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Abstract
In reinforcement learning for partially observable
environments, many successful algorithms have
been developed within the asymmetric learning
paradigm. This paradigm leverages additional
state information available at training time for
faster learning. Although the proposed learning
objectives are usually theoretically sound, these
methods still lack a precise theoretical justifi-
cation for their potential benefits. We propose
such a justification for asymmetric actor-critic al-
gorithms with linear function approximators by
adapting a finite-time convergence analysis to this
setting. The resulting finite-time bound reveals
that the asymmetric critic eliminates error terms
arising from aliasing in the agent state.

1. Introduction
Reinforcement learning (RL) is an appealing framework
for solving decision making problems, notably because it
makes very few assumptions about the problem at hand.
In its purest form, the promise of an RL algorithm is to
learn an optimal behavior from interaction with an environ-
ment whose dynamics are unknown. More formally, an RL
algorithm aims to learn a policy – which is defined as a
mapping from observations to actions – from interaction
samples, in order to maximize a reward signal. While RL
has obtained empirical successes for a plethora of challeng-
ing problems ranging from games to robotics (Mnih et al.,
2015; Schrittwieser et al., 2020; Levine et al., 2015; Akkaya
et al., 2019), most of these achievements have assumed full
state observability. A more realistic assumption is partial
state observability, where only a partial observation of the
state of the environment is available for taking actions. In
this setting, the optimal action generally depends on the
complete history of past observations and actions. Tradi-
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tional RL approaches have thus been adapted by considering
history-dependent policies, usually with a recurrent neural
network to process histories (Bakker, 2001; Wierstra et al.,
2007; Hausknecht & Stone, 2015; Heess et al., 2015; Zhang
et al., 2016; Zhu et al., 2017). Given the difficulty of learn-
ing effective history-dependent policies, various auxiliary
representation learning objectives have been proposed to
compress the history into useful representations (Igl et al.,
2018; Buesing et al., 2018; Guo et al., 2018; Gregor et al.,
2019; Han et al., 2019; Guo et al., 2020; Lee et al., 2020;
Subramanian et al., 2022; Ni et al., 2024). Such methods
usually seek to learn history representations that encode the
belief, defined as the posterior distributions over the states
given the history, which is a sufficient statistic of the history
for optimal control.

While these methods are theoretically able to learn optimal
history-dependent policies, they usually learn solely from
the partial state observations, which can be restrictive. In-
deed, assuming the same partial observability at training
time and execution time can be too pessimistic for many
environments, notably for those that are simulated. This mo-
tivated the asymmetric learning paradigm, where additional
state information available at training time is leveraged dur-
ing the process of learning a history-dependent policy. Al-
though the optimal policies obtained by asymmetric learning
are theoretically equivalent to those learned by symmetric
learning, the promise of asymmetric learning is to improve
the convergence speed. Early approaches proposed to imi-
tate a privileged policy conditioned on the state (Choudhury
et al., 2018), or to use an asymmetric critic conditioned
on the state (Pinto et al., 2018). These heuristic methods
initially lacked a theoretical framework, and a recent line
of work has focused on proposing theoretically grounded
asymmetric learning objectives. First, imitation learning
of a privileged policy was known to be suboptimal, and it
was addressed by constraining the privileged policy so that
its imitation results in an optimal policy for the partially
observable environment (Warrington et al., 2021). Simi-
larly, asymmetric actor-critic approaches were proven to
provide biased gradients, and an unbiased actor-critic ap-
proach was proposed by introducing the history-state value
function (Baisero & Amato, 2022). In model-based RL, sev-
eral works proposed world model objectives that are proved
to provide sufficient statistics of the history, by leveraging
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the state (Avalos et al., 2024) or arbitrary state information
(Lambrechts et al., 2024). Finally, asymmetric representa-
tion learning approaches were proposed to learn sufficient
statistics from state samples (Wang et al., 2023; Sinha & Ma-
hajan, 2023). It is worth noting that many recent successful
applications of RL have greatly benefited from asymmet-
ric learning, usually through an asymmetric critic (Degrave
et al., 2022; Kaufmann et al., 2023; Vasco et al., 2024).

Despite these methods being theoretically grounded, in the
sense that policies satisfying these objectives are optimal
policies, they still lack a theoretical justification for their
potential benefit. In particular, there is no theoretical justifi-
cation for the improved convergence speed of asymmetric
learning. In this work, we propose such a justification for an
asymmetric actor-critic algorithm, using agent-state policies
and linear function approximators. Agent-state policies rely
on an internal state, which is updated recurrently based on
successive actions and observations, from which the next
action is selected. This agent state can introduce aliasing, a
phenomenon in which an agent state may correspond to two
different beliefs. Our argument relies on the comparaison
of two analogous finite-time bounds: one for a symmetric
natural actor-critic algorithm (Cayci et al., 2024), and its
adaptation to the asymmetric setting that we derive in this
paper. This comparison reveals that asymmetric learning
eliminates error terms arising from aliasing in the agent state
in symmetric learning. These aliasing terms are given by the
difference between the true belief (i.e., the posterior distri-
bution over the states given the history) and the approximate
belief (i.e., the posterior distribution over the states given
the agent state). This suggests that asymmetric learning may
be particularly useful when aliasing is high.

A recent related work proposed a model-based asymmet-
ric actor-critic algorithm relying on belief approximation,
and proved its sample efficiency (Cai et al., 2024). It also
considered agent-state policies, and studied the finite-time
performance by providing a probably approximately cor-
rect (PAC) bound, instead of an expectation bound as here.
While the algorithm was restricted to finite horizon and
discrete spaces, notably for implementing count-based ex-
ploration strategies, it tackled the online exploration setting
and its performance bound did not present a concentrability
coefficient. This related analysis thus provides a promising
framework for future works in a more challenging setting.
However, it did not study the existing asymmetric actor-
critic algorithm, and did not provides a direct comparison
with symmetric learning. In contrast, we focus on providing
comparable bounds for the existing model-free asymmetric
actor-critic algorithm and its symmetric counterpart.

In Section 2, we formalize the environments, policies, and
Q-functions that are considered. In Section 3, we introduce
the asymmetric and symmetric actor-critic algorithms that

are studied. In Section 4, we provide the finite-time bounds
for the asymmetric and symmetric actor-critic algorithms.
Finally, in Section 5, we conclude by summarizing the con-
tributions and providing avenues for future works.

2. Background
In Subsection 2.1, we introduce the decision processes and
agent-state policies that are considered. Then, we introduce
the asymmetric and symmetric Q-function for such policies,
in Subsection 2.2 and Subsection 2.3, respectively.

2.1. Partially Observable Markov Decision Process

A partially observable Markov decision process (POMDP)
is a tuple P =(S,A,O,P,T,R,O,γ), with discrete state
space S, discrete action space A, and discrete observation
space O. The initial state distribution P gives the prob-
ability P (s0) of s0 ∈S being the initial state of the deci-
sion process. The dynamics are described by the transition
distribution T that gives the probability T (st+1|st,at) of
st+1 ∈S being the state resulting from action at ∈A in
state st ∈S . The reward function R gives the immediate re-
ward rt =R(st,at,st+1) of the reward rt ∈ [0,1] resulting
from this transition. The observation distribution O gives
the probability O(ot|st) to get observation ot ∈O in state
st ∈S . Finally, the discount factor γ ∈ [0,1) weights the rel-
ative importance of future rewards. Taking a sequence of t
actions in the POMDP conditions its execution and provides
the history ht =(o0,a0, . . . ,ot)∈H, where H is the set of
histories of arbitrary length. In general, the optimal policy
in a POMDP depends on the complete history.

However, in practice it is infeasible to learn a policy condi-
tioned on the full history, since the latter grows unbound-
edly with time. We consider an agent-state policy π ∈ΠM
that uses an agent-state process M=(Z,U), in order to
take actions (Dong et al., 2022; Sinha & Mahajan, 2024).
More formally, we consider a discrete agent state space
Z , and an update distribution U that gives the probability
U(zt+1|zt,at,ot+1) of zt+1 ∈Z being the state resulting
from action at ∈A and observation ot+1 ∈O in agent state
zt ∈Z . Note that the update distribution U also describe the
initial agent state distribution with z−1 ̸∈ Z the null agent
state and a−1 ̸∈A the null action. Some examples of agent
states that are often used are a sliding window of past ob-
servations, or a belief filter. Aliasing may occur when the
agent state does not summarize all information from the
history about the state of the environment, see Appendix A
for an example. Given the agent state zt, the policy π sam-
ples actions according to at ∼π(·|zt). An agent-state policy
π∗ ∈ΠM is said to be optimal for an agent-state process
M if it maximizes the expected discounted sum of rewards:
π∗ ∈ argmaxπ∈ΠM

J(π) with J(π)=Eπ[
∑∞

t=0 γ
tRt].
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In the following, we denote by St,Ot, Zt,At andRt the ran-
dom variables induced by the POMDP P . Given a POMDP
P and an agent-state process M, the initial environment-
agent state distribution P is given by,

P (s0,z0)=P (s0)
∑
o0∈O

O(o0|s0)U(z0|z−1,a−1,o0). (1)

Furthermore, given an agent-state policy π ∈ΠM, we define
the discounted visitation distribution as,

dπ(s,z)= (1− γ)
∑
s0,z0

P (s0,z0) (2)

×
∞∑
t=0

γkPr(St = s,Zt = z|S0 = s0,Z0 = z0).

Finally, we define the visitation distribution m steps from
the discounted visitation distribution as,

dπm(s,z)=
∑
s0,z0

dπ(s0,z0) (3)

×Pr(Sm = s,Zm = z|S0 = s0,Z0 = z0).

In the following, we define the various value functions for
the policies that we defined. Note that we use calligraphic
letters Qπ, Vπ and Aπ for the asymmetric functions, and
regular letters Qπ , V π and Aπ for the symmetric ones.

2.2. Asymmetric Q-function

Similarly to the asymmetric Q-function of Baisero & Am-
ato (2022), which is conditioned on (s,h,a), we define an
asymmetric Q-function that we condition on (s,z,a), where
z is the agent state resulting from history h. The asymmetric
Q-function Qπ of an agent-state policy π ∈ΠM is defined
as the expected discounted sum of rewards, starting from
environment state s, agent state z, and action a, and using
policy π afterwards,

Qπ(s,z,a)=Eπ

[ ∞∑
t=0

γtRt

∣∣∣∣∣S0 = s,Z0 = z,A0 = a

]
. (4)

The asymmetric value function Vπ of an agent-state
policy π ∈ΠM is defined as Vπ(s,z)=

∑
a∈Aπ(a|z)

Qπ(s,z,a). We also define the asymmetric advantage func-
tion Aπ(s,z,a)=Qπ(s,z,a)−Vπ(s,z).

Let us define the m-step asymmetric Bellman operator as,

Q̃π(s,z,a)=Eπ

[
m−1∑
t=0

γtRt + γmQ̃π(Sm,Zm,Am)∣∣∣∣∣S0 = s,Z0 = z,A0 = a

]
. (5)

Since this m-step asymmetric Bellman operator is γm-
contractive, equation (5) has a unique fixed point Q̃π. No-
tice that, when using an agent-state policy, the environment

state and agent state (St,Zt) are Markovian. Therefore, it
can be shown that the fixed point Q̃π is the same as the
asymmetric Q-function Qπ .

2.3. Symmetric Q-function

The symmetric Q-function Qπ of an agent-state policy π ∈
ΠM in a POMDP P is defined as the expected discounted
sum of rewards, starting from agent state z and action a, and
using policy π afterwards,

Qπ(z,a)=Eπ

[ ∞∑
t=0

γtRt

∣∣∣∣∣Z0 = z,A0 = a

]
. (6)

The symmetric value function V π of an agent-state policy
π ∈ΠM is defined as V π(z)=

∑
a∈Aπ(a|z)Qπ(z,a). We

also define the symmetric advantage function Aπ(z,a)=
Qπ(z,a)−V π(z).

Let us define the m-step symmetric Bellman operator as,

Q̃π(z,a)=Eπ

[
m−1∑
t=0

γtRt + γmQ̃π(Zm,Am)∣∣∣∣∣Z0 = z,A0 = a

]
. (7)

It can be verified that the m-step symmetric Bellman opera-
tor is γm-contractive. Therefore, equation (7) has a unique
fixed point Q̃π. However, because the agent state is not
necessarily Markovian, in general Qπ ̸= Q̃π .

3. Natural Actor-Critic Algorithms
In this section, we present the asymmetric and symmetric
natural actor-critic algorithms, which make use of an actor,
or policy, and a critic, or Q-function. The asymmetric vari-
ant will use an asymmetric critic, learned using asymmetric
temporal difference learning, while the symmetric variant
will use a symmetric critic, learned using symmetric tempo-
ral difference learning. These temporal difference learning
algorithms are presented in in Subsection 3.1 and Subsec-
tion 3.2, respectively. Then, Subsection 3.3 presents the
complete natural actor-critic algorithm that uses a temporal
difference learning algorithm as a subroutine.

For any Euclidean space X , let B2(0,B) be the ℓ2-ball cen-
tered at the origin with radius B> 0, and let ΓC : X →C be
a projection operator into the closed and convex set C ⊆X
in ℓ2-norm: ΓC(x)∈ argminc∈C ∥c−x∥22 ⊆C, ∀x∈X . Fi-
nally, let us define the µ-weighted ℓ2-norm, for any proba-
bility measures µ∈∆(X ) as,

∥f∥µ =
√∑

x∈X
µ(x) |f(x)|2. (8)
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In the algorithms, we implicitly assume to be able to directly
sample from the discounted visitation measure dπ. When
this assumption is unrealistic, it is still possible to sample
from dπ by sampling an initial timestep t0 ∼Geom(1− γ)
from a geometric distribution with success rate 1− γ, and
then taking t0 − 1 actions in the POMDP. The resulting
sample (st0 ,zt0) follows the distribution dπ .

3.1. Asymmetric Critic

Suppose we are given features ϕ : S ×Z ×A→Rdϕ . With-
out loss of generality, we assume sups,z,a∥ϕ(s,z,a)∥2 ≤ 1.
Given a weight vector β ∈Rdϕ , let Q̂π

β denote the linear
approximation of the asymmetric Q-function Qπ that uses
features ϕ with weight β,

Q̂π
β(s,z,a)= ⟨β,ϕ(s,z,a)⟩. (9)

Given an arbitrary projection radius B> 0, we define the
hypothesis space as,

FB
ϕ = {(s,z,a) 7→ ⟨β,ϕ(s,z,a)⟩ :β ∈B2(0,B)} . (10)

We denote the optimal parameter of the asymmet-
ric critic approximation by βπ

∗ ∈ argminβ∈B2(0,B)

∥⟨β,ϕ(·)⟩−Qπ(·)∥d, and denote the corresponding
approximation by Q̂π

∗ (·)= ⟨βπ
∗ ,ϕ(·)⟩. The corresponding

error is,

εapp = min
f∈FBϕ

∥∥∥f −Qπ
∥∥∥
d
=
∥∥∥Q̂π

∗ −Qπ
∥∥∥
d
, (11)

with d(s,z,a)= dπ(s,z)π(a|z) the sampling distribution.

In Algorithm 1, we present the m-step temporal difference
learning algorithm for approximating the asymmetric Q-
function Qπ of an arbitrary agent-state policy π ∈ΠM. At
each step k, the algorithm obtains one sample (sk,0,zk,0)∼
dπ from the discounted visitation distribution. Then, m
actions are selected according to policy π to provide samples
(ak,t, rk,t,sk,t+1,ok,t+1,zk,t+1) for 0≤ t<m. Next, the
temporal difference δk and semi-gradient gk are computed,
based on a last action ak,m ∼π(·|zk,m),

δk =

m−1∑
i=0

γirk,i + γmQ̂π
βk
(sk,m,zk,m,ak,m)

−Q̂π
βk
(sk,0,zk,0,ak,0), (12)

gk = δk∇βQ̂π
βk
(sk,0,zk,0,ak,0). (13)

Then, the semi-gradient update is performed with β−
k+1 =

βk +αgk and the parameters are projected onto the ball
of radius B: βk+1 =ΓB2(0,B)(β

−
k+1). At the end, the al-

gorithm computes the average parameter β̄= 1
K

∑K−1
k=0 βk

and returns the average approximation Qπ = Q̂π
β̄

.

Algorithm 1 m-step temporal difference learning algorithm

input: policy π ∈ΠM, bootstrap timestep m, step size
α, number of updates K, projection radius B.
for k=0 . . .K − 1 do

Initialize (sk,0,zk,0)∼ dπ .
for i=0 . . . ,m− 1 do

Select action ak,i ∼π(·|zk,i).
Get environment state sk,i+1 ∼T (·|sk,i,ak,i).
Get reward rk,i =R(sk,i,ak,i,sk,i+1).
Get observation ok,i+1 ∼O(·|sk,i+1).
Update agent state zk,i+1 ∼U(·|zk,i,ak,i,ok,i+1).

end for
Sample last action ak,m ∼π(·|zk,m).
Compute semi-gradient gk according to equation (13)
or equation (17).
Update βk+1 =ΓB2(0,B)(βk +αgk).

end for
return: average estimate Qπ(·)= Q̂π

β̄
(·)= ⟨β̄,ϕ(·)⟩ or

Qπ(·)= Q̂π
β̄
(·)= ⟨β̄,χ(·)⟩ with β̄= 1

K

∑K−1
k=0 βk.

3.2. Symmetric Critic

Similarly, we suppose that we are given features χ : Z ×
A→Rdχ . Without loss of generality, we assume
supz,a∥χ(z,a)∥2 ≤ 1. Given a weight vector β ∈Rdχ , let
Q̂π

β denote the linear approximation of the symmetric Q-
function Qπ that uses features χ with weight β,

Q̂π
β(z,a)= ⟨β,χ(z,a)⟩. (14)

The corresponding hypothesis space for an arbitrary pro-
jection radius B> 0 is denoted with FB

χ . The opti-
mal parameter is also denoted by βπ

∗ ∈ argminβ∈B2(0,B)

∥⟨β,χ(·)⟩−Qπ(·)∥d, the corresponding optimal approxi-
mation is Q̂π

∗ = ⟨βπ
∗ ,χ(·)⟩, and the corresponding error is,

εapp = min
f∈FBχ

∥∥∥f −Qπ
∥∥∥
d
=
∥∥∥Q̂π

∗ −Qπ
∥∥∥
d
, (15)

with d(z,a)=
∑
s∈S

dπ(s,z)π(a|z) the sampling distribution.

Algorithm 1 also presents the m-step temporal difference
learning algorithm for approximating the symmetric Q-
function. The latter is identical to that of the asymmetric
Q-function except that states are not exploited, such that the
temporal difference δk and semi-gradient gk are given by,

δk =

m−1∑
i=0

γirk,i + γmQ̂π
βk
(zk,m,ak,m)

− Q̂π
βk
(zk,0,ak,0), (16)

gk = δk∇βQ̂
π
βk
(zk,0,ak,0). (17)

At the end, the algorithm returns the average symmetric
approximation Qπ = Q̂π

β̄
. Note that this symmetric critic
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approximation and temporal difference learning algorithm
corresponds to the one proposed by Cayci et al. (2024).

3.3. Natural Actor-Critic Algorithms

For both the asymmetric and symmetric actor-critic algo-
rithms, we consider a log-linear agent-state policy πθ ∈ΠM.
More precisely, the policy uses features ψ : Z ×A→Rdψ ,
with supz,a∥ψ(z,a)∥2 ≤ 1 without loss of generality, and a
softmax readout,

πθ(at|zt)=
exp(⟨θ,ψ(zt,at)⟩)∑
a∈A exp(⟨θ,ψ(zt,a)⟩)

. (18)

In this work, we consider natural policy gradients, which
are less sensitive to policy parametrization (Kakade, 2001).
Instead of computing the policy gradient in the original met-
ric space, the idea is to compute the policy gradient on a
statistical manifold, defined by the expected Fisher infor-
mation metric. The natural policy gradient is thus given by
the standard policy gradient multiplied by a preconditioner
Fisher information matrix. Natural policy gradients are at
the core of many effective modern policy-gradient methods
(Schulman et al., 2015).

The natural policy gradient of policy πθ ∈ΠM is defined as
follows (Kakade, 2001),

wπθ
∗ =(1− γ)F †

πθ
∇θJ(πθ), (19)

where F †
πθ

is the pseudoinverse of the Fisher information
matrix, which is defined as the outer product of the score of
the policy,

Fπθ =Edπθ [∇θ logπθ(A|Z)⊗∇θ logπθ(A|Z)]. (20)

As shown in Theorem 1, the natural policy gradient wπθ
∗ is

the minimizer of the asymmetric objective (22).
Theorem 1 (Asymmetric Natural Policy Gradient). For any
POMDP P and any agent-state policy πθ ∈ΠM, we have,

wπθ
∗ =(1− γ)F †

πθ
∇θJ(πθ)∈ argmin

w∈Rdψ
L(w), (21)

with,

L(w)=Edπθ
[
(⟨∇θ logπθ(A|Z),w⟩−Aπθ (S,Z,A))

2
]
.

(22)

The proof is given in Appendix B. In practice, since
the asymmetric advantage function is unknown, the al-
gorithm estimates the natural policy gradient by stochas-
tic gradient descent of L(ω) using the approxima-
tion Aπθ (S,Z,A)=Qπθ (S,Z,A)−Vπθ (S,Z) with Vπθ =∑

a∈Aπθ(a|Z)Q(S,Z,a).

Our natural actor-critic algorithm generalizes the one of
Cayci et al. (2024) to the asymmetric setting and is detailed
in Algorithm 2. For each policy gradient step 0≤ t<T ,
the natural policy gradient wπt

∗ is first estimated using N
steps of stochastic gradient descent. At each natural policy
gradient estimation step 0≤n<N , the algorithm samples
an initial state (st,n,zt,n)∼ dπt from the discounted distri-
bution dπt and an action at,n ∼πt(·|zt,n) according to the
policy πt =πθt . Then, the gradient vt,n of the natural policy
gradient estimate wt,n is computed with,

vt,n =∇w

(
⟨∇θ logπθ(at,n|zt,n),wt,n⟩

−Aπθ (st,n,zt,n,at,n)
)2
, (23)

The gradient step is performed with w−
t,n+1 =wt,n − ζvt,n

and the parameters are projected onto the ball of radius
B: wt,n+1 =ΓB2(0,B)(w

−
t,n+1). Finally, the algorithm com-

putes the average parameter w̄t =
1
N

∑N−1
n=0 wt,n and per-

forms the policy gradient step: θt+1 = θt + ηw̄t. After all
policy gradient steps, the final policy is returned.

Algorithm 2 Natural actor-critic algorithm

input: number of updates T , number of steps N , step
sizes ζ, η, projection radius B.
Initialize θ0 =0.
for t=0 . . .T − 1 do

Obtain Qπt or Qπt using Algorithm 1.
Initialize wt,0 =0
for n=0 . . .N − 1 do

Initialize (st,n,zt,n)∼ dπt .
Sample at,n ∼πθt(·|zt,n).
Compute the gradient vt,n of the policy gradient
using equation (23) or equation (26).
Update w−

t,n+1 =wt,n − ζvt,n.
Project wt,n+1 =ΓB2(0,B)(w

−
t,n+1).

end for
Update θt+1 = θt + η 1

N

∑N−1
n=0 wt,n.

end for
return: final policy πT =πθT .

As shown in Theorem 2, the natural policy gradient wπθ
∗ is

also the minimizer of the symmetric objective (25).
Theorem 2 (Symmetric Natural Policy Gradient). For any
POMDP P and any agent-state policy πθ ∈ΠM, we have,

wπθ
∗ =(1− γ)F †

πθ
∇θJ(πθ)∈ argmin

w∈Rdψ
L(w), (24)

with,

L(w)=Edπθ
[
(⟨∇θ logπθ(A|Z),w⟩−Aπθ (Z,A))

2
]
.

(25)
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The proof is given in Appendix B. As in the asym-
metric case, the symmetric advantage function is un-
known, and the algorithm estimates the natural gradi-
ent by stochastic gradient descent of equation (25) using
the approximation Aπθ (Z,A)=Qπθ (Z,A)−V πθ (Z) with
V πθ =

∑
a∈Aπθ(a|Z)Qπθ (Z,a).

Algorithm 2 also presents the symmetric natural actor-critic
algorithm, initially proposed by Cayci et al. (2024). The
latter is similar to the asymmetric algorithm except that
it uses the symmetric advantage function, such that the
gradient of the policy gradient is given by,

vt,n =∇w

(
⟨∇θ logπθ(at,n|zt,n),wt,n⟩

−Aπθ (zt,n,at,n)
)2
. (26)

While Theorem 1 and Theorem 2 show that wπθ
∗ is the mini-

mizer of both the asymmetric and the symmetric objectives,
the next section establishes the benefit of using the asymmet-
ric loss. More precisely, asymmetric learning is shown to
improve the estimation of the critic and thus the advantage
function, which in turn results in a better estimation of the
natural policy gradient.

4. Finite-Time Analysis
In this section, we give the finite-time bounds of the previ-
ous algorithms in both the asymmetric and symmetric cases.
The bounds of the asymmetric and symmetric temporal dif-
ference learning algorithms are presented in Subsection 4.1
and Subsection 4.2, respectively. In Subsection 4.3, the
bounds of the asymmetric and symmetric natural actor-critic
algorithms are given.

We use ∥µ− ν∥TV to denote the total variation between two
probability measures µ,ν ∈∆(X ) over a discrete space X ,

∥µ− ν∥TV = sup
A⊆X

|µ(A)− ν(A)| (27)

=
1

2

∑
x∈X

|µ(x)− ν(x)| . (28)

4.1. Finite-Time Bound for the Asymmetric Critic

Our main result is to establish the following finite-time
bound for the Q-function approximation resulting from the
asymmetric temporal difference learning algorithm detailed
in Algorithm 1.
Theorem 3 (Finite-time bound for asymmetric m-step
temporal difference learning). For any agent-state policy
π ∈ΠM, and any m∈N, we have for Algorithm 1 with
α= 1√

K
and arbitrary B> 0,√
E
[∥∥Qπ −Qπ

∥∥2
d

]
≤ εtd + εapp + εshift, (29)

where the temporal difference learning, function approxima-
tion, and distribution shift terms are given by,

εtd =

√√√√√4B2 +
(

1
1−γ +2B

)2
2
√
K(1− γm)

(30)

εapp =
1+ γm

1− γm
min
f∈FBϕ

∥f −Qπ∥d (31)

εshift =

(
B+

1

1− γ

)√
2γm

1− γm

√
∥dm − d∥TV, (32)

with d(s,z,a)= dπ(s,z)π(a|z) the sampling distribution,
and dm(s,z,a)= dπm(s,z)π(a|z) the bootstrapping distri-
bution.

The proof is given in Appendix C, and adapts the proof of
Cayci et al. (2024) to the asymmetric setting. The first term
εtd is the usual temporal difference error term, decreasing in
K−1/4. The second term εapp results from the use of linear
function approximators. The third term εshift arises from the
distribution shift between the sampling distribution dπ ⊗π
(i.e., the discounted visitation measure) and the bootstrap-
ping distribution dπm ⊗π (i.e., the distribution m steps from
the discounted visitation measure). It is a consequence of
not assuming the existence of a stationary distribution nor
assuming to sample from the stationary distribution.

4.2. Finite-Time Bound for the Symmetric Critic

Given a history ht =(o0,a0, . . . ,ot), the belief is defined as,

bt(st|ht)=Pr(St = st|Ht =ht). (33)

Given an agent state zt, the approximate belief is defined as,

b̂t(st|zt)=Pr(St = st|Zt = zt). (34)

We obtain the following finite-time bound for the Q-function
approximation resulting from the symmetric temporal dif-
ference learning algorithm detailed in Algorithm 1.
Theorem 4 (Finite-time bound for symmetricm-step tempo-
ral difference learning (Cayci et al., 2024)). For any agent-
state policy π ∈ΠM, and any m∈N, we have for Algo-
rithm 1 with α= 1√

K
, and arbitrary B> 0,√

E
[∥∥Qπ −Qπ

∥∥2
d

]
≤ εtd + εapp + εshift + εalias, (35)

where the temporal difference learning, function approxima-
tion, distribution shift, and aliasing terms are given by,

εtd =

√√√√√4B2 +
(

1
1−γ +2B

)2
2
√
K(1− γm)

(36)
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εapp =
1+ γm

1− γm
min
f∈FBχ

∥f −Qπ∥d (37)

εshift =

(
B+

1

1− γ

)√
2γm

1− γm

√
∥dm − d∥TV (38)

εalias =
2

1− γ

∥∥∥∥∥Eπ

[ ∞∑
k=0

γkm
∥∥∥b̂km − bkm

∥∥∥
TV

∣∣∣∣∣Z0 = ·

]∥∥∥∥∥
d

,

(39)

with d(z,a)=
∑

s∈S d
π(s,z)π(a|z) the sampling distribu-

tion, and dm(z,a)=
∑

s∈S d
π
m(s,z)π(a|z) the bootstrap-

ping distribution.

The first three terms are identical or analogous to the asym-
metric case. The fourth term εalias results from the difference
between the fixed point Q̃π of the symmetric Bellman oper-
ator (7) and the true Q-function Qπ .

We note some minor differences with respect to the original
result of Cayci et al. (2024) that appear to be typos and minor
mistakes in the original proof.1 We provide the corrected
proof in Appendix D.

The results of Theorem 3 and Theorem 4 can be straight-
forwardly generalized to any other sampling distribution.
However, obtaining bounds in term of dπ ⊗π is useful for
bounding the performance of the actor-critic algorithm.

4.3. Finite-Time Bound for the Natural Actor-Critic

Following Cayci et al. (2024), we assume that there
exists a concentrability coefficient C∞<∞ such that
sup0≤t<T E[Ct]≤C∞ with,

Ct = sup
s,z,a

∣∣∣∣ dπ∗
(s,z)π∗(a|z)

dπθt (s,z)πθt(a|z)

∣∣∣∣. (40)

Roughly speaking, this assumption means that all successive
policies should visit every agent states and actions visited
by the optimal policy with nonzero probability. It motivates
the log-linear policy parametrization in equation (18) and
the initialization to the maximum entropy policy in Algo-
rithm 2. We obtain the following finite-time bound for the
suboptimality of the policy resulting from Algorithm 2.
Theorem 5 (Finite-time bound for asymmetric and symmet-
ric natural actor-critic algorithm). For any agent-state pro-
cess M=(Z,U), we have for Algorithm 2 with α= 1√

K
,

ζ = B
√
1−γ√
2N

, η= 1√
T

and arbitrary B> 0,

(1− γ) min
0≤t<T

E [J(π∗)− J(πt)]≤ εnac +2εinf

+C∞

(
εactor +2εgrad +2

√
6
1

T

T−1∑
t=0

επtcritic

)
, (41)

1The authors notably wrongly bound the distance ∥Q̂π
∗ − Q̃π∥d

by εapp at one point, which nevertheless yields a similar result.

where the different terms may differ for asymmetric and
symmetric critics,

εnac =
B2 +2log |A|

2
√
T

(42)

εactor =

√
(2− γ)B

(1− γ)
√
N

(43)

εinf,asym =0 (44)

εinf,sym =Eπ∗

[ ∞∑
k=0

γk
∥∥∥b̂k − bk

∥∥∥
TV

]
(45)

εgrad,asym = sup
0≤t<T

√
min
w

Lt(w) (46)

εgrad,sym = sup
0≤t<T

√
min
w
Lt(w) (47)

and επtcritic is given in Theorem 3 and Theorem 4.

The first term εnac is the usual natural actor-critic term de-
creasing in T−1/2 (Agarwal et al., 2021). The second term
εinf is the inference error resulting from use of an agent state
in a POMDP (Cayci et al., 2024). This term is zero for the
asymmetric algorithm. The third term εactor is the error re-
sulting from the estimation of the natural policy gradient by
stochastic gradient descent. The fourth term εgrad is the er-
ror resulting from the use of a linear function approximator
with features ∇θ logπt(a|z) for the natural policy gradient.
Finally, the fifth term 1

T

∑T−1
t=0 ε

πt
critic is the error arising from

the successive critic approximations. Inside of each επtcritic
terms, the aliasing term is thus zero for the asymmetric al-
gorithm. The proof, generalizing that of Cayci et al. (2024)
to the asymmetric setting, is available in Appendix E.

4.4. Discussion

As can be seen from Theorem 3 and Theorem 4, compared
to the symmetric temporal difference learning algorithm,
the asymmetric one eliminates a term arising from aliasing
in the agent state, in the sense of equation (39). In other
words, even for an aliased agent-state process, leveraging
the state to learn the asymmetric Q-function instead of the
symmetric Q-function does not suffer from aliasing, while
still providing a valid critic for the policy gradient algorithm.
That said, these bounds are given in expectation, and future
works may want to study the variance of the error of such
Q-function approximations.

From Theorem 5, we notice that the inference term (45) in
the suboptimality bound vanishes in the asymmetric setting.
Moreover, the average error 1

T

∑T−1
t=0 ε

πt
critic made in the eval-

uation of all policies π0, . . . ,πt−1 appears in the finite-time
bound that we obtain for the suboptimality of the policy.
Thus, the suboptimality bound for the actor also improves
in the asymmetric setting by eliminating the aliasing terms
with respect to the symmetric setting.
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By diving into the proof of Theorem 5 at equations (236) and
(237), we understand that the Q-function error impacts the
suboptimality bound through the estimation of the natural
policy gradient (19). Indeed, this error term in the subopti-
mality bound directly results from the error on the advantage
function estimation used in the target of the natural policy
gradient estimation loss of equations (23) and (26). This
advantage function estimation is derived from the estimation
of the Q-function, such that the error on the latter directly
impacts the error on the former, as detailed in equations
(236) and (237). This improvement in the average critic er-
ror unfortunately comes at the expense of a different residual
error εgrad on the natural policy gradient loss. Indeed, as can
be seen in equation (47), we obtain a residual error εgrad,asym
using the best approximation of the asymmetric advantage
Aπt(s,z,a), instead of a residual error εgrad,sym using the
best approximation of the symmetric critic Aπt(z,a). Since
both natural policy gradients are obtained through a linear
regression with features ∇θ logπt(a|z), it is clear than the
asymmetric residual error may be higher than the symmetric
residual error, even in the tabular case.

We conclude that the effectiveness of asymmetric actor-
critic algorithms notably results from a better approximation
of the Q-function by eliminating the aliasing bias, which in
turn provides a better estimate of the policy gradient.

5. Conclusion
In this work, we extended the unbiased asymmetric actor-
critic algorithm to agent-state policies. Then, we adapted
a finite-time analysis for natural actor-critic to the asym-
metric setting. This analysis highlighted that on the con-
trary to symmetric learning, asymmetric learning is less
sensitive to aliasing in the agent state. While this analy-
sis assumed a fixed agent-state process, we argue that it
is useful to interpret the causes of effectiveness of asym-
metric learning with learnable agent-state processes. In-
deed, aliasing can be present in the agent-state process
throughout learning, and in particular at initialization. More-
over, it should be noted that this analysis can be straight-
forwardly generalized to learnable agent-state processes
by extending the action space to select future agent states.
More formally, we would extend the action space to A+ =
A×∆(Z) with a+t =(at,a

z
t ), the agent state space to

Z+ =Z ×O with z+t =(zt,z
o
t ), and the agent-state pro-

cess to U(z+t+1|z
+
t ,at,ot+1)∝ exp(a

zt+1

t )δzot+1,ot+1 . This
alternative to backpropagation through time would neverthe-
less still not reflect the common setting of recurrent actor-
critic algorithms. We consider this as a future work that
could build on recent advances in finite-time bound for re-
current actor-critic algorithms (Cayci & Eryilmaz, 2024a;b).
Alternatively, generalizing this analysis to nonlinear approx-
imators may include recurrent neural networks, which can

be seen as nonlinear approximators with a sliding window
as agent state. Our analysis also motivates future work
studying other asymmetric learning approaches that con-
sider representation losses to reduce the aliasing bias (Sinha
& Mahajan, 2023; Lambrechts et al., 2022; 2024).
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A. Agent State Aliasing

Treasure
(Dark)

Tiger
(Dark)

Left
(Left)

Right
(Right)

Swap
(+0)

Enter
(+0)

Enter
(+0)

Swap/Enter
(+1)

Swap/Enter
(+0)

Figure 1: Aliased Tiger POMDP.

In this section, we provide an example of aliased agent state, and
discuss the corresponding aliasing bias. For this purpose, we introduce
a slightly modified version of the Tiger POMDP (Kaelbling et al.,
1998), see Figure 1. In this POMDP, there are two doors: one opening
on a room with a treasure on the left, and another opening on a room
with a tiger on the right. There are four states for this POMDP: being
in the treasure room (Treasure), being in the tiger room (Tiger), being
in front of the treasure door (Left) or being in front of the tiger door
(Right). The rooms are labeled outside (Left or Right), but inside it
is completely dark (Dark), such that we do not observe in which room
we are. When outside of the rooms, the agent can switch to the other
door (Swap) or it can open the door and enter the room (Enter). Once
in a room (Treasure or Tiger), the agent stays locked forever, and
gets a positive reward (+1) if if it is in the treasure room (Treasure)
whatever the action taken (Swap or Enter). We consider the agent
state to be simply the last observation (Left, Right, or Dark). Notice that the optimal agent-state policy conditioned on this
agent state is also an optimal history-dependent policy. In other words, the current observation is a sufficient statistic for
optimal control in this POMDP. We consider a uniform initial distributions over the four states.

For a given agent state (Dark), there exist two different underlying states (Treasure or Tiger). We call this phenomenon
aliasing. Now, let us consider a simple policy π that always takes the same action (Enter). It is clear that the sym-
metric value function defined according to equation (6) is given by V π(z=Dark)= 1

2(1−γ) , V π(z=Left)= γ
1−γ , and

V π(z=Right)= 0. However, when considering the unique fixed point of the aliased Bellman operator of equation (7)
with m=1, we have instead Ṽ π(z=Dark)= 1

2(1−γ) , Ṽ π(z=Left)= γ
2(1−γ) , and Ṽ π(z=Right)= γ

2(1−γ) . We refer to
the distance between V π and Ṽ π, or similarly Qπ and Q̃π, as the aliasing bias. In the analysis of this paper, this distance
appears as the weighted ℓ2-norm ∥Qπ − Q̃π∥d where d(s,z,a)= dπ(s,z)π(a|z). In the analysis, we also define the aliasing
term εalias as an upper bound on this aliasing bias, see Lemma D.1 for a detailed definition.

B. Proof of the Natural Policy Gradients
In this section, we prove that the natural policy gradient is the minimizer of analogous asymmetric and symmetric losses.

B.1. Proof of the Asymmetric Natural Policy Gradient

In this section, we prove that the natural policy gradient is the minimizer of an asymmetric loss.
Theorem 1 (Asymmetric Natural Policy Gradient). For any POMDP P and any agent-state policy πθ ∈ΠM, we have,

wπθ
∗ =(1− γ)F †

πθ
∇θJ(πθ)∈ argmin

w∈Rdψ
L(w), (21)

with,

L(w)=Edπθ
[
(⟨∇θ logπθ(A|Z),w⟩−Aπθ (S,Z,A))

2
]
. (22)

Proof. Let us note that,

∇wL(w)= 2Edπθ [∇θ logπθ(A|Z)(⟨∇θ logπθ(A|Z),w⟩−Aπθ (S,Z,A))] (48)

Therefore, for any wπθ
∗ ∈Rdψ minimizing L(w), we have ∇wL(w)= 0, such that,

Edπθ [∇θ logπθ(A|Z)Aπθ (S,Z,A)] =Edπθ [∇θ logπθ(A|Z)⟨∇θ logπθ(A|Z),wπθ
∗ ⟩] (49)

=Edπθ [(∇θ logπθ(A|Z)⊗∇θ logπθ(A|Z))wπθ
∗ ] (50)

=Edπθ [∇θ logπθ(A|Z)⊗∇θ logπθ(A|Z)]wπθ
∗ (51)
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=Fπθw
πθ
∗ . (52)

which follows from the definition of the Fisher information matrix Fπθ in equation (20). Now, let us define the policy
π+
θ (A|S,Z)=πθ(A|Z), which ignores the state S. From there, we have,

Fπθw
πθ
∗ =Edπθ [∇θ logπθ(A|Z)A(S,Z,A)] (53)

=Edπ
+
θ [∇θ logπ

+
θ (A|S,Z)A(S,Z,A)

]
(54)

=Edπ
+
θ [∇θ logπ

+
θ (A|S,Z)(A(S,Z,A)+V(S,Z)−V(S,Z))

]
(55)

=Edπ
+
θ [∇θ logπ

+
θ (A|S,Z)Q(S,Z,A)

]
−Edπ

+
θ [∇θ logπ

+
θ (A|S,Z)V(S,Z)

]
(56)

=Edπ
+
θ [∇θ logπ

+
θ (A|S,Z)Q(S,Z,A)

]
−Edπ

+
θ

[
V(S,Z)

∑
a∈A

π+
θ (a|S,Z)∇θ logπ

+
θ (a|S,Z)

]
(57)

=Edπ
+
θ [∇θ logπ

+
θ (A|S,Z)Q(S,Z,A)

]
−Edπ

+
θ

[
V(S,Z)

∑
a∈A

∇θπ
+
θ (a|S,Z)

]
(58)

=Edπ
+
θ [∇θ logπ

+
θ (A|S,Z)Q(S,Z,A)

]
−Edπ

+
θ

[
V(S,Z)∇θ

∑
a∈A

π+
θ (a|S,Z)

]
(59)

=Edπ
+
θ [∇θ logπ

+
θ (A|S,Z)Q(S,Z,A)

]
−Edπ

+
θ
[V(S,Z)∇θ1] (60)

=Edπ
+
θ [∇θ logπ

+
θ (A|S,Z)Q(S,Z,A)

]
. (61)

Using the policy gradient theorem (Sutton et al., 1999) and equation (61),

Fπθw
πθ
∗ =(1− γ)∇θJ(π

+
θ ), (62)

From there, we obtain using the definition of π+
θ ,

Fπθw
πθ
∗ =(1− γ)∇θJ(π

+
θ ) (63)

=(1− γ)∇θJ(πθ). (64)

This concludes the proof.

B.2. Proof of the Symmetric Natural Policy Gradient

In this section, we prove that the natural policy gradient is the minimizer of an asymmetric loss.
Theorem 2 (Symmetric Natural Policy Gradient). For any POMDP P and any agent-state policy πθ ∈ΠM, we have,

wπθ
∗ =(1− γ)F †

πθ
∇θJ(πθ)∈ argmin

w∈Rdψ
L(w), (24)

with,

L(w)=Edπθ
[
(⟨∇θ logπθ(A|Z),w⟩−Aπθ (Z,A))

2
]
. (25)

Proof. Similarly to the asymmetric setting, for any wπθ
∗ minimizing L(w), we have ∇wL(w)= 0, such that,

Edπθ [∇θ logπθ(A|Z)A(Z,A)] =Edπθ [∇θ logπθ(A|Z)⟨∇θ logπθ(A|Z)wπθ
∗ ⟩] (65)

=Edπθ [(∇θ logπθ(A|Z)⊗∇θ logπθ(A|Z))wπθ
∗ ] (66)

=Edπθ [∇θ logπθ(A|Z)⊗∇θ logπθ(A|Z)]wπθ
∗ (67)

=Fπθw
πθ
∗ , (68)
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which follows from the definition of the Fisher information matrix Fπθ in equation (20). From there, we have,

Fπθw
πθ
∗ =Edπθ [∇θ logπθ(A|Z)A(Z,A)] (69)

Fπθw
πθ
∗ =Edπθ

[
∇θ logπθ(A|Z)Edπθ [A(S,Z,A)|Z,A]

]
(70)

Fπθw
πθ
∗ =Edπθ

[
Edπθ [∇θ logπθ(A|Z)A(S,Z,A)|Z,A]

]
(71)

Fπθw
πθ
∗ =Edπθ [∇θ logπθ(A|Z)A(S,Z,A)], (72)

which follows from the law of total probability. From there, by following the same steps as in the asymmetric case (see
Subsection B.1), we obtain,

Fπθw
πθ
∗ =(1− γ)∇θJ(πθ). (73)

This concludes the proof.

C. Proof of the Finite-Time Bound for the Asymmetric Critic
In this section, we prove Theorem 3, that is recalled below.
Theorem 3 (Finite-time bound for asymmetric m-step temporal difference learning). For any agent-state policy π ∈ΠM,
and any m∈N, we have for Algorithm 1 with α= 1√

K
and arbitrary B> 0,√

E
[∥∥Qπ −Qπ

∥∥2
d

]
≤ εtd + εapp + εshift, (29)

where the temporal difference learning, function approximation, and distribution shift terms are given by,

εtd =

√√√√√4B2 +
(

1
1−γ +2B

)2
2
√
K(1− γm)

(30)

εapp =
1+ γm

1− γm
min
f∈FBϕ

∥f −Qπ∥d (31)

εshift =

(
B+

1

1− γ

)√
2γm

1− γm

√
∥dm − d∥TV, (32)

with d(s,z,a)= dπ(s,z)π(a|z) the sampling distribution, and dm(s,z,a)= dπm(s,z)π(a|z) the bootstrapping distribution.

Proof. To simplify notation, we drop the dependence on π and β and use Q as a shorthand for Qπ , Q̂∗ as a shorthand for Q̂π
∗ ,

Q as a shorthand for Qπ and Q̂k as a shorthand for Q̂π
βk

, where the subscripts and superscripts remain implicit but are assumed
clear from context. When evaluating the Q-functions, we go one step further by using Qk,i to denote Q(Sk,i,Zk,i,Ak,i),
Q̂∗

k,i to denote Q̂∗(Zk,i,Ak,i) or Q̂k,i to denote Q̂k(Sk,i,Zk,i,Ak,i), and ϕk,i to denote ϕ(Sk,i,Zk,i,Ak,i). In addition,
we define d as a shorthand for dπ ⊗π, such that d(s,z,a)= dπ(s,z)π(a|z), and dm as a shorthand for dπm ⊗π, such that
dm(s,z,a)= dπm(s,z)π(a|z).

First, let us define ∆k as,

∆k =

√
E
[∥∥∥Q−Q̂k

∥∥∥2
d

]
=

√
E
[
∥Q(·)−⟨βk,ϕ(·)⟩∥2d

]
. (74)

Using the linearity of Q in β1, . . . ,βK−1, the triangle inequality, the subadditivity of the square root, and Jensen’s inequality,
we have,

√
E
[∥∥Q−Q

∥∥2
d

]
=

√√√√√E

∥∥∥∥∥Q(·)−
〈 1

K

K−1∑
k=0

βk,ϕ(·)
〉∥∥∥∥∥

2

d

 (75)
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=

√√√√√E

∥∥∥∥∥ 1

K

K−1∑
k=0

(Q(·)−⟨βk,ϕ(·)⟩)

∥∥∥∥∥
2

d

 (76)

=

√√√√√E

∥∥∥∥∥
K−1∑
k=0

1

K
(Q(·)−⟨βk,ϕ(·)⟩)

∥∥∥∥∥
2

d

 (77)

≤

√√√√E
[
K−1∑
k=0

1

K2
∥Q(·)−⟨βk,ϕ(·)⟩∥2d

]
(78)

=

√√√√ 1

K2

K−1∑
k=0

E
[
∥Q(·)−⟨βk,ϕ(·)⟩∥2d

]
(79)

=
1

K

√√√√K−1∑
k=0

∆2
k (80)

≤ 1

K

K−1∑
k=0

√
∆2

k (81)

=
1

K

K−1∑
k=0

∆k (82)

=
1

K

K−1∑
k=0

(∆k − l)+ l (83)

≤

√√√√( 1

K

K−1∑
k=0

(∆k − l)

)2

+ l (84)

≤

√√√√ 1

K

K−1∑
k=0

(∆k − l)
2
+ l, (85)

where l is arbitrary.

Now, we consider the Lyapounov function L(β)= ∥β∗ −β∥22 in order to find a bound on 1
K

∑K−1
k=0 (∆k − l)

2. Since
β∗ ∈B2(0,B), with B2(0,B) a convex subset of Rdϕ , and the projection ΓC is non-expansive for closed and convex C, we
have for all k≥ 0,

L(βk+1)= ∥β∗ −βk+1∥22 (86)

≤
∥∥β∗ −β−

k+1

∥∥2
2

(87)

= ∥β∗ − (βk +αgk)∥22 (88)

= ∥(β∗ −βk)−αgk∥22 (89)
= ⟨(β∗ −βk)−αgk,(β∗ −βk)−αgk⟩ (90)

= ⟨β∗ −βk,β∗ −βk⟩− 2α⟨β∗ −βk,gk⟩+α2⟨gk,gk⟩ (91)

=L(βk)− 2α⟨β∗ −βk,gk⟩+α2 ∥gk∥22 (92)

=L(βk)+ 2α⟨βk −β∗,gk⟩+α2 ∥gk∥22 . (93)

Let us consider the Lyapounov drift E [L(βk+1)−L(βk)], and exploit the fact that environments samples used to
compute gk are independent and identically distributed. Formally, we define Gk =σ(Si,j ,Zi,j ,Ai,j , i≤ k,j≤m) and
Fk =σ(Sk,0,Zk,0,Ak,0), where σ(Xi : i∈I) denotes the σ-algebra generated by a collection {Xi : i∈I} of random
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variables. We can write, using to the law of total expectation,

E [L(βk+1)−L(βk)] =E
[
E [L(βk+1)−L(βk)|Gk−1]

]
(94)

≤ 2αE
[
E [⟨βk −β∗,gk⟩|Gk−1]

]
+α2E

[
E
[
∥gk∥22

∣∣∣Gk−1

]]
. (95)

Let us focus on the first term of equation (95) with E [⟨gk,βk −β∗⟩|Gk−1]. First, since ∇βQ̂k,0 =ϕk,0, the semi-gradient
gk is given by (see equation (13)),

gk =

(
m−1∑
t=0

γtRk,t + γmQ̂k,m −Q̂k,0

)
ϕk,0. (96)

By conditioning on the sigma-fields Gk−1 and Fk, we have,

E [⟨βk −β∗,gk⟩|Fk,Gk−1] =

(
E
[
m−1∑
t=0

γtRk,t + γmQ̂k,m

∣∣∣∣∣Fk,Gk−1

]
−Q̂k,0

)
⟨βk −β∗,ϕk,0⟩ (97)

=

(
E
[
m−1∑
t=0

γtRk,t + γmQ̂k,m

∣∣∣∣∣Fk,Gk−1

]
−Q̂k,0

)(
Q̂k,0 −Q̂∗

k,0

)
. (98)

Note that according to the Bellman operator (5) we have,

E
[
m−1∑
t=0

γtRk,t

∣∣∣∣∣Fk,Gk−1

]
=Qk,0 − γmE [Qk,m|Fk,Gk−1]. (99)

By substituting equation (99) in equation (98), we obtain,

E [⟨βk −β∗,gk⟩|Fk,Gk−1]

=

(
E
[
m−1∑
t=0

γtRk,t

∣∣∣∣∣Fk,Gk−1

]
+ γmE

[
Q̂k,m

∣∣∣Fk,Gk−1

]
−Q̂k,0

)(
Q̂k,0 −Q̂∗

k,0

)
(100)

=
(
Qk,0 − γmE [Qk,m|Fk,Gk−1] + γmE

[
Q̂k,m

∣∣∣Fk,Gk−1

]
−Q̂k,0

)(
Q̂k,0 −Q̂∗

k,0

)
(101)

=
(
(Qk,0 −Q̂k,0)− γmE

[
Qk,m −Q̂k,m

∣∣∣Fk,Gk−1

])(
(Q̂k,0 −Qk,0)+ (Qk,0 −Q̂∗

k,0)
)

(102)

=−(Qk,0 −Q̂k,0)
2 +(Qk,0 −Q̂k,0)(Qk,0 −Q̂∗

k,0)

+ γmE
[
Q̂k,m −Qk,m

∣∣∣Fk,Gk−1

]
(Q̂k,0 −Qk,0)+ γmE

[
Q̂k,m −Qk,m

∣∣∣Fk,Gk−1

]
(Qk,0 −Q̂∗

k,0). (103)

Let us now take the expectation of (103) over Fk given Gk−1, for each term separately,

• For the first term, we have,

E
[
−(Qk,0 −Q̂k,0)

2
∣∣∣Gk−1

]
=−

∥∥∥Q−Q̂k

∥∥∥2
d
. (104)

• For the second term, we have, using the Cauchy-Schwarz inequality,

E
[
(Qk,0 −Q̂k,0)(Qk,0 −Q̂∗

k,0)
∣∣∣Gk−1

]
=
∥∥∥(Q−Q̂k)(Q−Q̂∗)

∥∥∥
d

(105)

≤
∥∥∥Q−Q̂k

∥∥∥
d

∥∥∥Q−Q̂∗
∥∥∥
d
. (106)

Before proceeding to the third and fourth terms, let us notice that,

E
[
Q̂k,m −Qk,m

∣∣∣Gk−1

]
=
∑
s,z,a

dm(s,z,a)
(
Q̂k(s,z,a)−Q(s,z,a)

)
(107)
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=
∑
s,z,a

(d(s,z,a)+ dm(s,z,a)− d(s,z,a))
(
Q̂k(s,z,a)−Q(s,z,a)

)
. (108)

Remembering that sups,z,a Q̂k(s,z,a)≤B and sups,z,aQ(s,z,a)≤ 1
1−γ , we have,

E
[(

Q̂k,m −Qk,m

)2∣∣∣∣Gk−1

]
=
∑
s,z,a

(d(s,z,a)+ dm(s,z,a)− d(s,z,a))
(
Q̂k(s,z,a)−Q(s,z,a)

)2
(109)

=
∥∥∥Q̂k −Q

∥∥∥2
d
+
∑
s,z,a

(dm(s,z,a)− d(s,z,a))
(
Q̂k(s,z,a)−Q(s,z,a)

)2
(110)

≤
∥∥∥Q̂k −Q

∥∥∥2
d
+ ∥dm − d∥TV sup

s,z,a

(
Q̂k(s,z,a)−Q(s,z,a)

)2
(111)

≤
∥∥∥Q̂k −Q

∥∥∥2
d
+ ∥dm − d∥TV

(
B+

1

1− γ

)2

, (112)

where
(
B+ 1

1−γ

)
is an upper bound on sups,z,a

∣∣∣Q̂k(s,z,a)−Q(s,z,a)
∣∣∣. Now, using Jensen’s inequality and the subaddi-

tivity of the square root, we have,

E
[
Q̂k,m −Qk,m

∣∣∣Gk−1

]
≤E

[√
(Q̂k,m −Qk,m)2

∣∣∣∣Gk−1

]
(113)

≤

√
E
[(

Q̂k,m −Qk,m

)2∣∣∣∣Gk−1

]
(114)

≤
∥∥∥Q̂k −Q

∥∥∥
d
+

(
B+

1

1− γ

)√
∥dm − d∥TV. (115)

With this, we proceed to the third and fourth terms (without the multiplier γm) and show the following.

• For the third term, we have by upper bounding |Q̂k,0 −Qk,0| by B+ 1
1−γ ,

E
[
(Q̂k,m −Qk,m)(Q̂k,0 −Qk,0)

∣∣∣Gk−1

]
≤
∥∥∥Q̂k −Q

∥∥∥2
d
+

(
B+

1

1− γ

)2√
∥dm − d∥TV. (116)

• For the fourth term, we have by upper bounding |Qk,0 −Q̂∗
k,0| by 1

1−γ +B,

E
[
(Q̂k,m −Qk,m)(Qk,0 −Q̂∗

k,0)
∣∣∣Gk−1

]
≤
∥∥∥Q̂k −Q

∥∥∥
d

∥∥∥Q−Q̂∗
∥∥∥
d
+

(
B+

1

1− γ

)2√
∥dm − d∥TV. (117)

By taking expectation over Gk−1 of the four terms and using the previous upper bounds, we obtain,

E [⟨βk −β∗,gk⟩] =E
[
E [⟨βk −β∗,gk⟩|Gk−1]

]
(118)

≤−(1− γm)E
[∥∥∥Q̂k −Q

∥∥∥2
d

]
+(1+ γm)E

[∥∥∥Q̂k −Q
∥∥∥
d

]∥∥∥Q̂∗ −Q
∥∥∥
d

+2γm
(
B+

1

1− γ

)2√
∥dm − d∥TV (119)

=−(1− γm)∆2
k +(1+ γm)∆k

∥∥∥Q̂∗ −Q
∥∥∥
d
+2γm

(
B+

1

1− γ

)2√
∥dm − d∥TV. (120)

Let us now focus on the second term of equation (95) with E
[
∥gk∥22

∣∣∣Gk−1

]
. Since sups,z,a ∥ϕ(s,z,a)∥2 ≤ 1 and ∥βk∥2 ≤B

for all k≥ 0, and rk,i ≤ 1 for all k≥ 0 and for all i<m− 1, the norm of the gradient (96) is bounded as follows,

sup
k≥0

∥gk∥2 ≤
1− γm

1− γ
+(1+ γm)B≤ 1

1− γ
+2B. (121)
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We obtain, for the second term of equation (95),

E
[
∥gk∥22

]
=E

[
E
[
∥gk∥22

∣∣∣Gk−1

]]
(122)

≤
(

1

1− γ
+2B

)2

. (123)

By substituting equations (120) and (123) into the Lyapounov drift of equation (95), we obtain,

E [L(βk+1)−L(βk)]≤−2α(1− γm)∆2
k +2α(1+ γm)∆k

∥∥∥Q̂∗ −Q
∥∥∥
d
+α2

(
1

1− γ
+2B

)2

+4αγm
(
B+

1

1− γ

)2√
∥dm − d∥TV. (124)

By setting l= 1+γm

2(1−γm) minf∈FBϕ
∥f −Q∥d, we can write,

E [L(βk+1)−L(βk)]≤−2α(1− γm)
(
∆2

k − 2l∆k

)
+α2

(
1

1− γ
+2B

)2

+4αγm
(
B+

1

1− γ

)2√
∥dm − d∥TV (125)

=−2α(1− γm)
(
∆2

k − 2l∆k + l2
)
+2α(1− γm)l2 +α2

(
1

1− γ
+2B

)2

+4αγm
(
B+

1

1− γ

)2√
∥dm − d∥TV (126)

=−2α(1− γm)(∆k − l)
2
+2α(1− γm)l2 +α2

(
1

1− γ
+2B

)2

+4αγm
(
B+

1

1− γ

)2√
∥dm − d∥TV. (127)

By summing all Lyapounov drifts
∑K−1

k=0 E [L(βk+1)−L(βk)], we get,

E [L(βK)−L(β0)]≤−2α(1− γm)

K−1∑
k=0

(∆k − l)
2
+2αK(1− γm)l2 +α2K

(
1

1− γ
+2B

)2

+4αKγm
(
B+

1

1− γ

)2√
∥dm − d∥TV. (128)

By rearranging and dividing by 2αK(1− γm), we obtain after neglecting L(βK)> 0,

1

K

K−1∑
k=0

(∆k − l)2 ≤ E [L(β0)−L(βK)]

2αK(1− γm)
+ l2 +

α

2(1− γm)

(
1

1− γ
+2B

)2

+
2γm

1− γm

(
B+

1

1− γ

)2√
∥dm − d∥TV (129)

≤
∥β0 −β∗∥22

2αK(1− γm)
+ l2 +

α

2(1− γm)

(
1

1− γ
+2B

)2

+
2γm

1− γm

(
B+

1

1− γ

)2√
∥dm − d∥TV. (130)
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The bound obtained through this Lyapounov drift summation can be used to further develop equation (85), using the
subadditivity of the square root,

√
E
[∥∥Q−Q

∥∥2
d

]
≤

√√√√ 1

K

K−1∑
k=0

(∆k − l)
2
+ l (131)

≤
∥β0 −β∗∥2√
2αK(1− γm)

+ 2l+

√
α

2(1− γm)

(
1

1− γ
+2B

)
+

(
B+

1

1− γ

)√
2γm

1− γm

√
∥dm − d∥TV (132)

=
∥β0 −β∗∥2√
2αK(1− γm)

+
1+ γm

1− γm
min
f∈FBϕ

∥f −Q∥d +
√

α

2(1− γm)

(
1

1− γ
+2B

)
+

(
B+

1

1− γ

)√
2γm

1− γm

√
∥dm − d∥TV. (133)

By setting α= 1√
K

and upper bounding ∥β0 −β∗∥ by 2B, we get,√
E
[∥∥Q−Q

∥∥2
d

]
≤ 2B√

2
√
K(1− γm)

+
1+ γm

1− γm
min
f∈FBϕ

∥f −Q∥d +
1√

2
√
K(1− γm)

(
1

1− γ
+2B

)

+

(
B+

1

1− γ

)√
2γm

1− γm

√
∥dm − d∥TV (134)

=

√√√√√4B2 +
(

1
1−γ +2B

)2
2
√
K(1− γm)

+
1+ γm

1− γm
min
f∈FBϕ

∥f −Q∥d

+

(
B+

1

1− γ

)√
2γm

1− γm

√
∥dm − d∥TV. (135)

This concludes the proof.

D. Proof of the Finite-Time Bound for the Symmetric Critic

Let us first find an upper bound on the distance
∥∥∥Qπ − Q̃π

∥∥∥2
d

between the Q-function Qπ and the fixed point Q̃π .
Lemma D.1 (Upper bound on the aliasing bias (Cayci et al., 2024)). For any agent-state policy π ∈ΠM, and any m∈N, we
have,

∥∥∥Qπ − Q̃π
∥∥∥
d
≤ 1− γm

1− γ

∥∥∥∥∥Eπ

[ ∞∑
k=0

γkm
∥∥∥b̂km − bkm

∥∥∥
TV

∣∣∣∣∣Z0 = ·

]∥∥∥∥∥
d

. (136)

Proof. The proof is similar to the one of Cayci et al. (2024). Let us first define the expected m-step return,

r̄m(s,z,a)=Eπ

[
m−1∑
k=0

γkRk

∣∣∣∣∣S0 = s,Z0 = s,A0 = a

]
. (137)

Using the expected m-step return and the definition of the belief b in equation (33) and approximate belief b̂ in equation
(34), it can be noted that,

Qπ(z,a)=Eπ

[ ∞∑
k=0

γkm
∑
s∈S

bkm(s|Hkm)r̄m(s,Zkm,Akm)

∣∣∣∣∣Z0 = z,A0 = a

]
(138)
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Q̃π(z,a)=Eπ

[ ∞∑
k=0

γkm
∑
s∈S

b̂km(s|Zkm)r̄m(s,Zkm,Akm)

∣∣∣∣∣Z0 = z,A0 = a

]
. (139)

Indeed, bootstrapping at timestep m based on the agent state only is equivalent to considering the distribution of future
states to be b̂m(·|Zm) instead of bm(·|Hm). As a consequence, we have,∣∣∣Qπ(z,a)− Q̃π(z,a)

∣∣∣=Eπ

[ ∞∑
k=0

γkm
∑
s∈S

(
bkm(s|Hkm)− b̂km(s|Zkm)

)
r̄m(s,Zkm,Akm)

∣∣∣∣∣Z0 = z,A0 = a

]
(140)

≤Eπ

[ ∞∑
k=0

γkm sup
s∈S

∣∣∣bkm(s|Hkm)− b̂km(s|Zkm)
∣∣∣sup
s∈S

|r̄m(s,Zkm,Akm)|

∣∣∣∣∣Z0 = z,A0 = a

]
(141)

≤Eπ

[ ∞∑
k=0

γkm sup
s∈S

∣∣∣bkm(s|Hkm)− b̂km(s|Zkm)
∣∣∣ 1− γm

1− γ

∣∣∣∣∣Z0 = z,A0 = a

]
(142)

=
1− γm

1− γ
Eπ

[ ∞∑
k=0

γkm sup
s∈S

∣∣∣bkm(s|Hkm)− b̂km(s|Zkm)
∣∣∣∣∣∣∣∣Z0 = z,A0 = a

]
(143)

≤ 1− γm

1− γ
Eπ

[ ∞∑
k=0

γkm
∥∥∥bkm(·|Hkm)− b̂km(·|Zkm)

∥∥∥
TV

∣∣∣∣∣Z0 = z,A0 = a

]
(144)

≤ 1− γm

1− γ
Eπ

[ ∞∑
k=0

γkm
∥∥∥bkm − b̂km

∥∥∥
TV

∣∣∣∣∣Z0 = z,A0 = a

]
, (145)

where we use bkm and b̂km to denote the random variables bkm(·|Hkm) and b̂km(·|Zkm), respectively. It illustrates that
the aliasing bias can be bounded proportionally to the distance between the true belief and the approximate belief at the
bootstrapping timesteps. Then, we obtain,∥∥∥Qπ − Q̃π

∥∥∥
d
≤ 1− γm

1− γ

∥∥∥∥∥Eπ

[ ∞∑
k=0

γkm
∥∥∥b̂km − bkm

∥∥∥
TV

∣∣∣∣∣Z0 = ·

]∥∥∥∥∥
d

. (146)

This concludes the proof.

Using Lemma D.1, we can prove Theorem 4, that is recalled below. Note that some notations used in Appendix C will be
reused with another meaning.
Theorem 4 (Finite-time bound for symmetric m-step temporal difference learning (Cayci et al., 2024)). For any agent-state
policy π ∈ΠM, and any m∈N, we have for Algorithm 1 with α= 1√

K
, and arbitrary B> 0,√

E
[∥∥Qπ −Qπ

∥∥2
d

]
≤ εtd + εapp + εshift + εalias, (35)

where the temporal difference learning, function approximation, distribution shift, and aliasing terms are given by,

εtd =

√√√√√4B2 +
(

1
1−γ +2B

)2
2
√
K(1− γm)

(36)

εapp =
1+ γm

1− γm
min
f∈FBχ

∥f −Qπ∥d (37)

εshift =

(
B+

1

1− γ

)√
2γm

1− γm

√
∥dm − d∥TV (38)

εalias =
2

1− γ

∥∥∥∥∥Eπ

[ ∞∑
k=0

γkm
∥∥∥b̂km − bkm

∥∥∥
TV

∣∣∣∣∣Z0 = ·

]∥∥∥∥∥
d

, (39)

with d(z,a)=
∑

s∈S d
π(s,z)π(a|z) the sampling distribution, and dm(z,a)=

∑
s∈S d

π
m(s,z)π(a|z) the bootstrapping

distribution.
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Proof. To ease notation as for the proof of Theorem 3 in Appendix C, we use Q as a shorthand for Qπ , Q̂∗ as a shorthand for
Q̂π

∗ , Q̃ as a shorthand for Q̃π , Q as a shorthand for Qπ and Q̂k as a shorthand for Q̂π
βk

, where the subscripts and superscripts
remain implicit but are assumed clear from context. When evaluating the Q-functions, we go one step further by using Qk,i

to denote Q(Zk,i,Ak,i), Q̂∗
k,i to denote Q̂∗(Zk,i,Ak,i), Q̃k,i to denote Q̃(Zk,i,Ak,i) and Q̂k,i to denote Q̂k(Zk,i,Ak,i), and

χk,i to denote χ(Zk,i,Ak,i). In addition, we define d as a shorthand for dπ ⊗π, such that d(z,a)= dπ(z)π(a|z), and dm as
a shorthand for dπm ⊗π, such that dm(z,a)= dπm(z)π(a|z). Using the triangle inequality and the subadditivity of the square
root, we have, √

E
[∥∥Q−Q

∥∥2
d

]
≤

√
E
[∥∥∥Q− Q̃

∥∥∥2
d

]
+E

[∥∥∥Q̃−Q
∥∥∥2
d

]
(147)

≤

√
E
[∥∥∥Q− Q̃

∥∥∥2
d

]
+

√
E
[∥∥∥Q̃−Q

∥∥∥2
d

]
(148)

≤
∥∥∥Q− Q̃

∥∥∥
d
+

√
E
[∥∥∥Q̃−Q

∥∥∥2
d

]
. (149)

We can bound the second term in equation (149) using similar steps as in the proof for the asymmetric finite-time bound
(see Appendix C). We obtain, √

E
[∥∥∥Q̃−Q

∥∥∥2
d

]
≤

√√√√ 1

K

K−1∑
k=0

(∆k − l)
2
+ l, (150)

where l is arbitrary, and ∆k is defined as,

∆k =

√
E
[∥∥∥Q̃− Q̂k

∥∥∥2
d

]
=

√
E
[∥∥∥Q̃(·)−⟨βk,χ(·)⟩

∥∥∥2
d

]
. (151)

Similarly to the asymmetric case (see Appendix C), we consider the Lyapounov function L(β)= ∥β∗ −β∥22 in order to find
a bound on 1

K

∑K−1
k=0 (∆k − l)

2. We define Gk =σ(Zi,j ,Ai,j , i≤ k,j≤m) and Fk =σ(Zk,0,Ak,0). As in the asymmetric
case (see Appendix C), we obtain, using to the law of total expectation,

E [L(βk+1)−L(βk)]≤ 2αE
[
E [⟨βk −β∗,gk⟩|Gk−1]

]
+α2E

[
E
[
∥gk∥22

∣∣∣Gk−1

]]
. (152)

Let us focus on the first term of equation (152) with E [⟨βk −β∗,gk⟩|Gk−1]. By conditioning on the sigma-fields Gk−1 and
Fk, we have,

E [⟨βk −β∗,gk⟩|Fk,Gk−1] =

(
E
[
m−1∑
t=0

γtRk,t + γmQ̂k,m

∣∣∣∣∣Fk,Gk−1

]
− Q̂k,0

)(
Q̂k,0 − Q̂∗

k,0

)
. (153)

Note that, according to the Bellman operator (7), we have,

E
[
m−1∑
t=0

γtRk,t

∣∣∣∣∣Fk,Gk−1

]
= Q̃k,0 − γmE

[
Q̃k,m

∣∣∣Fk,Gk−1

]
. (154)

It differs from the asymmetric case (see Appendix C) in that we do not necessarily have Q= Q̃ here. By substituting
equation (154) in equation (153), we obtain,

E [⟨βk −β∗,gk⟩|Fk,Gk−1]

=

(
E
[
m−1∑
t=0

γtRk,t

∣∣∣∣∣Fk,Gk−1

]
+ γmE

[
Q̂k,m

∣∣∣Fk,Gk−1

]
− Q̂k,0

)(
Q̂k,0 − Q̂∗

k,0

)
(155)
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=
(
Q̃k,0 − γmE

[
Q̃k,m

∣∣∣Fk,Gk−1

]
+ γmE

[
Q̂k,m

∣∣∣Fk,Gk−1

]
− Q̂k,0

)(
Q̂k,0 − Q̂∗

k,0

)
(156)

=
(
Q̃k,0 − γmE

[
Q̃k,m − Q̂k,m

∣∣∣Fk,Gk−1

]
− Q̂k,0

)(
Q̂k,0 − Q̃k,0 + Q̃k,0 − Q̂∗

k,0

)
(157)

=
(
(Q̃k,0 − Q̂k,0)− γmE

[
Q̃k,m − Q̂k,m

∣∣∣Fk,Gk−1

])(
(Q̂k,0 − Q̃k,0)+ (Q̃k,0 − Q̂∗

k,0)
)

(158)

=−(Q̃k,0 − Q̂k,0)
2 +(Q̃k,0 − Q̂k,0)(Q̃k,0 − Q̂∗

k,0)

+ γmE
[
Q̂k,m − Q̃k,m

∣∣∣Fk,Gk−1

]
(Q̂k,0 − Q̃k,0)+ γmE

[
Q̂k,m − Q̃k,m

∣∣∣Fk,Gk−1

]
(Q̃k,0 − Q̂∗

k,0). (159)

We now follow the same technique as in the asymmetric case (see Appendix C) for each of the four terms. By taking the
expectation over Fk, we get the following.

• For the first term, we have,

E
[
−(Q̃k,0 − Q̂k,0)

2
∣∣∣Gk−1

]
=−

∥∥∥Q̃− Q̂k

∥∥∥2
d
. (160)

• For the second term, we have,

E
[
(Q̃k,0 − Q̂k,0)(Q̃k,0 − Q̂∗

k,0)
∣∣∣Gk−1

]
≤
∥∥∥Q̃− Q̂k

∥∥∥
d

∥∥∥Q̃− Q̂∗
∥∥∥
d
. (161)

• For the third term, we have,

E
[
(Q̂k,m − Q̃k,m)(Q̂k,0 − Q̃k,0)

∣∣∣Gk−1

]
≤
∥∥∥Q̂k − Q̃

∥∥∥2
d
+

(
B+

1

1− γ

)2√
∥dm − d∥TV. (162)

• For the fourth term, we have,

E
[
(Q̂k,m − Q̃k,m)(Q̃k,0 − Q̂∗

k,0)
∣∣∣Gk−1

]
≤
∥∥∥Q̂k − Q̃

∥∥∥
d

∥∥∥Q̃− Q̂∗
∥∥∥
d
+

(
B+

1

1− γ

)2√
∥dm − d∥TV. (163)

By taking expectation over Gk−1 of the four terms and using the previous upper bounds, we obtain,

E [⟨βk −β∗,gk⟩]≤−(1− γm)∆2
k +(1+ γm)∆k

∥∥∥Q̂∗ − Q̃
∥∥∥
d
+2γm

(
B+

1

1− γ

)2√
∥dm − d∥TV. (164)

The second term in equation (152) is treated similarly to the asymmetric case (see Appendix C), which yields,

E
[
∥gk∥22

]
≤
(

1

1− γ
+2B

)2

. (165)

By substituting equations (164) and (165) into the Lyapounov drift of equation (152), we obtain,

E [L(βk+1)−L(βk)]≤−2α(1− γm)∆2
k +2α(1+ γm)∆k

∥∥∥Q̂∗ − Q̃
∥∥∥
d
+α2

(
1

1− γ
+2B

)2

+4αγm
(
B+

1

1− γ

)2√
∥dm − d∥TV. (166)

We can upper bound
∥∥∥Q̂∗ − Q̃

∥∥∥
d

as follows,

∥∥∥Q̂∗ − Q̃
∥∥∥
d
≤
∥∥∥Q̂∗ −Q

∥∥∥
d
+
∥∥∥Q− Q̃

∥∥∥
d
. (167)
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By setting l= 1+γm

2(1−γm)

(∥∥∥Q̂∗ −Q
∥∥∥
d
+
∥∥∥Q− Q̃

∥∥∥
d

)
, we can write, following a similar strategy as in the asymmetric case

(see Appendix C),

E [L(βk+1)−L(βk)]≤−2α(1− γm)(∆k − l)
2
+2α(1− γm)l2 +α2

(
1

1− γ
+2B

)2

+4αγm
(
B+

1

1− γ

)2√
∥dm − d∥TV. (168)

By summing all drifts, rearranging, and dividing by 2αK(1− γm), we obtain after neglecting L(βK)> 0,

1

K

K−1∑
k=0

(∆k − l)2 ≤
∥β0 −β∗∥22

2αK(1− γm)
+ l2 +

α

2(1− γm)

(
1

1− γ
+2B

)2

+
2γm

1− γm

(
B+

1

1− γ

)2√
∥dm − d∥TV. (169)

The bound obtained through this Lyapounov drift summation can be used to further develop equation (150), using the
subadditivity of the square root,√

E
[∥∥∥Q̃−Q

∥∥∥2
d

]
≤

√√√√ 1

K

K−1∑
k=0

(∆k − l)
2
+ l (170)

≤
∥β0 −β∗∥2√
2αK(1− γm)

+ 2l+

√
α

2(1− γm)

(
1

1− γ
+2B

)
+

(
B+

1

1− γ

)√
2γm

1− γm

√
∥dm − d∥TV. (171)

=
∥β0 −β∗∥2√
2αK(1− γm)

+
1+ γm

1− γm

(
1

1− γ
+B

)
+

√
α

2(1− γm)

(
1

1− γ
+2B

)
+

(
B+

1

1− γ

)√
2γm

1− γm

√
∥dm − d∥TV. (172)

Plugging equation (172) into equation (149), and substituting back l, we finally have,√
E
[∥∥Q−Q

∥∥2
d

]
≤

∥β0 −β∗∥2√
2αK(1− γm)

+
1+ γm

1− γm

(∥∥∥Q̂∗ −Q
∥∥∥
d
+
∥∥∥Q− Q̃

∥∥∥
d

)
+

√
α

2(1− γm)

(
1

1− γ
+2B

)
+

(
B+

1

1− γ

)√
2γm

1− γm

√
∥dm − d∥TV +

∥∥∥Q− Q̃
∥∥∥
d

(173)

≤
∥β0 −β∗∥2√
2αK(1− γm)

+
1+ γm

1− γm

∥∥∥Q̂∗ −Q
∥∥∥
d
+

√
α

2(1− γm)

(
1

1− γ
+2B

)
+

(
B+

1

1− γ

)√
2γm

1− γm

√
∥dm − d∥TV +

2

1− γm

∥∥∥Q− Q̃
∥∥∥
d

(174)

Using Lemma D.1, we finally obtain,√
E
[∥∥Q−Q

∥∥2
d

]
≤

∥β0 −β∗∥2√
2αK(1− γm)

+
1+ γm

1− γm

∥∥∥Q̂∗ −Q
∥∥∥
d
+

√
α

2(1− γm)

(
1

1− γ
+2B

)
+

(
B+

1

1− γ

)√
2γm

1− γm

√
∥dm − d∥TV

+

(
2

1− γm

)
1− γm

1− γ

∥∥∥∥∥E
[ ∞∑
k=0

γkm
∥∥∥b̂km − bkm

∥∥∥
TV

∣∣∣∣∣Z0 = ·

]∥∥∥∥∥
d

(175)
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≤
∥β0 −β∗∥2√
2αK(1− γm)

+
1+ γm

1− γm
min
f∈FBϕ

∥f −Q∥d +
√

α

2(1− γm)

(
1

1− γ
+2B

)
+

(
B+

1

1− γ

)√
2γm

1− γm

√
∥dm − d∥TV

+
2

1− γ

∥∥∥∥∥E
[ ∞∑
k=0

γkm
∥∥∥b̂km − bkm

∥∥∥
TV

∣∣∣∣∣Z0 = ·

]∥∥∥∥∥
d

. (176)

By setting α= 1√
K

and upper bounding ∥β0 −β∗∥ by 2B, we get,

√
E
[∥∥Q−Q

∥∥2
d

]
≤

√√√√√4B2 +
(

1
1−γ +2B

)2
2
√
K(1− γm)

+
1+ γm

1− γm
min
f∈FBϕ

∥f −Q∥d

+

(
B+

1

1− γ

)√
2γm

1− γm

√
∥dm − d∥TV

+
2

1− γ

∥∥∥∥∥E
[ ∞∑
k=0

γkm
∥∥∥b̂km − bkm

∥∥∥
TV

∣∣∣∣∣Z0 = ·

]∥∥∥∥∥
d

. (177)

This concludes the proof.

E. Proof of the Finite-Time Bound for the Natural Actor-Critic
Let us first give the performance difference lemma for POMDP proved by Cayci et al. (2024). Note that this proof is
completely agnostic about the critic used to compute π1,π2 ∈ΠM and is thus applicable both to the asymmetric setting and
the symmetric setting.
Lemma E.1 (Performance difference (Cayci et al., 2024)). For any two agent-state polices π1,π2 ∈ΠM,

V π2(z0)−V π1(z0)≤
1

1− γ
Edπ2 [Aπ1(Z,A)|Z0 = z0] +

2

1− γ
επ2

inf (z0), (178)

where,

επ2

inf (z0)=Eπ2

[ ∞∑
k=0

γk
∥∥∥b̂k − bk

∥∥∥
TV

∣∣∣∣∣Z0 = z0

]
. (179)

Proof. The proof is similar to the one of Cayci et al. (2024). First, let us decompose the performance difference in the
following terms,

V π2(z0)−V π1(z0)=Eπ2

[ ∞∑
t=0

γtRt

∣∣∣∣∣Z0 = z0

]
−V π1(z0) (180)

=Eπ2

[ ∞∑
t=0

γt (Rt −V π1(Zt)+V π1(Zt))

∣∣∣∣∣Z0 = z0

]
−V π1(z0) (181)

=Eπ2

[ ∞∑
t=0

γt (Rt −V π1(Zt)+ γV π1(Zt+1))

∣∣∣∣∣Z0 = z0

]
(182)

=Eπ2

[ ∞∑
t=0

γt (Rt + γVπ1(St+1,Zt+1)−V π1(Zt))

∣∣∣∣∣Z0 = z0

]

+Eπ2

[ ∞∑
t=0

γt (γV π1(Zt+1)− γVπ1(St+1,Zt+1))

∣∣∣∣∣Z0 = z0

]
(183)
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=Eπ2

[ ∞∑
t=0

γt (Rt + γVπ1(St+1,Zt+1)−V π1(Zt))

∣∣∣∣∣Z0 = z0

]

+Eπ2

[ ∞∑
t=0

γt+1 (V π1(Zt+1)−Vπ1(St+1,Zt+1))

∣∣∣∣∣Z0 = z0

]
. (184)

Let us focus on bounding the first term in equation (184). We have, for any T > 0,∣∣∣∣∣
T∑

t=0

γt (Rt + γVπ1(St+1,Zt+1)−V π1(Zt))

∣∣∣∣∣≤ 2

(1− γ)2
<∞. (185)

By Lebesgue’s dominated convergence, we have,

Eπ2

[ ∞∑
t=0

γt (Rt + γVπ1(St+1,Zt+1)−V π1(Zt))

∣∣∣∣∣Z0 = z0

]

=

∞∑
t=0

γtEπ2 [Rt + γVπ1(St+1,Zt+1)−V π1(Zt)|Z0 = z0]. (186)

Then, by the law of total expectation, we have at any timestep t≥ 0,

Eπ2 [Rt + γVπ1(St+1,Zt+1)−V π1(Zt)|Z0 = z0]

=E
[
Eπ2 [Rt + γVπ1(St+1,Zt+1)|Ht,Zt]−V π1(Zt)

∣∣Z0 = z0
]
. (187)

And, we have,

Eπ2 [Rt + γVπ1(St+1,Zt+1)|Ht =ht,Zt = zt]

=
∑
st,at

bt(st|ht)π2(at|zt)Qπ1(st,zt,at) (188)

=
∑
at

π2(at|zt)Qπ1(zt,at)+
∑
st,at

bt(st|ht)π2(at|zt)Qπ1(st,zt,at)−
∑
at

π2(at|zt)Qπ1(zt,at) (189)

=
∑
at

π2(at|zt)Qπ1(zt,at)+
∑
st,at

bt(st|ht)π2(at|zt)Qπ1(st,zt,at)

−
∑
st,at

b̂t(st|zt)π2(at|zt)Qπ1(st,zt,at) (190)

=
∑
at

π2(at|zt)Qπ1(zt,at)+
∑
st,at

(
bt(st|ht)− b̂t(st|zt)

)
π2(at|zt)Qπ1(st,zt,at). (191)

By noting that sups,z |
∑

aπ2(a|z)Qπ1(s,z,a)| ≤ sups,z,a |Qπ1(s,z,a)| ≤ 1
1−γ , we obtain,

Eπ2 [Rt + γVπ1(St+1,Zt+1)|Ht =ht,Zt = zt]

≤
∑
at

π2(at|zt)Qπ1(zt,at)+
1

1− γ

∥∥∥bt(·|ht)− b̂t(·|zt)
∥∥∥

TV
. (192)

Finally, the expectation at time t≥ 0 can be written as,

Eπ2 [Rt + γVπ1(St+1,Zt+1)−V π1(Zt)|Z0 = z0]

=E
[
Eπ2 [Rt + γVπ1(St+1,Zt+1)|Ht,Zt]−V π1(Zt)

∣∣Z0 = z0
]

(193)

≤Eπ2

[
Qπ1(Zt,At)+

1

1− γ

∥∥∥bt(·|Ht)− b̂t(·|Zt)
∥∥∥

TV
−V π1(Zt)

∣∣∣∣Z0 = z0

]
(194)

=Eπ2

[
Aπ1(Zt,At)−

1

1− γ

∥∥∥bt(·|Ht)− b̂t(·|Zt)
∥∥∥

TV

∣∣∣∣Z0 = z0

]
(195)
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Now, by using Lebesgue’s dominated theorem in the reverse direction, we have,

Eπ2

[ ∞∑
t=0

γt (Rt + γVπ1(St+1,Zt+1)−V π1(Zt))

∣∣∣∣∣Z0 = z0

]

≤Eπ2

[ ∞∑
t=0

γtAπ1(Zt,At)

∣∣∣∣∣Z0 = z0

]
+

1

1− γ
Eπ2

[ ∞∑
t=0

γt
∥∥∥b̂t − bt

∥∥∥
TV

∣∣∣∣∣Z0 = z0

]
(196)

=Eπ2

[ ∞∑
t=0

γtAπ1(Zt,At)

∣∣∣∣∣Z0 = z0

]
+

1

1− γ
επ2

inf (z0) (197)

Now, let us focus on bounding the second term in equation (184). We have, for any T > 0,∣∣∣∣∣
T∑

t=0

γt+1 (V π1(Zt+1)−Vπ1(St+1,Zt+1))

∣∣∣∣∣≤ 2

(1− γ)2
<∞. (198)

Using Lebesgue dominated convergence theorem, we can write,

Eπ2

[ ∞∑
t=0

γt+1 (V π1(Zt+1)−Vπ1(St+1,Zt+1))

∣∣∣∣∣Z0 = z0

]

=

∞∑
t=0

γt+1Eπ2 [V π1(Zt+1)−Vπ1(St+1,Zt+1)|Z0 = z0] . (199)

By the law of total expectation, we have at any timestep t≥ 0,

Eπ2 [V π1(Zt+1)−Vπ1(St+1,Zt+1)|Z0 = z0]

=E
[
V π1(Zt+1)−Eπ2 [Vπ1(St+1,Zt+1)|Ht+1,Zt+1]

∣∣Z0 = z0
]
. (200)

And, we have,

Eπ2 [Vπ1(St+1,zt+1)|Ht+1 =ht+1,Zt+1 = zt+1, ]

=
∑
st+1

bt+1(st+1|ht+1)Vπ1(st+1,zt+1) (201)

=V π1(zt+1)+
∑
st+1

bt+1(st+1|ht+1)Vπ1(st+1,zt+1)−V π1(zt+1) (202)

=V π1(zt+1)+
∑
st+1

bt+1(st+1|ht+1)Vπ1(st+1,zt+1)−
∑
st+1

b̂t+1(st+1|zt+1)Vπ1(st+1,zt+1) (203)

=V π1(zt+1)+
∑
st+1

(
bt+1(st+1|ht+1)− b̂t+1(st+1|zt+1)

)
Vπ1(st+1,zt+1). (204)

From there, by noting that sups,z |Vπ1(s,z)| ≤ 1
1−γ , we obtain,

Eπ2 [Vπ1(St+1,zt+1)|Ht+1 =ht+1,Zt+1 = zt+1, ]

≥V π1(zt+1)−
1

1− γ

∥∥∥bt+1(·|ht+1)− b̂t+1(·|zt+1)
∥∥∥

TV
. (205)

Finally, the expectation at time t≥ 0 can be written as,

Eπ2 [V π1(Zt+1)−Vπ1(St+1,Zt+1)|Z0 = z0]

=E
[
V π1(Zt+1)−Eπ2 [Vπ1(St+1,Zt+1)|Ht+1,Zt+1]

∣∣Z0 = z0
]

(206)

≤E
[
V π1(Zt+1)−V π1(Zt+1)+

1

1− γ

∥∥∥bt+1(·|Ht+1)− b̂t+1(·|Zt+1)
∥∥∥

TV

∣∣∣∣Z0 = z0

]
(207)
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≤E
[

1

1− γ

∥∥∥bt+1(·|Ht+1)− b̂t+1(·|Zt+1)
∥∥∥

TV

∣∣∣∣Z0 = z0

]
. (208)

Now, by using Lebesgue’s dominated theorem in the reverse direction, we have,

Eπ2

[ ∞∑
t=0

γt+1 (V π1(Zt+1)−Vπ1(St+1,Zt+1))

∣∣∣∣∣Z0 = z0

]

≤ 1

1− γ
Eπ2

[ ∞∑
t=0

γt+1
∥∥∥bt+1(·|Ht+1)− b̂t+1(·|Zt+1)

∥∥∥
TV

∣∣∣∣∣Z0 = z0

]
(209)

=
1

1− γ
Eπ2

[ ∞∑
t=0

γt
∥∥∥bt(·|Ht)− b̂t(·|Zt)

∥∥∥
TV

−
∥∥∥b0(·|H0)− b̂0(·|Z0)

∥∥∥
TV

∣∣∣∣∣Z0 = z0

]
(210)

=
1

1− γ
Eπ2

[ ∞∑
t=0

γt
∥∥∥bt(·|Ht)− b̂t(·|Zt)

∥∥∥
TV

∣∣∣∣∣Z0 = z0

]
−Eπ2

[∥∥∥b0(·|H0)− b̂0(·|Z0)
∥∥∥

TV

∣∣∣Z0 = z0

]
(211)

=
1

1− γ
επ2

inf (z0)−Eπ2

[∥∥∥b0(·|H0)− b̂0(·|Z0)
∥∥∥

TV

∣∣∣Z0 = z0

]
(212)

≤ 1

1− γ
επ2

inf (z0). (213)

Finally, by substituting the upper bound (197) on the first term and the upper bound (213) on the second term into equation
(184), we obtain,

V π2(z0)−V π1(z0)≤Eπ2

[ ∞∑
t=0

γtAπ1(Zt,At)

∣∣∣∣∣Z0 = z0

]
+

2

1− γ
επ2

inf (z0) (214)

=
1

1− γ
Edπ2 [Aπ1(Z,A)|Z0 = z0] +

2

1− γ
επ2

inf (z0). (215)

This concludes the proof.

Using Lemma E.1, we can prove Theorem 5, that is recalled below. The proof from Cayci et al. (2024) is generalized to the
asymmetric setting.
Theorem 5 (Finite-time bound for asymmetric and symmetric natural actor-critic algorithm). For any agent-state process
M=(Z,U), we have for Algorithm 2 with α= 1√

K
, ζ = B

√
1−γ√
2N

, η= 1√
T

and arbitrary B> 0,

(1− γ) min
0≤t<T

E [J(π∗)− J(πt)]≤ εnac +2εinf + C∞

(
εactor +2εgrad +2

√
6
1

T

T−1∑
t=0

επtcritic

)
, (41)

where the different terms may differ for asymmetric and symmetric critics,

εnac =
B2 +2log |A|

2
√
T

(42)

εactor =

√
(2− γ)B

(1− γ)
√
N

(43)

εinf,asym =0 (44)

εinf,sym =Eπ∗

[ ∞∑
k=0

γk
∥∥∥b̂k − bk

∥∥∥
TV

]
(45)

εgrad,asym = sup
0≤t<T

√
min
w

Lt(w) (46)
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εgrad,sym = sup
0≤t<T

√
min
w
Lt(w) (47)

and επtcritic is given in Theorem 3 and Theorem 4.

Proof. The proof is based on a Lyapounov drift result using the following Lyapounov function,

Λ(π)=
∑
z∈Z

dπ
∗
(z)KL(π∗(·|z) ∥π(·|z)). (216)

The Lyapounov drift is given by,

Λ(πt+1)−Λ(πt)=
∑
z∈Z

dπ
∗
(z)
∑
a∈A

π∗(a|z) log πt(a|z)
πt+1(a|z)

(217)

=
∑
z,a

dπ
∗
(z,a) log

πt(a|z)
πt+1(a|z)

. (218)

Since supz,a ∥ψ(z,a)∥2 ≤ 1, we have that logπθ(a|z) is 1-smooth (Agarwal et al., 2021), which implies,

logπθ2(a|z)≤ logπθ1(a|z)+ ⟨∇θ logπθ1(a|z),θ2 − θ1⟩+
1

2
∥θ2 − θ1∥22 . (219)

By selecting θ2 = θt and θ1 = θt+1 and noting that θt+1 − θt = ηw̄t = η 1
N

∑N−1
n=0 wt,n we obtain,

log
πt(a|z)
πt+1(a|z)

≤ η2

2
∥w̄t∥22 − η⟨∇θ logπt(a|z), w̄t⟩. (220)

Now, we separately bound the Lyapounov drift for the asymmetric and symmetric settings. In the following, some notations
are overloaded across both setting when their meaning is clear from context. For the asymmetric setting, we have,

Λ(πt+1)−Λ(πt)=
∑
z,a

dπ
∗
(z,a) log

πt(a|z)
πt+1(a|z)

(221)

≤ η2

2
∥w̄t∥22 − η

∑
z,a

dπ
∗
(z,a)⟨∇θ logπt(a|z), w̄t⟩ (222)

=
η2

2
B2 − η

∑
s,z,a

dπ
∗
(s,z,a)Aπt(s,z,a)− η

∑
s,z,a

dπ
∗
(s,z,a)(⟨∇θ logπt(a|z), w̄t⟩−Aπt(s,z,a))

(223)

≤ η2

2
B2 − η

∑
s,z,a

dπ
∗
(s,z,a)Aπt(s,z,a)+ η

∑
z,a

dπ
∗
(s,z,a)

√
(⟨∇θ logπt(a|z), w̄t⟩−Aπt(s,z,a))

2
.

(224)

For the symmetric setting, we observe instead,

Λ(πt+1)−Λ(πt)=
∑
z,a

dπ
∗
(z,a) log

πt(a|z)
πt+1(a|z)

(225)

≤ η2

2
B2 − η

∑
z,a

dπ
∗
(z,a)Aπt(z,a)+ η

∑
z,a

dπ
∗
(z,a)

√
(⟨∇θ logπt(a|z), w̄t⟩−Aπt(z,a))

2
. (226)

Now, let Ht denote the sigma field of all samples used in the computation of πt (which excludes the samples used for
computing w̄t), along with all the samples used in the computation of Qπt . We define the ideal and approximate loss
functions, both in the asymmetric and the symmetric setting,

Lt(w)=E
[
(⟨∇θ logπt(A|Z),w⟩−Aπt(S,Z,A))

2
∣∣∣Ht

]
(227)
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Lt(w)=E
[(
⟨∇θ logπt(A|Z),w⟩−Aπt(S,Z,A)

)2∣∣∣Ht

]
(228)

Lt(w)=E
[
(⟨∇θ logπt(A|Z),w⟩−Aπt(Z,A))

2
∣∣∣Ht

]
(229)

Lt(w)=E
[(
⟨∇θ logπt(A|Z),w⟩−Aπt(Z,A)

)2∣∣∣Ht

]
. (230)

Because E
[∥∥Vπt −Vπt

∥∥2
dπt

∣∣∣Ht

]
≤E

[∥∥Qπt −Qπt
∥∥2
dπt

∣∣∣Ht

]
, the error between the asymmetric advantage A and its ap-

proximation A is upper bounded by,√
E
[(
Aπt(S,Z,A)−Aπt(S,Z,A)

)2∣∣∣Ht

]
=

√
E
[∥∥Aπt −Aπt

∥∥2
dπt

∣∣∣Ht

]
(231)

=

√
E
[∥∥Qπt −Vπt −Qπt +Vπt

∥∥2
dπt

∣∣∣Ht

]
(232)

=

√
E
[∥∥Qπt −Qπt +Vπt −Vπt

∥∥2
dπt

∣∣∣Ht

]
(233)

≤
√
E
[∥∥Qπt −Qπt

∥∥2
dπt

+
∥∥Vπt −Vπt

∥∥2
dπt

∣∣∣Ht

]
(234)

≤
√
E
[∥∥Qπt −Qπt

∥∥2
dπt

∣∣∣Ht

]
+

√
E
[∥∥Vπt −Vπt

∥∥2
dπt

∣∣∣Ht

]
(235)

≤ 2επtcritic,asym, (236)

where επtcritic,asym = επttd,asym + επtapp,asym + επtshift,asym is given by the upper bound (29) in Theorem 3. Similarly, the error between
the symmetric advantage A and its approximation A is upper bounded by,√

E
[(
Aπt(Z,A)−Aπt(Z,A)

)2∣∣∣Ht

]
≤ 2επtcritic,sym, (237)

where επtcritic,sym = επttd,sym + επtapp,sym + επtshift,sym + επtalias,sym is given by the upper bound (35) in Theorem 4. By using the
inequality (x+ y)2 ≤ 2x2 +2y2,

Lt(w)=E
[(
⟨∇θ logπt(A|Z),w⟩−Aπt(S,Z,A)

)2∣∣∣Ht

]
(238)

=E
[(
⟨∇θ logπt(A|Z),w⟩−Aπt(S,Z,A)+Aπt(S,Z,A)−Aπt(S,Z,A)

)2∣∣∣Ht

]
(239)

≤ 2E
[
(⟨∇θ logπt(A|Z),w⟩−Aπt(S,Z,A))

2
∣∣∣Ht

]
+2E

[(
Aπt(S,Z,A)−Aπt(S,Z,A)

)2∣∣∣Ht

]
(240)

≤ 2Lt(w)+ 2(2επtcritic,asym)
2. (241)

Similarly, we obtain in the symmetric case,

Lt(w)≤ 2Lt(w)+ 2(2επtcritic,sym)
2. (242)

Starting from the ideal objective and following a similar technique, we also obtain,

Lt(w)≤ 2Lt(w)+ 2(2επtcritic,asym)
2 (243)

Lt(w)≤ 2Lt(w)+ 2(2επtcritic,sym)
2. (244)

By using Theorem 14.8 in (Shalev-Shwartz & Ben-David, 2014) with step size ζ = B
√
1−γ√
2N

, we obtain for the average iterate
w̄t under the asymmetric loss and symmetric loss, respectively,

Lt(w̄t)≤ ε2actor + min
∥w∥2≤B

Lt(w) (245)

Lt(w̄t)≤ ε2actor + min
∥w∥2≤B

Lt(w), (246)
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where ε2actor =
(2−γ)B

2(1−γ)
√
N

. On expectation, for the ideal asymmetric objective Lt, we obtain,

E [Lt(w̄t)]≤ 2E
[
Lt(w̄t)

]
+2(2επtcritic,asym)

2 (247)

≤ 2ε2actor +2 min
∥w∥2≤B

Lt(w)+ 2(2επtcritic,asym)
2 (248)

≤ 2ε2actor +2

(
2 min
∥w∥2≤B

Lt(w)+ 2(2επtcritic,asym)
2

)
+2(2επtcritic,asym)

2 (249)

=2ε2actor +4 min
∥w∥2≤B

Lt(w)+ 6(2επtcritic,asym)
2 (250)

=2ε2actor +4
(
επtgrad,asym

)2
+6(2επtcritic,asym)

2, (251)

where we define the actor gradient function approximation error as,(
επtgrad,asym

)2
= min

∥w∥2≤B
Lt(w). (252)

Similarly, we obtain on expectation for the ideal symmetric objective Lt,

E [Lt(w̄t)]≤ 2ε2actor +4
(
επtgrad,sym

)2
+6(2επtcritic,sym)

2, (253)

where we define the actor gradient function approximation error as,(
επtgrad,sym

)2
= min

∥w∥2≤B
Lt(w). (254)

Now, let us go back to the asymmetric and symmetric Lyapounov drift functions of equation (224) and (226). First, we
assume that there exists C∞<∞ such that supt≥0E[Ct]≤C∞ with,

Ct = sup
s,z,a

∣∣∣∣ dπ∗
(s,z)π∗(a|z)

dπθt (s,z)πθt(a|z)

∣∣∣∣. (255)

Second, we leverage the performance difference lemma to bound the advantage. For the asymmetric setting, the performance
difference lemma for MDP (Kakade & Langford, 2002) holds because of the Markovianity of (St,Zt),

(1− γ)
(
V π∗

(s0,z0)−V πt(s0,z0)
)
=Edπ

∗

[Aπt(S,Z,A)|S0 = s0,Z0 = z0]. (256)

We note that E
[
V π∗

(S0,Z0)−V πt(S0,Z0)
]
=E [J(π∗)− J(πt)], such that,

−Edπ
∗

[Aπt(S,Z,A)] =−(1− γ)(J(π∗)− J(πt)). (257)

=−(1− γ)(J(π∗)− J(πt))+ εinf,asym, (258)

where εinf,asym =0. For the symmetric setting, using Lemma E.1 with π2 =π∗ and π1 =πt, we note that,

(1− γ)
(
V π∗

(z0)−V πt(z0)
)
≤Edπ

∗

[Aπt(Z,A)|Z0 = z0] + 2επ
∗

inf (z0), (259)

which implies,

−Edπ
∗

[Aπt(Z,A)|Z0 = z0]≤−(1− γ)
(
V π∗

(z0)−V πt(z0)
)
+2επ

∗

inf (z0). (260)

We note that E
[
V π∗

(Z0)−V πt(Z0)
]
=E [J(π∗)− J(πt)] and we denote E

[
επ

∗

inf (Z0)
]

with εinf,sym, so that,

εinf,sym =Eπ∗

[ ∞∑
k=0

γk
∥∥∥b̂k − bk

∥∥∥
TV

∣∣∣∣∣Z0 = z0

]
(261)
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=Eπ∗

[ ∞∑
k=0

γk
∥∥∥b̂k − bk

∥∥∥
TV

]
. (262)

By rearranging, we have,

−Edπ
∗

[Aπt(Z,A)]≤−(1− γ)E [J(π∗)− J(πt)] + 2εinf,sym. (263)

Note that
∑

s,z,a d
π∗
(s,z,a)f(s,z,a)=

∑
s,z,a

dπ
∗
(s,z,a)

dπt (s,z,a) d
πt(s,z,a)f(s,z,a)≤Ct

∑
s,z,a d

πt(s,z,a)f(s,z,a) for positive
f . Taking expectation over the asymmetric Lyapounov drift of equation (224), we obtain using equation (255),

E [Λ(πt+1)−Λ(πt)]≤
η2

2
B2 − η

∑
z,a

dπ
∗
(z,a)Aπt(z,a)

+ η
∑
s,z,a

dπ
∗
(s,z,a)

√
(⟨∇θ logπt(a|z), w̄t⟩−Aπt(s,z,a))

2 (264)

≤ η2

2
B2 − η(1− γ)E [J(π∗)− J(πt)] + 2ηεinf,asym

+ ηC∞

√
2ε2actor +4

(
επtgrad,asym

)2
+6(2επtcritic,asym)

2 (265)

≤ η2

2
B2 − η(1− γ)E [J(π∗)− J(πt)] + 2ηεinf,asym

+ ηC∞

(√
2εactor +2επtgrad,asym +2

√
6επtcritic,asym

)
. (266)

Similarly, taking expectation over the symmetric drift of equation (226), we obtain a similar expression,

E [Λ(πt+1)−Λ(πt)]≤
η2

2
B2 − η

∑
z,a

dπ
∗
(z,a)Aπt(z,a)

+ η
∑
z,a

dπ
∗
(z,a)

√
(⟨∇θ logπt(a|z), w̄t⟩−Aπt(z,a))

2 (267)

≤ η2

2
B2 − η(1− γ)E [J(π∗)− J(πt)] + 2ηεinf,sym

+ ηC∞

(√
2εactor +2επtgrad,sym +2

√
6επtcritic,sym

)
. (268)

Given the similarity of equation (266) and equation (268), in the following we denote the denote the upper bounds using εinf,
επtgrad and επtcritic, irrespectively of the setting (i.e., asymmetric or symmetric).

By summing all Laypounov drifts, we obtain,

E [Λ(πT )−Λ(π0)]≤T
η2

2
B2 − η(1− γ)

T−1∑
t=0

E [J(π∗)− J(πt)] + 2ηTεinf

+ η

T−1∑
t=0

C∞

(√
2εactor +2επtgrad +2

√
6επtcritic

)
(269)

≤T
η2

2
B2 − η(1− γ)

T−1∑
t=0

E [J(π∗)− J(πt)] + 2ηTεinf

+ ηC∞

(
√
2Tεactor +2

T−1∑
t=0

επtgrad +2
√
6

T−1∑
t=0

επtcritic

)
. (270)

Since π0 is initialized at the uniform policy with θ0 := 0, we have,

Λ(π0)=
∑
z∈Z

dπ
∗
(z)KL(π∗(·|z) ∥π0(·|z)) (271)
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=
∑
z∈Z

dπ
∗
(z)

(∑
a∈A

π∗(a|z) logπ∗(a|z)−
∑
a∈A

π∗(a|z) logπ0(a|z)

)
(272)

=
∑
z∈Z

dπ
∗
(z)

(∑
a∈A

π∗(a|z) logπ∗(a|z)−
∑
a∈A

π∗(a|z) log 1

|A|

)
(273)

=
∑
z∈Z

dπ
∗
(z)

(∑
a∈A

π∗(a|z) logπ∗(a|z)+ log |A|

)
(274)

=
∑
z∈Z

dπ
∗
(z)(log |A|−H(π∗(·|z))) (275)

≤
∑
z∈Z

dπ
∗
(z) log |A| (276)

≤ log |A|, (277)

where H denotes the Shannon entropy. Rearranging and dividing by ηT , we obtain after neglecting L(πT )> 0,

(1− γ)
1

T

T−1∑
t=0

E [J(π∗)− J(πt)]≤
log |A|
ηT

+
η

2
B2 +2εinf

+C∞

(
√
2εactor +2

1

T

T−1∑
t=0

επtgrad +2
√
6
1

T

T−1∑
t=0

επtcritic

)
. (278)

It can also be noted that min0≤t<T [xt]≤ 1
T

∑T
t=0xt, which implies that,

(1− γ) min
0≤t<T

E [J(π∗)− J(πt)]≤
log |A|
ηT

+
η

2
B2 +2εinf

+C∞

(
√
2εactor +2

1

T

T−1∑
t=0

επtgrad +2
√
6
1

T

T−1∑
t=0

επtcritic

)
. (279)

Let us define the worse actor gradient function approximation error,

εgrad = sup
0≤t<T

επtgrad (280)

= sup
0≤t<T

√
min

∥w∥2≤B
Lt(w), (281)

and let us note that,

1

T

T−1∑
t=0

επtgrad ≤ εgrad. (282)

By setting η= 1√
T

, we obtain,

(1− γ) min
0≤t<T

E [J(π∗)− J(πt)]≤
log |A|√

T
+

B2

2
√
T

+2εinf

+C∞

(
√
2εactor +2

1

T

T−1∑
t=0

επtgrad +2
√
6
1

T

T−1∑
t=0

επtcritic

)
(283)

=
B2 +2log |A|

2
√
T

+2Eπ∗

[ ∞∑
k=0

γk
∥∥∥b̂k − bk

∥∥∥
TV

]

+C∞

(√
(2− γ)B

(1− γ)
√
N

+2εgrad +2
√
6
1

T

T−1∑
t=0

επtcritic

)
. (284)

This concludes the proof.
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