture of smooth.

A fashion with a texture of rough.

A fashion with a texture of silky.

......

D.3 Experimental Setting

Following previous works, we exploit the triplet ranking loss to train this MLP and the backbone
by 100k triplets, which are derived from the training split of the DeepFashion dataset. The training
process consists of two stages. In the first stage, we only train the MLP and freeze the CLIP model
for 1000 epochs, with an initial learning rate of 1e-4. In the second stage, we freeze the MLP and
slightly fine-tune the CLIP model for 100 epochs, with a smaller initial learning rate of 1e-6. The
optimizer, the decaying rate, the decaying step size and the triplet margin are set to Adam, 0.9, 3 and
0.3, respectively.

D.4 Performance

As illustrated in Table 9, CRL exhibits consistent fashion retrieval performance across varying
numbers of LLM-generated descriptive texts, except in cases where the number of texts is too small.

Table 9: Customized fashion retrieval performance under different numbers of texts.

Text-num Texture Fabric Shape Part Style Mean

10 15.80 8.15 14.40 6.49 4.80 9.93
20 16.21 8.93 15.18 7.07 5.06 10.52
50 16.64 9.02 16.48 7.10 5.66 10.98

100 17.01 9.24 16.58 7.55 6.17 11.30
200 17.14 9.25 17.20 7.42 6.05 11.40
300 17.28 9.42 17.32 7.64 6.10 11.54
400 17.05 9.38 17.06 7.58 6.07 11.42
500 16.68 9.40 17.14 7.67 6.13 11.40
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E Ablation Studies

E.1 LLM

As for the selection of LLMs, we use the same prompt to query four mainstream LLMs: GPT-4o,
Deepseek-v3, Gemini 2.5, and Claude 4. As can be seen in Table 10, our method does not particularly
rely on any specific LLM.

Table 10: Customized classification performance under different LLMs.

Task GPT-4o [1] Deepseek-v3 [34] Gemini 2.5 [8] Claude 4 [3] Std

Clustering 44.96 ± 0.52 43.40 ± 0.50 43.80 ± 0.55 43.75 ± 0.58 0.59
Few-shot Learning 53.34 ± 0.44 52.94 ± 0.40 52.93 ± 0.41 53.43 ± 0.45 0.23

E.2 Temperature

As for the LLM temperature t, we set t to 0, 0.5, 1, 1.5 to obtain the text basis, respectively. The
temperature ranges from 0 to 2, with higher values introducing more variability and randomness
in the LLM’s output. When the temperature approaches 2, the generated content becomes almost
entirely random, so we did not include this setting in our experiments. The experimental results in
Table 11 validate the robustness of our method to the temperature parameter.

Table 11: Customized classification performance under different temperatures.

Task t=0 t=0.5 t=1 t=1.5 Std

Clustering 43.33 ± 0.73 43.74 ± 0.66 44.96 ± 0.52 43.27 ± 0.39 0.68
Few-shot Learning 53.07 ± 0.49 53.27 ± 0.48 53.34 ± 0.44 52.50 ± 0.41 0.33

E.3 LLM Prompt

As for the LLM prompt, we require it to include the [criterion]. We devise below 5 different templates:

1) Generate common expressions to describe the [criterion].
2) List a wide variety of typical phrases used to characterize the [criterion].
3) Enumerate familiar terms or expressions people often use when referring to the [criterion].
4) Identify and list expressions frequently used to convey the concept of the [criterion].
5) How do people usually talk about the [criterion]?

One can observe from Table 12 that different LLM prompts can yield close performance improve-
ments, indicating that our method is robust against the LLM prompt.

Table 12: Customized classification performance under different LLM prompts.

Task Prompt 1 Prompt 2 Prompt 3 Prompt 4 Prompt 5 Std

Clustering 44.96 ± 0.52 42.45 ± 0.44 42.87 ± 0.31 44.75 ± 0.65 42.60 ± 0.55 1.10
Few-shot Learning 53.34 ± 0.44 52.95 ± 0.39 53.42 ± 0.37 52.82 ± 0.48 52.40 ± 0.44 0.37

E.4 VLM Prompt

As for the VLM prompt, we require it to contain the [criterion] and the generated [text] by the LLM.
We also devise below 5 different templates:

1) objects with the [criterion] of [text]
2) a photo with the [criterion] of [text]
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3) itap with the [criterion] of [text]
4) art with the [criterion] of [text]
5) a cartoon with the [criterion] of [text]

As suggested in the Table 13, our method remains stable across different VLM prompts.

Table 13: Customized classification performance under different VLM prompts.

Task Prompt 1 Prompt 2 Prompt 3 Prompt 4 Prompt 5 Std

Clustering 44.96 ± 0.52 43.72 ± 0.44 44.78 ± 0.46 43.07 ± 0.53 42.33 ± 0.49 1.00
Few-shot Learning 53.34 ± 0.44 52.28 ± 0.38 52.56 ± 0.42 53.48 ± 0.38 52.58 ± 0.23 0.47
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