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Abstract

Skeleton-based action recognition attracts practitioners and researchers due to
the lightweight, compact nature of datasets. Compared with RGB-video-based
action recognition, skeleton-based action recognition is a safer way to protect the
privacy of subjects while having competitive recognition performance. However,
due to improvements in skeleton recognition algorithms as well as motion and
depth sensors, more details of motion characteristics can be preserved in the
skeleton dataset, leading to potential privacy leakage. We first train classifiers to
categorize private information from skeleton trajectories to investigate the potential
privacy leakage from skeleton datasets. Our preliminary experiments show that
the gender classifier achieves 87% accuracy on average, and the re-identification
classifier achieves 80% accuracy on average with three baseline models: Shift-
GCN, MS-G3D, and 2s-AGCN. We propose an anonymization framework based on
adversarial learning to protect potential privacy leakage from the skeleton dataset.
Experimental results show that an anonymized dataset can reduce the risk of privacy
leakage while having marginal effects on action recognition performance even with
simple anonymizer architectures.

1 Introduction

Action recognition has been widely studied in many applications such as sports analysis (Tran et al.,
2018), human-robot interaction (Fanello et al., 2013), and intelligent healthcare services (Saggese
et al., 2019). To employ the recognition system appropriately, one must ensure that private information
is not abused before and after analysis. Skeleton-based action recognition can be alternative to video-
based recognition. Due to the advance in depth and motion sensors, details of motion characteristics
can be preserved in the skeleton dataset. Compared with RGB videos, the skeleton dataset seems to
expose fewer details on participants. It is often challenging to identify sensitive information such as
gender or age from a skeleton to compare with the RGB video to the naked eye.

We raise a question about the privacy-safeness of skeleton datasets. To check potential privacy leakage
from skeletons, we conduct experiments on identifying gender or identity with Shift-GCN (Cheng
et al., 2020), MS-G3D (Liu et al., 2020), and 2s-AGCN (Shi et al., 2019). Based on our analysis, a
properly trained classifier can predict the private information accurately. Therefore, the skeletons are
not safe from the privacy leakage problem.

This work aims to develop a framework that can anonymize skeleton datasets while preserving
critical action features for recognition. To this end, we propose a minimax framework to anonymize
the skeletons. With RGB-video datasets, object detection followed by blurring or inpainting with
pre-trained generative models is often employed to anonymize datasets (Yang et al., 2021; Hukkelås
et al., 2019). However, these methods cannot be directly applied to the skeleton dataset.
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Figure 1: Anonymization framework. The framework consists of three sub-networks: 1) anonymizer
fθ, 2) privacy classifier gϕ, and 3) action classifier hψ . The dashed box represents the losses used in
minimization and maximization steps with adversarial learning. Note that the privacy classifier uses a
separate loss for minimization and maximization in setup. The parameter of the action classifier ψ is
pre-trained and not updated during anonymizer training.

The minimax framework consists of an anonymizer network with two sub-networks designed to
predict action and private information. The anonymizer removes private information from skeletons,
and then the output skeleton is fed into action and privacy classifiers separately. We maximize the
accuracy of the action classifier while minimizing the identifiability of private information with the
other classifier. In addition, we enforce the anonymized skeleton similar to the original one to make
sure they are visually indistinguishable from each other. Experimental results show that the proposed
algorithm results in an effective anonymizer.

We summarize our contributions as follows:

• We empirically show potential privacy leakage from widely-used skeleton datasets such as
NTU60 (Shahroudy et al., 2016) and ETRI-activity3D(Jang et al., 2020).

• We develop a skeleton anonymization network based on action and sensitive variable
classifiers.

• We propose a learning algorithm based on the adversarial learning method to anonymize
skeletons.

• We show that the anonymized skeletons are more robust to privacy leakage while still
enjoying high action recognition accuracy.

2 Skeleton Anonymization

In this section, we propose a framework for the skeleton anonymization model.

Anonymization framework. Let x⃗ ∈ RT×D×3 be 3D coordinates of D joints over T frames, and
y ∈ Y be an action label for a given skeleton sequence x⃗, where Y is a set of actions to be recognized.
Let z ∈ Z be private information related to the skeleton sequence x⃗, e.g., gender or identity, where Z
is a set of possible private labels.

We aim to develop an anonymization network that can effectively remove private information from
skeleton datasets while maintaining the recognizability of actions from the anonymized skeletons. To
do this, we propose a minimax framework consisting of three different neural network components.
Let fθ : RT×D×3 → RT×D×3 be an anonymizer network aiming to remove sensitive information
from the input skeletons, hψ : RT×D×3 → Y be an action classifier, and gϕ : RT×D×3 → Z be a
privacy classifier that predicts sensitive personal information. Our goal is to train an anonymizer
fθ whose output can maximally confuse the classification performance on the private variables. On
the other hand, the output of the anonymizer should keep all relevant information for recognizing
action to preserve the performance of the action classifier hψ . In other words, the output should not
be very different from the original skeletons since the anonymized skeletons can be recognizable by
naked eyes. To satisfy all requirements, we formalize the anonymization via the following minimax
objective:
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min
θ

max
ϕ

E
[
CE (y, hψ (fθ(x⃗)))− αCE (z, gϕ (fθ(x⃗))) + β||x⃗− fθ(x⃗)||22

]
, (1)

where CE is the cross entropy, and α and β are hyperparameters controlling the importance of the
privacy classification and the reconstruction error, respectively. The reconstruction error between the
original and anonymized skeleton data ||x⃗− fθ(x⃗)||22 ensures the anonymized skeletons are similar
to the original ones. To maximize the objective, the private classifier needs to classify the private
label z correctly. To minimize the objective, the anonymizer makes the actions easily identifiable by
action classifier hψ while making the private classifier misclassify the private label z. To simplify the
learning process, we use a pre-trained action classifier and fix the parameters of the action classifier
during training. The fixed action classifier constrains the anonymized skeleton compatible with the
pre-trained model. The anonymized skeletons are also likely to work well with other pre-trained
classifiers available.

Minimizing the objective w.r.t θ can make the anonymizer fool the private classifier. However, one
may exploit this fact to infer the true label. For example, in a binary classification problem, the true
label can be obtained by choosing the opposite of the prediction. To avoid this issue, we minimize
the entropy of classified outputs during the minimization step:

min
θ
Ladv = min

θ
E
[
CE (y, hψ (fθ(x⃗)))− αH (gϕ (fθ(x⃗))) + β||x⃗− fθ(x⃗)||22

]
, (2)

where H (gϕ (fθ(x⃗))) is the entropy of the distribution of private labels predicted from the
anonymized skeleton. Therefore, the optimal anonymizer yields the most confusing skeletons
to the private classifier. In the maximization step, we still maximize the negative cross entropy
−αCE (z, gϕ (fθ(x⃗))) w.r.t. ϕ to train the private classifier. Figure 1 shows the overall framework
for the data anonymization.

Alternating minimization and maximization are often employed to solve a minimax objective as
shown in the generative adversarial network Goodfellow et al. (2014). Following previous work, we
also use the alternating algorithm to optimize the objective. In this work, the adversarial learning
algorithm starts with pre-trained classifiers gϕ and hψ to make the learning stable.

Anonymizer networks. The anonymizer fθ can be any prediction model that modifies skeletons
while preserving the original dimension. We employ two simple neural network architectures for the
anonymizer: 1) Residual networks (He et al., 2016) and 2) U-net architectures (Ronneberger et al.,
2015). The detailed each anonymizer network architecture is provided in Appendix A.1.

3 Experiments

In this section, we demonstrate the performance of the proposed framework for anonymizing skeleton
datasets. We use two publicly available datasets: ETRI-activity3D (Jang et al., 2020) and NTU
RGB+D 60 (NTU60) (Shahroudy et al., 2016). For the ETRI-activity3D dataset, we anonymize
the gender information from the skeletons. For the NTU60 dataset, we anonymize the identity of
the skeletons. The detailed information and experimental setups for these datasets are provided in
Appendix A.2.

3.1 Privacy Leakage

To verify privacy leakage from each dataset, we first check the performance of gender classification
and re-identification task. To train gender classifier and re-identification task, three popular baseline
models, Shift-GCN (Cheng et al., 2020), MS-G3D (Liu et al., 2020), and 2s-AGCN (Shi et al., 2019),
are adopted. For gender classifier with MS-G3D, we use MS-G3D without a G3D module. This
makes training faster without losing too much accuracy. We train multiple times for gender classifier
and re-identification task. Each model is trained with a different random initialization.

After training, the gender classifier achieves 87% accuracy on average. The re-identification task
achieves 80% and 97% for top-1 and top-5 accuracy, respectively. The detailed results are available in
Appendix B. As the results suggest, the privacy information can be easily predicted by a classification
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Figure 2: Action and privacy accuracy of three baseline models with two different anonymizers
after anonymization. y-axis is reversed. Note that, before anonymization, the average top-1 re-
identification accuracy is 80%, and the average gender classification accuracy is 87%.

0.86 0.88 0.90 0.92 0.94 0.96
Action accuracy

0.00

0.05

0.10

0.15

0.20

0.25Re
-id

en
tif

ica
tio

n 
ac

cu
ra

cy 1-5
1-10
1-15
1-20
2-5
2-10
2-15
2-20
3-5
3-10
3-15
3-20

(a) NTU60 - ResNet
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(b) NTU60 - U-Net
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(c) ETRI-activity3D - ResNet
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(d) ETRI-activity3D - U-Net

Figure 3: The trade-off between action accuracy and privacy accuracy based on a different configu-
ration of hyperparameter α and β on NTU60 and ETRI-activity3D with two anonymizer networks
(legend: α-β). Note that the y-axis is reversed.

model trained with private labels. Note that the test splits do not contain the subject used for gender
classification. This reveals the generalizability of gender classification to the unseen subjects. Also,
for the re-identification task, train split and test split have different camera IDs, so the same person
appears in both sets with different views. This result indicates that the joint trajectory contains
personal traits that can be easily exploited to identify a person.

3.2 Anonymization Results

Our preliminary study indicates that gender and identification can leak enough from training. Based
on the results obtained in the previous experiments, we evaluate the performance of anonymization
with an adversarial learning algorithm. For each task, we use two pre-trained classifiers for action
and privacy, respectively. One classifier is used to initialize the adversarial algorithm, and the other is
used to measure the accuracy after anonymization.

Figure 2 shows the results of anonymization with re-identification task and gender classification.
In general, we observe that we can dramatically decrease the privacy accuracy while minimally
sacrificing the action recognition accuracy. We also observe more leakage of private information when
the action accuracy is relatively higher. Note that we use a balanced test set for identity anonymization.
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Table 1: Comparison between our method and other alternative approaches. This experiment is
conducted with the residual anonymizer on NTU60.

Method Action. Iden.

Not-anonymized 0.9510 0.8095

Random noise

σ = 0.001 0.7565 0.7450
σ = 0.005 0.4430 0.3240
σ = 0.010 0.2660 0.1735
σ = 0.020 0.1265 0.1020
σ = 0.050 0.0455 0.0840
σ = 0.100 0.0450 0.0715

Adversarial attack Attacked 0.9435 0.0000
Non-Attacked 0.9435 0.3621

Our method 0.9175 0.0420

Figure 4: Five frames of the original (top) and the gender anonymized (bottom) skeletons for an
action “wiping face with a towel" from ETRI-activity3D. The subject is an elderly female.

Since NTU60 has 40 subjects, one can achieve 2.5% accuracy with random classification. For the
gender classification, one can achieve 50% accuracy with a random classifier on the test set.

One would expect the trade-off between action accuracy and privacy accuracy based on the choice of
hyperparameters α and β. The choice of the best anonymization model may vary depending on the
application. In this work, we report the performance of the best model based on action accuracy ×
(1 - re-identification accuracy) from the results of various configurations. According to our metric,
ResNet (α:1, β:10) and U-Net (α:0.3, β:2) models are chosen as representative model. Note that one
may use a different metric to select a model given different application scenarios. We use the best
configuration obtained from the baseline model, Shift-GCN, to train the other baseline models.

Trade-off Analysis. We vary the value of α and β to check the trade-off between action accuracy
and privacy leakage based on different configurations of hyperparameters. We use Shift-GCN as a
baseline model for analysis. Figure 3a and Figure 3b show the result with various hyperparameter
configurations on the identity anonymization task. Figure 3c and Figure 3d show the result of the
gender anonymization task. We can observe that given a fixed α, increasing β increases the chance
of privacy leakage as well as the action accuracy showing the presence of the trade-off between the
action accuracy and privacy leakage.

Comparison with Alternative Approaches. Since we propose privacy leakage for the first time, no
anonymization method removes privacy information while remaining action accuracy high. Therefore,
we consider two alternative approaches to anonymize privacy information by modifying skeleton
data potentially. (1) Random noise: As a baseline, we randomly inject white noise drawn from the
zero mean normal distributions with varying variances to the original skeleton. (2) Adversarial attack
method: Adversarial attack is a technique that makes a model fool by perturbing input data. There
are several adversarial attack research on skeleton action recognition (Liu et al., 2020; Wang et al.,
2021; Diao et al., 2021). We use Wang et al. (2021) method to attack privacy information.

Table 1 shows the results of comparing our method to other approaches. The random noise cannot
preserve action information while reducing privacy leakage. The results with an adversarial attack
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show that attacked skeleton data success in removing privacy information to the target model, i.e.,
the identification accuracy of the attacked model is zero. However, identification accuracy remains
relatively high for the other pre-trained model, which has not been attacked. The adversarial attack-
based anonymization is model-specific and difficult to generalize to the unseen models, whereas
anonymized skeleton data with our proposed framework performs relatively well with any pre-trained
model.

Qualitative Analysis. To qualitatively understand the effect of anonymization, we visualize one
example from the ETRI-activity3D dataset before and after anonymization in Figure 4. The top and
bottom rows show five selected frames before and after anonymization for each figure, respectively.
We can find some interesting patterns from the visualization. For example, the length of the neck
bone is slightly increased, and the bone is moved to the upright position after anonymization. Given
that an elderly female acts, we can conjecture that the adjustment makes gender unrecognizable.
More visualization results are provided in Appendix E.

4 Related work

4.1 Public dataset anonymization

Researchers have pointed out privacy issues with public visual datasets and tried to mitigate them.
Caesar et al. (2020); Frome et al. (2009); Yang et al. (2021) propose a blurring approach where the
privacy-sensitive regions are blurred with an object detection method. Flores and Belongie (2010);
Uittenbogaard et al. (2019) propose an inpainting method to remove potentially problematic objects
such as pedestrians and vehicles. A large body of prior work has used GANs (Goodfellow et al.,
2014) to preserve visual private information. Ren et al. (2018); Maximov et al. (2020) use GANs to
generate fake faces to replace real ones.

There are also some works that exist for other domains: sound domain (Cohen-Hadria et al., 2019;
Sümer et al., 2020) and text domain (Li et al., 2018; Coavoux et al., 2018; Mosallanezhad et al.,
2019). Similar concerns are also made for skeleton datasets. Sinha et al. (2013) propose a method
to recognize persons from skeleton data. This work focuses on gait patterns extracted from human
skeletons. This implies the potential privacy leakage from public datasets.

4.2 Skeleton-based action recognition

Human skeleton data is a sequence of graphs, where joints and bones are represented as nodes and
edges separately within a graph. In early times, skeleton motion trajectories are embedded into
a manifold space as points. The relative distances between these points acted as clues for action
recognition. However, these models do not exploit the internal spatial relationship between joints.
Later, convolution neural networks (CNNs) are utilized to extract spatial co-occurrence patterns
between joints. Nevertheless, CNNs cannot model a skeleton’s topological information.

Then, graph convolution networks (GCNs) are introduced to model these topological relations.
Nonetheless, basic GCNs are not suitable for human skeleton sequences because they contain not
only the 3D position of joints but also the time series. Yan et al. (2018) introduce the spatial-temporal
graph convolutional networks (ST-GCN). They conduct graph convolution for extracting spatial
features and perform 1× 1 convolution over each joint for capturing temporal variations. Following
this line, various graph neural architectures are proposed to extract features from the graphs: AS-
GCN (Li et al., 2019), AGC-LSTM (Si et al., 2019), 2s-AGCN (Shi et al., 2019), MS-G3D (Liu et al.,
2020) and Shift-GCN (Cheng et al., 2020).

In this work, we use Shift-GCN(Cheng et al., 2020), MS-G3D(Liu et al., 2020), and 2s-AGCN(Shi
et al., 2019) as a baseline recognition model for private information. Although the original model
is developed to recognize the actions of skeletons, we empirically show the model can successfully
classify the private information with a proper training procedure.

5 Conclusion

In this work, we investigate privacy leakage from publicly available skeleton datasets. We show
that although skeleton data may seemingly be privacy-protective, recently proposed skeletal action
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recognizers are surprisingly capable of extracting sensitive and identity information from these
data. To address this privacy leakage problem, we propose a learning framework. Our experimental
results reveal that the proposed method effectively removes the privacy information while preserving
the movement patterns. Note that the anonymizers used in this work employ relatively simple
architectures. Experiments show that private information can be removed effectively even with simple
architectures. We leave the study of more advanced architectures for future work since our goal is to
show the potential vulnerability of the skeletons and to provide a general framework to overcome.
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A Detailed Experimental Setting

In this section, we describe the detailed experimental setting such as anonymization networks and
datasets. Additionally, the code used in our experiments is available at https://anonymous.
4open.science/r/Skeleton-anonymization-90B7/. Since the implementation is similar for
all baselines, we only provide the code based on Shift-GCN. Also, data related to ETRI-activity3D
will not be provided, since ETRI-activity3D can access by authorized users. If one wants to use this
dataset for research purposes, please visit here2 and get permission. For all experiments, we set k = 1
(see in Algorithm 1), i.e., one minimization with one maximization. We use four NVIDIA GeForce
RTX 3090 or four NVIDIA RTX A5000 for anonymization training.

A.1 Anonymization Networks

Residual network. The residual network (He et al., 2016) anonymizer adopts a simple residual
connection from the input skeletons to the output skeletons. Specifically, the model can be formalized
as

fθ(x⃗) = MLPθ(x⃗) + x⃗,

where MLPθ : RD×3 → RD×3 is a simple multi-layered perceptron parameterized by θ. The
residual connection keeps the position similar to the original skeleton while the MLP layer models
the disposition of joints to anonymize. We use two fully-connected layers to model the disposition.
The anonymizer is applied to each frame of a skeleton sequence. Although the anonymizer is applied
to each frame independently, the back-propagated signals from action and private classifiers make the
entire sequence coherent. By initializing θ with weights close to zero, we make the anonymizer add a
small random noise to the original skeleton in the early stage of learning.

U-Net. The U-Net (Ronneberger et al., 2015) architecture is adopted to our anonymizer network.
The U-Net consists of two paths: the contracting path, and the expanding path. In the contracting
path, it repeats downsampling and maxpool an input skeleton data to encode it to the feature map. In
the expanding path, U-Net repeats upsampling and concatenating feature map via skip connection.
Especially, skip connections concatenates the features from the contracting path to the corresponding
level in the expanding path. It makes the output skeleton position similar to the original skeleton. We
use U-Net architecture from Pytorch-UNet repository3 for our anonymizer network.

A.2 Datasets

ETRI-activity3D. ETRI-activity3D is an action recognition dataset originally published for recog-
nizing the daily activities of the elderly and youths. It contains 112,620 skeleton sequence samples
observed from 100 people, half of whom were between the ages of 64 and 88 and the rest were in
their 20s. The elderly consist of 33 females and 17 males, and the young adults consist of 25 females
and 25 males. The samples are categorized into 55 classes based on the activity type. Each action is
captured from 8 different Kinect v2 sensors to provide multiple views. Each sequence consists of 3D
locations of 25 joints of the human body.

With the ETRI-activity3D dataset, we anonymize the gender information from the skeletons. We
drop samples from 5 classes for the following experiments, e.g., handshaking, containing two people,
so only one person appears in the remaining samples. After removing malformed and two-person
samples, we split the remaining samples into 68,788 and 34,025 training and validation, respectively.
We split the dataset according to the subject ID. In other words, the subjects in the validation set
do not appear in the training set. Through this split, we measure the generalizability of the gender
classifier to the unknown subjects.

NTU60. NTU60 is an action recognition dataset that contains 60 action classes and 56,880 skeleton
sequences taken from 40 subjects. The format of skeleton data is the same as ETRI-activity3D, which
includes the 3D positions of 25 human body joints. After removing malformed samples, we split the
remaining samples into 37,646 and 18,932 as training and validation sets, respectively. Following

2https://ai4robot.github.io/etri-activity3d-en/
3https://github.com/milesial/Pytorch-UNet
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the original work (Shahroudy et al., 2016), we split it according to the camera ID so that both sets
contain identical subjects with different views.

A.3 Detailed Algorithm of Adversarial Anonymization

Algorithm 1 is algorithm that we explained in

Algorithm 1 Adversarial Anonymization

Require: Pre-trained classifiers hψ and gϕ, E: # of epochs, m: minibatch size, k: # of minimization
steps
while until convergence do

for t← 1 to k do
Sample minibatch of m samples {(x⃗i, yi, zi)}mi=1
Compute∇θLadv with minibatch ▷ Equation 2
Update θ ← θ −∇θLadv

end for
Sample minibatch of m samples {(x⃗i, yi, zi)}mi=1
Compute∇ϕαCE (z, gϕ (fθ(x⃗))) with minibatch
Update ϕ← ϕ−∇ϕαCE (z, gϕ (fθ(x⃗)))

end while

B Privacy Leakage

Table 2 and Table 3 provide the detailed results of privacy leakage experiments. We use three baseline
models: Shift-GCN4, MS-G3D5, and 2s-AGCN6. In this experiment, we set all hyperparameter
configurations as default values given baseline models. To obtain a stable result, multiple training
with random initialization is conducted with two NVIDIA GeForce RTX 3090 or two NVIDIA RTX
A5000.

Table 2: Top-1 and Top-5 accuracy of re-identification task with NTU60 dataset. The re-identification
task achieves 80% and 97% for top-1 and top-5 accuracy on average.

Top-1 σ2 Top-5 σ2

Shift-GCN 0.7962 0.0070 0.9681 0.0009
MS-G3D 0.8223 0.0087 0.9751 0.0007
2s-AGCN 0.7689 0.0183 0.9656 0.0032

Table 3: Accuracy of gender classification with ETRI-activity3D dataset. The gender classifier
achieves 87% accuracy on average.

Accuracy σ2

Shift-GCN 0.8599 0.0040
MS-G3D 0.8790 0.0017
2s-AGCN 0.8643 0.0047

C Additional Analysis

C.1 Validation Accuracy Analysis

We plot how the validation accuracy changes over the training procedure with adversarial learning
in Figure 5. For both datasets, the action accuracy remains high over the epochs on both training

4https://github.com/kchengiva/Shift-GCN
5https://github.com/kenziyuliu/MS-G3D
6https://github.com/lshiwjx/2s-AGCN
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and validation sets. However, there is a gap between the training and validation accuracy on privacy,
which shows the overfitting in the classifier.

Specifically, for gender classification, the gender accuracy starts similar value. Then gender accuracy
increases on the train set and decreases on the validation set. The re-identification accuracy drops first
on both training and validation sets for the re-identification task. Note that the re-identification task
achieves 80% accuracy. The validation accuracy at the first epoch indicates that the re-identification
task is more sensitive to the additional noise introduced by random weights of the residual network
than the gender classification.
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(a) Gender classification
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Figure 5: Accuracy and reconstruction error over epochs with the residual anonymizer. ‘Train:Action’
and ‘Val:Action’ indicate the training and validation accuracy of the action classification, and
‘Train:Privacy’ and ‘Val:Privacy’ indicate the training and validation accuracy of the privacy classifi-
cation.

C.2 Reconstruction Error Analysis

A reconstruction error directly shows the difference between the original and anonymized skeletons.
Although we cannot directly set the level of reconstruction error, we vary the parameters to obtain
different levels of reconstruction error and corresponding prediction accuracy. Please check the
below for the detailed hyperparameter settings. As shown in Figure 6, there is a trade-off between
reconstruction error and re-identification accuracy. As we increase the reconstruction error, we can
reduce the re-identification accuracy. However, high reconstruction error yields low action accuracy
as well.
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Figure 6: The trade-off between reconstruction error and accuracy with the residual anonymizer on
NTU60.

C.3 Hyperparameter analysis

In this subsection, we analyze the hyperparameter used in our objective function (See Equation 2) with
action accuracy, re-identification accuracy, and reconstruction error. There are two hyperparameters:
α and β. α adjusts the importance of privacy, one expects that large αmay occur low privacy accuracy.
Also, β adjusts the reconstruction error, which regularizes anonymized data to look similar to original
data. We conduct this experiment with Shift-GCN, NTU60, and ResNet.
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Alpha term analysis. Figure 7 is the result of different α. In this experiment, we vary α with fixed
β of 10. As shown in Figure 7a, action accuracy decreases, as α increases. Also, re-identification
accuracy drops rapidly from 0.1 to 1.0, but increases at 2.0 and decreases again. Note that α: 1, β: 10
is the best model in our metric. This means that optimizing the minimax objective works well under
a certain α so that growing α produces low re-identification accuracy. However, α that exceeds a
particular value disturbs optimization due to a trade-off with action accuracy and reconstruction error.
Also, Figure 7b shows that reconstruction error increases, as α increases. Since the ratio of β to α
decreases, so regularizing anonymized data can not influence enough during training.
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Figure 7: Re-identification accuracy, action accuracy, and reconstruction error with different α

Beta term analysis. Figure 8 is the result of according to different β. In this experiment, we
vary β with fixed α of 1. As shown in Figure 8b, it is trivial that reconstruction error increases
by raising β. This means that large β makes anonymized data look similar to original data. This
affects re-identification accuracy and action accuracy. Figure 8a shows that action accuracy and
re-identification accuracy increase, as β increases.
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Figure 8: Re-identification accuracy, action accuracy, and reconstruction error with different β

D Detailed Experimental Results

In this section, detailed hyperparameter configurations and results of our main experiments are
provided.

Anonymization results. Table 4 and Table 5 provide the detailed hyperparameter configurations
and the entire results of Figure 2. For all experiments, we train Shift-GCN to find a representative
model at first. After finding the best α and β, the same α and β are applied to the other two baselines
with different learning rates. As the result, we set α and β as 1.0 and 10 at ResNet, 0.3 and 2 at U-Net
for NTU60. Also, we set α and β as 2.0 and 15 at ResNet, 0.3 and 0.5 at U-Net for ETRI-activity3D,
respectively.
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Table 4: Detail hyperparameter configurations and results of our representative model with three
baselines for anonymizing identity information using NTU60.

Model lr Re-iden. Action. Recon. error

Shift-Res 0.0100 0.04202 0.9175 0.00860
Shift-U 0.0100 0.05701 0.9145 0.01655

MS-Res 0.0005 0.07770 0.9215 0.01092
MS-U 0.0005 0.10110 0.9243 0.01115

2s-Res 0.0050 0.05889 0.8994 0.01446
2s-U 0.0050 0.03514 0.8908 0.07536

Table 5: Detail hyperparameter configurations and results of our representative model with three
baselines for anonymizing gender information using ETRI-activity3D.

Model lr Gender. Action. Recon. error

Shift-Res 0.010 0.5875 0.8863 0.00127
Shift-U 0.010 0.5671 0.8708 0.01086

MS-Res 0.001 0.6426 0.9073 0.00108
MS-U 0.001 0.6046 0.9033 0.00403

2s-Res 0.005 0.4221 0.8758 0.00397
2s-U 0.005 0.5645 0.8563 0.00920

Trade-off analysis results. Table 7 and Table 8 show the detailed results of Figure 3. We vary
hyperparameter α and β to observe the trade-off between action accuracy and privacy accuracy. For
these experiments, we use Shift-GCN and set the learning rate as 0.01.

Reconstruction error analysis results. Table 6 provides the detailed results of Figure 6. To obtain
different levels of reconstruction error, we vary β with fixed α as 1. For these experiments, we use
Shift-GCN with NTU60 and set the learning rate as 0.01. Multiple training with random initialization
is conducted for stable results.

Table 6: Detail results of reconstruction error analysis.

β Recon. error Action Re-iden.
Acc. σ2 Acc. σ2

5 0.012920 0.9144 0.00203 0.08016 0.01612
10 0.008804 0.9138 0.00515 0.03964 0.00680
25 0.004570 0.9210 0.00478 0.08288 0.03034
50 0.002268 0.9327 0.00241 0.12080 0.03837
75 0.001636 0.9385 0.00255 0.15790 0.04433
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Table 7: Results with varying hyperparameters for analyzing the trade-off between action accuracy
and re-identification accuracy with NTU60.

α β Action acc. Re-iden. acc. Recon. error (RMSE) Anonymization Network

1 5 0.9191 0.08303 0.00980 ResNet
1 10 0.9175 0.04202 0.00860 ResNet
1 15 0.9351 0.17070 0.00380 ResNet
1 20 0.9235 0.12010 0.00550 ResNet
2 5 0.8909 0.13190 0.02431 ResNet
2 10 0.8838 0.09381 0.01822 ResNet
2 15 0.9113 0.14690 0.01008 ResNet
2 20 0.8728 0.07691 0.01020 ResNet
3 5 0.8731 0.08266 0.02557 ResNet
3 10 0.8814 0.07500 0.01340 ResNet
3 15 0.8891 0.09286 0.01649 ResNet
3 20 0.8595 0.10550 0.01410 ResNet

0.3 0.5 0.9188 0.08657 0.02463 U-Net
0.3 1 0.9206 0.07622 0.01945 U-Net
0.3 1.5 0.9209 0.07891 0.01513 U-Net
0.3 2 0.9145 0.05701 0.01655 U-Net
0.5 0.5 0.9060 0.08045 0.02959 U-Net
0.5 1 0.9074 0.06956 0.06496 U-Net
0.5 1.5 0.9099 0.07791 0.02055 U-Net
0.5 2 0.9071 0.05509 0.01750 U-Net
0.7 0.5 0.8945 0.06597 0.12950 U-Net
0.7 1 0.9022 0.05277 0.07635 U-Net
0.7 1.5 0.8988 0.08494 0.02410 U-Net
0.7 2 0.9006 0.04352 0.02232 U-Net

Table 8: Results with varying hyperparameters for analyzing the trade-off between action accuracy
and gender accuracy with ETRI-activity3D.

α β Action acc. Gender acc. Recon. error (RMSE) Anonymization Network

1 5 0.9028 0.6648 0.0017160 ResNet
1 10 0.9032 0.6778 0.0007986 ResNet
1 15 0.9050 0.7643 0.0004499 ResNet
1 20 0.9032 0.6655 0.0003264 ResNet
2 5 0.8940 0.6569 0.0061400 ResNet
2 10 0.8925 0.6296 0.0023480 ResNet
2 15 0.8863 0.5875 0.0012730 ResNet
2 20 0.9011 0.7352 0.0011160 ResNet
3 5 0.8890 0.6612 0.0061500 ResNet
3 10 0.8934 0.6512 0.0035020 ResNet
3 15 0.9031 0.7601 0.0025420 ResNet
3 20 0.8958 0.6558 0.0020570 ResNet

0.3 0.5 0.8708 0.5671 0.0108600 U-Net
0.3 1 0.8754 0.5798 0.0094480 U-Net
0.3 1.5 0.8337 0.5892 0.0264000 U-Net
0.3 2 0.8758 0.5952 0.0108300 U-Net
0.5 0.5 0.8569 0.5797 0.0156400 U-Net
0.5 1 0.8303 0.5905 0.0276500 U-Net
0.5 1.5 0.8341 0.5853 0.0249800 U-Net
0.5 2 0.8567 0.5823 0.0117300 U-Net
0.7 0.5 0.8239 0.6053 0.0294500 U-Net
0.7 1 0.8265 0.5978 0.0326100 U-Net
0.7 1.5 0.8269 0.5984 0.0277300 U-Net
0.7 2 0.7504 0.6046 0.0469700 U-Net
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E Qualitative Analysis

(a) The original (top) and the gender anonymized (bottom) skeletons for an action “wiping face with a towel"
from ETRI-activity3D. The subject is an elderly female.

(b) The original (top) and the gender anonymized (bottom) skeletons for an action “drinking water" from
ETRI-activity3D. The subject is an elderly male.

(c) The original (top) and the identity anonymized (bottom) skeletons for an action “kicking something" from
NTU60. The subject’s ID is 2.

Figure 9: Examples of anonymized skeletons. Five frames are visualized from a sequence of action
frames.
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