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Abstract
The growing deployment of reinforcement learn-
ing from human feedback (RLHF) calls for a
deeper theoretical investigation of its underlying
models. The prevalent models of RLHF do not ac-
count for neuroscience-backed, partially-observed
“internal states” that can affect human feedback,
nor do they accommodate intermediate feedback
during an interaction. Both of these can be in-
strumental in speeding up learning and improving
alignment. To address these limitations, we model
RLHF as reinforcement learning with partially ob-
served reward-states (PORRL). We accommodate
two kinds of feedback – cardinal and dueling feed-
back. We first demonstrate that PORRL subsumes
a wide class of RL problems, including traditional
RL, RLHF, and reward machines. For cardinal
feedback, we present two model-based methods
(POR-UCRL, POR-UCBVI). We give both car-
dinal regret and sample complexity guarantees
for the methods, showing that they improve over
naive history-summarization. We then discuss
the benefits of a model-free method like GOLF
with naive history-summarization in settings with
recursive internal states and dense intermediate
feedback. For dueling feedback, we show that
a naive reduction to cardinal feedback fails to
achieve sublinear dueling regret. We then present
the first explicit reduction that converts guaran-
tees for cardinal regret to dueling regret. In both
feedback settings, we show that our models and
guarantees generalize and extend existing ones.

1. Introduction
As automated systems become more ubiquitous, the need
to understand how to align their objectives with the needs
of humans that interact with them has become increasingly
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important (Christian, 2020; Hendrycks et al., 2021; Leike
et al., 2018; Ji et al., 2023). The development and study of
reinforcement learning from human feedback (RLHF) has
been an important way of formalizing these problems and
design methods for alignment (Christiano et al., 2017; Wirth
et al., 2017). RLHF is about finding a policy that maximizes
an objective defined in terms of human labeled data in an
RL domain (Christiano et al., 2017; Wirth et al., 2017).

Many RLHF methods entail learning a reward function from
human data, then using the learned reward function as an
input to a traditional RL algorithm such as PPO (Schulman
et al., 2017). These methods have been pivotal in the devel-
opment of several technologies such as robotics (Christiano
et al., 2017; Brown et al., 2019; Shin et al., 2023), recom-
mender systems (Xue et al., 2022), and most notably the
training of large language models (LLMs) (Bai et al., 2022;
Ouyang et al., 2022; Achiam et al., 2023).

There exist two dominant kinds of feedback in reward-based
RLHF, cardinal and dueling feedback. Cardinal feedback
requires the human labeler to provide a single label over an
entire trajectory of interaction between the agent and the
environment (Efroni et al., 2021; Chatterji et al., 2021). Du-
eling feedback requires the human to specify a preference
between two trajectories. In practice, dueling feedback has
been used to train reward models, which have been success-
fully combined with RL algorithms to train LLMs (Ziegler
et al., 2019; Stiennon et al., 2020; Askell et al., 2021; Bai
et al., 2022; Ouyang et al., 2022). Past work (Chatterji et al.,
2021; Wang et al., 2023b; Saha et al., 2023) has designed
algorithms for both cardinal and dueling feedback under var-
ious metrics – standard/cardinal regret, sample complexity
or dueling regret.

We observe that current models of reward-based RLHF
assume a very specific model of non-Markovian rewards.
Modeling rewards as non-Markovian is natural, since human
responses to stimuli are known to be affected by partially-
observed and evolving “internal states” (Flavell et al., 2022).
For example, when a human reads a piece of text (possi-
bly generated by an LLM), their assessment may oscillate
between opposing sentiments in different parts of the text.
Unfortunately, current models do not explicitly incorporate
such “internal states” that affect rewards, and are limited to
a specific linear model of rewards. While one can incorpo-
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rate internal states using naive history-summarization, i.e.
by treating the entire trajectory τ rhs so far as the state, we
show below that better general algorithms can be designed
with improved guarantees.

Additionally, current models assume that feedback is re-
ceived only once at the end of an episode or pair of episodes.
In many applications such as motion (Lee et al., 2021) and
mathematical reasoning (Uesato et al., 2022), correctly in-
corporating intermediate or “snippet-level” feedback can
speed up learning as well as improve alignment. With this
in mind, we ask the following questions:

How do we generalize the RLHF setting to incorporate
internal states and intermediate feedback?

What algorithms and guarantees can improve over naive
history-summarization here?

Contributions:

• Introducing PORRL: In Section 2, we introduce
PORRL, which generalizes current RLHF models to in-
corporate “internal states” and intermediate feedback.

• Improving over naive history-summarization: In Sec-
tion 3.1, we design model-based optimistic algorithms,
POR-UCRL and POR-UCBVI, achieving a regret of
rOpppolypH,S,Aq ` p

?
dEdCq

?
T q and a sample com-

plexity of rOpppolypH,S,Aq{ε2 ` p2dEdC{ε2q under
minimal assumptions.1 The polypH,S,Aq term would be
exponential in H under naive history-summarization. We
show that our guarantees subsume and improve over past
results in RLHF.

• Leveraging recursive structure on internal states: In
Section 3.2, we study the model-free algorithm GOLF,
applied using history-summarization. We define a new
“history-aware” notion of dimension, dHABE and show
that GOLF has regret rOppH

?
dHABEdCT q. We show

using an example that when internal states have a recursive
structure, our guarantee can be exponentially smaller than
existing guarantees and guarantees for our model-based
methods.

• Reduction from Dueling to Cardinal PORRL: We show
that a naive blackbox reduction from dueling to cardinal
PORRL always fails. We design a whitebox reduction
from dueling PORRL to a large class of optimistic algo-
rithms for cardinal PORRL. To the best of our knowledge,
this is the first explicit reduction that converts guarantees
for cardinal regret to dueling regret in RL.

1.1. Related Work

RLHF. RL with human preferences has a long his-
tory (Akrour et al., 2012; Busa-Fekete & Hüllermeier, 2014;

1dE is a relevant eluder dimension and dC is a relevant cover-
ing dimension.

Sadigh et al., 2017). It has been successfully used in dis-
parate domains such as robotics, games, and LLMs. The
problem of learning from cardinal feedback has been the-
oretically studied in (Efroni et al., 2021; Chatterji et al.,
2021). Theoretical guarantees for utility-based preferential
(dueling) feedback can be found in (Novoseller et al., 2020;
Saha et al., 2023; Chen et al., 2022b; Zhan et al., 2023).
The non-Markovian nature of the optimal policy under these
RLHF models contributes greatly to why the problem is
harder than traditional RL.

Internal states and intermediate feedback. There is ev-
idence in neuroscience research indicating that human re-
sponses to stimuli are affected by “internal states” — par-
tially hidden variables that profoundly shape perception,
cognition, and action” (see Flavell et al., 2022). Despite not
explicitly recognizing the phenomenon of human internal
states, several works in RLHF incorporate richer forms of
feedback. For example, Wu et al. (Wu et al., 2023) consider
human labeling over sub-sections of the text. In work on
process supervision (Uesato et al., 2022; Lightman et al.,
2023), humans give feedback on intermediate steps. Mo-
tivated by these, our work is a first attempt at laying the
groundwork for a theoretical treatment of internal human
states and intermediate feedback in RLHF, using partially
observed reward-states.

Partial observability in RL. The problem of partial observ-
ability in RL is not new. Although learning in POMDPS
(Åström, 1965) is known to be statistically intractable in
general (Krishnamurthy et al., 2016; Jin et al., 2020), a
flurry of recent works have studied POMDPS under various
structural assumptions (Du et al., 2019; Liu et al., 2022a;b;
Golowich et al., 2022; Zhan et al., 2022; Cai et al., 2022;
Chen et al., 2022a; 2023; Wang et al., 2023a; Zhong et al.,
2023). Our model is distinct from POMDPS since our
results do not require the latent state evolution to be Marko-
vian, but assumes Markovian transitions for observed states.
See Section 2.3 for a discussion.

2. Defining RL with Partially-Observed
Reward States (PORRL)

In this paper, we consider an episodic reinforcement learn-
ing setting in which a learner interacts with an MDP having
a state space S, an action space A, transitions dynamics
P, and episode length H . At each time-step h P rHs of an
episode, the learner observes the state sh and takes an action
ah, generating a trajectory τ “ ps1, a1, ¨ ¨ ¨ , sH , aHq P Γ,
where Γ denotes the space of trajectories.2 In a typi-
cal RLHF setting, the learner observes a human feedback

2We will further denote τ rhs “ ps1, a1, . . . , sh, ahq the sub-
trajectory of τ of length h and Γh the corresponding space of
sub-trajectories of length h.
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oH P O at the end of the episode, which is associated to
but potentially different from a reward r : Γ Ñ R encoding
the task. We now describe how internal states and inter-
mediate feedback shall be incorporated in the latter RLHF
framework through a guiding example, and we use this to
formally introduce the PORMDP model.

2.1. PORMDPs

Let us consider the example of a human interacting with a
language model. In this example, an action is a token, the
state is the text so far, and reward is some score representing
the human’s satisfaction, which induces stochastic feedback.
The internal states could be the human’s emotional reaction
to the text (e.g., happy, frustrated, or amused), or numbers in
r0, 1s encoding a confidence level that the text is progressing
towards a coherent response. While an agent goes through a
sequence of states and actions, the system (i.e., the human)
progresses through internal states, which inevitably affect,
together with agent’s actions and the state of the process,
the human’s satisfaction.

Formally, this can be modeled by introducing internal states
u P U and defining the set of underlying histories Γu

h´1

that incorporate internal states by Γu
h´1 :“ tτurh ´ 1s “

tpsl, ul, alqu
h´1
l“1 | sl P S, al P A, ul P Uu. We model

the dynamics of internal states by saying that there exists
an internal state generator wh : Γu

h´1 ˆ S ˆ A Ñ ∆pUq

so that the human’s internal state uh is sampled from the
distribution defined by whpτurh´1s, sh, ahq. The human’s
satisfaction at time h should then be a function of the current
state and action, but also the current internal state, given by
rhpsh, uh, ahq.

The agent does not observe the reward rh directly, but a
feedback oh depending on rh. Typically, oh will be t0, 1u

feedback reflecting whether the human says that they are
satisfied or not. In general, this could be stochastic. For
instance, this could be Berpσhprhqq for some function σh.
So, oh „ ehprhq for some distribution ehprhq. This leads
to the general definition below, where we have introduced
new objects U ,Hp, w, e not seen in traditional RL:

Definition 1. A PORMDP M with cardinal feedback is a
tuple pS,A,U ,O,P,Hp, r, w, eq, where:

• S,A are fully observable states and actions, U are unob-
served internal reward-states, O is a space of feedback,
Pp¨ | s, aq is a Markovian transition matrix, s1 P S is an
initial state.3

• Hp Ă rHs is a set of timesteps where reward and feed-
back is obtained with size |Hp| “ p.

• r :“ trhuhPHp so that rh : S ˆ U ˆ A Ñ R are reward
functions at time h.

3Recall that choosing a formal state s1 to serve as a placeholder
initial state is not restrictive.

• w :“ twhuhPHp
so that wh : Γu

h´1 ˆS ˆA Ñ ∆pUq are
internal state generators that map underlying histories of
ps, a, uq tuples to distributions over U .

• e :“ tehuhPHp
are feedback functions so that the feedback

oh „ ehprhq is sampled from an ηh-subgaussian distri-
bution eh with mean σhprhq for some activation function
σh : R Ñ R.4

In some relevant RLHF applications, the human is presented
with two trajectories and they provide feedback based on
the pair. In most cases, this involves indicating a 0-1 prefer-
ence between trajectories. To accommodate this setting, we
extend the framework to dueling feedback.

Definition 2. A PORMDP M with dueling feedback is
a tuple pS,A,U ,O,P,Hp, r, w, eq, where everything is
identical to Definition 1, except that every episode now
involves running two trajectories τ1, τ2 that produce re-
wards rh,1, rh,2 @h P Hp, and feedback is distributed as
oh „ ehprh,1 ´ rh,2q.

We note that PORMDPS subsume and model a wide class
of RL settings, including RLHF. A brief list of settings that
PORMDPS subsume is as follows: (i) traditional MDPs, by
setting U “ t‹u; (ii) existing linear models of RLHF, setting
U “ tϕpτqJwu for a known feature map ϕ and unknown
w (Chatterji et al., 2021; Efroni et al., 2021; Saha et al.,
2023; Wang et al., 2023b); (iii) learning reward models with
stochastic feedback by setting U to be the set of reward
states (Icarte et al., 2019; 2018; 2022; Icarte, 2022). By
using U to model implicit intentions, PORMDPS can also
model learning from the following feedback: (iv) process
supervision (Lightman et al., 2023; Uesato et al., 2022), (v)
fine-grained feedback (Wu et al., 2023) and (vi) snippet-
level feedback (Lee et al., 2021). Further, one can show that
in all these settings, we can define the U generators wh to
be deterministic.

One illustrative hard example of PORRL is that of a com-
bination lock,5 which we will also use later in the paper.
Consider an H-digit numerical lock with a set A of options
at each digit. Let the true combination be a‹

1, . . . a
‹
H . An

agent tries to unlock it by listening for “clicks” while rotat-
ing the dial at each digit h. Naturally, we only hear clicks at
digit h if the entire combination so far is correct. We thus
model this as a PORMDP with non-Markovian rewards,
S “ t‹u, U “ t

Ť

h Ahu and the appropriate dynamics.
Arguing that the click might sometimes be too faint, we
consider stochastic rewards. Specifically, we model this
as rhpsh, uh, ahq “ Berpq1a‹

1,...a
‹
h

puhqq for some uncer-

4This subsumes and generalizes the example of Bernoulli feed-
back in RLHF.

5This is a variant of a common example used to generate lower
bounds in POMDPS (Krishnamurthy et al., 2016; Jin et al., 2020).
In contrast, we will use it to illustrate the power of our upper
bounds.
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tainty parameter q. Notice that the internal states have a
recursive structure here, and they evolve in a Markovian
way. This is a toy model for the problem of learning to take
desirable sequences of actions using intermediate feedback.
It can be viewed as a simplified version of many such tasks
– navigating mazes, writing structured essays with guidance,
writing a proof with feedback on correctness.

2.2. Reinforcement Learning in PORMDPs (PORRL)
with Cardinal and Dueling Feedback

Due to the complex nature of observability in our problem,
we will use this subsection to carefully set up a meaningful
set of RL problems, in which an agent interacts with a
PORMDP to optimize a policy. At each step h, the agent
observes a history τ rh ´ 1s P Γh´1 and takes an action
ah „ πpτ rh ´ 1s, shq. The agent does not observe the
reward rh, but receives an observation oh „ ehprhq.

Defining the learning objective. Since rewards are par-
tially observed and dependent on the entire history, there is
a subtlety in defining value functions. We first choose and
fix some subclass Π of history-dependent policies and we
define the total expected reward of a policy π P Π as

VwpM, πq :“ Eτu„Pw,π

„

ÿ

hPHp

rhpsh, uh, ahq

ȷ

VwpM, πq is taking an expectation over the dynamics of
underlying trajectories τu “ tpsh, uh, ahquHh“1 „ Pw,π.
Since the states u are never revealed, these dynamics can
never be learnt, making Vw hard to directly deal with. In this
light, we introduce stochastic functions gh : Γh Ñ ∆pUq

that marginalize the internal state generator wh over the
sequence u1, . . . uh´1. That is, given an ps, aq history τ rhs,
we can define6 ghpτ rhsq „ uh | τ rhs. Now define

VgpM, πq :“ Eτ„Pπ

„

ÿ

hPHp

Euh„ghpτrhsqrrhpsh, uh, ahqs

ȷ

VgpM, πq is a much more tractable object, where the outer
expectation is taken over the dynamics of the observed tra-
jectories τ . The following result establishes that as one
would hope, Vw “ Vg .
Lemma 1 (Replacing w with g). For any history-dependent
policy π that selects an action ah „ πpτ rh ´ 1s, shq,
VwpM, πq “ VgpM, πq holds for any M.

For the purposes of value functions, M is fully specified
by pS,A,U ,O,P,Hp, r, g, eq. Henceforth we replace w
with g and denote the value function VgpM, πq by V pM, πq.
Define the optimal policy as π‹ :“ argmaxπPΠ V pM, πq.

6More technically, define ghpτ rhsq to be the regular
conditional distribution of the random variable whppτ rh ´

1s, u1, . . . uh´1q, sh, ahq, conditioned on τ rhs.

Cardinal PORRL. Consider an algorithm producing a se-
quence of policies π1, . . . , πT P Π, where πt is chosen only
using trajectories tτiu

t´1
i“1 generated by tπiu

t´1
i“1. We mea-

sure the performance of such an algorithm by its cardinal
regret under model M‹:

RegretpT q “

T
ÿ

t“1

V pM‹, π‹q ´ V pM‹, πtq

One can also ask for the sample complexity of learning a
good policy. Given a randomized algorithm that completes
N episodes of interaction and outputs πN , the sample com-
plexity Npε, δq of the algorithm is the minimum N so that
V pM‹, π‹q ´V pM‹, πN q ď ε with probability at least 1´ δ
over the randomness of the feedback and the algorithm. It
makes sense to study cardinal regret and sample complexity
in two RLHF settings:

• Using a learnt reward model: In most deployments of
offline RLHF, an offline dataset of dueling feedback from
humans is typically used to create a cardinal feedback
oracle (a reward model), which is then used to train the
policy using RL. In fact, (Anonymous Authors, 2024) do
exactly this under our model. The sample complexity of
the algorithm is important in this setting.

• Improving a deployed model with batched feedback: One
can learn from batches of interaction with humans and
hope to improve the model/policy adaptively over mul-
tiple batches. This is compatible with deploying LLMs
or recommender systems to users, collecting a batch of
good/bad feedback, and then fine-tuning the model of-
fline using this batch. This approach is also discussed in
(Swamy et al., 2024; Dong et al., 2024). Regret is a better
metric than sample complexity here, since we want users
to be satisfied (exploiting) while improving the model
(exploring). Instead of good/bad feedback, we can also
ask for dueling feedback against a fixed policy π0 and
treat it as cardinal feedback.7

Dueling PORRL. In dueling PORRL, we play a duel by
running two policies pπ1, π2q P Π ˆ Π in parallel to obtain
trajectories pτ1, τ2q and receive feedback tohuhPHp . Again,
note that the rewards of the policies are not observed. While
the definitions of V pM, πq and π‹ are the same as before, we
define a new measure of regret accordingly. If we play T du-
els pπ1,1, π2,1q, . . . , pπ1,T , π2,T q according to an algorithm,
we aim to minimize the dueling regret given by

RegretDpT q “

T
ÿ

t“1

V pM‹, π‹q´
V pM‹, π1,tq ` V pM‹, π2,tq

2

It makes sense to consider this metric when improving a
deployed model with batched dueling feedback. We can do

7If the activation function is Lipschitz and monotone, then we
can get cardinal regret guarantees for this problem by using the
difference function class.
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the same batching as the batched feedback example above,
but instead compare our model/policy πt to a fixed base pol-
icy π0 and ask for dueling feedback. The induced feedback
can be treated as cardinal feedback. This is similar to the
ideas in (Wang et al., 2023b), who consider this setting and
give cardinal regret/sample complexity guarantees. How-
ever, when deploying a model, we typically want humans
to be satisfied with both the options they are given. Cardi-
nal regret only accounts for one of the options being good.
Dueling regret demands that both policies used are good
policies.

Remark 1. PORRL subsumes the settings of (Saha et al.,
2023; Chatterji et al., 2021), which in turn subsume the
feedback models of RLHF (Wang et al., 2023b). Crucially,
(Wang et al., 2023b; Chatterji et al., 2021) measure per-
formance using only sample complexity or cardinal regret,
while (Saha et al., 2023) only study dueling regret. We have
discussed above why both metrics are important.

2.3. A General Yet Tractable Case

The nature of the feedback in PORMDPS , which depends
on a reward that is function of the entire history, signals that
PORRL may be intractable in general. We now instantiate
the model into a statistically tractable sub-class that still sub-
sumes most existing work on RLHF and all the examples
provided at the end of Section 2.1. Specifically, we assume
that the internal reward-state functions gh are deterministic
and the feedback is emitted according to a Bernoulli distri-
bution depending on the reward. We will work under this
assumption in the remainder of the paper.

Assumption 1. We work in a known class P of transition
kernels P and known classes Rh of reward functions rh :
S ˆ U ˆ A Ñ R with |rh| ď B for all h. Let gh be
deterministic (but unknown) and belonging to a known class
of “decoder functions” Gh. Let O “ t0, 1u and let eh only
depend on the rewards. For dueling feedback, let ehprh,1 ´

rh,2q be ηh-subgaussian with known mean σhpr1,h ´ r2,hq.
Also assume that σh and σ´1

h are Lipschitz with Lipschitz
constants κ1,h and κ2,h respectively. Call the resulting class
of PORMDPS M.

We also define a function class induced by Rh and Gh.

Definition 3. Let us then consider the decoder-induced
function classes Fh given by

Fh :“
!

fh : Γh Ñ R
ˇ

ˇ

ˇ
Dgh P Gh, rh P Rh

s.t. fhpτ rhsq “ rhpsh, ghpτ rh´ 1sq, ahq, @τ
)

Also define F :“
ś

hPHp
Fh so that f “ tfhuhPHp P

F . A model M is then fully determined by pP, fq, so we
denote V pP, f, πq :“ V pM, πq. Note that V pP, f, πq “

EτPPπ

”

ř

hPHp
fhpτ rhsq

ı

.

Remark 2. We note that all examples from Section 2.1 work
with deterministic dynamics for U and satisfy Assumption 1.

Giving statistically efficient algorithms for this framework
comes with numerous challenges:

• Traditional RL incurs linear regret: We show in
Lemma 3 that any method returning a possibly time-
dependent but memoryless policy can incur linear regret.

• POMDP results do not apply: PORMDPS cannot be
viewed as a subcase of POMDPS with latent states S ˆU
since s, u, a Ñ s1, u1 is not Markovian.8 Even if we
considered the subclass of PORMDPS where s, u, a Ñ

s1, u1 is Markovian, which would be a subclass of reward
machines, this is a specific kind of overcomplete POMDP
. Literature on overcomplete POMDPS is much more
scarce than their undercomplete counterpart. The only
paper that gives guarantees for overcomplete POMDPS to
our knowledge is (Liu et al., 2022a), which makes reward
function fully observable. This cannot apply to our setting,
since our rewards have to be partially observable.

• Naive history-summarization is inefficient: It is overkill
to use naive history-summarization – where one treats the
history τ rhs as the state sh and executes traditional RL.
This is because while policies are non-Markovian, state
transitions are Markovian. It is unclear if we can leverage
this structure without running into exponential depen-
dence on H . Moreover, a lot of work on RL assumes that
the reward is known, while learning the reward function
is itself a hard problem here.

• Ensuring satisfactory utilization of additional struc-
ture: Examples like the combination lock signal that
there are intuitive ways to leverage a recursive structure
on the internal states. In the combination lock, one should
wait for the “click” at each digit before moving onto the
next digit, giving us a polynomial dependence on A,H in
sample complexity. It is unclear if general algorithms for
PORRL can implicitly leverage such structure to achieve
polynomial guarantees.

3. Optimistic Algorithms for Cardinal PORRL
3.1. Improving over Naive History-Summarization with

Model-Based Methods

In this section, we present two optimistic methods that lever-
age Markovian transitions in PORMDPS – POR-UCRL
and POR-UCBVI. We describe them briefly here, deferring
details to Appendix D, E.

• POR-UCRL: At each timestep t, we maintain a least
squares estimate f̂ t`1 of f and an MLE estimate P̂t and

8Since observed state transitions are Markovian, PORMDPS
are also not more general than POMDPS .
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define confidence sets Ct
hpδq that consider all fh with a

small mean squared error against f̂ t`1
h , such that Ct

F pδq “
śH

h“1 Ct
hpδq. The probability transition confidence sets

Ct
Ppδq are the exact same ones in UCRL (Jaksch et al.,

2010). At timestep t, following confidence-set optimism,
we play an optimistic policy rπt that maximizes its highest
value V pM, πq over all models M P Ct

F ˆ Ct
P .

• POR-UCBVI: It is trickier to adapt ideas from
UCBVI (Azar et al., 2017). Yet again, we maintain a least
squares estimate f̂ t and an MLE estimate P̂t. Instead of
confidence sets, we design trajectory-dependent bonuses
for F as btF pτ, δq “

ř

hPHp
maxfh,f 1

hPCt
hpδq fhpτ rhsq ´

f 1
hpτ rhsq. We use these to define policy-level bonuses

for F as btF pP, π, δq :“ Eτ„Pπ
‹

rbtF pτ, δqs. Then, we use
the standard UCBVI bonuses to similarly define policy
level bonuses for P . At timestep t, following bonus-based
optimism, we play an optimistic policy π̃t that maximizes
its bonus-boosted value under f̂ t, P̂t.

We show that POR-UCRL enjoys the guarantee below.

Theorem 1 (POR-UCRL Regret). Under Assumption 1, the
regret RegretpT q of POR-UCRL is bounded by the follow-
ing with probability at least 1 ´ δ

rO
´´

pS
?
HA`

ÿ

hPHp

a

dE,hdC,h

¯?
T
¯

where dE,h “ dimE

`

Fh,
B
T

˘

and dC,h “

logpN pFh, 1{T, } ¨ }8qq.

Here, the first term comes from uncertainty in P. Under
naive history-summarization, the first term would be ex-
ponential in H since the modified state space of trajecto-
ries would have size ΩppSAqHq. Similar regret guarantees
are given for POR-UCBVI in Theorem 8. Both guaran-
tees are proved by viewing each algorithm as a specific
instance of a generic optimistic algorithm for PORRL (see
Appendix C, D, E). By a simple regret-to-PAC conversion,
we also show that POR-UCRL has sample complexity of
rO
´

p2HS2A
ε2 `

p2dEdC

ε2

¯

, where dE :“ maxhPHp dE,h, and
dC :“ maxhPHp

dC,h. POR-UCBVI has sample complex-

ity rO
´

p2HSAmaxpH,Sq

ε2 `
p2dE maxpdC ,Hq logp1{δq

ε2

¯

.

Challenges: There are three main technical challenges in
proving these guarantees. First, we have to handle non-
Markovian reward functions with Markovian transitions.
Second, in POR-UCBVI, we have the added challenge of
ensuring that the bonus is uniformly optimistic over all
history-dependent policies. This is typically a doubly ex-
ponential set (ApSAq

H

), so a union bound does not help us.
Third, we are working with general function approximation
for reward functions.

Remark 3 (Comparison to Past Results). Notice that with
U “ ϕpτqJw with w P Rd and Hp “ tHu, we are in the

setting of (Chatterji et al., 2021). Here, dE,H “ dC,H “

d, so POR-UCRL improves over their guarantees. POR-
UCBVI improves over their guarantees by a smaller amount.
With respect to sample complexity guarantees, we compare
to (Wang et al., 2023b). While they use dueling feedback,
our methods use cardinal feedback. In their setting, U is the
set of all histories and Hp “ tHu. Their best guarantee is

from P-OMLE, which makes rO
´

H2S2A
ε2 `

H2dE,HdC,H

ε2

¯

dueling oracle queries for tabular P . Both POR-UCRL
and POR-UCBVI have a smaller complexity for cardinal
feedback queries.

3.2. Leveraging Recursive Structures Using Model-Free
Methods

We have established that the model-based methods POR-
UCRL and POR-UCBVI improve over naive history-
summarization and have a polypS,A,Hq guarantee in terms
of transition function estimation. However, we recall the
last challenge mentioned in Section 2.3 – can they adapt to
examples like the combination lock, where there is a recur-
sive structure on the internal states? Disappointingly, we
will see in Proposition 1 that the answer is no, since the
eluder dimension of reward functions is Ah for the combi-
nation lock. Since POR-UCRL and POR-UCBVI decouple
the learning of reward functions across timesteps, they are
unable to incorporate a recursive structure on the reward
functions.

In this light, we consider model-free methods. Unlike
model-based methods that have to account for Markovian
transitions, we can simply use naive history-summarization
here and treat τ rhs as the state for Q-functionsQh. However,
under history-summarization, there is a subtlety involved in
choosing the class Q of Q-functions given a known class M
of models. Using product classes Q1 ˆ ¨ ¨ ¨ ˆ QH is waste-
ful, since often exponentially many tuples in a product class
cannot be realized by any model M.9 Instead, one should
consider the class of all individual tuples pQ1, . . . , QHq that
can be realized by a model M. In practice, this translates to
the problem of good representation learning – one should
use a shared network for all Q-functions instead of using a
different network for each timestep. This is reflected in the
experimental choices of (Anonymous Authors, 2024).

Model-free methods rely on the Bellman error, which re-
lates consecutive Q-functions and couples their learning. It
is thus natural to expect model-free methods like GOLF
(Jin et al., 2021) to adapt to a recursive structure on inter-
nal states and perform better than model-based methods.
However, existing guarantees do not reflect this, since it
turns out from Proposition 1 below that the Bellman eluder

9The reader can use the example of the combination lock to
convince themselves of this.
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(BE) dimension of the combination lock problem with the
minimal Q-function class is still AH .

The issue is that the proof of GOLF bounds the h-step
Bellman errors in a decoupled manner, which is why it still
fails to incorporate a recursive structure on internal states.
Intuitively, one wants to wait for Bellman errors at timesteps
1, . . . , h´ 1 to become small before bounding the Bellman
error at h. In this light, given a parameter α, we define the
function class

Qpα, hq :“
␣

Q P Q | |EµlpQqrQl ´ TlQl`1s| ď α,

@1 ď l ď h
(

that considers all tuples pQ1, . . . , QHq where the Bellman
errors until step h are already low. We can use this class
to define the α-history aware Bellman eluder dimension
(HABE) of Q as follows. Recall that πQ is the policy that
acts greedily according to Q “ pQ1, . . . QHq.
Definition 4. Consider the Bellman errors Φh :“
␣

Qh ´ ThQh`1

ˇ

ˇQ P Qpα, h ´ 1q
(

. Denote µhpQq

the distribution induced on τ rh ´ 1s, ah by πQ and let
Dh,Q :“ tµhpQq | Q P Qu. Let dimDE the distribu-
tional eluder dimension and define dimHABEpQ, α, εq :“
maxh dimDEpΦh,Dh,Qpα,h´1q, εq.

Intuitively, α-HABE dimension measures how hard it is
to reduce the Bellman error at timestep h if the errors at
previous timesteps 1, . . . , h ´ 1 are already small. This
captures the hardness of adapting to the recursive structure
on internal states one/a few timesteps at a time. We discuss
in Appendix F.1 how the α-HABE dimension compares to
the Bellman eluder dimension in general. We now give a
new guarantee for GOLF using the α-HABE dimension.
Theorem 2 (Modified GOLF Regret). Let Assumption 1
hold, and let dHABE “ dimHABEpQ, α,minpα,

a

1{T qq.
Choose hyperparameter β “ c logpHTN pQ Y G, 1{T, } ¨

}8qq for some universal constant c and the auxiliary func-
tion class G used in GOLF, and define dC,Q :“ logpN pQY

G, 1{T, } ¨ }8qq. Then, GOLF satisfies RegretpT q “

O
`

pH
a

dHABEdC,QT
˘

.

Using a regret-to-PAC conversion, we also show in
Corollary 6 that the sample complexity of GOLF is
rO
´

p2H2dHABEdC,Q
ε2

¯

. As foreshadowed above, we now
show in Proposition 1 that these guarantees can be poly-
nomial even when the the usual guarantees for GOLF as
well as guarantees for our model-based algorithms are ex-
ponential. Note that this improvement is achieved only
given dense intermediate feedback. Under sparse interme-
diate feedback, one cannot adapt to internal states "a few
timesteps at a time."
Proposition 1 (Dimensions for the Combination Lock).
Consider the combination lock problem with model class
M “ P ˆ F and induced Q-function class Q.

• Under dense intermediate feedback with Hp “ rHs, the
dimHABEpQ, αqA for all α ă q, while its BE dimension
is at least AH ´ 2. The eluder dimension for reward
functions dimEpFh,

B
T q is at least Ah for any h ď H .

• For sparse intermediate feedback with Hp “ tHu and
any α ą 0, the α-HABE dimension, the BE dimension
and the eluder dimension of FH are all at least AH ´ 2.

We discuss in Appendix F.1 that in general, we do not have
an inequality in either direction. However, the α-HABE
dimension is typically smaller.

4. Dueling to Optimism Reduction
The dueling and cardinal feedback models are intimately
related. It is thus tempting to use algorithms for cardinal
PORRL to solve dueling PORRL. However, we detail why
the “obvious” reduction from dueling feedback to cardinal
feedback fails. This both demonstrates the hardness of the
problem and motivates our reduction.

4.1. The Naive Reduction Always Fails

Consider a modified PORMDP M with S :“ S ˆ S,
A :“ A ˆ A, P :“ P b P, where we run the pair of
policies π :“ pπ1, π2q and obtain observations based on the
decoder-induced function fhpτ1rhs, τ2rhsq :“ fhpτ1rhsq ´

fhpτ2rhsq. Consider the space of all such PORMDPS in-
duced by M, and denote it by M. Since cardinal feedback
in M exactly corresponds to dueling feedback in M, it is
tempting to restrict to searching over Π ˆ Π and run any
algorithm for cardinal PORRL on this modified PORMDP
M to achieve low dueling regret.

This fails because the feedback model and regret metric are
fundamentally non-aligned in dueling feedback, unlike in
cardinal feedback. While the agent receives dueling feed-
back over the duel for pπ1,t, π2,tq, dueling regret is instead
concerned with duels for pπ‹, π1,tq and pπ‹, π2,tq. Running
an algorithm for cardinal PORRL on the modified MDP will
maximize the dueling feedback itself. This is achieved by
playing one good and one really bad policy, unlike the two
good policies needed for low dueling regret. We formalize
this in Lemma 4, showing that the naive reduction leads to
linear dueling regret for any PORMDP and any cardinal
PORRL algorithm with sublinear regret.

4.2. Reducing Dueling to Optimistic Cardinal PORRL

The naive reduction fails because maximizing dueling feed-
back can lead to bad policies being played. In this subsec-
tion, we present a white-box reduction where we ensure
that we only play potentially good policies for both π1,t and
π2,t. We detail here how we can obtain an algorithm for the
dueling feedback problem from any optimistic algorithm for

7
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Algorithm 1 Reduction from Dueling to Cardinal Confidence-Set Optimism

1: Input Known reward function trhuHh“1, method to compute CMpD, δq Ø CPpD, δq ˆ CF pD, δq

2: Initialize dataset D1 Ð tu, CMpD1, δq :“ P ˆ F
3: for t “ 1, ..., T do
4: Compute Πt “

!

π P Π
ˇ

ˇ

ˇ
DM P CMpDt, δq s.t. V pM, π, π1q ě 0 @π1 P Π

)

{Candidates π‹}

5: Play pπ1,t, π2,tq P argmaxπ,π1PΠt
maxM,M

1
PCMpDt,δq

VDpM, π, π1q ´ VDpM
1
, π, π1q {Most uncertain duel}

6: Observe trajectories τi,t “
␣

psti,h, a
t
i,hq

(H

h“1
along with feedback tohuhPHp

7: Update Dt to Dt`1 using the data and compute CPpDt`1, δq, CF pDt`1, δq

8: end for

cardinal PORRL. We will focus on the case of confidence
sets here for smoother exposition, the much harder case of
bonuses is treated in Appendix H.2. A generic optimistic
algorithm using confidence sets maintains confidence sets
CMpDt, δq using the collected dataset Dt of trajectories and
feedback. We define it formally in Appendix C.1. For the
reduction to work, we require that the confidence sets are
well-designed, as demanded by Assumption 2. This assump-
tion is satisfied for confidence sets used by POR-UCRL.

Assumption 2 (Controlling Value Error due
to Confidence Sets). M‹ P CMpDt, δq for ar-
bitrary sequences pPt, f

tq P CMpDt, δq, both
ˇ

ˇ

řT
t“1 V pPt, f

t, πtq ´ V pP‹, f
t, πtq

ˇ

ˇ “ rOpCP pM, T, δqq

and
ˇ

ˇ

řT
t“1 V pP‹, f

t, πtq ´ V pP‹, f‹, πtq
ˇ

ˇ “

rOpCF pM, T, δqq hold with probability 1 ´ δ{2 each.

The key insight is to use confidence sets from cardinal
PORRL to search for π1,t and π2,t only among policies
that both have a chance of being optimal. Then one plays
the most uncertain duel among all possible choices for π1,t
and π2,t. This generalizes and abstracts out ideas in (Pac-
chiano et al., 2021), which presents a specific algorithm
to achieve low dueling regret in their model. We present
the reduction to optimism over confidence sets in Algo-
rithm 1, the version for bonuses is in Appendix H.2. De-
fine VDpM, π, π1q “ V pM, πq ´ V pM, π1q. We compute the
confidence sets CPpD, δq as the image of CPpD, δq under
P ÞÑ P. We compute CF pD, δq by treating tohuhPHp

as
cardinal feedback in M. As an example, for POR-UCRL, we
perform a least squares fit for f and use Lemma 7 to define
our confidence sets again.

We then get the following regret guarantee and the corre-
sponding corollary.

Theorem 3 (Reduction from Dueling to Confi-
dence-Set-Based Optimism). If the confidence sets
CMpDt, δq satisfy Assumption 2, then the dueling regret
RegretDpT q of Algorithm 1 is given by

RegretDpT q “ rOpCP pM, T, δq ` CF pM, T, δqq

Note that complexity parameter CF depends on M. It is
a priori unclear how the complexity of M relates to that
of M. Fortunately, Lemma 2 below settles this, and we
can then use our results for POR-UCRL to get Corollary 1
below.

Lemma 2 (Relating F and F). For any function class F ,
dimEpF , εq ď 9 dimEpF , ε{2q.

Corollary 1 (Dueling Regret using POR-UCRL Con-
fidence Sets). The confidence sets from POR-UCRL
satisfy Assumption 2 and using them in Algorithm 1
leads to the following regret bound RegretDpT q “

rO
´´

pS
?
HA`

ř

hPHp

a

dE,hdC,h

¯?
T
¯

.

5. Conclusions and Future Work
In this work, we have introduced PORMDPS and their
analysis as a way to better model internal states of humans
and intermediate feedback in RLHF. We have introduced
two statistically efficient algorithms for handling partially
observed reward-states and have shown that they improve
over naive history summarization. We have noted that these
methods subsume as well as improve over a lot of past work
in RLHF. We have studied how one can further leverage
a recursive structure over internal states using model-free
methods. For this purpose, we have defined a new notion
of dimension, the α-HABE dimension, that captures the
hardness of utilizing the recursive structure. Finally, we
have also provided a novel reduction from dueling regret to
optimistic algorithms for cardinal regret.

We hope that our ideas lay the groundwork for further theo-
retical understanding of the statistical limits of learning good
policies when interacting with “stateful” feedback such as
that of humans. Our algorithms and proofs are presented
in high generality and modularity in the appendix, and we
hope that they can be used to provide novel algorithms and
bounds in the future.
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A. Lemmas and Discussion
A.1. Relation between Vw and Vg

Lemma 1 (Replacing w with g). For any history-dependent policy π that selects an action ah „ πpτ rh ´ 1s, shq,
VwpM, πq “ VgpM, πq holds for any M.

Proof. By a slight abuse of notation, the following chain of equalities holds. Here, piq holds since rhpsh, uh, ahq is a
function of sh, uh, ah. Equation piiq holds since we have already conditioned on τ rhs, which includes sh, ah. Equation
piiiq holds by the definition of ghpτ rhsq as the conditional distribution of uh given τ rhs.

VwpM, πq “ Eτu„Pw,π

»

–

ÿ

hPHp

rhpsh, uh, ahq

fi

fl

“
ÿ

hPHp

Eτu„Pw,π rrhpsh, uh, ahqs

“
ÿ

hPHp

Eτurhs„Pw,π rrhpsh, uh, ahqs

“
ÿ

hPHp

Eτrhs„Pπ

”

Eτurhs„Pw,π rrhpsh, uh, ahqs

ˇ

ˇ

ˇ
τ rhs

ı

piq
“

ÿ

hPHp

Eτrhs„Pπ

”

Euh,sh,ah„Pw,π rrhpsh, uh, ahqs

ˇ

ˇ

ˇ
τ rhs

ı

piiq
“

ÿ

hPHp

Eτrhs„Pπ

”

Euh„Pw,π rrhpsh, uh, ahqs

ˇ

ˇ

ˇ
τ rhs

ı

piiiq
“

ÿ

hPHp

Eτrhs„Pπ

“

Euh„ghpτrhsq rrhpsh, uh, ahqs
‰

“
ÿ

hPHp

Eτ„Pπ

“

Euh„ghpτrhsq rrhpsh, uh, ahqs
‰

“ Eτ„Pπ

»

–

ÿ

hPHp

Euh„ghpτrhsq rrhpsh, uh, ahqs

fi

fl

“ VgpM, πq

A.2. Ignoring Internal Reward-States is Bad for Alignment

We define traditional RL methods as those that output possibly time-dependent Markovian policies. In this section, we
provide a toy example showing that there is a PORMDP with good sublinear regret guarantees where any time-dependent
Markovian policy has value bounded away from the maximum value. This means that traditional RL methods will always
incur linear regret. We hope that this illustrates that RL methods that ignore internal reward-states can be bad for alignment.

Lemma 3 (Markovian policies are not enough). There is a PORMDP where POR-UCRL and POR-UCBVI achieve
polypH,S,Aq

?
T regret, but any Markovian policy is at least 1

4 -suboptimal and so any method that outputs Markovian
(possibly time-dependent) policies will lead to linear regret.

Proof. Consider a PORMDP M in the setting of (Chatterji et al., 2021) (see point (ii) below Definition 2) and set
S “ ts1, s2u, A “ ta1, a2u and w “ 1 P R. Let the transition matrix be Pps1 | s, aq “ 1

2 for all s, a, s1. Let the starting
state always be s1.

Consider the set T of all trajectories that have a2 until s2 appears, and then only have a1. Choose ϕpτq “ 1pτ P T q. The
best non-Markovian policy π‹ can follow this rule and achieve ϕpτq “ 1 for all τ „ Pπ‹ . Thus, maxπPΠ V pM, πq “ 1,
where Π is given by all history-dependent policies.

12
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On the other hand, consider a Markovian but potentially time-dependent policy π. If πpa2q “ 0, then its value is zero.
If πpa2q ą 0, then conditioned on the event that s2 appears first at timestep 1, the expected total reward is at most
π1pa2qp1 ´ π2pa2qq. Conditioned on the event that s2 appears first at timestep 2, the expected total reward is at most
π1pa2qπ2pa2q. Conditioned on seeing s2 at or after h “ 3, the expected total reward is certainly at most 1. Using these
crude inequalities, we can bound the expected reward of a Markovian policy π by

π1pa2qp1 ´ π2pa2qq

2
`
π1pa2qπ2pa2q

4
`

H
ÿ

h“3

1

2h
ď
π1pa1qp2 ´ π2pa2qq

4
`

1

4
ď

1

2
`

1

4
“

3

4

This means that the value of any time-dependent Markovian policy is at most 3
4 and so any time-dependent Markovian

policy is at least 1
4 -suboptimal and incurs T

4 regret.

Recall that we defined traditional RL algorithms as those that output (possibly time-dependent) Markovian policies. Clearly,
any traditional RL algorithm in this sense will have at least T

4 regret, which is linear regret.

A.3. The Naive Reduction from Dueling to Cardinal PORRL Fails

Lemma 4 (Naive Reduction Lower Bound). Using any algorithm for cardinal PORRL with sublinear cardinal regret on M
with policy class Π1 :“ ΠˆΠ to get a sequence pπ1,1, π2,1q, . . . , pπ1,T , π2,T q leads to linear dueling regret for M whenever
all policies π do not have the same value V pM, πq.

Proof. Define π‹ :“ argmaxπPΠ V pM, πq and let πmin :“ argminπPΠ V pM, πq. Then note that

max
π,π1PΠ

VDpM, π, π1q “ max
π,π1PΠ

V pM, πq ´ V pM, π1q

“ max
πPΠ

V pM, πq ` max
π1PΠ

“

´V pM, π1q
‰

“ max
πPΠ

V pM, πq ´ min
π1PΠ

V pM, π1q

“ V pM, π‹q ´ V pM, πminq

Under the naive reduction described in Section 4, a cardinal PORRL algorithm is used to maximize dueling feedback. If the
algorithm has sublinear cardinal regret, then it will produce duels pπ1,t, π2,tq, t “ 1 Ñ T , satisfying

T
ÿ

t“1

max
π,π1PΠ

VDpM, π, π1q ´ VDpM, π1,t, π2,tq “ opT q

From above, this means that

T
ÿ

t“1

rV pM, π‹q ´ V pM, π1,tqs ` rV pM, π2,tq ´ V pM, πminqs “ opT q

Now note that by definition of π‹ and πmin, both terms are positive. This is the key point. We thus have

T
ÿ

t“1

V pM, π‹q ´ V pM, π1,tq “ opT q

T
ÿ

t“1

V pM, π2,tq ´ V pM, πminq “ opT q

This means that for dueling regret RegretDpT q, we have the following.

RegretDpT q “

T
ÿ

t“1

rV pM, π‹q ´ V pM, π1,tqs ` rV pM, π‹q ´ V pM, π2,tqs

13
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“

T
ÿ

t“1

rV pM, π‹q ´ V pM, π1,tqs ` rV pM, π‹q ´ V pM, πminqs

`

T
ÿ

t“1

rV pM, πminq ´ V pM, π2,tqs

“ opT q ` T rV pM, π‹q ´ V pM, πminqs

“ ΘpT q

Where the last line holds since all policies π do not have the same value V pM, πq, and so V pM, π‹q ´ V pM, πminq ą 0.

14
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B. Regret-to-PAC Conversion
When learning in MDPs, we can turn any guarantee on the regret into a corresponding PAC guarantee, the so-called
“regret-to-PAC conversion” (Jin et al., 2018; Ménard et al., 2021; Wagenmaker et al., 2022; Tirinzoni et al., 2023). Similarly,
we want to convert guarantees on the cardinal and dueling regret (see Section 2) into corresponding PAC guarantees, which
are more adherent to an offline setting. We provide distinct results for the cardinal and dueling regret below.

Lemma 5 (Cardinal regret to PAC). For T P N and δ P r0, 1s, let ALG be an algorithm for cardinal PORRL producing a
sequence of policies pπtqtPrT s with cardinal regret bounded with probability at least 1 ´ δ as

T
ÿ

t“1

V pM, π‹q ´ V pM, πtq ď RpT, δq P R.

Then, a policy pπT „ π1, . . . , πT sampled uniformly satisfies with probability at least 1 ´ 2δ

V pM, π‹q ´ V pM, pπT q ď
RpT, δq

T
` 8Bp

c

logp1{δq

T
.

Proof. We consider the sequence of random variables Yt “ V pM, π‹q ´ V pM, πtq @t P rT s. Through the Hoeffding’s
inequality on Yt and |rh| ď B we have

V pM, π‹q ´ V pM, pπT q “ ErV pM, π‹q ´ V pM, πtqs

ď
1

T

T
ÿ

t“1

´

V pM, π‹q ´ V pM, πtq
¯

` 8Bp

c

logp1{δq

T

with probability at least 1 ´ δ. Then, combining the latter inequality with the upper bound on the regret and a union bound,
we get

V pM, π‹q ´ V pM, pπT q ď
RpT, δq

T
` 8Bp

c

logp1{δq

T

with probability at least 1 ´ 2δ.

The latter result implies a PAC guarantee of the form PpV pM, π‹q ´ V pM, pπT q ě εq ď δ for some ε ą 0 and δ P r0, 1s with
a number of episodes of order rOp1{ε2q. An analogous result can be stated for the dueling setting.

Lemma 6 (Dueling regret to PAC). For T P N and δ P r0, 1s, let ALG be an algorithm for dueling PORRL producing a
sequence of policy pairs pπ1,t, π2,tqtPrT s with dueling regret bounded with probability at least 1 ´ δ as

T
ÿ

t“1

V pM, π‹q ´
V pM, π1,tq ` V pM, π2,tq

2
ď RDpT, δq P R.

Then, a policy pπT „ π1, . . . , πT sampled uniformly satisfies with probability at least 1 ´ 4δ

V pM, π‹q ´ V pM, pπT q ď
RDpT, δq

T
` 16Bp

c

logp1{δq

T
.

Proof. The proof proceeds as in the previous lemma by applying Hoeffding separately on the sequences Y1,t “ V pM, π‹q ´

V pM, π1,tq and Y2,t “ V pM, π‹q ´ V pM, π2,tq, then applying a union bound.
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C. Proofs for General Optimistic Algorithms for Cardinal PORRL
C.1. Generic Model-Based Optimism using Confidence-Sets

We present a template to get regret bounds for a generic model-based optimistic algorithm using confidence sets, which we
will later instantiate into POR-UCRL and also use in our reduction from the dueling PORRL to optimistic algorithms for
cardinal PORRL.

A generic algorithm using confidence sets is determined by confidence sets CMpD, δq based on a dataset D. Maintaining a
running dataset Dt, at each step t, we run πt given by

πt, rMt :“ argmax
πPΠ,MPCMpDt,δq

V pP, f, πq

We obtain a trajectory τt „ Pπt
‹ and append it to Dt to get Dt`1, recompute confidence sets CMpDt`1, δq, and continue.

This algorithm is formally presented in Appendix C.1 below.

Algorithm 2 Generic Confidence-Set Optimism

1: Input Known family of reward functions tRhuHh“1, known model class M induced by known probability transition
kernel class P and known decoder-induced function class F , confidence level δ.

2: Initialize dataset D1 Ð tu and CMpD1, δq Ð M.
3: for t “ 1, ..., T do
4: Compute the optimistic history dependent policy,

πt, rMt “ argmax
π, MPCMpDt,δq

V pM, πq

5: Observe trajectory τt “ tpsth, a
t
hqu

H

h“1 and feedback tohuhPHp
.

6: Update Dt`1 Ð Dt Y tτtu and compute new confidence set CMpDt`1, δq.
7: end for

We now make the following assumption about our confidence sets. It essentially controls the effect of shrinking confidence
sets for P and F on the value. Showing this assumption is the core of proving regret bounds for any instantiation of this
generic algorithm. We will see later that it is satisfied by the confidence sets for POR-UCRL.
Assumption 3 (Controlling Value Error due to Confidence Sets, Refined Version). For a transition kernel P‹ and function
f‹, consider any sequence of policies πt and datasets Dt that contain tτiu

t
i“1 generated under pPπt

‹ , f
‹q. We require that

M‹ P CMpDt, δq for all t with probability 1 ´ δ{16. We require that there exist problem dependent functions CP pM, T, δq

and CF pM, T, δq so that for arbitrary sequences pPt, f
tq P CMpDt, δq, the following hold with probability 1 ´ δ{2 each.

ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

V pPt, f
t, πtq ´ V pP‹, f

t, πtq

ˇ

ˇ

ˇ

ˇ

ˇ

“ rOpCP pM, T, δqq

ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

V pP‹, f
t, πtq ´ V pP‹, f‹, πtq

ˇ

ˇ

ˇ

ˇ

ˇ

“ rOpCF pM, T, δqq

Theorem 4 (Regret for Confidence-Set Optimism). Under Assumption 3, any generic optimistic algorithm using confidence
sets CMpD, δq satisfies the regret bound

RegretpT q “ rO pCP pM, T, δq ` CF pM, T, δqq

Proof. Let rMt be given by rPt and rf t. Note the following inequalities, where piq holds with probability 1 by the optimistic
definition of πt.

RegretpT q “

T
ÿ

t“1

V pP‹, f
‹, π‹q ´ V pP‹, f

‹, πtq

16



A Theoretical Framework for Partially Observed Reward-States in RLHF

piq
ď

T
ÿ

t“1

V prPt, rf
t, πtq ´ V pP‹, f

‹, πtq

ď

T
ÿ

t“1

V prPt, rf
t, πtq ´ V pP‹, rf

t, πtq
looooooooooooooooomooooooooooooooooon

pIq

`V pP‹, rf
t, πtq ´ V pP‹, f

‹, πtq
looooooooooooooooomooooooooooooooooon

pIIq

We now apply Assumption 3 to bound pIq and pIIq. We can use the assumption since Dt contains trajectories tτiu
t
i“1

generated by Pπt
‹ , rf t P CF pDt, δq Ă F and rPt P CF pDt, δq. This immediately gives us that with probability 1 ´ δ

RegretpT q “ rOpCF pM, T, δq ` CP pM, T, δqq

as desired.
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C.2. Generic Model-Based Optimism using Bonuses

We present a template to get regret bounds for a generic model-based optimistic algorithm using bonuses, which we will
later instantiate into POR-UCBVI and also use in our reduction from the dueling PORRL to optimistic algorithms for
cardinal PORRL.

A generic optimistic algorithm using bonuses relies on bonuses bDP pP, π, δq, bDF pP, π, δq that depend on a policy π, transition
kernel P and dataset D. It also relies on estimates P̂D and f̂D that depend on D. Maintaining a running dataset Dt, at each
step t, we run πt :“ argmaxπPΠ

rV pP̂Dt , f̂Dt , πq, where rV pP̂Dt , f̂Dt , πq is given by:

V pP̂Dt , f̂Dt , πq ` bDt

F pP̂Dt , π, δq ` zpBpqbDt

P pP̂Dt
, π, δq

where z is defined below. We obtain a trajectory τt „ Pπt
‹ and append it to Dt to get Dt`1, compute new bonuses and

estimates, and continue. This algorithm is formally presented in Appendix C.2.

Algorithm 3 Generic Bonus-Based Optimism

1: Input Known family of reward functions tRhuHh“1, method EstpDq to estimate P̂D and f̂D from dataset D, bonus
functions bDF pP, π, δq and bDP pP, π, δq, confidence level δ

2: Initialize D1 Ð tu, initialize f̂D1 , P̂D1
arbitrarily.

3: for t “ 1, ..., T do
4: Compute optimistic history dependent policy,

πt “ argmax
π

V pP̂Dt , f̂Dt , πq ` bDt

F pP̂Dt , π, δq ` zpBpqpbDt

P pP̂Dt , π, δqq

5: Observe trajectory τt “ tpsth, a
t
hqu

H

h“1 and feedback tohuhPHp
.

6: Compute new estimates f̂Dt`1 , P̂Dt`1 Ð EstpDt`1q and compute new bonus functions
b
Dt`1

F pf̂Dt`1 , ¨, δq, b
Dt`1

P pP̂Dt`1 , ¨, δq.
7: end for

We now make the following assumption about our bonuses. Showing this assumption is the core of proving regret bounds
for any instantiation of this generic algorithm. We will see later that it is satisfied by the bonuses for POR-UCBVI.

Assumption 4 (Controlling Value Error via Bonuses). For a transition kernel P‹ and function f‹, consider any sequence of
policies πt and datasets Dt that contain tτiu

t
i“1 generated under pPπt

‹ , f
‹q. We require that for sequences P̂Dt

and f̂Dt
and

any sequence f t P F , the following hold.

• Bounding effect of error in F : With probability 1 ´ δ{32, for any P and uniformly over all policies π, |V pP, f̂Dt , πq ´

V pP, f‹, πq| ď bDt

F pP, π, δq and there is a function CF pM, T, δq so that
řT

t“1 b
Dt

F pP‹, πt, δq “ rOpCF pM, T, δqq

with probability 1 ´ δ{32

• Bounding effect of error in P: For any function µ : ΓH Ñ R bounded by D, there is a function zpDq ě D so that the
following holds uniformly over all policies π with probability 1 ´ δ{32.

Eτ„pP̂Dt qπ
µpτq ´ Eτ„Pπ

‹
µpτq ď zpDqbDt

P pP‹, π, δq

The statement also holds if we switch P‹ and P̂Dt
. Additionally, the statement holds for a suitable D if we replace

Eτ„Pπµpτq with bPpP, π, δq or bF pP, π, δq.10 Finally, there is a function CP pM, T, δq so that
řT

t“1 b
Dt

P pP‹, πt, δq “

rOpCP pM, T, δqq with probability 1 ´ δ{32.

Theorem 5 (Regret for Bonus-Based Optimism). Under Assumption 4, with z1pDq “ zpDq ` zp2Dq ` zp2zpDqq, any
generic optimistic algorithm using bonuses satisfies

RegretpT q “ rO pCF pM, T, δq ` z1pBpqCP pM, T, δqq

10This would instantly hold with D “ Bp if bF pP, π, δq :“ Eτ„PπbF pτ, δq for some trajectory level bonus bF pτ, δq, and similarly
for P .
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Proof. Note that we can use Assumption 4 since Dt contains trajectories tτiu
t
i“1 generated by Pπt

‹ , f̂Dt
P F is computed

using Dt and P̂Dt is computed using Dt. Also note that WLOG, bDt

P pP, π, δq ď 2 always holds since we can otherwise clip
it at 2 and our assumption will still hold. Similarly, WLOG bDt

F pP, π, δq ď 2zpBpq, otherwise we can clip it at 1 and our
assumption will still hold. Now note the following inequalities.

RegretpT q “

T
ÿ

t“1

V pP‹, f
‹, π‹q ´ V pP‹, f

‹, πtq

piq
ď

T
ÿ

t“1

V pP̂Dt , f
‹, π‹q ` zpBpqpbDt

P pP̂Dt , π‹, δqq ´ V pP‹, f
‹, πtq

piiq
ď

T
ÿ

t“1

V pP̂Dt
, f̂Dt

, π‹q ` bDt

F pP̂Dt
, π‹, δq ` zpBpqpbDt

P pP̂Dt
, π‹, δqq ´ V pP‹, f

‹, πtq

piiiq
ď

T
ÿ

t“1

V pP̂Dt
, f̂Dt

, πtq ` bDt

F pP̂Dt
, πt, δq ` zpBpqpbDt

P pP̂Dt
, πt, δqq ´ V pP‹, f

‹, πtq

“

T
ÿ

t“1

V pP̂Dt , f̂Dt , π‹q ´ V pP‹, f
‹, πtq ` bDt

F pP̂Dt , πt, δq ` zpBpqpbDt

P pP̂Dt , πt, δqq

“

T
ÿ

t“1

V pP̂Dt
, f̂Dt

, π‹q ´ V pP̂Dt
, f‹, π‹q ` V pP̂Dt

, f‹, π‹q ´ V pP‹, f
‹, πtq

`

T
ÿ

t“1

bDt

F pP̂Dt
, πt, δq ` zpBpqpbDt

P pP̂Dt
, πt, δqq

Here, inequality piq holds with probability 1 ´ δ{16 by the second point in Assumption 4. Inequality piiq holds with
probability 1 ´ δ{16 by the first point in Assumption 4. Inequality piiiq holds with probability 1 by the optimistic definition
of πt. Continuing, we have

RegretpT q
pivq

ď 2
T
ÿ

t“1

bDt

F pP̂Dt
, πt, δq ` zpBpqpbDt

P pP̂Dt
, πt, δqq

pvq

ď 2
T
ÿ

t“1

bDt

F pP‹, πt, δq ` 2zpBpqpbDt

P pP‹, πt, δqq ` zpBpqpbDt

P pP‹, πt, δqq

` 2zpzpBpqqpbDt

P pP‹, πt, δqq

“ O

˜

T
ÿ

t“1

bDt

F pP‹, πt, δq ` z1pBpqpbDt

P pP‹, πt, δqq

¸

Here, inequality pivq holds with probability 1 ´ δ{8 by a union bound over the first and the second point in Assumption 4.
Finally, inequality pvq holds with probability 1 ´ δ{4 by a union bound over four applications of the second point of
Assumption 4. Finally, we use a union bound over both points of Assumption 4 to conclude that with probability 1 ´ δ{8

O

˜

T
ÿ

t“1

bDt

F pP‹, πt, δq ` z1pBpqpbDt

P pP‹, πt, δqq

¸

“ rO pCF pM, T, δq ` z1pBpqCP pM, T, δqq

By taking a union bound over the events of all inequalities above, we have that with probability 1 ´ δ

RegretpT q “ rO pCF pM, T, δq ` z1pBpqCP pM, T, δqq

as desired.
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C.3. Generic Model-Free Optimism

Algorithm 4 Generic Model-Free Optimism

1: Input Known Bellman-complete class of Q-functions Q, confidence level δ.
2: Initialize dataset D1 Ð tu and CQpD1, δq Ð Q.
3: for t “ 1, ..., T do
4: τ r0s Ð pq

5: for h “ 1, . . . H do
6: Play ath, Qt

h Ð argmaxa,QPCQpDt,δq Qhpτ rhs, aq and observe feedback oth
7: end for
8: Update Dt`1 Ð Dt Y tτ, pot1, . . . o

t
Hu

9: Compute CQpDt`1, δq

10: end for

Note that the method for choosing actions ath at time t induces a history dependent policy πt, whose suboptimality is what
we use to define regret. Regret is still given by

RegretpT q “

T
ÿ

t“1

V pM‹, π‹q ´ V pM‹, πtq

We now make the following assumption about our confidence sets. Showing this assumption is the core of proving regret
bounds for any instantiation of this generic algorithm. We know that this is satisfied by GOLF using the BE-dimension.
We will show that in our case, it is also satisfied by a more refined notion known as the α-HABE dimension (the α-history
aware Bellman eluder dimension).
Assumption 5. For a Q-function Q‹ induced by model M‹, consider any sequence of policies πt and datasets Dt that
contain tτiu

t
i“1 generated under M‹. We require that Q‹ P CQpDt, δq for all t with probability 1 ´ δ{16. We require that

there exists a problem dependent function CQpQ, T, δq, so that for arbitrary sequences Qt P CQpDt, δq, the following holds
for all h with probability 1 ´ δ{2.

t
ÿ

j“1

|EµhpQtqrQt
h ´ ThQj`1

h s| ď CQpQ, T, δq

Theorem 6 (Regret for Generic Model-Free Optimism). If the confidence sets CQpD, δq used in Algorithm 4 satisfy
Assumption 5, then the regret of Algorithm 4 is bounded by

RegretpT q “ O pHCQpQ, T, δqq

Proof. Note that V pM‹, π‹q “ maxaQ
‹
1ps1, aq ď maxaQ

t
1ps1, aq for all t, giving us the following result by the policy loss

decomposition in (Jiang et al., 2016).

RegretpT q “

T
ÿ

t“1

V pM‹, π‹q ´ V pM‹, πtq

ď

T
ÿ

t“1

max
a

Qt
1ps1, aq ´ V pM‹, πtq

“

T
ÿ

t“1

H
ÿ

h“1

EµhpQtqrQt
h ´ ThQj`1

h s

“

H
ÿ

h“1

T
ÿ

t“1

EµhpQtqrQt
h ´ ThQj`1

h s

“ OpHCQpQ, T, δqq

where the last line holds by Assumption 5.
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D. Details and Proofs for Cardinal POR-UCRL
We now instantiate Algorithm 2 using standard confidence sets to get POR-UCRL. We show that they satisfy Assumption 3
and get regret bounds for the algorithm. Note that our algorithm is crucially different from naively summarizing the history
to define a modified state space, since we are separating the use of history summarization for getting confidence sets f from
using only the current state while learning the Markovian transitions P. In this case, it is a priori unclear if we can use ideas
from optimism to prove guarantees with a favorable (non-exponential) dependence on the complexity of transitions.

Recall that given a dataset of the first t trajectory samples tτiu
t
i“1 and an index h P rHs, we consider the following least

squares objective to estimate f :

pf t`1
h “ argmin

fhPFh

t
ÿ

i“1

`

σhpfhpτirhsqq ´ oih
˘2

Simple least squares guarantees imply the lemma below.

Lemma 7 (Concentration for σ ˝ fh). Define

MSEh,tpfh, f
1
hq :“

t
ÿ

i“1

`

σhpfhpτirhsqq ´ σhpf 1
hpτirhsqq

˘2

Also define β̄h,tpδq “ η2h log

ˆ

NpFh,
B
T ,}¨}8q
δ

˙

` αh,t with αh,t :“
tB`tηh logp t

δ q
T . Then f‹

h simultaneously satisfies

MSEh,tpf
‹
h ,

pf
pt`1q

h q ď β̄h,t
`

δ
2t2H

˘

for all h, t with probability 1 ´ δ{32.

Proof. We apply Lemma 6 in (Chan et al., 2021) and the last statement in its proof to each h separately with the function
class in the lemma set to tσh ˝ fh|fh P Fhu, P “ 1, xt,p “ xt,1 “ τtrhs and misspecification ε “ 0 (decoupled from the
Eluder dimension’s ε). We also note that oth are ηh-subgaussian samples with mean σhpfhpτ rhsqq. This gives us that each
of event indexed by h, t below holds with probability at least 1 ´ δ

2t2H .

t
ÿ

i“1

`

σhpfhpτirhsqq ´ σhpf 1
hpτirhsqq

˘2
ď β̄h,t

ˆ

δ

2t2H

˙

So, the events all simultaneously hold with probability at least 1 ´ δ by a union bound.

Recall the definition of our confidence sets below.

Confidence Sets for POR-UCRL. We instantiate the generic optimistic algorithm using confidence sets by defining
CMpDt, δq :“ Ct

Ppδq ˆ Ct
F pδq as our confidence sets below. We name the resulting algorithm POR-UCRL. We use the

data from trajectories tτiu
t
i“1 to build the confidence sets Ct`1

F pδq “
ś

h C
t`1
h pδq with Ct`1

h pδq defined below, where
βh,tpδq :“ β̄h,t

`

δ
2t2H

˘

.

Ct`1
h pδq :“

!

fh P Fh

ˇ

ˇ

ˇ
MSEh,tpf

‹
h ,

pf
pt`1q

h q ď βh,t pδq

)

We also use the MLE estimate for P after t episodes to define P̂tp¨ | s, aq :“ Ntps,a,s1
q

Ntps,aq
. Now for ζpn, δq “

2
b

S logp2q`logpnpn`1qSA{δq

2n , define Ct
Ppδq as below:

!

P
ˇ

ˇ

ˇ
}Pp¨ | s, aq ´ P̂tp¨ | s, aq}1 ď ζpNtps, aq, δq@s, a

)

Confidence Sets for POR-UCRL in case P‹ is known. For known-model UCRL, the confidence sets Ct
F pδq are still as

above, but Ct
Ppδq :“ tP‹u

For completeness, we repeat the algorithm POR-UCRL here, which is an instantiation of Algorithm 2, the generic optimistic
algorithm using confidence sets.
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Algorithm 5 POR-UCRL

1: Input: Known family of reward functions tRhuHh“1, known probability transition kernel class P and known decoder-
induced function class F , confidence level δ.

2: Initialize dataset D1 Ð tu and CF pD1, δq Ð
śH

h“1 Fh, CPpD1, δq Ð P .
3: for t “ 1, ..., T do
4: Compute the optimistic history dependent policy,

πt, rft, rPt “ argmax
π, FPCF pDt,δq,PPPpDt,δq

V pP, f, πq

5: Collect trajectory τt “ tpsth, a
t
hqu

H

h“1 and feedback tohuhPHp
by sampling from Pπt

‹ with true decoder-induced
function f‹.

6: Update Dt`1 Ð Dt Y tτtu, P̂t`1, f̂
t`1
h for all h

7: Compute new confidence sets CF pDt`1, δq Ð
śH

h“1 C
t`1
h pδq and CPpDt`1, δq where

Ct`1
h pδq Ð

!

fh P Fh

ˇ

ˇ

ˇ
MSEh,tpf

‹
h ,

pf
pt`1q

h q ď βh,t pδq

)

CPpDt`1, δq Ð

!

P
ˇ

ˇ

ˇ
}Pp¨ | s, aq ´ P̂t`1p¨ | s, aq}1 ď ζpNt`1ps, aq, δq@s, a

)

8: end for

We will now show our regret bound.

Theorem 1 (POR-UCRL Regret). Under Assumption 1, the regret RegretpT q of POR-UCRL is bounded by the following
with probability at least 1 ´ δ

rO
´´

pS
?
HA`

ÿ

hPHp

a

dE,hdC,h

¯?
T
¯

where dE,h “ dimE

`

Fh,
B
T

˘

and dC,h “ logpN pFh, 1{T, } ¨ }8qq.

D.1. Showing that Assumption 3 is Satisfied

D.1.1. BOUNDING REWARD MODEL DEVIATIONS

Lemma 8 (Bounding Reward Model Deviations). Consider decoder-induced functions tfhuhPHp satisfying |fh| ď B
that induce value functions V pP, f, πq. For any sequence of policies πt, if the confidence Ct

F pδq is generated using data
τi „ Pπi

‹ , i “ 1 Ñ t and rf t P Ct
F pδq is an arbitrary sequence of functions, then we have the following with probability

1 ´ δ{4.
ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

V pP‹, rf
t, πtq ´ V pP‹, f

‹, πtq

ˇ

ˇ

ˇ

ˇ

ˇ

is bounded by

O

¨

˝Bp
a

T logpT {δq `
ÿ

hPHp

Bκ2,hdE,h `
ÿ

hPHp

κ2,h

b

dE,hβh,T pδqT

˛

‚

Proof.

T
ÿ

t“1

V pP‹, rf
t, πtq ´ V pP‹, f

‹, πtq “

T
ÿ

t“1

Eτ„Pπt
‹

«

H
ÿ

h“1

rf thpτ rhsq

ff

´ Eτ„Pπt
‹

«

H
ÿ

h“1

f‹
hpτ rhsq

ff

“

T
ÿ

t“1

Eτ„Pπt
‹

»

–

ÿ

hPHp

rf thpτ rhsq

fi

fl ´ Eτ„Pπt
‹

»

–

ÿ

hPHp

f‹
hpτ rhsq

fi

fl
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“

T
ÿ

t“1

Eτ„Pπt
‹

»

–

ÿ

hPHp

rf thpτ rhsq ´ f‹
hpτ rhsq

fi

fl

“

T
ÿ

t“1

»

–

ÿ

hPHp

rf thpτtrhsq ´ f‹
hpτtrhsq `X1,t `X2,t

fi

fl

piiq
ď

T
ÿ

t“1

»

–

ÿ

hPHp

rf thpτtrhsq ´ f‹
hpτtrhsq

fi

fl ` O
´

Bp
a

T logpT {δq

¯

where

X1,t :“ Eτ„Pπ

»

–

ÿ

hPHp

rf thpτ rhsq

fi

fl ´

»

–

ÿ

hPHp

rf thpτtrhsq

fi

fl

X2,t :“

»

–

ÿ

hPHp

f‹
hpτtrhsq

fi

fl ´ Eτ„Pπ

»

–

ÿ

hPHp

f‹
hpτ rhsq

fi

fl

Inequality piq follows by the definition of πt and rf th – that is, by optimism. Inequality piiq holds with probability at least
1 ´ δ since X1,t and X2,t are both martingales with respect to the filtration Gt given by the data of trajectories tτsu

t´1
s“1.

Also, |X1,t|, |X2,t| ď Bp. We can thus apply the Azuma-Hoeffding inequality twice to obtain inequality piiq.

Continuing, note the following.

T
ÿ

t“1

V pP‹, rf
t, πtq ´ V pP‹, f

‹, πtq

ď

«

H
ÿ

h“1

f thpτtrhsq ´ f‹
hpτtrhsq

ff

`Bp
a

T logpT {δq

ď

«

H
ÿ

h“1

κ2,hσhpf thpτtrhsqq ´ κ2,hσhpf‹
hpτtrhsqq

ff

`Bp
a

T logpT {δq

ď κ2,h

T
ÿ

t“1

ÿ

hPHp

max
fh,f 1

hPWt
hpδq

σhpfhpτtrhsqq ´ σhpf 1
hpτtrhsqq

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

“:γ̄h,tpτtrhs,δq

`Bp
a

T logpT {δq

“ κ2,h
ÿ

hPHp

«

T
ÿ

t“1

γ̄h,tpτtrhs, δq

ff

`Bp
a

T logpT {δq

The sum of these maximum uncertainty evaluations can be upper bounded using the Eluder dimension. The inequality
below holds by applying Lemma 3 in (Chan et al., 2021) for each h separately, with the function class in the lemma set to
tσh ˝ fh|fh P Fhu, P “ 1, xt,p “ xt,1 “ τtrhs and misspecification ε “ 0 (decoupled from the Eluder dimension’s ε). We
also recall that oth are ηh-subgaussian samples with mean σhpfhpτtrhsqq. We obtain

T
ÿ

t“1

γ̄h,tpτtrhs, δq ď O
ˆ

BdE,h `

b

dE,hβh,T pδqT

˙

Where dE,h “ dimE

`

Fh,
B
T

˘

is the Eluder dimension of Fh and βh,T pδq “ β̄h,t
`

δ
2t2H

˘

. Therefore, we have our result.

T
ÿ

t“1

V pP‹, rf
t, πtq ´ V pP‹, f

‹, πtq
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is bounded by

O

¨

˝

ÿ

hPHp

Bκ2,hdE,h `
ÿ

hPHp

κ2,h

b

dE,hβh,T pδqT `Bp
a

T logpT {δq

˛

‚

Note that this entire argument can be repeated with f‹ and rf t switched, by the symmetry of the definition of γ̄h,tpτtrhs, δq

and the fact that the negative of a martingale is also a martingale.

D.1.2. BOUNDING PROBABILITY MODEL DEVIATIONS

Lemma 9 (Bounding Probability Model Deviations). Consider an arbitrary sequence of functions f t P F satisfying
|fh| ď B that induce value functions V pP, f, πq. For any sequence of policies πt, if the confidence Ct

Ppδq is generated
using data that includes τi „ Pπi

‹ , i “ 1 Ñ t and rPt P Ct
Ppδq is an arbitrary sequence of transition structures, then we have

the following with probability 1 ´ δ{4.
ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

V prPt, f
t, πtq ´ V pP‹, f

t, πtq

ˇ

ˇ

ˇ

ˇ

ˇ

ď O
´

cδBp
?
SAHT ` cδBpHSA`Bp

a

pT logpT {δq

¯

where cδ :“ 8
a

S logp2q ` logpHTSA{δq.

Proof. We first show the following.

Lemma 10.

T
ÿ

t“1

V prPt, f
t, πtq ´ V pP‹, f

t, πtq ď

T
ÿ

t“1

H
ÿ

h“1

2pζpNtps
t
h, a

t
hq, δq ` O

´

Bp
a

pT logpT {δq

¯

Recall that we denote the Bellman operator by T π where T πf “ Ea„πPf . Momentarily define the following for
τ “ pτl´1, sl, τ

1q, where τl´1 is an arbitrary trajectory of length l ´ 1 ď H , and sl is an arbitrary state.

V t
l,Ppτl´1, slq :“ Eτ 1„Pπt

«

H
ÿ

h“l

rf thpτ rhsq

ff

“ Eτ 1„Pπt

»

–

ÿ

hPHp,hěl

rf thpτ rhsq

fi

fl

So in the definition above, the first l ´ 1 observations in τ come from τl´1 while the rest are generated by the input P
starting with state sl. Note that V pP, f t, πtq “ V t

1,PpH, s1q. Also note that by the Bellman equation, we have the following.

V t
l,Ppτtrl ´ 1s, slq “ Ea„πt

“

f tl pτtrlsq
‰

` Ea„πt

“

Es1„Pp¨|sl,aqV
t
l`1,Pppτtrl ´ 1s, s, aq, s1qq

‰

“ Ea„πt

“

f tl pτtrlsq
‰

` Ea„πt

“

Pp¨ | sl, aqJV t
l`1,Pppτtrl ´ 1s, sl, aq, ¨q

‰

Now use τt to set τl´1 :“ τtrl ´ 1s and define the following.

∆t
lpslq :“ V t

l,P‹
pτtrl ´ 1s, slq ´ Vl,rPt

pτtrl ´ 1s, slq

Note that
∆t

1ps1q “ V prPt, f
t, πtq ´ V pP‹, f

t, πtq (1)

The computation above then gives us the following.

∆t
lps

t
lq “ Ea„πt

”

rPtp¨ | stl , aqJV t
l`1,rPt

ppτtrl ´ 1s, stl , aq, ¨qq

ı
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´ Ea„πt

“

P‹p¨ | stl , aqJV t
l`1,P‹

ppτtrl ´ 1s, stl , aq, ¨qq
‰

“ rPtp¨ | stl , a
t
lq

JV t
l`1,rPt

pτtrls, ¨q ´ P‹p¨ | stl , a
t
lq

JV t
l`1,P‹

pτtrls, ¨q ` Yl,t ` Zl,t

where Yl,t and Zl,t are stochastic processes defined below.

Yl,t :“ P‹p¨ | stl , aqJV t
l`1,P‹

pτtrls, ¨q ´ Ea„πt

“

P‹p¨ | stl , aqJV t
l`1,P‹

ppτtrl ´ 1s, stl , aq, ¨q
‰

Zl,t :“ Ea„πt

”

rPtp¨ | stl , aqJV t
l`1,rPt

ppτtrl ´ 1s, stl , aq, ¨q
ı

´ rPtp¨ | stl , aqJV t
l`1,rPt

pτtrls, ¨qq

Consider the filtration Gl,t induced by the data of tτsu
t´1
s“1 Y τtrl ´ 1s Y tstlu. Since atl „ πt and pτtrl ´ 1s, stl , a

t
lq “ τtrls,

we get that ErYl,t|Gl,ts “ ErZl,t|Gl,ts “ 0. So, one can see that both processes are martingales over Gl,t. Also note that
|Yl,t|, |Zl,t| ď p. We thus have that

∆t
lps

t
lq “

”

rPtp¨ | stl , a
t
lq ´ P‹p¨ | stl , a

t
lq

ı

V t
l`1,rPt

pτtrls, ¨qq

` P‹p¨ | stl , a
t
lq

J
”

V t
l`1,rPt

pτtrls, ¨qq ´ V t
l`1,P‹

pτtrls, ¨q
ı

` Yl,t ` Zl,t

“

”

rPtp¨ | stl , a
t
lq ´ P‹p¨ | stl , a

t
lq

ı

V t
l`1,rPt

pτtrls, ¨qq ` P‹p¨ | stl , a
t
lq

J∆t
l`1ps1q ` Yl,t ` Zl,t

“

”

rPtp¨ | stl , a
t
lq ´ P‹p¨ | stl , a

t
lq

ı

V t
l`1,rPt

pτtrls, ¨qq ` Es1„P‹p¨|stl ,a
t
lq

“

∆t
l`1ps1q

‰

` Yl,t ` Zl,t

“

”

rPtp¨ | stl , a
t
lq ´ P‹p¨ | stl , a

t
lq

ı

V t
l`1,rPt

pτtrls, ¨qq ` ∆t
l`1pstl`1q ` Ul,t ` Yl,t ` Zl,t

where
Ul,t :“ Es1„P‹p¨|stl ,a

t
lq

“

∆t
l`1ps1q

‰

´ ∆t
l`1pstl`1q

Consider the filtration Ḡl,t defined by the data of tτsu
t´1
s“1 Y τtrls. Clearly, Ul,t is a martingale over Ḡl,t. Also note that

|Ul,t| ď p To conclude, we have that

∆t
lps

t
lq ´ ∆t

l`1pstl`1q “

”

rPtp¨ | stl , a
t
lq ´ P‹p¨ | stl , a

t
lq

ı

V t
l`1,rPt

pτtrls, ¨qq ` Ul,t ` Yl,t ` Zl,t

Using a telescoping sum over l for a fixed t and equation 1, we get that for any t, the following holds.

V prPt, f
t, πtq ´ V pP‹, f

t, πtq

“ ∆t
1ps1q

“

H
ÿ

l“1

”

rPtp¨ | stl , a
t
lq ´ P‹p¨ | stl , a

t
lq

ı

V t
l`1,rPt

pτtrls, ¨qq ` Ul,t ` Yl,t ` Zl,t

V prPt, f
t, πtq ´ V pP‹, f

t, πtq

ď

H
ÿ

l“1

Bp
›

›

›

rPtp¨ | stl , a
t
lq ´ P‹p¨ | stl , a

t
lq

›

›

›

1
` Ul,t ` Yl,t ` Zl,t

ď

H
ÿ

l“1

Bp
›

›

›

rPtp¨ | stl , a
t
lq ´ P̂tp¨ | stl , a

t
lq

›

›

›

1
`Bp

›

›

›
P‹p¨ | stl , a

t
lq ´ P̂tp¨ | stl , a

t
lq

›

›

›

1
` Ul,t ` Yl,t ` Zl,t (2)

Until equation 2, all statements have held with probability 1 and did not use any facts about rPt. The last inequality also
holds with probability 1 and uses the design of the confidence sets. Now, note the following well known concentration
lemma. See, for example, (Szepesvári, 2023).

Lemma 11. For ζpn, δq “ 8
b

S logp2q`logpnpn`1qSA{δq

2n and

Ct
Ppδq “

!

P
ˇ

ˇ

ˇ
}Pp¨ | s, aq ´ P̂tp¨ | s, aq}1 ď ζpNtps, aq, δq@s, a

)

the true model P‹ P Ct
Ppδq for all t ě 1 with probability at least 1 ´ δ{32.
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Applying the lemma twice and applying a union bound imply that the following holds with probability 1 ´ δ{8.

T
ÿ

t“1

V prPt, f
t, πtq ´ V pP‹, f

t, πtq

piq
ď

H
ÿ

l“1

2BpζpNtps
t
l , a

t
lq, δq ` Ul,t ` Yl,t ` Zl,t

“

T
ÿ

t“1

H
ÿ

h“1

2BpζpNtps
t
h, a

t
hq, δq `

»

–

T
ÿ

t“1

ÿ

hPHp

Uh,t ` Yh,t ` Zh,t

fi

fl

piiq
ď

T
ÿ

t“1

H
ÿ

h“1

2BpζpNtps
t
h, a

t
hq, δq ` O

´

Bp
a

pT logpT {δq

¯

Note that inequality piq is subtle since we could have used more data than that from τi, i “ 1 Ñ t to construct Ct
P . The

inequality still holds since ζpn, δq is decreasing in n. Also, inequality piiq holds by the Azuma-Hoeffding inequality.

Now note that the whole argument above can be repeated with P‹ and rPt switched, since the negative of a martingale is also
a martingale. So, we have that with probability 1 ´ δ{4

ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

V prPt, f
t, πtq ´ V pP‹, f

t, πtq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

T
ÿ

t“1

H
ÿ

h“1

2BpζpNtps
t
h, a

t
hq, δq ` O

´

Bp
a

pT logpT {δq

¯

Finally, we need the following easy lemma, proved in (Szepesvári, 2023).

Lemma 12. Let cδ :“ 8
a

S logp2q ` logpHTSA{δq. Then the following holds almost surely.

T
ÿ

t“1

H
ÿ

h“1

2BpζpNtps
t
h, a

t
hq, δq ď cδBp

?
SAHT ` cδBpHSA

This establishes our claim.

D.2. Putting It All Together

Theorem 1 (POR-UCRL Regret). Under Assumption 1, the regret RegretpT q of POR-UCRL is bounded by the following
with probability at least 1 ´ δ

rO
´´

pS
?
HA`

ÿ

hPHp

a

dE,hdC,h

¯?
T
¯

where dE,h “ dimE

`

Fh,
B
T

˘

and dC,h “ logpN pFh, 1{T, } ¨ }8qq.

Proof. We can now combine Lemmas 7and 11 to conclude that M‹ P CMpDt, δq for all t with probability 1 ´ δ{16. We
can now combine this observation with Lemmas 8 and 9 to observe that Assumption 3 is satisfied by POR-UCRL. By
Theorem 4, the following holds with probability 1 ´ δ.

RegretpT q “ O

¨

˝cδBp
?
SAHT ` cδBpHSA`

ÿ

hPHp

Bκ2,hdE,h `
ÿ

hPHp

κ2,h

b

dE,hβh,T pδqT

˛

‚

where cδ “ 8
a

S logp2q ` logpHTSA{δq, dE,h “ dimE

`

Fh,
B
T

˘

is the Eluder dimension of Fh and βh,T pδq “

βh,t

´

δ
2t2H “ rOpB2η2hdC,hq

¯

. This is because all the terms dependent on p get absorbed by the first term in our ex-
pression below.
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We further refine it by ignoring terms independent of T and using the fact that βh,T pδq “ rOpdC,hq to get that

RegretpT q “ rO

¨

˝pS
?
AHT `

ÿ

hPHp

a

dE,hdC,hT

˛

‚

Analogously, we can provide a sample complexity result for POR-UCRL.

Corollary 2 (POR-UCRL Sample complexity). Let ε ą 0, δ P r0, 1s. Ignoring polynomial terms independent of ε, we can
bound the sample complexity Npε, δq of POR-UCRL as follows

rO
ˆ

p2HS2A

ε2
`
p2dEdC
ε2

˙

where dE :“ maxhPHp
dE,h, and dC :“ maxhPHp

dC,h.

Proof. We invoke the regret-to-PAC conversion in Lemma 5 with confidence δ1 “ δ{2 and we plug the regret bound in
Theorem 1 to write

ε “ rO

¨

˝

ˆ

BpS
?
AH `

ÿ

hPHp

κ2,h
a

dE,hdC,h `Bp
a

logp1{δq

˙ˆ

1
?
T

˙

˛

‚

from which we get the result by picking N “ T and the definition of dE , dC .

Also note the following theorem and corresponding corollary.

Theorem 7 (POR-UCRL Regret if P‹ is Known). If we know the transition matrix P‹ in POR-UCRL, then our regret is
given by the following with probability 1 ´ δ, ignoring polynomial terms independent of T .

RegretpT q “ rO

¨

˝

¨

˝Bp`
ÿ

hPHp

a

dE,hdC,h

˛

‚

?
T

˛

‚

Proof. We can now use Lemmas 8 and the fact that Ct
Ppδq is always a singleton to observe that Assumption 3 is satisfied by

this version of POR-UCRL as well. By Theorem 4, the following holds with probability 1 ´ δ.

RegretpT q “ rO

¨

˝Bp
?
T `

ÿ

hPHp

Bκ2,hdE,h `
ÿ

hPHp

κ2,h

b

dE,hβh,T pδqT

˛

‚

We further refine it by ignoring terms independent of T and using the fact that βh,T pδq “ rOpdC,hq to get that

RegretpT q “ rO

¨

˝

¨

˝Bp`
ÿ

hPHp

κ2,h

b

dE,hβh,T pδq

˛

‚

?
T

˛

‚

Corollary 3 (POR-UCRL sample complexity if P‹ is Known). Let ε ą 0, δ P r0, 1s. Ignoring polynomial terms independent
of ε, we can bound the sample complexity Npε, δq of POR-UCRL when P‹ is known as follows

rO
ˆ

p2dEdC
ε2

˙

where dE :“ maxhPHp
dE,h, and dC,h :“ maxhPHp

dC,h.

Proof. The proof proceeds as in Corollary 2 by plugging Theorem 7 in Lemma 5.
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E. Details and Proofs for Cardinal POR-UCBVI
We now describe how we instantiate POR-UCBVI from a generic optimistic algorithm using bonuses. Note that again, this
is crucially different from naively summarizing the history to define a modified state space, since we are separating the use
of history summarization for getting bonuses for f from using only the current state while getting bonuses for the Markovian
transitions P. Like with confidence sets, it is a priori unclear if we can use ideas from optimism to prove guarantees with a
favorable (non-exponential) dependence on the complexity of transitions. In particular, we will note that showing that the
bonuses are optimistic would naively need a union bound over the doubly exponential (ApSAq

H

) set of history-dependent
policies, which is a non-trivial challenge to overcome.

Given a dataset of the first t trajectory samples tτiu
t
i“1 and an index h P rHs, we consider the following:

Estimates for POR-UCBVI:
pf t`1
h “ argmin

fhPFh

t
ÿ

i“1

`

σpfhpτirhsqq ´ oih
˘2

We also use the MLE estimate for P after t episodes to define P̂tp¨ | s, aq :“ Ntps,a,s1
q

Ntps,aq
. Now for ζpn, δq “

2
b

S logp2q`logpnpn`1qSA{δq

2n , define CPt
pδq as below:

!

P
ˇ

ˇ

ˇ
}Pp¨ | s, aq ´ P̂tp¨ | s, aq}1 ď ζpNtps, aq, δq@s, a

)

Recall the definition of our bonus below.

Bonuses for POR-UCBVI. Recall that simple least squares guarantees imply the lemma below.

Lemma 7 (Concentration for σ ˝ fh). Define

MSEh,tpfh, f
1
hq :“

t
ÿ

i“1

`

σhpfhpτirhsqq ´ σhpf 1
hpτirhsqq

˘2

Also define β̄h,tpδq “ η2h log

ˆ

NpFh,
B
T ,}¨}8q
δ

˙

` αh,t with αh,t :“
tB`tηh logp t

δ q
T . Then f‹

h simultaneously satisfies

MSEh,tpf
‹
h ,

pf
pt`1q

h q ď β̄h,t
`

δ
2t2H

˘

for all h, t with probability 1 ´ δ{32.

We use the data from trajectories tτiu
t
i“1 to build the confidence sets Ct`1

F pδq “
ś

h C
t`1
h pδq with Ct`1

h pδq defined below,
where βh,tpδq :“ β̄h,t

`

δ
2t2H

˘

.

Ct`1
h pδq :“

!

fh P Fh

ˇ

ˇ

ˇ
MSEh,tpf

‹
h ,

pf
pt`1q

h q ď βh,t pδq

)

We first define a trajectory dependent bonus term below, with δ̄ :“ δ
HSHAH

γh,tpτ rhs, δq “ max
fh,f 1

hPCt
hpδ̄q

fhpτ rhsq ´ f 1
hpτ rhsq

Note that according to the definition of β, this does not create any exponential dependence in the confidence intervals used
to define Ct`1

h .

βh,t

ˆ

δ

16SHAH

˙

ď 64
`

logpNpFh, α, } ¨ }8qq `B ` ηh logp1{δq ` η2hH logpTHSA{δq
˘

“ OpdC,h `Hq

It follows by a union bound over all trajectory segments and all timesteps t that with probability at least 1 ´ δ{16 and for
any trajectory τ and t ě 1, h P Hp,

|f‹
hpτ rhsq ´ f̂ thpτ rhsq| ď γh,tpτ rhs, δq (3)
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Remark 4. In the case of many popular function classes F , like the linear class FH “ tτ ÞÑ ϕpτqJw | }w} ď W u, we can
compute γh,tpτ rhs, δq quite easily. In this case γH,t is given by

sup
w,w1PWt

ϕpτqJpw ´ w1q “ }ϕpτq}Vt sup
w,w1PWt

}w ´ w1}V ´1
t

for a suitable quadratic form Vt.

γh,tpτ rhs, δq induces a trajectory-dependent bonus, given by

btF pτ, δq :“
ÿ

hPHp

γh,tpτ rhs, δq

This in turn induces a policy-level bonus (which depends on the transition kernel), given by:

btF pP, π, δq :“ Eτ„Pπ
‹

“

btF pτ, δq
‰

“ Eτ„Pπ

»

–

ÿ

hPHp

γh,tpτ rhs, δq

fi

fl

Let us define a term ξtps, a, δq that will be used to define the probability bonus.

ξtps, a, δq :“ min

˜

2, 4

d

H logp6HSAq ` S logp8t2H2q ` logp32t2Ntps, aq{δq

2Ntps, aq

¸

This induces a trajectory-dependent bonus, given by

btPpτ, δq :“
H´1
ÿ

h“1

ξtpsh, ah, δq

This induces a policy-level bonus (which depends on the transition kernel), given by:

btPpP, π, δq :“ min
`

4,Eτ„Pπ
‹

“

btF pτ, δq
‰˘

“ min

˜

4,Eτ„Pπ

«

H´1
ÿ

h“1

ξtpsh, ah, δq

ff¸

Estimates and Bonuses in case P‹ is known. If P‹ is instead known, keep f̂ t and btF pP, π, δq the same as above, but set
P̂t :“ P‹ and btPpP, π, δq :“ 0 for all t.

For completeness we state POR-UCBVI here, which is an instantiation of Algorithm 3, the generic optimistic algorithm
using bonuses.

Algorithm 6 POR-UCBVI

1: Input Known family of reward functions tRhuHh“1, methods EstpDq to estimate P̂t and f̂ t from dataset D, confidence
level δ

2: Initialize D1 Ð tu, initialize f̂D1 , P̂D1
arbitrarily.

3: for t “ 1, ..., T do
4: Compute optimistic history dependent policy,

πt “ argmax
π

V pP̂t, f̂
t, πq ` btF pP̂t, π, δq ` zpBpqpbtPpP̂t, π, δqq

5: Observe trajectory τt “ tpsth, a
t
hqu

H

h“1 and feedback tohuhPHp
.

6: Compute new estimates f̂ t`1, P̂t`1 Ð EstpDt`1q and compute new bonus functions
bt`1
F pf̂ t`1, ¨, δq, bt`1

P pP̂t`1, ¨, δq.
7: end for

We will show the following regret bound.
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Theorem 8 (POR-UCBVI Regret). Under Assumption 1, POR-UCBVI satisfies Assumption 4 and its regret RegretpT q is
bounded by the following with probability at least 1 ´ δ, ignoring polynomial terms independent of T .

rO

¨

˝

¨

˝pCpH,S,Aq `
ÿ

hPHp

b

dE,hpdC,h `Hq

˛

‚

?
T

˛

‚

where CpH,S,Aq :“ H
?
SA` S

?
HA

E.1. Showing that Assumption 4 is Satisfied

E.1.1. BOUNDING EFFECT OF ERROR IN F

Lemma 13 (Bounding f̂ t Value Error). Given any P, with f̂ t computed using data from tτiu
t
i“1 „ Pπi

‹ for any sequence of
policies πi using least squares, the following holds with probability 1 ´ δ{16 uniformly over all π.

|V pP, f̂ t, πq ´ V pP, f‹, πq| ď btF pP, π, δq

Proof. Recall that with probability at least 1 ´ δ{16, the following holds for any trajectory τ and any t ě 1, h P Hp.

|f‹
hpτ rhsq ´ f̂ thpτ rhsq| ď γh,tpτ rhs, δq (4)

Now note the following inequalities, where piq holds with probability 1´ δ{16 uniformly over all policies due to inequality 4
above.

V pP, f̂ t, πq ´ V pP, f‹, πq “ Eτ„Pπ

»

–

ÿ

hPHp

f̂ thpτ rhsq ´ f‹
hpτ rhsq

fi

fl

piq
ď Eτ„Pπ

»

–

ÿ

hPHp

γh,tpτ rhs, δq

fi

fl

“ btF pP, π, δq

Lemma 14 (Bounding Sum of F Bonuses). The following holds with probability 1.

T
ÿ

t“1

btF pP‹, πt, δq “ rO

¨

˝

ÿ

hPHp

BdE,h `
ÿ

hPHp

b

dE,hβh,T pδ̄qT `Bp
a

T logpT {δq

˛

‚

Proof. First note the following inequality, which hold with probability 1 ´ δ{16 by the Azuma-Hoeffding inequality.

T
ÿ

t“1

btF pP‹, πt, δq “

T
ÿ

t“1

Eτ„Pπt
‹

»

–

ÿ

hPHp

γt,hpτ rhs, δq

fi

fl

ď

T
ÿ

t“1

ÿ

hPHp

γt,hpτ rhs, δq ` O
´

Bp
a

T logpT {δq

¯

Now apply Lemma 3 in (Chan et al., 2021) for each h separately, with the function class in the lemma set to tσ˝fh|fh P Fhu,
P “ 1, xt,p “ xt,1 “ τtrhs and misspecification ε “ 0 (decoupled from the Eluder dimension’s ε). We also note that oth are
η-subgaussian samples with mean σpfhpτ rhsqq. We obtain

T
ÿ

t“1

max
fh,f 1

hPCt
hpδq

σpfhpτ rhsqq ´ σpf 1
hpτ rhsqq ď O

ˆ

BdE,h `

b

dE,hβh,T pδ̄qT

˙
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where dE,h “ dimE

`

Fh,
B
T

˘

is the Eluder dimension of Fh and βh,T pδ̄q “ β̄
´

δ̄
2t2H

¯

. Since the Lipschitz constant of σ´1

is κ2, we have that the following holds with probability 1.

T
ÿ

t“1

γt,hpτ rhs, δq ď O
ˆ

Bκ2dE,h ` κ2

b

dE,hβh,T pδ̄qT

˙

This implies that the following holds with probability 1 ´ δ{16.

T
ÿ

t“1

btF pP‹, πt, δq ď

T
ÿ

t“1

ÿ

hPHp

γt,hpτ rhs, δq ` O
´

Bp
a

T logpT {δq

¯

“ rO

¨

˝

ÿ

hPHp

Bκ2dE,h `
ÿ

hPHp

κ2

b

dE,hβh,T pδ̄qT `Bp
a

T logpT {δq

˛

‚

E.1.2. BOUNDING EFFECT OF ERROR IN P

We now restate Lemma B.2 of (Chatterji et al., 2021) in our notation.

Lemma 15 (Change of Measure Inequality). For any function µ of trajectories bounded by D, if P̂t is computed from data
that includes trajectories tτi „ Pπi

‹ uti“1 for any sequence of policies πi, then the following holds uniformly over all policies
π with probability 1 ´ δ{16.

Eτ„P‹
rµpτqs ´ Eτ„P̂t

rµpτqs ď 2D
a

logpDqbtPpP̂t, π, δq

The same statement holds if we switch the roles of P and P̂t on both sides.

Proof. For the order of P and P̂t in the statement, the following follows from Lemma B.2 of (Chatterji et al., 2021) with
η “ D and ε “ 1

t2 . We pull the additive logpDq in the square root outside to fit our assumption’s phrasing.

Eτ„P‹
rµpτqs ´ Eτ„P̂t

rµpτqs ď D
a

logpDqbtPpP̂t, π, δq `
1

t2
ď 2D

a

logpDqbtPpP̂t, π, δq

The only subtlety is that more data than that from tτiu
t
i“1 could have been used to compute P̂t. The proof still follows since

cPpP̂t, π,Dq is decreasing in the counts Ntps, aq.

Finally, if we switch P and P̂t on both sides, we can follow the proof of Lemma B.2 verbatim with P and P̂t switched
everywhere, except for the martingale argument. There, instead of switching the two transition kernels, we negate the
martingale to get our desired result. This exception is because we still need the expectation to be over the true transition
kernel P‹ for the stochastic process defined to be a martingale.

Lemma 16 (Bounding P̂t Value Error). Consider any sequence of functions f t that induce value functions V pP, f t, πq.
For any sequence of policies πt, if the estimates P̂t, bonuses bP and costs cP are generated using data including that of
τi „ Pπi

‹ , i “ 1 Ñ t, then the following holds uniformly over t and over all policies with probability 1 ´ δ{16.

V pP̂t, f
t, πtq ´ V pP‹, f

t, πtq “ Bp
a

logpBpqpbtPpP‹, π, δqq

The statement also holds if we switch P̂t and P‹.

Proof. Note the following two inequalities that immediately follow from Lemma 15

V pP‹, f
t, πtq ´ V pP̂t, f

t, πtq ď Bp
a

logpBpqpbtPpP̂t, π, δqq

V pP̂t, f
t, πtq ´ V pP‹, f

t, πtq ď Bp
a

logpBpqpbtPpP‹, π, δqq

Our result follows immediately.

31



A Theoretical Framework for Partially Observed Reward-States in RLHF

Lemma 17 (Bounding Sum of P Bonuses). The following holds with probability 1 ´ δ{16 whenever the data used to
compute btPpP, π, δq includes the data of trajectories τi, t “ 1 Ñ t.

T
ÿ

t“1

btPpP‹, πt, δq “ rO
´

SAc̄δ ` c̄δ
?
HSAT

¯

where

c̄δ :“ 4

c

H logp6HSAq ` S logp8t2H2q ` logp32t2NT ps, aq{δq

2

This means that for any s, a, ξtps, a, δq “ 2 until Ntps, aq ě
c̄δ
2

Proof. First note that by the definition of the bonus and the Azuma-Hoeffding inequality, we have the following.

T
ÿ

t“1

btPpP‹, πt, δq ď

T
ÿ

t“1

Eτ„PπbtPpτ, δq

ď

T
ÿ

t“1

btPpτt, δq ` Op4
a

T logpT {δqq

“

T
ÿ

t“1

H´1
ÿ

h“1

ξtpsth, a
t
h, δq ` Op4

a

T logpT {δqq

Now note that the first inequality holds even if more data beyond that of tτiu
t
i“1 is used to compute ξtps, a, δq, since

ξtps, a, δq is decreasing in Ntps, aq.

T
ÿ

t“1

H´1
ÿ

h“1

ξtpsth, a
t
h, δq ď SAc̄δ `

T
ÿ

t“1

H´1
ÿ

h“1

c̄δ
b

Ntps
ptq
h , a

ptq
h q

ď SAc̄δ ` c̄δ
ÿ

ps,aqPSˆA

NT ps,aq
ÿ

l“1

1
?
l

ď SAc̄δ ` 2c̄δ
ÿ

ps,aqPSˆA

a

NT ps, aq

ď SAc̄δ ` 2c̄δ

d

SA
ÿ

ps,aqPSˆA

NT ps, aq

“ O
´

SAc̄δ ` c̄δ
?
SATH

¯

This concludes our proof, since 1 “ rOp
?
HSAq

E.1.3. PUTTING EVERYTHING TOGETHER

Theorem 8 (POR-UCBVI Regret). Under Assumption 1, POR-UCBVI satisfies Assumption 4 and its regret RegretpT q is
bounded by the following with probability at least 1 ´ δ, ignoring polynomial terms independent of T .

rO

¨

˝

¨

˝pCpH,S,Aq `
ÿ

hPHp

b

dE,hpdC,h `Hq

˛

‚

?
T

˛

‚

where CpH,S,Aq :“ H
?
SA` S

?
HA

Proof. Note that by Lemmas 13, 14, 15, 16, 17, Assumption 4 is satisfied by POR-UCBVI. Using Theorem 5 and
Lemmas 14 and 17, we have the following.
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RegretpT q “ O
´

ÿ

hPHp

Bκ2,hdE,h `BpHSAc̄δ `
ÿ

hPHp

κ2,h

b

dE,hβh,T pδ̄qT

`Bp
a

T logpT {δq ` c̄δBpH
?
SAT

¯

We further refine it grouping terms and ignoring terms independent of T , and also noting that c̄δ “ rOp
?
H `

?
Sq as well

as βh,T pδ̄q “ OpdC,h `Hq

RegretpT q “ rO

¨

˝

¨

˝

ÿ

hPHp

κ2

b

dE,hpdC,h `Hq `BppH
?
SA` S

?
HAq

˛

‚

?
T

˛

‚

“ O

¨

˝

¨

˝ppH
?
SA` S

?
HAq `

ÿ

hPHp

b

dE,hpdC,h `Hq

˛

‚

?
T

˛

‚

From the latter we derive a sample complexity result as follows.

Corollary 4 (POR-UCBVI Sample complexity). Let ε ą 0, δ P r0, 1s. Ignoring polynomial terms independent of ε, we can
bound the sample complexity Npε, δq of POR-UCBVI as follows

rO
ˆ

p2HSAmaxpH,Sq

ε2
`
p2dE maxpdC , Hq logp1{δq

ε2

˙

where dE :“ maxhPHp
dE,h, and dC :“ maxhPHp

dC,h.

Proof. We invoke the regret-to-PAC conversion in Lemma 5 with confidence δ1 “ δ{2 and we plug the regret bound in
Theorem 8 to write

ε “ rO

¨

˝

ˆ

BppH
?
SA` S

?
HAq `

ÿ

hPHp

b

dE,hβh,T pδ̄q `Bp
a

logp1{δq

˙ˆ

1
?
T

˙

˛

‚

from which we get the result by noting N “ pT and the definition of dE , dC .

We also have the following theorem and corollary, in the same vein as Theorem 7.

Theorem 9 (Regret for POR-UCBVI if P‹ is Known). When P‹ is known, POR-UCBVI that sets P̂t :“ P‹ and btPpP, πδq :“
0 for all t ě 1 still satisfies Assumption 4 and its regret RegretpT q is bounded by the following with probability at least
1 ´ δ, ignoring terms independent of T .

rO

¨

˝

¨

˝

ÿ

hPHp

b

dE,hpdC,h `Hq

˛

‚

?
T

˛

‚

where dE,h “ dimE

`

Fh,
B
T

˘

.

Proof. Note that by Lemmas 13 and 14, Assumption 4 is satisfied by POR-UCBVI. Using Lemma 14, we have the
following.

RegretpT q “ O

¨

˝

ÿ

hPcHp

Bκ2dE,h `
ÿ

hPHp

κ2

b

dE,hβh,T pδqT `Bp
a

T logpT {δq

˛

‚
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We further refine it grouping terms and ignoring terms independent of T , and also noting that c̄δ “ rOp
?
H `

?
Sq

RegretpT q “ rO

¨

˝

¨

˝

ÿ

hPHp

κ2

b

dE,hβh,T pδq `Bp

˛

‚

?
T

˛

‚

“ O

¨

˝

¨

˝Bp`
ÿ

hPHp

b

dE,hβh,T pδq

˛

‚

?
T

˛

‚

“ rO

¨

˝

¨

˝

ÿ

hPHp

b

dE,hpdC,h `Hq

˛

‚

?
T

˛

‚

Corollary 5 (POR-UCBVI Sample complexity if P‹ is Known). Let ε ą 0, δ P r0, 1s. Ignoring polynomial terms
independent of ε, we can bound the sample complexity Npε, δq of POR-UCBVI when P‹ is known as follows

rO
ˆ

p2HdE maxpdC , Hq

ε2

˙

where dE :“ maxhPHp
dE,h, β :“ maxhPHp

βT,hpδq, and dC :“ maxhPHp
dC,h.

Proof. The proof proceeds as in Corollary 4 by plugging Theorem 9 in Lemma 5.
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F. Details and Proofs for PORRL with GOLF
For completeness and establishing notation, we recall GOLF here.

Algorithm 7 GOLF

1: Input Known class of Bellman consistent Q-functions Q, confidence level δ.
2: Initialize dataset D1 Ð tu and CQpD1, δq Ð Q.
3: for t “ 1, ..., T do
4: τ r0s Ð pq

5: for h “ 1, . . . H do
6: Compute ath, Qt

h Ð argmaxa,QPCQpDt,δq Qpτ rhs, aq

7: Play ath and observe feedback oth
8: end for
9: Update Dt`1 Ð Dt Y tτ, pot1, . . . o

t
Hu

10: Compute

CQpDt`1, δq Ð

"

LDt
pQh, Qh`1q ď inf

gPGh

LDt
pg,Qh`1q ` β

*

11: end for

Theorem 2 (Modified GOLF Regret). Let Assumption 1 hold, and let dHABE “ dimHABEpQ, α,minpα,
a

1{T qq. Choose
hyperparameter β “ c logpHTN pQYG, 1{T, } ¨ }8qq for some universal constant c and the auxiliary function class G used
in GOLF, and define dC,Q :“ logpN pQ Y G, 1{T, } ¨ }8qq. Then, GOLF satisfies RegretpT q “ O

`

pH
a

dHABEdC,QT
˘

.

Proof. The meat of the theorem is in proving Lemma 18. We β “ c logpHTN pQYG, 1{T, } ¨ }8qq for some suitably large
universal constant c, and use Theorem 6 and Lemma 18 to get that

RegretpT q “

H
ÿ

h“1

˜

Tω `Bp

ˆ

B2p2β

α2
` 1

˙

˜

h´1
ÿ

l“1

dlpαq

¸

` minpdhpωq, T qBp` 2Bp
a

βdhpωqT

¸

where dhpεq :“ dimDEpΦh,Dh, εq. Now set ω “
Bp
T and use the fact that dhpεq increases with decreasing ε to get that

RegretpT q “ rO
´

pH
a

dHABEβT
¯

“ rO
´

pH
a

dHABEdC,QT
¯

since dHABE :“ dimHABEpQ,minpα,Bp{T qq :“ maxh dhpminpα,Bp{T qq.

Corollary 6 (GOLF Sample complexity). Let ε ą 0, δ P r0, 1s. Ignoring polynomial terms independent of ε, we can bound
the sample complexity Npε, δq of GOLF as follows

rO
ˆ

p2H2dHABEdc,Q
ε2

˙

.

Proof. Again, we use Lemma 5 and a quick computation shows our result.

F.1. Comparing dimHABE and dimBE

It is easy to see that since the function class Φh is a subset of the class Ψh of all Bellman errors, dimHABE ď

maxh dimDEpΨh,Dh,Q, εq. Recall that the Bellman eluder dimension is a minimum over the RHS and another term
that uses Dirac-δ distributions, but typically, the RHS is smaller. So, in many cases, dimHABE ď dimBE. However, we
don’t have a universal inequality in either direction.
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F.2. Computing dimensions for the combination lock

Proposition 1 (Dimensions for the Combination Lock). Consider the combination lock problem with model class M “

P ˆ F and induced Q-function class Q.

• Under dense intermediate feedback with Hp “ rHs, the dimHABEpQ, αqA for all α ă q, while its BE dimension is at
least AH ´ 2. The eluder dimension for reward functions dimEpFh,

B
T q is at least Ah for any h ď H .

• For sparse intermediate feedback with Hp “ tHu and any α ą 0, the α-HABE dimension, the BE dimension and the
eluder dimension of FH are all at least AH ´ 2.

Proof. We separately resolve the cases of sparse and dense intermediate feedback.

F.2.1. DENSE INTERMEDIATE FEEDBACK, Hp “ rHs

Notice that we get a reward Berpqq at every step as long as we are on the correct sequence of actions a‹
1, . . . a

‹
H , and as

soon as we take a wrong action, we always get a reward of 0 subsequently. It is then easy to see that the induced function
classes Q then are given by Q “ tpQ1, . . . QHq | Da1, . . . aH P A s.t. Qh “ pH ´ h` 1qq1a1,...ah

u.

α-HABE dimension: It suffices to show the upper bound using Dh,Qpα,h´1q, since the α-HABE dimension takes the
minimum of distirbutional eluder dimensions over two distributions. For any α ă q, consider the function class

Qpα, h´ 1q “

!

Q P Q,
ˇ

ˇ

ˇ
|EµlpQqrQl ´ TlQl`1s| ď α, @1 ď l ď h´ 1

)

Now note that EµlpQqrQl ´ TlQl`1s “ q1a1,...al
´ q1a‹

1,...a
‹
l
. If this is smaller than α, then this is smaller than q and thus

must be 0. So, pa1, . . . ah´1q “ pa‹
1, . . . a

‹
h´1q for any Q P Qpα, h ´ 1q. This also means that any ϕh P Φh, there is a

Q P Qpα, h´ 1q so that

ϕh “ Qh ´ ThQh`1 “ q1a‹
1,...a

‹
h´1,ah

´ q1a‹
1,...a

‹
h´1,a

‹
h

Thus, the size of Φh is just A. More importantly, the set Dh,Qpα,h´1q of distributions µhpQq induced by Q P Qpα, h´ 1q

only include indicators of the form 1a‹
1,...a

‹
h´1,a

for actions a. Thus, the set of distributions DQpα,h´1q has size A. We know
that the distributional eluder dimension d “ dimDEpΦh,DDpα,h´1q,minpα,Bp{T qq is bounded by the number of possible
distributions

ˇ

ˇDQpα,h´1q

ˇ

ˇ. So, d ď A.

BE dimension: The Bellman differences, from above, are q1a1,...ah
´ q1a‹

1,...a
‹
h

. This is an affine transformation of
a family of AH indicator functions. The distributions µlpQq over trajectories induced by Q include indicators 1a1

1,...a
1
l

of all trajectories of length l. Now for any sequence µ1, . . . µn, µn`1 of different indicator distributions not including
a‹
1, . . . a

‹
l , we consider the Bellman difference gn`1 “ q1a1,...ah

´ q1a‹
1,...a

‹
h

with action sequence given by µn`1. Note
that Eµign`1 “ 0 for all i ď n but Eµn`1gn`1 “ q. This means that the longest possible sequence in the definition of the
distributional eluder dimension has length AH ´ 2. So, the BE dimension is at least AH ´ 2.

Eluder dimension: The reward function class Fh is given by all functions of the form q1a1,...ah
. This is a scaled version of

a class of Ah indicator functions. Since it contains Ah indicator functions, its eluder dimension is at least Ah.

F.2.2. SPARSE INTERMEDIATE FEEDBACK, Hp “ rHs

Notice that we get a reward Berpqq at the last step if we took correct sequence of actions a‹
1, . . . a

‹
H , and reward 0 otherwise.

It is then easy to see that now, the induced function classes Q then are given by Q “ tpQ1, . . . QHq | Da1, . . . aH P

A s.t. Qh “ q1a1,...ah
u.

α-HABE dimension: This time, note that EµhpQqrQl ´ ThQh`1s “ 0 for all h ď H ´ 1. So, the function class Φh “ t0u

for all h ď H ´ 1. Only for h “ H do we have that EµHpQqrQH ´ THQH`1s “ q1a1,...aH
´ q1a‹

1,...a
‹
H

. Also note that
Qpα,H ´ 1q “ Q for all α since EµhpQqrQl ´ ThQh`1s “ 0 for all h ď H ´ 1. So, this is merely the BE dimension of
the problem. Now, the Bellman differences at timestep H are identical to those for the sparse feedback problem, and the
distributions DQpα,H´1q “ DQ since we have established that Qpα,H ´ 1q “ Q. This means that by the argument for BE
dimension in the dense feedback case, we have that the distributional eluder dimension of ΦH is at least AH ´ 2, which is
then also the α-HABE dimension of this problem.
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BE dimension: From the argument for the α-HABE dimension in the sparse case, the BE dimension and the α-HABE
dimension match in this case, and are both at least AH ´ 2.

Eluder dimension: Again, the reward function class FH is given by all functions of the form q1a1,...aH
. This is a scaled

version of a class of AH indicator functions. Since it contains AH indicator functions, its eluder dimension is at least AH .

F.3. Proofs of Lemmas

Recall that Qpα, hq “ tQ P Q | |EµlpQqrQl ´ TlQl`1s| ď α, @1 ď l ď hu, that µhpQq is the distribution induced on
τ rh´ 1s, ah by πQ and Dh,Q :“ tµhpQq | Q P Qu.

Lemma 18. Let dhpεq :“ dimDEpΦh,Dh,Qpα,h´1q, εq with

Φh :“
!

Qh ´ ThQh`1

ˇ

ˇ

ˇ
Q P Qpα, h´ 1q

)

Then, we have that for β “ c logpHTN pQ Y G, 1{T, } ¨ }8qq,
řt

j“1 |EµhpQjqrQj
h ´ ThQj

h`1s| is bounded by

tω `Bp

ˆ

B2p2β

α2
` 1

˙

˜

h´1
ÿ

l“1

dlpαq

¸

` minpdhpωq, tqBp` 2Bp
a

βdhpωqt

Proof. We modify the proof of Lemma 41 in (Jin et al., 2021). Pick arbitrary h and t and let Ψh be the function class given
by

Φh :“
!

Qh ´ ThQh`1

ˇ

ˇ

ˇ
Q P Qpα, hq

)

“

!

Qh ´ ThQh`1

ˇ

ˇ

ˇ
pQ1, ¨ ¨ ¨QHq P Q, |EµlpQqrQl ´ TlQl`1s| ď α, @1 ď l ď h´ 1

)

Also note that we have the function class Φh of timestep h Bellman errors induced by "historically α-accurate" functions -
functions whose expected Bellman errors in previous timesteps are smaller than α. The distribution used for computing the
expected Bellman errors for previous timesteps is µlpQq.

Now abbreviating ψj
l :“ Qj

l ´ TlQj
l`1 gives a sequence ψ1

l , . . . ψ
t
l of functions in Ψl for every 1 ď l ď h. This must

have a subsequence ϕ1l , . . . ϕ
rl
l consisting of all the functions in the sequence that lie in Φl, for every 1 ď l ď h. Also let

dhpεq “ dimDEpΦh,Dh, εq for any ε. Now note that

t
ÿ

j“1

|EµhpQjqrQj
h ´ ThQj

h`1s|

“

t
ÿ

j“1

|EµhpQjqrψj
hs|

piq
“

t
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrψj

hs

ˇ

ˇ

ˇ
1
´

|EµhpQjqrψj
hs| ď ω

¯

`

h´1
ÿ

l“1

t
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrψj

hs

ˇ

ˇ

ˇ
1
´

|EµhpQjqrψj
hs| ą ω,Q P Qpα, l ´ 1qzQpα, lq

¯

`

t
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrψj

hs

ˇ

ˇ

ˇ
1
´

|EµhpQjqrψj
hs| ą ω,Q P Qpα, h´ 1q

¯

ď

t
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrψj

hs

ˇ

ˇ

ˇ
1
´

|EµhpQjqrψj
hs| ď ω

¯

`

h´1
ÿ

l“1

t
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrψj

hs

ˇ

ˇ

ˇ
1 pQ P Qpα, l ´ 1qzQpα, lqq

37



A Theoretical Framework for Partially Observed Reward-States in RLHF

`

t
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrψj

hs

ˇ

ˇ

ˇ
1
´

|EµhpQjqrψj
hs| ą ω,Q P Qpα, h´ 1q

¯

ď tω `

h´1
ÿ

l“1

t
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrψj

hs

ˇ

ˇ

ˇ
1
´

|EµlpQjqψ
j
l | ą α,Q P Qpα, l ´ 1q

¯

t
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrψj

hs

ˇ

ˇ

ˇ
1
´

|EµhpQjqrψj
hs| ą ω,Q P Qpα, h´ 1q

¯

piiq
ď tω `

h´1
ÿ

l“1

rl
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrϕjhs

ˇ

ˇ

ˇ
1
´

|EµlpQjqrϕjl s| ą α
¯

`

rh
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrϕjhs

ˇ

ˇ

ˇ
1
´

|EµhpQjqrϕjhs| ą ω
¯

piiq
ď tω `Bp

ˆ

B2p2β

α2
` 1

˙

˜

h´1
ÿ

l“1

dlpαq

¸

`

rh
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrϕjhs

ˇ

ˇ

ˇ
1
´

|EµhpQjqrϕjhs| ą ω
¯

Here, piq holds since one of three possibilities holds – either
ˇ

ˇ

ˇ
EµhpQjqrψj

hs

ˇ

ˇ

ˇ
ď ω, or |EµhpQjqψ

j
l | ą ω and there is a least

l ď h ´ 1 so that Q P Qpα, l ´ 1q but Q R Qpα, h ´ 1q, or Q P Qpα, h ´ 1q. piiq holds since if |EµkpQjqψ
j
k| ď α for all

k ď l´1, then ψj
l “ ϕil for some i. Finally, piiiq holds by Proposition 43 of (Jin et al., 2021) since

řs´1
j“1 EµlpQjqrpϕjl q2s ď β

by Lemma 39(a) of (Jin et al., 2021). While our rewards are stochastic and theirs are not, we can repeat their arguments
verbatim after noting that the martingale defined in the beginning of their proof continues to be a martingale even for
stochastic rewards that have second moments.

Now arrange the sequence
ˇ

ˇEµhpQjqϕs
ˇ

ˇ in order to get e1, . . . erh . We can then write

t
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrQj

h ´ ThQj
h`1s

ˇ

ˇ

ˇ
ď tω `Bp

ˆ

B2p2β

α2
` 1

˙

˜

h´1
ÿ

l“1

dlpαq

¸

`

rh
ÿ

j“1

ej1pej ą ωq

For any ej ą ω, consider arbitrary γ such that ej ą γ ą ω. This means that by Proposition 43 of (Jin et al., 2021) again,

j ď

rh
ÿ

i“1

1pei ą γq ď

ˆ

B2p2β

γ2
` 1

˙

dhpωq

This means that γ ď Bp
b

βdhpωq

j´dhpωq
for any such γ. Since ej ď Bp, we get that ej ď min

´

Bp,Bp
b

βdhpωq

j´dhpωq

¯

. Finally,
this means that

t
ÿ

j“1

ˇ

ˇ

ˇ
EµhpQjqrQj

h ´ ThQj
h`1s

ˇ

ˇ

ˇ

ď tω `Bp

ˆ

B2p2β

α2
` 1

˙

˜

h´1
ÿ

l“1

dlpαq

¸

`

rh
ÿ

j“1

ej1pej ą ωq

ď tω `Bp

ˆ

B2p2β

α2
` 1

˙

˜

h´1
ÿ

l“1

dlpαq

¸

`

rh
ÿ

j“1

min

˜

Bp,Bp

d

βdhpωq

j ´ dhpωq

¸

ď tω `Bp

ˆ

B2p2β

α2
` 1

˙

˜

h´1
ÿ

l“1

dlpαq

¸

` minpdh, rhqBp`

rh
ÿ

j“1

Bp

d

βdhpωq

j

ď tω `Bp

ˆ

B2p2β

α2
` 1

˙

˜

h´1
ÿ

l“1

dlpαq

¸

` minpdhpωq, rhqBp` 2Bp
a

βdhpωqrh

ď tω `Bp

ˆ

B2p2β

α2
` 1

˙

˜

h´1
ÿ

l“1

dlpαq

¸

` minpdhpωq, tqBp` 2Bp
a

βdhpωqt
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as desired.
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G. Proofs for Dueling Feedback
G.1. Proof for Reduction to Confidence-Set Optimism

Theorem 3 (Reduction from Dueling to Confidence-Set-Based Optimism). If the confidence sets CMpDt, δq satisfy
Assumption 2, then the dueling regret RegretDpT q of Algorithm 1 is given by

RegretDpT q “ rOpCP pM, T, δq ` CF pM, T, δqq

Remark 5. While the theorem states that we need Assumption 2 from the main paper, we actually use its slightly more
refined version – Assumption 3. The less refined version was added to the main paper for brevity.

Proof. For ease of notation, let us use the sets CMpDt, δq given by the pre-image of CMpDt, δq under the map M ÞÑ M from
Section 4. We first recall that M‹ P CMpDt, δq and so π‹ P Πt for all t with probability 1 ´ δ{16. Recall that the value of a
duel pπ, π1q under model M Ø is denoted by

VDpM, π, π1q :“ V pM, πq ´ V pM, π1q “ V pP, f, πq ´ V pP, g, π1q

We overload notation and use the natural maps pP, fq Ø M ÞÑ M to define

VDpM, π, π1q :“ VDpM, π, π1q

For ease of notation, we will then work with CMpDt, δq in this proof until we can. Since πi,t P Πt for i “ 1, 2, there
exists some Mi,t P CMpDt, δq for i “ 1, 2 so that VDpMi,t, π, π1,tq ď 0 for all π. Note that dueling regret is given below.
Inequality piq is by definition of Mi,t, since VDpMi,t, π‹, πi,tq ď 0 for i “ 1, 2. Inequality piiq holds by definition of
π1,t, π2,t.

RegretDpT q “

T
ÿ

t“1

2
ÿ

i“1

VDpM‹, π‹, πi,tq

“

T
ÿ

t“1

”

2
ÿ

i“1

VDpM‹, π‹, πi,tq ´ VDpMi,t, π‹, πi,tq `

2
ÿ

i“1

VDpMi,t, π‹, πi,tq
ı

piq
ď

2
ÿ

i“1

T
ÿ

t“1

rVDpM‹, π‹, πi,tq ´ VDpMi,t, π‹, πi,tqs

piiq
ď

T
ÿ

t“1

2 max
M,M1PCMpDt,δq

“

VDpM, π1,t, π2,tq ´ VDpM1, π1,t, π2,tq
‰

Continuing, we have

RegretDpT q ď

T
ÿ

t“1

2 max
M,M1PCMpDt,δq

“

VDpM, π1,t, π2,tq ´ VDpM1, π1,t, π2,tq
‰

“ 2
T
ÿ

t“1

max
M,M1PCMpDt,δq

”

VDpM, π1,t, π2,tq ´ VDpM‹, π1,t, π2,tq ` VDpM‹, π1,t, π2,tq

´ VDpM1, π1,t, π2,tq
ı

ď 2
T
ÿ

t“1

max
M,M1PCMpDt,δq

rVDpM, π1,t, π2,tq ´ VDpM‹, π1,t, π2,tqs `

max
M,M1PCMpDt,δq

“

VDpM‹, π1,t, π2,tq ´ VDpM1, π1,t, π2,tq
‰

“ 2
T
ÿ

t“1

”

VDprMt, π1,t, π2,tq ´ VDpM‹, π1,t, π2,tq
ı

`

”

VDpM‹, π1,t, π2,tq ´ VDprM1
t, π1,t, π2,tq

ı
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where rMt and rM1
t are the respective maximisers. It suffices to analyse only one of the terms, as a consequence of the

symmetry of Assumption 3.

We can now use the fact that M is described by pP, fq to analyse the first term, letting rMt Ø prPt, rf
tq.

T
ÿ

t“1

”

VDprMt, π1,t, π2,tq ´ VDpM‹, π1,t, π2,tq
ı

“ 2
T
ÿ

t“1

”

VDprPt, rf
t, π1,t, π2,tq ´ VDpP‹, f

‹, π1,t, π2,tq
ı

ď 2
T
ÿ

t“1

”

VDprPt, rf
t, π1,t, π2,tq ´ VDpP‹, rf

t, π1,t, π2,tq
ı

`

”

VDpP‹, rf
t, π1,t, π2,tq ´ VDpP‹, f

‹, π1,t, π2,tq
ı

ď 2
T
ÿ

t“1

”

VDprPt, rf
t, π1,t, π2,tq ´ VDpP‹, rf

t, π1,t, π2,tq
ı

`

”

VDpP‹, rf
t, π1,t, π2,tq ´ VDpP‹, f

‹, π1,t, π2,tq
ı

piq
“ 2

T
ÿ

t“1

”

V prPt, rf
t, π1,tq ´ V pP‹, rf

t, π1,tq
ı

´

”

V prPt, rf
t, π2,tq ´ V pP‹, rf

t, π2,tq
ı

`

”

VDpP‹, rf
t, π1,t, π2,tq ´ VDpP‹, f

‹, π1,t, π2,tq
ı

piiq
“ 2

T
ÿ

t“1

”

V prPt, rf
t, π1,tq ´ V pP‹, rf

t, π1,tq
ı

´

”

V prPt, rf
t, π2,tq ´ V pP‹, rf

t, π2,tq
ı

`

”

V pP‹ b P‹, f
t
, pπ1,t, π2,tqq ´ V pP‹ b P‹, f

‹
, pπ1,t, π2,tqq

ı

Where piq holds by the definition of VD and V , and piiq holds in the product MDP M‹ once we define f
t

hppτ1, τ2qrhsq :“
rf thpτ1rhsq ´ rf thpτ2rhsq and recall that P‹ “ P‹ b P‹. Now, we can immediately apply Assumption 3 to the last line in two
different ways. For the first two terms, we apply the first point in the assumption to each under cardinal feedback for MDP
M‹, noting that the datasets Dt contain trajectories from π1,t as well as π2,t. For the last term, we apply the second point in
the assumption under cardinal feedback for the MDP pP‹, f

‹
q.

This gives us that with probability 1 ´ δ,

RegretpT q “ rOpCP pM, T, δq ` CF pM, T, δqq

We have the following lemma, which is an immediate consequence of

Lemma 2 (Relating F and F). For any function class F , dimEpF , εq ď 9 dimEpF , ε{2q.

Proof. Let dh “ dimEpFh, εq. Pick the ε1 so that there is a sequence of dh pairs τ j , j “ 1 Ñ dh of length h trajectories,
where each one is ε1-independent of its predecessors. Note that τ j “ pτ1,j , τ2,jq. We now inductively build a sequence ij so
that each τij ,j is ε1{2-independent of its predecessors.

Pick the first i1 arbitrarily. Now assume that we have built the sequence until index j “ k. Also, by definition of

this sequence, there exist f j , f
1

j , we have
b

řk
j“1pf jpτ jq ´ f

1

jpτ jqq2 ď ε1 but |fk`1pτ jq ´ f
1

k`1pτ jq| ě ε1. Since
a2 ` b2 ď 2pa` bq2, we have that

g

f

f

e

k
ÿ

j“1

pfjpτij ,jq ´ f 1
jpτij ,jqq2 ď

g

f

f

e

k
ÿ

j“1

pfjpτij ,jq ´ f 1
jpτij ,jqq2 ` pfjpτ3´ij ,jq ´ f 1

jpτ3´ij ,jqq2

ď

g

f

f

e

k
ÿ

j“1

2pf jpτ jq ´ f
1

jpτ jqq2 ď
?
2ε1
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Additionally, since

|fk`1pτ1,k`1q ´ f 1
k`1pτ1,k`1q| ` |fk`1pτ2,k`1q ´ f 1

k`1pτ2,k`1q| ě |fk`1pτ jq ´ f
1

k`1pτ jq| ě ε1

. So, there is an ik`1 so that
|fk`1pτik`1,k`1q ´ f 1

k`1pτik`1,k`1q| ě ε1{2

So, we have a sequence xj :“ τij ,j and a sequence of pairs of functions fj , f 1
j so that for any 1 ď k ď dh,

řk
j“1pfjpxjq ´

f 1
jpxjqq2 ď 2pε1q2 but |fk`1pxk`1q ´ f 1

k`1pxk`1q| ě ε1{2. This implies the following. Inequality piq holds by Proposition
43 of (Jin et al., 2021) upon setting β “ 2pε1q2 and setting the proposition’s ε to ε1{2. Inequality piiq holds since ε1{2 ě ε{2.

dh “

dh
ÿ

j“1

1p|fjpxjq ´ f 1
jpxjq| ě ε1{2q

piq
ď

ˆ

2pε1q2

pε1{2q2
` 1

˙

dimEpFh, ε{2q

“ 9 dimEpFh, ε
1{2q

ď 9 dimEpFh, ε{2q

This establishes our claim.

We have the following immediate corollary of Theorem 4, Theorem 7 and Lemma 2.

Corollary 1 (Dueling Regret using POR-UCRL Confidence Sets). The confidence sets from POR-UCRL sat-
isfy Assumption 2 and using them in Algorithm 1 leads to the following regret bound RegretDpT q “

rO
´´

pS
?
HA`

ř

hPHp

a

dE,hdC,h

¯?
T
¯

.
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G.2. Reduction to Bonus-Based Optimism

We define the reduction using the algorithm below.

Algorithm 8 Reduction from Dueling to Cardinal Bonus-Based Optimism

1: Input Known reward function trhuHh“1, method EstpDq to estimate P̂D and fD from dataset D, bonus functions
bDF pP, π, δq and bDP pP, π, δq, confidence level δ.

2: Initialize dataset D1 Ð tu

3: for t “ 1, ..., T do
4: Compute good set Πt {Valid π‹ candidates}

Πt :“
!

π P Π
ˇ

ˇ

ˇ
VDppP̂Dt

, fDt
q, π, π1q ` bF pP̂Dt

, pπ, π1q, δq

` zpBpqbPpP̂Dt
, π, δq ` zpBpqbPpP̂Dt

, π1, δq ě 0, @π1 P Π
)

5: Pick pπ1,t, π2,tq given by {Most uncertain duel}

argmax
π,π1PΠt

bF pP̂Dt
, pπ, π1q, δq ` zpBpqbPpP̂Dt

, π, δq ` zpBpqbPpP̂Dt
, π1, δq

6: Collect trajectories τt,i “

!

psth,i, a
t
h,iqq

)H

h“1
along with feedback tohuhPHp by sampling from Pπi,t

‹ for i “ 1, 2.
7: Append the data to Dt to get Dt`1, update estimates and bonuses.
8: end for

Theorem 10 (Reduction from Dueling to Bonus-Based Optimism). If the bonuses and estimates used in Algorithm 9 satisfy
Assumption 3, then with probability 1 ´ δ, the dueling regret RegretDpT q of Algorithm 9 is given by

RegretDpT q “ rOpCP pM, T, δq ` CF pM, T, δqq

Proof. Recall that the value of a duel pπ, π1q under model M Ø M Ø pP, fq is denoted by

VDpM, π, π1q :“ V pM, πq ´ V pM, π1q “ V pP, f, πq ´ V pP, g, π1q

We overload notation and use the natural bijection M Ø M to define

VDpM, π, π1q :“ VDpM, π, π1q

For ease of notation in the proof, we often work with an arbitrary pre-image f̂D of fD under the map f ÞÑ f . A careful
read will confirm that this does not affect the correctness of any of the statements. First note that π‹ P Πt for all T with
probability 1 ´ δ{16 since the following hold uniformly over all π1 P Π

´VDppP̂Dt
, f̂Dt

q, π‹, π1q “ V pP̂Dt
, f̂Dt

, π1q ´ V pP̂Dt
, f̂Dt

, π‹q

“

”

V pP̂Dt , f̂Dt , π1q ´ V pP‹, f̂Dt , π1q

ı

´

”

V pP‹, f̂Dt , π1q ´ V pP̂Dt
, f̂Dt

, π1q

ı

` V pP‹, f
‹, π1q ´ V pP‹, f

‹, π‹q

` VDppP‹, fDt
q, π1, π‹q ´ VDppP‹, f

‹q, π1, π‹q

ď zpBpqbPpP̂Dt
, π‹, δq ` zpBpqbPpP̂Dt

, π1, δq

` 0

` bF pP̂Dt , pπ‹, π1q, δq`

“ bF pP̂Dt
, pπ‹, π1q, δq ` zpBpqbPpP̂Dt

, π‹, δq ` zpBpqbPpP̂Dt
, π1, δq

where the inequality holds by Assumption 4 and the optimality of π‹ in the true model. Note let M̂t be the model given by
P̂Dt

, f̂Dt
and let Mt be the corresponding model in M. We make the following abbreviation:

bMpMt, pπ, π
1q, δq :“ bF pP̂Dt , pπ, π

1q, δq ` zpBpqbPpP̂Dt , π, δq ` zpBpqbPpP̂Dt , π
1, δq
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RegretDpT q “

T
ÿ

t“1

2
ÿ

i“1

VDpM‹, π‹, πi,tq

“

T
ÿ

t“1

”

2
ÿ

i“1

VDpM‹, π‹, πi,tq ´ VDpM̂t, π‹, πi,tq ` bMpMt, pπ‹, πi,tq, δq

`

2
ÿ

i“1

VDpM̂t, π‹, πi,tq ´ bMpMt, pπ‹, πi,tq, δq

ı

piq
ď

2
ÿ

i“1

T
ÿ

t“1

”

VDpM‹, π‹, πi,tq ´ VDpM̂t, π‹, πi,tq ` bMpMt, pπ‹, πi,tq, δq

ı

Inequality piq holds since VDpM̂t, π‹, πi,tq “ ´VDpM̂t, πi,t, π‹q, and πi,t P Πt for i “ 1, 2 implies that

VDpM̂t, πi,t, π‹q ` bF pP̂Dt
, pπ‹, π1q, δq ` zpBpqbPpP̂Dt

, π‹, δq ` zpBpqbPpP̂Dt
, π1, δq ě 0

Now note that the following holds uniformly over all timesteps t with probability 1´ 3δ{8 for i “ 1, 2 simultaneously using
Assumption 4 multiple times and applying a union bound.

VDpM‹, π‹, πi,tq ´ VDpM̂t, π‹, πi,tq “ VDppP‹, f
‹
q, π‹, πi,tq ´ VDppP̂Dt , fDt

q, π‹, πi,tq

“ VDppP‹, f
‹
q, π‹, πi,tq ´ VDppP̂Dt , f

‹
q, π‹, πi,tq

` VDppP̂Dt
, f

‹
q, π‹, πi,tq ´ VDppP̂Dt

, fDt
q, π‹, πi,tq

“ V pP‹, f
‹
, π‹q ´ V pP̂Dt

, f
‹
, π‹q ` V pP̂Dt

, f
‹
, πi,tq ´ V pP‹, f

‹
, πi,tq

` VDppP̂Dt
, f

‹
q, π‹, πi,tq ´ VDppP̂Dt

, fDt
q, π‹, πi,tq

“ zpBpqbPpP̂Dt , π‹, δq ` zpBpqbPpP̂Dt , πi,t, δq

` bF pP̂Dt
, pπ‹, πi,tq, δq

“ bMpMt, pπ‹, πi,tq, δq

So, with probability 1 ´ 3δ{16, we have that

RegretDpT q ď

T
ÿ

t“1

2
ÿ

i“1

bMpMt, pπ‹, πi,tq, δq

piq
ď 2

T
ÿ

t“1

bMpMt, pπ1,t, π2,tq, δq

“ 2
T
ÿ

t“1

zpBpqbPpP̂Dt , π1,t, δq ` zpBpqbPpP̂Dt , π2,t, δq ` bF pP̂Dt , pπ1,t, π2,tq, δq

piiq
ď rO

˜

T
ÿ

t“1

pz1pBpqbPpP‹, π1,t, δq ` z1pBpqbPpP‹, π2,t, δq ` bF pP‹, pπ1,t, π2,tq, δq

¸

where inequality piq holds since pπ1,t, π2,tq “ argmaxπ,π1PΠt
bMpMt, pπ, π

1q, δq and inequality piiq holds with probability
1 ´ 3δ{8 by 6 applications of the change of measure inequality in Assumption 4.

Now, we can use the fact that Assumption 4 is satisfied again to conclude that with probability 1 ´ δ{32.

T
ÿ

t“1

pz1pBpqbPpP‹, π1,t, δq ` z1pBpqbPpP‹, π2,t, δq ` bF pP‹, pπ1,t, π2,tq, δq “ rOpCP pM, T, δq ` CF pM, T, δqq
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Taking a union bound over all inequalities stated so far, we have the following with probability 1 ´ δ

RegretDpT q “ rOpCP pM, T, δq ` CF pM, T, δqq

as desired.

Again, the following corollary is immediate from Theorem 5, Theorem 9 and Lemma 2.

Corollary 7. By using POR-UCBVI as the algorithm in the dueling reduction in Algorithm 9, we can get a bound on the
dueling regret given by

RegretDpT q “ rO

¨

˝

¨

˝pCpH,S,Aq `
ÿ

hPHp

b

d̄E,hpdC,h `Hq

˛

‚

?
T

˛

‚

where d̄E,h “ dimE

`

Fh,
B
2T

˘

.
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H. Proofs for Dueling Feedback
H.1. Proof for Reduction to Confidence-Set Optimism

Theorem 3 (Reduction from Dueling to Confidence-Set-Based Optimism). If the confidence sets CMpDt, δq satisfy
Assumption 2, then the dueling regret RegretDpT q of Algorithm 1 is given by

RegretDpT q “ rOpCP pM, T, δq ` CF pM, T, δqq

Remark 6. While the theorem states that we need Assumption 2 from the main paper, we actually use its slightly more
refined version – Assumption 3. The less refined version was added to the main paper for brevity.

Proof. For ease of notation, let us use the sets CMpDt, δq given by the pre-image of CMpDt, δq under the map M ÞÑ M from
Section 4. We first recall that M‹ P CMpDt, δq and so π‹ P Πt for all t with probability 1 ´ δ{16. Recall that the value of a
duel pπ, π1q under model M Ø is denoted by

VDpM, π, π1q :“ V pM, πq ´ V pM, π1q “ V pP, f, πq ´ V pP, g, π1q

We overload notation and use the natural maps pP, fq Ø M ÞÑ M to define

VDpM, π, π1q :“ VDpM, π, π1q

For ease of notation, we will then work with CMpDt, δq in this proof until we can. Since πi,t P Πt for i “ 1, 2, there
exists some Mi,t P CMpDt, δq for i “ 1, 2 so that VDpMi,t, π, π1,tq ď 0 for all π. Note that dueling regret is given below.
Inequality piq is by definition of Mi,t, since VDpMi,t, π‹, πi,tq ď 0 for i “ 1, 2. Inequality piiq holds by definition of
π1,t, π2,t.

RegretDpT q “

T
ÿ

t“1

2
ÿ

i“1

VDpM‹, π‹, πi,tq

“

T
ÿ

t“1

”

2
ÿ

i“1

VDpM‹, π‹, πi,tq ´ VDpMi,t, π‹, πi,tq `

2
ÿ

i“1

VDpMi,t, π‹, πi,tq
ı

piq
ď

2
ÿ

i“1

T
ÿ

t“1

rVDpM‹, π‹, πi,tq ´ VDpMi,t, π‹, πi,tqs

piiq
ď

T
ÿ

t“1

2 max
M,M1PCMpDt,δq

“

VDpM, π1,t, π2,tq ´ VDpM1, π1,t, π2,tq
‰

Continuing, we have

RegretDpT q ď

T
ÿ

t“1

2 max
M,M1PCMpDt,δq

“

VDpM, π1,t, π2,tq ´ VDpM1, π1,t, π2,tq
‰

“ 2
T
ÿ

t“1

max
M,M1PCMpDt,δq

”

VDpM, π1,t, π2,tq ´ VDpM‹, π1,t, π2,tq ` VDpM‹, π1,t, π2,tq

´ VDpM1, π1,t, π2,tq
ı

ď 2
T
ÿ

t“1

max
M,M1PCMpDt,δq

rVDpM, π1,t, π2,tq ´ VDpM‹, π1,t, π2,tqs `

max
M,M1PCMpDt,δq

“

VDpM‹, π1,t, π2,tq ´ VDpM1, π1,t, π2,tq
‰

“ 2
T
ÿ

t“1

”

VDprMt, π1,t, π2,tq ´ VDpM‹, π1,t, π2,tq
ı

`

”

VDpM‹, π1,t, π2,tq ´ VDprM1
t, π1,t, π2,tq

ı
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where rMt and rM1
t are the respective maximisers. It suffices to analyse only one of the terms, as a consequence of the

symmetry of Assumption 3.

We can now use the fact that M is described by pP, fq to analyse the first term, letting rMt Ø prPt, rf
tq.

T
ÿ

t“1

”

VDprMt, π1,t, π2,tq ´ VDpM‹, π1,t, π2,tq
ı

“ 2
T
ÿ

t“1

”

VDprPt, rf
t, π1,t, π2,tq ´ VDpP‹, f

‹, π1,t, π2,tq
ı

ď 2
T
ÿ

t“1

”

VDprPt, rf
t, π1,t, π2,tq ´ VDpP‹, rf

t, π1,t, π2,tq
ı

`

”

VDpP‹, rf
t, π1,t, π2,tq ´ VDpP‹, f

‹, π1,t, π2,tq
ı

ď 2
T
ÿ

t“1

”

VDprPt, rf
t, π1,t, π2,tq ´ VDpP‹, rf

t, π1,t, π2,tq
ı

`

”

VDpP‹, rf
t, π1,t, π2,tq ´ VDpP‹, f

‹, π1,t, π2,tq
ı

piq
“ 2

T
ÿ

t“1

”

V prPt, rf
t, π1,tq ´ V pP‹, rf

t, π1,tq
ı

´

”

V prPt, rf
t, π2,tq ´ V pP‹, rf

t, π2,tq
ı

`

”

VDpP‹, rf
t, π1,t, π2,tq ´ VDpP‹, f

‹, π1,t, π2,tq
ı

piiq
“ 2

T
ÿ

t“1

”

V prPt, rf
t, π1,tq ´ V pP‹, rf

t, π1,tq
ı

´

”

V prPt, rf
t, π2,tq ´ V pP‹, rf

t, π2,tq
ı

`

”

V pP‹ b P‹, f
t
, pπ1,t, π2,tqq ´ V pP‹ b P‹, f

‹
, pπ1,t, π2,tqq

ı

Where piq holds by the definition of VD and V , and piiq holds in the product MDP M‹ once we define f
t

hppτ1, τ2qrhsq :“
rf thpτ1rhsq ´ rf thpτ2rhsq and recall that P‹ “ P‹ b P‹. Now, we can immediately apply Assumption 3 to the last line in two
different ways. For the first two terms, we apply the first point in the assumption to each under cardinal feedback for MDP
M‹, noting that the datasets Dt contain trajectories from π1,t as well as π2,t. For the last term, we apply the second point in
the assumption under cardinal feedback for the MDP pP‹, f

‹
q.

This gives us that with probability 1 ´ δ,

RegretpT q “ rOpCP pM, T, δq ` CF pM, T, δqq

We have the following lemma, which is an immediate consequence of

Lemma 2 (Relating F and F). For any function class F , dimEpF , εq ď 9 dimEpF , ε{2q.

Proof. Let dh “ dimEpFh, εq. Pick the ε1 so that there is a sequence of dh pairs τ j , j “ 1 Ñ dh of length h trajectories,
where each one is ε1-independent of its predecessors. Note that τ j “ pτ1,j , τ2,jq. We now inductively build a sequence ij so
that each τij ,j is ε1{2-independent of its predecessors.

Pick the first i1 arbitrarily. Now assume that we have built the sequence until index j “ k. Also, by definition of

this sequence, there exist f j , f
1

j , we have
b

řk
j“1pf jpτ jq ´ f

1

jpτ jqq2 ď ε1 but |fk`1pτ jq ´ f
1

k`1pτ jq| ě ε1. Since
a2 ` b2 ď 2pa` bq2, we have that

g

f

f

e

k
ÿ

j“1

pfjpτij ,jq ´ f 1
jpτij ,jqq2 ď

g

f

f

e

k
ÿ

j“1

pfjpτij ,jq ´ f 1
jpτij ,jqq2 ` pfjpτ3´ij ,jq ´ f 1

jpτ3´ij ,jqq2

ď

g

f

f

e

k
ÿ

j“1

2pf jpτ jq ´ f
1

jpτ jqq2 ď
?
2ε1
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Additionally, since

|fk`1pτ1,k`1q ´ f 1
k`1pτ1,k`1q| ` |fk`1pτ2,k`1q ´ f 1

k`1pτ2,k`1q| ě |fk`1pτ jq ´ f
1

k`1pτ jq| ě ε1

. So, there is an ik`1 so that
|fk`1pτik`1,k`1q ´ f 1

k`1pτik`1,k`1q| ě ε1{2

So, we have a sequence xj :“ τij ,j and a sequence of pairs of functions fj , f 1
j so that for any 1 ď k ď dh,

řk
j“1pfjpxjq ´

f 1
jpxjqq2 ď 2pε1q2 but |fk`1pxk`1q ´ f 1

k`1pxk`1q| ě ε1{2. This implies the following. Inequality piq holds by Proposition
43 of (Jin et al., 2021) upon setting β “ 2pε1q2 and setting the proposition’s ε to ε1{2. Inequality piiq holds since ε1{2 ě ε{2.

dh “

dh
ÿ

j“1

1p|fjpxjq ´ f 1
jpxjq| ě ε1{2q

piq
ď

ˆ

2pε1q2

pε1{2q2
` 1

˙

dimEpFh, ε{2q

“ 9 dimEpFh, ε
1{2q

ď 9 dimEpFh, ε{2q

This establishes our claim.

We have the following immediate corollary of Theorem 4, Theorem 7 and Lemma 2.

Corollary 1 (Dueling Regret using POR-UCRL Confidence Sets). The confidence sets from POR-UCRL sat-
isfy Assumption 2 and using them in Algorithm 1 leads to the following regret bound RegretDpT q “

rO
´´

pS
?
HA`

ř

hPHp

a

dE,hdC,h

¯?
T
¯

.
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H.2. Reduction to Bonus-Based Optimism

We define the reduction using the algorithm below.

Algorithm 9 Reduction from Dueling to Cardinal Bonus-Based Optimism

1: Input Known reward function trhuHh“1, method EstpDq to estimate P̂D and fD from dataset D, bonus functions
bDF pP, π, δq and bDP pP, π, δq, confidence level δ.

2: Initialize dataset D1 Ð tu

3: for t “ 1, ..., T do
4: Compute good set Πt {Valid π‹ candidates}

Πt :“
!

π P Π
ˇ

ˇ

ˇ
VDppP̂Dt

, fDt
q, π, π1q ` bF pP̂Dt

, pπ, π1q, δq

` zpBpqbPpP̂Dt
, π, δq ` zpBpqbPpP̂Dt

, π1, δq ě 0, @π1 P Π
)

5: Pick pπ1,t, π2,tq given by {Most uncertain duel}

argmax
π,π1PΠt

bF pP̂Dt
, pπ, π1q, δq ` zpBpqbPpP̂Dt

, π, δq ` zpBpqbPpP̂Dt
, π1, δq

6: Collect trajectories τt,i “

!

psth,i, a
t
h,iqq

)H

h“1
along with feedback tohuhPHp by sampling from Pπi,t

‹ for i “ 1, 2.
7: Append the data to Dt to get Dt`1, update estimates and bonuses.
8: end for

Theorem 11 (Reduction from Dueling to Bonus-Based Optimism). If the bonuses and estimates used in Algorithm 9 satisfy
Assumption 3, then with probability 1 ´ δ, the dueling regret RegretDpT q of Algorithm 9 is given by

RegretDpT q “ rOpCP pM, T, δq ` CF pM, T, δqq

Proof. Recall that the value of a duel pπ, π1q under model M Ø M Ø pP, fq is denoted by

VDpM, π, π1q :“ V pM, πq ´ V pM, π1q “ V pP, f, πq ´ V pP, g, π1q

We overload notation and use the natural bijection M Ø M to define

VDpM, π, π1q :“ VDpM, π, π1q

For ease of notation in the proof, we often work with an arbitrary pre-image f̂D of fD under the map f ÞÑ f . A careful
read will confirm that this does not affect the correctness of any of the statements. First note that π‹ P Πt for all T with
probability 1 ´ δ{16 since the following hold uniformly over all π1 P Π

´VDppP̂Dt
, f̂Dt

q, π‹, π1q “ V pP̂Dt
, f̂Dt

, π1q ´ V pP̂Dt
, f̂Dt

, π‹q

“

”

V pP̂Dt , f̂Dt , π1q ´ V pP‹, f̂Dt , π1q

ı

´

”

V pP‹, f̂Dt , π1q ´ V pP̂Dt
, f̂Dt

, π1q

ı

` V pP‹, f
‹, π1q ´ V pP‹, f

‹, π‹q

` VDppP‹, fDt
q, π1, π‹q ´ VDppP‹, f

‹q, π1, π‹q

ď zpBpqbPpP̂Dt
, π‹, δq ` zpBpqbPpP̂Dt

, π1, δq

` 0

` bF pP̂Dt , pπ‹, π1q, δq`

“ bF pP̂Dt
, pπ‹, π1q, δq ` zpBpqbPpP̂Dt

, π‹, δq ` zpBpqbPpP̂Dt
, π1, δq

where the inequality holds by Assumption 4 and the optimality of π‹ in the true model. Note let M̂t be the model given by
P̂Dt

, f̂Dt
and let Mt be the corresponding model in M. We make the following abbreviation:

bMpMt, pπ, π
1q, δq :“ bF pP̂Dt , pπ, π

1q, δq ` zpBpqbPpP̂Dt , π, δq ` zpBpqbPpP̂Dt , π
1, δq
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RegretDpT q “

T
ÿ

t“1

2
ÿ

i“1

VDpM‹, π‹, πi,tq

“

T
ÿ

t“1

”

2
ÿ

i“1

VDpM‹, π‹, πi,tq ´ VDpM̂t, π‹, πi,tq ` bMpMt, pπ‹, πi,tq, δq

`

2
ÿ

i“1

VDpM̂t, π‹, πi,tq ´ bMpMt, pπ‹, πi,tq, δq

ı

piq
ď

2
ÿ

i“1

T
ÿ

t“1

”

VDpM‹, π‹, πi,tq ´ VDpM̂t, π‹, πi,tq ` bMpMt, pπ‹, πi,tq, δq

ı

Inequality piq holds since VDpM̂t, π‹, πi,tq “ ´VDpM̂t, πi,t, π‹q, and πi,t P Πt for i “ 1, 2 implies that

VDpM̂t, πi,t, π‹q ` bF pP̂Dt
, pπ‹, π1q, δq ` zpBpqbPpP̂Dt

, π‹, δq ` zpBpqbPpP̂Dt
, π1, δq ě 0

Now note that the following holds uniformly over all timesteps t with probability 1´ 3δ{8 for i “ 1, 2 simultaneously using
Assumption 4 multiple times and applying a union bound.

VDpM‹, π‹, πi,tq ´ VDpM̂t, π‹, πi,tq “ VDppP‹, f
‹
q, π‹, πi,tq ´ VDppP̂Dt , fDt

q, π‹, πi,tq

“ VDppP‹, f
‹
q, π‹, πi,tq ´ VDppP̂Dt , f

‹
q, π‹, πi,tq

` VDppP̂Dt
, f

‹
q, π‹, πi,tq ´ VDppP̂Dt

, fDt
q, π‹, πi,tq

“ V pP‹, f
‹
, π‹q ´ V pP̂Dt

, f
‹
, π‹q ` V pP̂Dt

, f
‹
, πi,tq ´ V pP‹, f

‹
, πi,tq

` VDppP̂Dt
, f

‹
q, π‹, πi,tq ´ VDppP̂Dt

, fDt
q, π‹, πi,tq

“ zpBpqbPpP̂Dt , π‹, δq ` zpBpqbPpP̂Dt , πi,t, δq

` bF pP̂Dt
, pπ‹, πi,tq, δq

“ bMpMt, pπ‹, πi,tq, δq

So, with probability 1 ´ 3δ{16, we have that

RegretDpT q ď

T
ÿ

t“1

2
ÿ

i“1

bMpMt, pπ‹, πi,tq, δq

piq
ď 2

T
ÿ

t“1

bMpMt, pπ1,t, π2,tq, δq

“ 2
T
ÿ

t“1

zpBpqbPpP̂Dt , π1,t, δq ` zpBpqbPpP̂Dt , π2,t, δq ` bF pP̂Dt , pπ1,t, π2,tq, δq

piiq
ď rO

˜

T
ÿ

t“1

pz1pBpqbPpP‹, π1,t, δq ` z1pBpqbPpP‹, π2,t, δq ` bF pP‹, pπ1,t, π2,tq, δq

¸

where inequality piq holds since pπ1,t, π2,tq “ argmaxπ,π1PΠt
bMpMt, pπ, π

1q, δq and inequality piiq holds with probability
1 ´ 3δ{8 by 6 applications of the change of measure inequality in Assumption 4.

Now, we can use the fact that Assumption 4 is satisfied again to conclude that with probability 1 ´ δ{32.

T
ÿ

t“1

pz1pBpqbPpP‹, π1,t, δq ` z1pBpqbPpP‹, π2,t, δq ` bF pP‹, pπ1,t, π2,tq, δq “ rOpCP pM, T, δq ` CF pM, T, δqq
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Taking a union bound over all inequalities stated so far, we have the following with probability 1 ´ δ

RegretDpT q “ rOpCP pM, T, δq ` CF pM, T, δqq

as desired.

Again, the following corollary is immediate from Theorem 5, Theorem 9 and Lemma 2.

Corollary 8. By using POR-UCBVI as the algorithm in the dueling reduction in Algorithm 9, we can get a bound on the
dueling regret given by

RegretDpT q “ rO

¨

˝

¨

˝pCpH,S,Aq `
ÿ

hPHp

b

d̄E,hpdC,h `Hq

˛

‚

?
T

˛

‚

where d̄E,h “ dimE

`

Fh,
B
2T

˘

.
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