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ABSTRACT

Topological correctness plays a critical role in many image segmentation tasks,
yet most networks are trained using pixel-wise loss functions, such as Dice, ne-
glecting topological accuracy. Existing topology-aware methods often lack robust
topological guarantees, are limited to specific use cases, or impose high com-
putational costs. In this work, we propose a novel, graph-based framework for
topologically accurate image segmentation that is both computationally efficient
and generally applicable. Our method constructs a component graph that fully
encodes the topological information of both the prediction and ground truth, al-
lowing us to efficiently identify topologically critical regions and aggregate a loss
based on local neighborhood information. Furthermore, we introduce a strict topo-
logical metric capturing the homotopy equivalence between the union and inter-
section of prediction-label pairs. We formally prove the topological guarantees of
our approach and empirically validate its effectiveness on binary and multi-class
datasets. Our loss demonstrates state-of-the-art performance with up to fivefold
faster loss computation compared to persistent homology methods.1

1 INTRODUCTION

In segmentation and structural analysis tasks, maintaining topological integrity is often more criti-
cal than simply improving pixel-wise accuracy. For example, in medical imaging, the topological
integrity of segmented structures, such as blood vessels or neural pathways, can be crucial for ac-
curate diagnosis and functional analysis (Briggman et al., 2009). However, topological errors, such
as loss of connectivity, are common in practice, even when pixel-wise accuracy is high. Standard
pixel-based loss functions, such as Dice-loss, do not adequately address these issues. While they
minimize pixel-level discrepancies, they do not take into account changes in topology, which may
be caused by few or even single pixels. As a result, even small pixel-wise errors can lead to signifi-
cant topological failures.

Previous works have shown how different topology-aware methods can improve the integrity of
target structures without sacrificing pixel-wise accuracy. Task-specific methods, such as those de-
signed for tubular structure segmentation (Shit et al., 2021; Kirchhoff et al., 2024; Menten et al.,
2023), are computationally efficient and perform well in their respective domains. However, they do
not generalize effectively to other types of topological structures or datasets. In contrast, persistent
homology (PH)-based methods can provide strong theoretical guarantees and deliver state-of-the-art
performance (Hu et al., 2019; Stucki et al., 2023; Clough et al., 2020), but are computationally more
demanding. Other topology-aware methods can be more versatile and computationally efficient, but
lack theoretical guarantees for topological correctness (Mosinska et al., 2018; Funke et al., 2018;
Hu et al., 2021).

This work proposes a loss function that generalizes to various segmentation tasks where topology is
crucial. Our method is based on a component graph that combines joint topological information of
ground truth and prediction (see Figure 1). A theoretically founded analysis of the nodes in the graph
allows the identification of topologically critical regions, which we then use for loss computation.

1Code is available at https://anonymous.4open.science/r/Topograph
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Figure 1: Visualization of the proposed component graph representation. Left: Input image; Right:
Overlay of the prediction (P ) and ground truth (G). The bright green lines indicate the foreground
structures in the ground truth, with (darker) green regions indicating correctly predicted foreground
and pink regions representing incorrectly predicted foreground. A combined component graph
G(P,G) is constructed to efficiently identify topological errors, which are used to compute a loss.

Our contribution. We (1) establish a metric that captures topological correctness with strict the-
oretical guarantees, especially capturing the homotopy equivalence between union and intersection
of a label/prediction pair, and (2) formulate a general topology-preserving loss for training arbitrary
segmentation networks. Specifically, our loss formulation

1. surpasses existing methods in terms of topological correctness of predictions;
2. provides stricter topological guarantees than existing works, i.e., formal guarantees beyond

the homotopy equivalence of ground truth and segmentation, by extending the enforced ho-
motopy equivalence to their union and intersection through the respective inclusion maps,
capturing the spatial correspondence of their topological properties;

3. is time and resource-efficient because of its low asymptotic complexity (O(n · α(n))) and
empirically low runtime;

4. and is flexible, making it applicable to arbitrary structures and image domains.

We empirically validate the prediction performance on various public datasets for binary and multi-
class segmentation tasks.

Related Work Significant progress has been made in segmentation methods that preserve topo-
logical accuracy. The use of PH-based loss functions for training segmentation networks (Hu et al.,
2019; Clough et al., 2020) ensures global topological correctness by aligning Betti numbers when
minimized to zero. However, two issues persist: 1) most methods cannot guarantee spatially related
matched structures, and 2) computational cost. Stucki et al. (2023) introduce the Betti Matching con-
cept, which ensures spatially correct barcode matching. However, the cost of barcode computation
is substantially higher compared to overlap-based methods, making its derived methods applicable
only to relatively small patch sizes up to 80× 80. This limits the applicability to medical and natu-
ral images, where whole images are commonly an order of magnitude larger. Another limitation is
the gradient’s dependence on just two simplex values, which Nigmetov & Morozov (2024) recently
showed to hinder optimization speed. While other methods are computationally more efficient (Hu
et al., 2021; Mosinska et al., 2018), they offer limited guarantees of topological correctness. Task-
specific, overlap-based approaches have been proposed for tubular structures where connectivity is
the key topological feature. ClDice (Shit et al., 2021) calculates a loss term based on the union of
ground truth skeletons and predicted volumes, a method extended in recent studies (Kirchhoff et al.,
2024; Menten et al., 2023). Other approaches refine tubular-structure features through iterative feed-
back learning strategies (Cheng et al., 2021) or rely on post-processing networks (Li et al., 2023;
Wu et al., 2024). In neuroscience, prior work presented various segmentation methods minimizing
false split and false merge errors in neuron segmentation tasks (Funke et al., 2018; Briggman et al.,
2009). These errors are related to topological segmentation errors in dimension 0. Accordingly,
Funke et al. (2017) presented the TED metric measuring the number of these errors outside a pre-
defined ”tolerance” region. However, none of these approaches generalize effectively to arbitrary
structures and complete topological information.
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Figure 2: Overview of our proposed method. (1) We use the prediction in each iteration of the train-
ing phase to build a combined image with the labels. (2) Based on the combined image, we construct
a superpixel graph G(P,G) that encodes the full topological information of both segmentations. (3)
We can identify topologically relevant errors using each node’s local neighborhood. (4) Finally, we
can backtrack the critical errors to image regions and calculate a topological loss function. This
allows an efficient formulation of a topological loss with strict theoretical guarantees.

2 METHOD

We propose a topology-preserving loss function based on the combined component graph G(P,G),
which encodes topological information from both the label and prediction. Using this graph, we
implement an algorithm for identifying regions in the prediction that must be corrected to adhere to
the ground truth topology. Thereby, we aim to optimize the network such that topologically critical
regions are correctly predicted while less significant regions are ignored. To construct the component
graph, we pair the prediction P and ground truth G into a 4-class image C that is then partitioned
into superpixels via connected component labeling. Each superpixel, composed only of pixels with
the same class in C, corresponds to exactly one node in the resulting component graph G(P,G).
This planar and bipartite graph, with edges connecting adjacent superpixels, captures the topology
of both P and G. Analyzing the local neighborhood of each node in G(P,G), we can identify critical
nodes that represent incorrectly predicted regions causing topological errors. Formally, the set of
critical nodes is defined by all incorrectly predicted nodes that do not have exactly one correctly
predicted foreground and one correctly predicted background neighbor. The final loss function is
obtained by pixel-wise aggregation for each critical region. A schematic overview of the method
from graph generation to loss calculation is provided in Figure 2. In the following sections, we
provide a detailed description of our method, its theoretical guarantees, its asymptotic complexity,
and some interesting adaptations to the method.

2.1 COMPONENT GRAPHS ENCODING DIGITAL IMAGE TOPOLOGY

Our method relies on the fact that a component graph G(I) of a binarized segmentation encodes the
relevant topological information of an underlying 2D segmentation. The vertices V(G(I)) resemble
the connected components of foreground and background, whereas the edges E(G(I)) encode the
neighborhood information of these components.

We model the topology of a binarized digital image I ∈ {0, 1}h×w by a two-dimensional cubical
grid complex C = [0, h]× [0, w] ⊂ R2 using the T-construction, i.e., a voxel (i, j) ∈ {1, . . . , h} ×
{1, . . . , w} corresponds to a top-dimensional cell [i − 1, i] × [j − 1, j] ∈ C. To apply duality
arguments and exclude edge cases, we add an additional background cell c⋆ that is attached to the
boundary [0,m] × {0, n} ∪ {0,m} × [0, n] of C. This turns the cubical grid complex C into a
CW-complex C̃ that is homeomorphic to the sphere S2.

3
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The foreground F (I) is given by the closure of the union of 2-cells whose voxels take value 1 and
its background B(I) is given by the complement C̃ \ F (I). Foreground and background decom-
pose into connected components F1, . . . , Fk and B1, . . . , Bl, which together form the vertices of its
component graph G(I). The component graph is a bipartite tree with edges between a foreground
component Fi and a background component Bj if and only if Fi∩Bj ̸= ∅. Note that the component
graph determines the homotopy type of the foreground F (I), since its Betti numbers can be inferred
from it. We find b0(F (I)) to be the number of foreground vertices of G(I) and

b1(F (I)) =
∑

i=1,...,k

degG(I)(Fi)− 1,

where degG(I)(Fi) denotes the number of edges in G(I) that contain vertex Fi. Beyond that, starting
from the surrounding background node along a path to a leaf of G(I) informs about the relationship
of consecutive nodes of the path. A background component following a foreground component is a
hole within the previous foreground component.

We consider the thickened foreground Fϵ(I) = Dϵ(F (I)) and the thinned out background Bϵ(I) =

C̃ \ Fϵ(I) to prevent connectivity issues in the combined component graph. Here, for a subset
X ⊆ R2, we denote by Dϵ(X) = {y ∈ R2 | ∃x ∈ X : ∥x − y∥∞ ≤ ϵ}. Note that Fϵ(I)
deformation retracts onto F (I) and B(I) deformation retracts onto Bϵ(I).

Combined component graph Based on an overlay of a binarized prediction P ∈ {0, 1}h×w and
its ground truth segmentation G ∈ {0, 1}h×w, we can cover the CW-complex C̃ by four subspaces:

1. TP = Fϵ(P ) ∩ F2ϵ(G) (true positive),
2. TN = Bϵ(P )∩B2ϵ(G) (true negative),

3. FN = Bϵ(P )∩F2ϵ(G) (false negative),
4. FP = Fϵ(P )∩B2ϵ(G) (false positive).

Each of these subspaces decomposes into connected components TP1, . . . ,TPk, TN1, . . . ,TNl,
FN1, . . . ,FNm, FP1, . . . ,FPn, which form the vertices of the combined component graph G(P,G).
Furthermore, we add an edge between two vertices of G(P,G) if and only if the intersection of their
closures is nonempty.

The combined component graph G(P,G) combines the information of ground truth and predicted
segmentation. Since we use the thickened foregrounds and thinned out backgrounds (for visualiza-
tion, see Figure 7), G(P,G) is a bipartite graph whose edges only occur between vertices contained
in T = TP∪TN and F = FP∪FN. Figure 2 visualizes G(P,G) (bottom right) for a given predic-
tion and ground truth segmentation (top left). The component graphs G(P ) and G(G) are quotients
of G(P,G) that can be obtained by contracting all edges incident to nodes with the same label with
respect to the respective image. Within G(P,G), it is possible to identify critical components of the
prediction that represent topological errors in the segmentation.

2.2 IDENTIFYING TOPOLOGICALLY CRITICAL COMPONENTS

Given G(P,G), our goal is to find a set Vc of critical vertices, whose pixels must be adjusted to
guarantee the same homotopy type for prediction and ground truth. Correcting the complete set of
incorrectly classified vertices

VF = {v ∈ V(G(P,G)) : v ⊆ F} (1)

forces equality of ground truth and prediction. However, a loss that is defined based on this rela-
beling is similar to a pixel-wise loss and does not focus on topologically critical components over
topologically irrelevant components. Therefore, we aim to identify all vertices Vr ⊆ VF whose la-
beling is irrelevant for the homotopy type of the prediction and exclude them from Vc to emphasize
the importance of topological errors. In G(P,G), those vertices can be characterized as vertices
that have exactly one correctly classified foreground neighbor and exactly one correctly classified
background neighbor. We define the regular vertices

Vr = {v ∈ VF | (∃! s ∈ NG(P,G)(v) : s ⊆ TP) ∧ (∃! t ∈ NG(P,G)(v) : t ⊆ TN)}. (2)

Here, NG(P,G)(v) denotes the neighboring vertices of v in G(P,G). We provide an intuition for this
definition in the Supplementary Material (see Figure 8).
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2.3 COMPONENT GRAPH LOSS

After excluding the regular vertices Vr, which are incorrectly classified but irrelevant for the topol-
ogy of the prediction, the set of critical vertices is given by

Vc = VF \ Vr (3)

and a loss can be created from the remaining incorrectly classified vertices in this set.

We calculate the loss of a single vertex as the average score of the predicted class among all its pixels
(ȳv). The combined loss is the sum of all loss terms from the individual regions. Notably, the loss
aggregation for each vertex in Vr remains a design choice and can be adjusted to the particularities
of any target task. With the design choices described above, the loss LCG can be denoted as

LCG = α
∑
v∈Vc

ȳv (4)

where α is a factor to balance LCG with a pixel-wise loss term. In this formulation, all pixels that
constitute the component of a vertex contribute to the loss via their class score.

2.4 TOPOLOGICAL GUARANTEES OF THE COMPONENT GRAPH LOSS

By definition, our loss formulation drops to zero if and only if the set of critical vertices is empty,
either because no misclassified vertices remain or because all misclassified vertices in G(P, T ) are
regular. We obtain the following proposition
Proposition 2.1. If LCG(P,G) = 0, then the commutative diagram

Fϵ(P )

Fϵ(P ) ∩ F2ϵ(G) Fϵ(P ) ∪ F2ϵ(G)

F2ϵ(G)

≃≃

≃ ≃

consists of deformation retractions.

We sketch a proof of the fact that the inclusion Fϵ(P )∩F2ϵ(G) ↪→ Fϵ(P ) is a deformation retraction.
The following proof by induction can be applied similarly to the other inclusions.

Sketch of proof. First note that Fϵ(P ) ∩ F2ϵ(G) = TP and Fϵ(P ) = TP⊔FP. We will prove the
statement by induction on the number of regular vertices in G(P,G) that are contained in FP.
For 0 regular vertices, Fϵ(P ) ∩ F2ϵ(G) = Fϵ(P ) holds and Fϵ(P ) ∩ F2ϵ(G) ↪→ Fϵ(P ) is triv-
ially a deformation retraction. So assume that FP contains n > 0 regular vertices, FP1, . . . ,FPn.
By induction hypotheses, the space X = TP⊔

(⊔
i=1,...,n−1 FPi

)
deformation retracts onto TP.

Hence, it remains to show that TP⊔FP deformation retracts onto X . Since we consider thickened
foregrounds and thinned out backgrounds, the closure of any connected component of FP is home-
omorphic to a closed disk D2 with finitely many open balls B2 cut out. By our assumption that

(a) (b)

Figure 3: Inclusion diagrams for two exemplary prediction label pairs (a) and (b). For example in
(a), all the inclusions are homotopy equivalences, which corresponds to the absence of critical nodes
in G(P,G). In example (b), none of the inclusions are homotopy equivalences, which corresponds
to the presence of critical nodes in G(P,G).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

FPn is regular, it has exactly one neighbor TPi contained in TP and exactly one neighbor TNj

contained in TN. Furthermore, it cannot have any additional neighbors, since G(P,G) is bipartite.
Therefore, it has exactly two neighbors, which are connected subsets of R2, and we conclude that it
can be at most one ball that is cut out of the disk. We distinguish two cases:

FPn

TPi

TNj

Case 1: In case the closure of FPn is homeomorphic to D2, its
boundary is homeomorphic to S1 and is divided into two con-
nected parts: a shared boundary with TPi and a shared bound-
ary with TNj . This follows by connectedness of TPi and TNj .
Hence, without loss of generality, we can assume that the north-
ern hemisphere of S1 is the shared boundary with TPi and the
southern hemisphere is the shared boundary with TNj . Then
clearly TP⊔FP deformation retracts onto X by pushing the
shared boundary of FPn with TNj along the disk onto the shared
boundary of FPn with TPi.

FPn

TPi TNj

Case 2: In case the closure of FPn is homeomorphic to an an-
nulus D2 \ B2, its boundary is homeomorphic to two copies
of S1. One of those is the shared boundary with TPi, and the
other one is the shared boundary with TNj . This time, we can
push the shared boundary with TNj through the annulus to the
shared boundary with TPi to see that TP⊔FP deformation re-
tracts onto X .

As an immediate consequence of this deformation retractions, LCG = 0 implies that the BM er-
ror (Stucki et al. (2023)) is 0 too. This is because homotopy equivalences induce isomorphisms
in homology and, therefore, the obtained induced matchings will match identical intervals of the
respective barcodes. Therefore, LCG is a more sensitive loss function than the BM loss. Similar
to Betti Matching, our approach does not only consider the topological spaces represented by im-
ages, but also takes the natural inclusions that connect them into account. While Betti Matching
uses induced matchings of persistence barcodes to compare prediction and label with respect to the
inclusions into their union, LCG also considers the inclusions of their intersection, see Figure 3 and
Figure 11 in the Supplement.

2.5 DIU METRIC

(e) GT ∩ Z(d) Prediction Z (f) GT ∪ Z 

(b) Prediction X(a) Ground Truth (c) Prediction Y

Figure 4: Topological metrics for the characteri-
zation of different network predictions (b-d) with
a given ground truth (a). Evaluating Betti numbers
does not favor Pred. X over Y. Similarly, the Betti
matching metric does not favor Y over Z. Only the
DIU metric (comparing intersection (e) and union
(f)) prefers the semantically favorable Y over Z.

We propose a new metric that describes the
Discrepancy between Intersection and Union
(DIU) as a strict measure for topological accu-
racy. The metric is based on the linear map i∗ :
H∗(Fϵ(P )∩F2ϵ(G)) → H∗(Fϵ(P )∪F2ϵ(G))
in homology (with coefficients in the field with
two elements, F2) induced by the inclusion i :
Fϵ(P ) ∩ F2ϵ(G)) → Fϵ(P ) ∪ F2ϵ(G) of the
intersection into the union. Formally, ξerr is
defined as

ξerr = dim(ker i∗) + dim(coker i∗). (5)

By Alexander duality, this quantity can be ex-
pressed purely in terms of connected compo-
nents (homology in degree 0) of foreground and
background. Writing j : Bϵ(P ) ∩ B2ϵ(G) →
Bϵ(P ) ∪ B2ϵ(G) of the intersection of back-
grounds into their union. We have

dim(ker i1) = dim(coker j0), (6)
dim(coker i1) = dim(ker j0). (7)

Thus, we have
ξerr = dim(ker i0) + dim(coker i0), (8)

+ dim(ker j0) + dim(coker j0). (9)

6
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Label Prediction Cross-Entropy Betti-Matching ToopographImage

Figure 5: Visualization of the pixels that support the gradient of different losses for an exemplary
label-prediction pair. The support pixels are displayed as a white overlay over the prediction. The
gradient of pixel-wise loss functions (e.g. CE) is supported by every incorrectly predicted pixel.
The BM gradient is supported by two pixels for every topological feature. The Topograph (ours)
gradient is supported by every pixel in the incorrectly predicted and topologically relevant regions.

Intuitively, the DIU metric ξerr counts the number of components in the union that do not have a
counterpart in the intersection (dim(coker)) and the surplus of intersection components that cor-
respond to the same component in the union (dim(ker)). Figure 4 (d) shows an example of cases
where the Betti number error and the Betti matching error both fail to capture the semantic differ-
ence between ground truth and prediction. We provide more examples of DIU metric scores in the
supplementary material Figures 11 and 12.

2.6 COMPUTATIONAL COMPLEXITY

Compared to 2D PH approaches (O(n log n) (Edelsbrunner & Harer, 2022)), our method’s asymp-
totic complexity is lower. The creation of G(P,G) using connected component labeling (Wu et al.,
2009) and extraction of the node labels can be done in O(n · α(n)), where α is the inverse Acker-
mann function, upper-bounded by 5 in practice. Identifying the regular nodes depends on evaluating
the node’s 1-hop neighborhood. Given the graph’s planarity, the number of edges is upper bounded
by O(n). Therefore, evaluating the direct neighborhood of all nodes is possible in linear time. For
the final aggregation of pixel scores, every pixel is evaluated at most once, which preserves the lin-
ear complexity. In summary, our loss LCG can be computed in linear time O(n · α(n)). Empirical
evaluations on the runtime are provided in the results section; see Figure 6 and Table 2.

2.7 ADAPTABILITY

Our method provides a foundation for an efficient identification of topologically critical regions.
Within this flexible framework, many adaptations to the method are possible. In the following, we
introduce two adaptations that we found beneficial for the performance in specific tasks.

Aggregation Mode Our method allows for flexible adaptation of the aggregation mode to fit task-
specific needs. We show ablations on this hyperparameter in Tables 5, 6, and 7. Figure 5 shows a
comparison of the dense support for the gradient that is achieved with a mean aggregation compared
to the support of PH-based methods. More specialized methods can be easily implemented beyond
the simple aggregations we evaluate in the ablation. Aggregations, including specific quantiles of the
pixels, or aggregating distinguished points such as local maxima or saddle points, are possibilities.

Threshold Variation Parameter Finally, we introduce a threshold variation parameter. This pa-
rameter σ defines the scale of a Gaussian distribution with location µ = 0. This distribution is used
to sample a shift parameter xsh to randomly alter the binarization threshold binth = 0.5 + xsh.
Introducing this parameter strongly enhanced our method and mitigates information loss due to the
binarization step. We provide an ablation on the binarization threshold in Table 3.

3 EXPERIMENTS

Datasets We evaluate our method on three real-world binary and two multi-class segmentation
tasks using publicly available datasets (binary: Cremi (Funke et al., 2018), Roads (Mnih, 2013),
Buildings (Mnih, 2013); multi-class: Platelet (Guay et al., 2021), TopCoW (Yang et al., 2023)).
We selected tasks from different modalities with different image sizes where topological correctness
represents an important characteristic, particularly in the context of downstream applications. Please
refer to the supplement for more details on the used datasets. Following Berger et al. (2024), we

7
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projected the 3D volume in the TopCoW dataset to obtain 2D images and used 2D slices for the
Cremi and Platelet datasets. To apply the topological losses in the multiclass setting, we frame the
multiclass problem as multiple binary classification problems as proposed in (Berger et al., 2024).
This approach scales the computational complexity linearly with the number of classes compared to
a single binary loss calculation of the respective loss function.

Baselines In all of our experiments, we compare our method to Dice loss. This is an important
baseline to validate that our loss (1) does not significantly impair pixel-wise accuracy and (2) truly
improves topological correctness. Moreover, we compare our method to the task-specific clDice
method (Shit et al., 2021) that is especially well-suited for the tubular structured roads, Cremi, and
circle of Willis datasets. Next, we compare to the Mosin loss function (Mosinska et al., 2018),
which uses a VGG’s feature representation for loss calculation. Finally, we compare to PH-based
approaches. First, HuTopo proposed by (Hu et al., 2019), which maximizes the similarity of the
predictions persistence diagram to a corresponding ground truth diagram. Second, the refined Betti
matching loss, which further matches the barcodes in the persistence diagrams based on spatial
correspondence.

Evaluation metrics We evaluate the pixel-wise accuracy using the Dice score. To evaluate topo-
logical correctness, we report the clDice metric (Shit et al., 2021), the Betti number error (B0, B1)
in dimensions 0 and 1, and the more refined Betti matching error (BM) (Stucki et al., 2023), which
considers the spatial alignment of topological features in both dimensions. Furthermore, we evaluate
the DIU metric, which additionally measures topological similarity between union and intersection
of label and prediction pairs (see Section 2.5).

Training and model selection We train a U-Net architecture (Ronneberger et al., 2015) with resid-
ual units from scratch and use Adam (Kingma, 2014) for optimization. We perform 5-fold cross-
validation and evaluate on an independent test set. We perform a random hyperparameter search
with 25 runs on each of the splits and select the model that has the highest balanced performance in
Dice and BettiMatching score on the validation set. We report the mean performance and standard
deviation on the independent test sets across the five data splits. Please refer to the supplement for
specifics on the hyperparameter spaces and more details on the training. We use the paired t-test be-
tween our model and each baseline to evaluate statistically significant performance (p-value < 0.05)
improvements.

3.1 RESULTS

Binary results Our method exhibits improved topological accuracy, as shown by the best val-
ues on the DIU and BM metrics, with significant improvements compared to most baselines on
the Roads dataset. Compared to loss functions such as HuTopo and Dice, we achieve significant
performance improvements. Interestingly, the HuTopo baseline shows a very low B0 score and a
high BM and DIU error. This observation indicates that HuTopo optimizes for the correct number
of topological features but disregards spatial alignment, which is in agreement with its theoretical
limitation of spatial mismatches (Stucki et al., 2023). Furthermore, we observe that the Dice loss
yields a (naturally) high Dice and clDice score. Although this difference is insignificant, it comes at
the cost of reduced topological correctness across all topological metrics. On the Roads dataset, we
see that Betti Matching also achieves good DIU and BM scores, almost as low as ours, but performs
worse in clDice. Specifically, the effects of a homotopy equivalence between union and intersection
(achieved when minimizing our loss function, as described in Section 2.3) are especially pronounced
for tubular structures (such as roads) and also typically lead to a low clDice score, as a mutual inclu-
sion of the centerlines also implies this homotopy equivalence (see Suppl. Figure 11). For the Cremi
dataset, our methods consistently exhibits strong performance across all metrics. clDice performs
comparably strong, since the tubular structure of the data is beneficial for the centerline-based loss
calculation. Some of the other methods have a strong performance in one metric but worse results
on other metrics.

Multi-class results In both multiclass datasets, our method consistently surpasses all baselines
in the two key topological metrics, DIU and BM score, often showing a statistically significant
performance improvement. For the B0 and B1 errors, our method performs comparably or slightly
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Table 1: Quantitative results. Best performances indicated in bold, statistical significance underlined
(p-value < 0.05). Our method outperforms the baselines in strict topological metrics (DIU, BM) for
all but one datasets while achieving similar Dice.

Dataset Loss DIU ↓ BM ↓ B0 ↓ B1 ↓ Dice ↑ clDice ↑

Buildings

Dice 79.798±4.70 67.101±2.80 25.867±2.51 1.452±.12 .777±.01 .611±.02

ClDice 80.867±4.48 64.771±2.37 26.188±1.35 1.407±.06 .774±.01 .623±.01

HuTopo 86.155±4.52 69.662±3.36 16.062±5.50 1.481±.07 .764±.01 .583±.01

BettiM. 79.271±4.24 63.310±2.62 17.669±2.35 1.407±.10 .774±.02 .605±.03

Mosin 81.724±4.90 68.875±5.15 29.157±4.83 1.495±.08 .763±.01 .581±.02

Ours 77.824±3.48 62.652±3.01 20.281±1.27 1.443±.06 .769±.01 .590±.02

Roads

Dice 7.313±.61 6.615±.53 1.935±.42 2.642±.17 .819±.01 .720±.01

ClDice 7.127±.32 5.810±.29 1.515±.21 3.058±.14 .803±.01 .704±.01

HuTopo 7.498±.74 6.356±.67 1.185±.62 2.683±.38 .817±.01 .714±.01

BettiM. 6.733±.36 5.908±.23 0.942±.10 2.317±.08 .818±.01 .707±.01

Mosin 7.221±.71 6.352±.64 1.523±.38 2.756±.11 .816±.01 .710±.01

Ours 6.521±.47 5.635±.40 1.212±.25 2.619±.16 .817±.01 .711±.01

Cremi

Dice 21.840±.12 10.872±.27 1.264±.12 2.936±.09 .946±.01 .960±.01

ClDice 21.728±.35 10.368±.13 1.296±.06 2.848±.18 .944±.01 .961±.01

HuTopo 23.192±.72 12.232±.52 1.368±.04 2.768±.17 .942±.01 .956±.01

BettiM. 22.832±.56 10.880±.38 0.920±.06 3.608±.33 .927±.01 .950±.01

Mosin 21.984±.37 10.944±.20 1.312±.07 2.704±.17 .946±.01 .960±.01

Ours 21.272±.29 10.392±.22 1.224±.09 2.720±.14 .947±.01 .961±.01

Platelet

Dice 14.791±1.41 1.610±0.19 0.640±0.10 0.536±0.07 .752± .01 .822±.01

ClDice 50.156±29.09 6.407±4.08 2.949±2.02 3.028±2.07 .728±.01 .783±.02

HuTopo 11.523±0.36 1.119±0.05 0.372±0.03 0.376±0.01 .746±.01 .823±.00

BettiM. 13.000±1.32 1.239±0.09 0.400±0.03 0.451±0.06 .747±.01 .826±.01

Mosin 11.143±0.52 1.130±0.06 0.356±0.05 0.407±0.02 .747±.01 .835±.00

Ours 10.906±0.26 1.110±0.04 0.406±0.02 0.376±0.02 .751±.01 .843±.00

TopCoW

Dice 15.716±1.61 0.977±0.89 0.722±0.07 0.073±0.02 .729±.01 .773±.01

ClDice 10.670±1.76 0.678±0.13 0.483±0.11 0.049±0.01 .733±.01 .804± .02

HuTopo 16.057±6.67 0.992±0.43 0.717±0.33 0.092±0.05 .711±.04 .758±.04

BettiM. 12.352±0.90 0.761±0.06 0.556±0.06 0.064±0.01 .740±.01 .787±.02

Mosin 23.534±16.95 1.489±0.98 1.128±0.83 0.154±0.07 .606±.16 .659±.17

Ours 10.477±1.35 0.658±0.09 0.461±0.06 0.052±0.02 .735±.01 .801±.01

below the top-performing baseline (e.g., HuTopo). However, our method’s superiority in BM score
indicates that this is likely caused by spatial mismatches of topological features, which is also backed
by our qualitative results (see Figures 15 and 16). Additionally, we note that our loss formulation
does not compromise pixel-wise accuracy, as reflected in the Dice score, where our method matches
the performance of the best baseline across both datasets, even significantly outperforming clDice
and HuTopo on the Platelet dataset.

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

10−2

10−1

100

101

Step

R
u
n
ti
m
e
(s
)

HuTopo Betti Matching
Mosin Topograph
ClDice

Figure 6: Runtime for a single loss calculation
over the complete training process.

In the TopCoW dataset, which is a vessel
dataset, clDice emerges as the strongest base-
line. However, its specialization in tubular
structures and reliance on extracting accurate
centerlines leads to poor performance in the
Platelet dataset, where blob-like structures with
inclusions dominate. We also observe that, on
the TopCoW dataset, Betti Matching yields a
relatively good BM score while having a sig-
nificantly worse DIU score. This observation is
likely caused by Betti Matching’s weaker theo-
retical guarantees that do not account for ho-
motopy equivalence between intersection and
union. This difference is further underlined
by Betti Matching’s significantly lower clDice
score, similar to our binary experiments. In the
Platelet dataset, the HuTopo baseline performs strongly, a notable contrast to its low performance on

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

the TopCoW dataset and in binary experiments, where spatial mismatches in topological structures
become more frequent.

Table 2: Computational runtime.

Loss Avg. loss
calc.

Train
time

ClDice 9.88 ms 1h27m
Mosin 233.00 ms 2h29m
Hu et al. 602.99 ms 3h05m
BettiM. 327.64 ms 2h46m
Ours 95.94 ms 1h53m

Ablation on runtime We empirically measure the run-
time of our loss compared to other topological losses.
Figure 6 shows the time demand of different loss func-
tions across an exemplary training run on the Platelet
dataset. After a short run-in phase, our method is con-
sistently faster than PH-based approaches and the Mosin
baseline. This is also reflected in the accumulated training
times in Table 2, which shows that our method saves up
to one hour of training time for a single run on the Platelet
dataset. For the average loss calculation, we achieve a 3-6
fold improvement compared to the PH methods.

3.2 ABLATION ON THE BINARIZATION THRESHOLD VARIATION

Table 3: Ablation on the binariza-
tion threshold variation for the buildings
dataset. Best results are in bold and sec-
ond best in italics.

Thres.
Var. DIU ↓ BM ↓ Dice ↑

0. 51.5625 40.6250 0.80886
0.01 47.2500 37.7500 0.81965
0.05 46.1250 36.2500 0.79447
0.1 46.7500 35.5625 0.82555
0.2 47.8750 38.2500 0.80861
0.5 49.2500 36.5625 0.82431

Otsu 49.1250 37.0000 0.82396

We investigate the effect of the binarization variation pa-
rameter, described in Section 2.7 in Table 3 The results
indicate that a fixed binarization without variation is in-
ferior to additional Gaussian threshold variation. A stan-
dard deviation of 0.05 - 0.1 yields the best results.

4 CONCLUSION

This work proposes a novel framework for image seg-
mentation to identify topologically critical regions via a
component graph G(P,G). Our proposed loss function
improves topological accuracy over pixel-wise losses,
consistently delivers state-of-the-art performance com-
pared to other topology-preserving approaches, and is low
in runtime. Formally, Topograph provides stricter topological guarantees than existing methods.
Our method goes beyond ensuring homotopy equivalence between ground truth and segmentation.
It further enforces homotopy equivalence to both their union and intersection through the respective
inclusion maps, thereby capturing the spatial correspondence of their topological properties. Addi-
tionally, we propose a sensitive segmentation metric (DIU) capturing fine topological discrepancies
which cannot be univocally captured by existing metrics.

Limitations and future work PH-based methods naturally define a filtration on pixel intensities,
capturing topological information across all thresholds. While binarization trades off some of this in-
formation, it significantly enhances runtime efficiency. Despite this, in many scenarios, our method
surpasses PH-based methods in segmentation performance. Ablation studies on the threshold varia-
tion parameter highlight the value of including topological information beyond a fixed threshold of
0.5, with features near the binarization threshold proving particularly important in our experiments
(see Table 3). Future efforts should aim to explore how our method, with its strict topological guar-
antees, can be integrated with filtrations to capture topological information at all thresholds, further
enhancing performance in every iteration. Additionally, our framework is currently designed for 2D
images, and extending the method to 3D remains a promising direction for future work.

5 REPRODUCIBILITY

We are committed to making our work entirely reproducible for the scientific community. Our
source code, released under an open-source license, is available via an anonymous public GitHub
repository https://anonymous.4open.science/r/Topograph. We provide all check-
points for all the models trained with our method and all the baselines and make them available
upon request. An exemplary model checkpoint is available in the repository. All datasets used in the
experiments are publicly available and are described in detail in the Supplementary Material. All
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applied preprocessing is documented in the code on github. We provide details on our random and
equal hyperparameter search on each data-split and baseline in the main manuscript and supplement
(see Table 9). We provide an extensive schematic and intuitive description of our method and proofs
in the Supplementary Material. Moreover, we provide numerous qualitative examples to help the
understanding of our newly presented DIU metric in Figures 11 and 12. Lastly, we provide further
qualitative examples of the combined graph in Figure 10.
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A APPENDIX

A.1 SCHEMATIC TOPOGRAPH LOSS

Ground Truth Prediction

FG

Combined
Representation

40 % Thickening

Topology Loss

Prediction

Combined

FGBG

1. Pixel Space Representation

2. Curve Space Reprsentation

20 % Thickening

3. Topological Error Identification

GT

Pred.

FG

FG

FG BG

BG FG

BG

BG

Topograph

Identification of
Topological Errors

Loss Aggregation
in Pixel Space

Combined
Embedding

Figure 7: Overview of the loss calculation using our method. (1.) First, the information of prediction
and ground truth is combined. Pixels with a correct prediction (purple (FG, FG), white (BG, BG)) do
not influence the loss calculation. (2.) To guarantee that the prediction and ground truth foreground
areas only have transversal cuts, the areas are thickened with different margins. (3) Based on a
region adjacency graph of the topologically critical areas can be identified and related to the relevant
pixels.
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A.2 ZERO LOSS PROOF

1.) Proof that for a prediction that generates 0 loss, there must
be:

a) at least one spatially overlapping prediction
component for every ground truth component. 
b) no prediction component that does not overlap at
least a single ground truth component

Prediction
Foreground: 

GT Foreground:
Assumption: no

overlapping prediction
component

The non-overlapped ground truth
component cannot (given the
assumption) have a correct

foreground neighbor
-> presence of a non-regular node

Prediction GT
FG BG

BG BG

BG FG

FG FG

A regular node is a misclassified node with
exactly one correctly classified background
neighbor and exactly one correctly classified
foreground neighbor. 

Defintions

CG Combined
Graph

CG

GT Ground Truth
Graph P Prediction

Graph

The prediction component that does
not overlap a single ground truth

component cannot (given the
assumption) have a correct

foreground neighbor
-> presence of a non-regular node

2.) Proof that for a prediction that generates 0 loss, there cannot
be:

a) more than one spatially overlapping prediction
component for every ground truth component.
b) a single prediction component overlapping multiple 
ground truth components

Assumption: two
overlapping prediction

components.
The part of the ground truth

component that separates the two
overlapping prediction component

must have at least two correct
foreground neighbors

-> presence of a non-regular node

CG

Assumption: no
overlapping ground

truth component

Assumption: two
overlapping ground
truth components.

The part of the prediction component
that separates the two overlapping

ground truth component must have at
least two correct foreground neighbors

-> presence of a non-regular node

3.) Proof that for a prediction that generates 0 loss, there cannot be:
a) neighborhood/a connection between two prediction
components whose unique spatially overlapping ground truth
components (see Proof 1 + 2) are not neighbors.
b) no neighborhood/a connection between two
prediction components whose unique spatially
overlapping ground truth components (see Proof 1 + 2) are
neighbors.

B1 F1

GT Pred

B1 F1 B1 F1

B1 F1F2 B2

The necessary edge to have different
connectivity, combined with unique

spatial overlap of components can not
exist by construction of the graph

representation.
-> wrong connectivity combined with
unique spatial overlap is impossible 

F2 F2

GT P

CG ? CG

Visual Proof for theoretical
guarantees

1-hop neighborhood of
regular nodes:

Figure 8: Visual proof that a zero loss guarantees topological equivalence between ground truth and
prediction. First, we present our definition of regular nodes. In the following, we prove topological
equivalence in three steps using contradiction.
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Alternative understanding of a regular
node:

The induced subgraph of the 1-hop
neighborhood of the misclassified node
must result in isomorph contracted
subgraphs for intersection and ground
truth labeling.

Only 1 correct neighbor. More than the required 2
correct neighbors

Intersection: all background nodes collaps.  Union: all foreground nodes collaps

CG

Intersection Labeling

The node color is defined by the intersection
of ground truth and prediction. The node color
is only foreground (black) if both ground truth
and prediction are foreground.

Union Labeling

The node color is defined by the union of
ground truth and prediction. The node color is
foreground (black) if at least one of either
ground truth or prediction are foreground.

Exactly one correct
foreground and background

neighbor

Contraction

Nodes of the same class (foreground or
background) are contracted until not further
contraction is possible in the graph.

Figure 9: Visualization of the properties of a regular node. Only a regular node results in isomorphic
contracted subgraphs after intersection and union labeling.

Figure 9 describes how errors with different neighborhoods behave under labeling according to the
intersection or union. Regular nodes (exactly one correct foreground and background neighbor)
result in the same graph independent of intersection and union. It follows that these nodes do not
affect the isomorphism of the intersection and the union graph.
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A.3 ADDITIONAL GRAPH EXAMPLES

Fig. 10 provides additional examples of the combined graph construction and the difference between
critical and regular nodes.

(b) GT unmatched (c) Pred unmatched (d) Connection between 
      multiple components

(e) Missing Connection 
      of two components

Dimension 0 Matching Cases:

Dimension 1 Matching Cases:

(g) Missing hole inside (h) Excess hole

Union/Intersection errors:

(j) Hole in Union (u) Incomplete hole matching

(i) Missing hole outside

(a) Matched Component

(f) Matching Hole

Figure 10: Additional examples of our combined graph representation with critical nodes marked by
a red circle and regular nodes marked by a green circle. Correctly predicted nodes are not marked.
The combined graph is visualized as an overlay following the notation from Fig. 8. The three
rows focus on frequent topological structures in Dimension 0 and 1 as well as two examples for
Union/Intersection errors.

A.4 DIU EXAMPLES

Fig. 11 visualizes the difference between multiple topological performance metrics and the practical
implication of homotopy equivalence between union and intersection in the case of a vessel example.
Fig. 12 shows comparisons between different performance metrics on further examples.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

BM

DIU

clDice

0

0

0

0

1

BM

DIU

clDice

0

0

0

0

< 1

BM

DIU

clDice

0

0

0

2

< 1

BM

DIU

clDice

0

0

2

2

0

BM

DIU

clDice

1

0

3

3

0

A B C D E

Figure 11: Comparison of different topological performance metrics on the example of tubular structure
segmentation. (A) results in a Betti number (+ all stricter metrics) error since the disconnected blue vessel
builds two connected components. (B) results in a Betti matching error (+ all stricter metrics) because the
spatial correspondence between the blue and black vessels is not provided. (C) results in and DIU error because
the two vessels lose the spatial correspondence in parts and then connect again. (D) results in a clDice score
< 1 because the overlap between the vessels does not include the skeleta in all parts.
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Figure 12: Examples for comparing topological performance metrics with different strictness. In the top left
and bottom right examples only the DIU metric captures a topological error. The combined graph is visualized
as an overlay following the notation from Fig. 8. We further compare to the TED metric Funke et al. (2017)
with 0 boundary tolerance. For TED the background is assumed to be a single instances with potentially
disconnected parts. Foreground components are viewed as independent instances with separate labels.
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A.5 ABLATION ON ALPHA PARAMETER

We study the effect of the loss weighting via an alpha parameter in an ablation experiment. The
results, see Table 4, show that there is an optimal weighting of the parameter in combination to a
pixel-wise loss.

Table 4: Ablation on the alpha parameter. The provided results are validation scores on the TopCoW
dataset. Rows where the best performance was achieved before the activation of the topological loss
are marked with a star *. The best results are in bold, and the second best results are in italics.

Alpha DIU ↓ BM ↓ B0 ↓ B1 ↓ Dice ↑ clDice ↑
0.0 10.944 0.7148 0.5259 0.0704 0.7461 0.7912
0.1 7.1667 0.4815 0.3296 0.0407 0.7540 0.8238
0.2 6.5556 0.4407 0.3037 0.0407 0.7571 0.8279
0.3 7.6111 0.4926 0.3259 0.0556 0.7601 0.8293
0.4 7.7222 0.4815 0.3370 0.0556 0.7770 0.8453
0.5* 11.3889 0.7148 0.5074 0.0667 0.7478 0.8047
0.6 7.0556 0.4630 0.3074 0.0815 0.7372 0.8032
0.7* 11.3889 0.7148 0.5074 0.0667 0.7478 0.8047
0.8* 11.3889 0.7148 0.5074 0.0667 0.7478 0.8047
0.9* 11.3889 0.7148 0.5074 0.0667 0.7478 0.8047
1.0* 11.3889 0.7148 0.5074 0.0667 0.7478 0.8047

A.6 ABLATION ON THE AGGREGATION

The results of the ablations on the aggregation mode are shown in Tables 6 and 5. The results show
that the aggregation mode is an influential hyperparameter with varying optima depending on the
dataset. For the roads dataset, dense aggregations such as mean and root mean square (rms) that
include information of all pixels in the critical region perform better than the sparse max aggrega-
tion. In the buildings dataset root mean square provides a compromise of high pixel-wise accuracy
combined with good topological correctness.

Table 5: Ablation on the aggregation type for pixels within incorrect nodes. The provided results are
validation scores on the roads dataset. Best results are in bold and second best results are in italics.

Aggregation DIU ↓ BM ↓ B0 ↓ B1 ↓ Dice ↑ clDice ↑
Mean 4.70 3.95 0.40 1.75 0.90264 0.84036
Max 4.50 4.05 0.40 2.05 0.88350 0.83857
RMS 4.25 3.90 0.45 1.65 0.90137 0.83668
Sum 5.90 5.76 1.50 2.05 0.90140 0.83870
CE 4.80 4.00 0.75 1.75 0.90320 0.83908

Table 6: Ablation on the aggregation type for pixels within incorrect nodes. The provided results
are validation scores on the buildings dataset. Best results are in bold and second best results are in
italics.

Aggregation DIU ↓ BM ↓ B0 ↓ B1 ↓ Dice ↑ clDice ↑
Mean 47.7500 37.7500 11.0000 0.3750 0.79831 0.66169
Max 45.7500 37.3125 12.1250 0.5625 0.81180 0.69061
RMS 48.8125 38.1250 9.1875 0.8125 0.82333 0.70351
Sum 49.3125 39.4375 12.2500 0.4375 0.81112 0.68048
CE 51.6875 39.0625 9.3125 0.5000 0.81459 0.70370
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Figure 13: Training loss when setting α to a very high value. After the warmup phase (here around step 400),
the topograph loss dominates the training, leading to deteriorating performance.

Table 7: Ablation on the aggregation type for pixels within incorrect nodes. The provided results
are validation scores on the platelet dataset. Best results are in bold and second best results are in
italics.

Aggregation DIU ↓ BM ↓ B0 ↓ B1 ↓ Dice ↑ clDice ↑
Mean 11.25722 1.18968 0.31548 0.54008 0.78641 0.86118
Max 10.86111 1.1496 0.29603 0.52024 0.77875 0.86652
RMS 11.66111 1.22381 0.31667 0.53413 0.77651 0.86383
Min 12.54722 1.33413 0.38929 0.53373 0.78872 0.85891

A.7 ABLATION ON THE DATASET SIZE

Table 8 shows the results of an ablation study of the dataset size. We found that our method improves
performance across all the different dataset sizes on the buildings dataset. Furthermore, the ablation
results do not indicate that the relative topological performance improvement gets smaller with an
increased amount of data.

Table 8: Comparison of the relative performance increase of using the Topograph method on differ-
ent dataset sizes. The displayed performances for BM and DIU represent the best validation scores
achieved for the respective metrics. The same validation set is used independent of the amount of
training data. The ablation was performed on the buildings dataset.

Dataset
Frac.

BM ↓
(TG)

DIU ↓
(TG)

BM ↓
(DSC)

DIU ↓
(DSC)

BM relative
improvement ↑

DIU relative
improvement ↑

12.5% 72.8929 86.5714 76.3333 89.1667 4.51% 2.91%
25.0% 72.5357 83.9286 74.8095 88.3961 3.04% 5.05%
37.5% 68.5238 84.5952 75.5238 89.6071 9.27% 5.59%
50.0% 66.7857 84.0952 67.4881 86.1191 1.04% 2.35%
62.5% 65.2143 82.8333 65.8095 83.3333 0.90% 0.60%
75.0% 62.9048 79.9048 64.6191 80.0238 2.65% 0.15%
87.5% 62.2738 81.2976 65.4881 82.0476 4.91% 0.91%
100% 59.2381 76.4167 64.3333 80.9524 7.92% 5.60%
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A.8 DETAILED DATASET DESCRIPTION

Buildings In the buildings dataset, the aim is to segment buildings based on aerial images. The
topologically interesting aspect is the number of foreground components and also the correct spa-
tial correspondence, ensuring that, e.g., buildings are correctly identified as opposed to parking
areas, roads, and other landmarks. We use the buildings dataset created by Mnih (2013). Our train-
ing/validation set consists of 80 images with a size of 375x375 and three color channels, the test set
contains 21 images of the same size. During training, we used a random crop to a size of 128x128.
The validation and test set for this dataset were split into 4 patches of size 128x128 in the 4 quadrants
of the image. This results in a total of 64 validation images and 84 test images for every fold.

Roads The task for the roads dataset is to provide a binary segmentation of aerial images into
streets and the background. In the roads dataset the correct connectivity is the most interesting
aspect. We use the dataset created by Mnih (2013). Our training/validation set consists of 100
images with a size of 375x375 and three color channels, the test set contains 24 images of the same
size. During training, we used a random crop to a size of 128x128. The validation and test set for
this dataset were split into 4 patches of size 128x128 in the 4 quadrants of the image. This results in
a total of 80 validation images and 96 test images for every fold.

Cremi The Cremi dataset Funke et al. (2018) contains electron microscopy images of an adult fly
brain. The segmentations consist of many closed circles of which most are connected together and
thus form only a few individual connected components. The images are of size 312x312 and have
just one gray-scale channel. We use 100 images for training and validation and 25 images as test set.
During training we randomly crop an area of 128 x 128 per image. The validation and test set for
this dataset were split into 4 patches of size 128x128 in the 4 quadrants of the image. This results in
a total of 80 validation images and 100 test images for every fold.

Platelet In this dataset, the aim is to segment round objects where the topology is described by
”inclusion,” e.g., a mitochondrion is always inside a cell segment. The dataset Guay et al. (2021)
contains six different classes (cell, mitochondrion, canalicular channel, alpha granule, dense granule,
and dense granule core). The dataset contains 50 samples for training/validation and 25 for testing
each (800×800 pixels) with six classes Guay et al. (2021). We create overlapping patches of size
200×200 during our experiments.

TopCoW The goal of the circle of Willis (coW) dataset is the segmentation of the coW and the
correct assignment to the 15 different vascular classes. The coW has hypoplastic and absent com-
ponents across different subjects, making correct segmentation challenging Yang et al. (2023). We
project the magentic resonance angiography scans and the labels to a 2D image and segmentation
mask. We use the public MICCAI 2023 TopCoW challenge data and use 110 subjects for train-
ing/validation and 22 subjects for testing. We crop each image to a size of 100×80 pixels.

A.9 COMPARISON OF DIU AND BM TO ”FALSE SPLITS” AND ”FALSE MERGES”.

In neuroscience, counting the number of ”false splits” and ”false merges” is a widespread metric to
assess neuron segmentation performance. In this paragraph, we compare the DIU metric to these
practices. To make a meaningful comparison, we have to make some prior assumptions. Definition
of ”False split/merge”: We define a ”false split” by a spatial overlap of two instances in the predic-
tion with a single instance in the ground truth. A ”false merge” is then defined by two instances of
the ground truth being overlapped by a single instance in the prediction. Moreover, we assume that
each instance resembles exactly one connected component with a unique label. To make a compar-
ison to our method, we furthermore assume that there is a background class that shares a common
label, but the background can be made up of one or more connected components (but is considered
a single instance with a single label). Using the definitions in Funke et al. (2017), the total number
of false splits can be calculated by summing the value n-1 for every ground truth instance, where n
is the cardinality of the set of spatially overlapped prediction labels. Similarly, the total number of
wrong splits can be calculated by summing the value n-1 for every prediction instance, where n is
the cardinality of the set of spatially overlapped ground truth labels.
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Background Convention: Furthermore, we consider two different options for handling the back-
ground. First, the background can be viewed as a normal instance and thus contribute equally to
the error calculation (A1). Second, the background can be ignored when calculating the error (A2).
In the following paragraph, we investigate the effect of these background choices on different error
cases.

With the definitions made above and following A1, we now compare how the sum of ”false splits”
and ”false merges” is related to the DIU metric. First, we consider the basic cases of having an
instance in the GT and no corresponding instance in the predictions or reversed. Summing up the
”false merges” and the ”false splits” would result in an error of 1. We can calculate the result as
follows: the GT-BG (ground-truth background) only overlaps P-BG (prediction background), (0
error), the GT component GT-1 overlaps P-BG (0 error), but P-BG overlaps both GT-BG and GT-1
(1 error). This behavior matches the behavior of the DIU and BM metric. Next, we consider the case
where the size of two corresponding instances (surrounded by the background) in GT and prediction
do not match perfectly, e.g., in some area, the prediction instance is larger than the GT instance,
and in another area, the GT instance is larger. This would lead GT-BG to overlap P-BG and P-1 (1
error), GT-1 to overlap P-BG and P1 (1 error), P-BG to overlap GT-BG and GT-1 (1 error), and P-1
to overlap GT-BG and GT-1 (1 error). This is in stark contrast to the DIU and BM metrics. Both
metrics yield an error of 0 as opposed to the calculated combined ”false split” + ”false merge” error
of 4. Following A2, we must change the definition for counting ”false splits” and ”false merges” to
min(n, 1) − 1 − I , where I is a binary indicator that is 1 if and only if P-BG or GT-BG occurs in
the list of corresponding labels. For the examples above, this results in the same behavior/error that
we see in the BM and DIU metrics because an overlap with the background does not contribute to
the loss. However, doing this would not allow the sum of ”false merges” and ”false splits” anymore
to count the complete absence of an instance as described above. This is because ”P-BG overlaps
both GT-BG and GT-1” would suddenly result in an error of 0. This shows that depending on the
choices that are made regarding handling the background, the ”false splits” and ”false merges” are
similar to the DIU and BM error for some cases but differ in others.

Another interesting comparison is the case of multiple overlaps for the same instances. We consider
Figure 10 (j)) as an example for this scenario. Here, the sum of ”false merges” and ”false splits”
evaluates to 4 (follwing A1). Following A2, the error would be 0. In contrast to both these results,
the DIU metric results in 2 because of an excess foreground component in the intersection and an
excess background component in the union.
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A.10 QUALITATIVE RESULTS

Image Label Dice ClDice HuTopo Betti Matching Topograph

Figure 14: Qualitative results for the cremi dataset.

A.11 HYPERPARAMETER SEARCH SPACES

In Table 9, we show the search space of hyperparameters for each loss method for the Cremi dataset.
The hyperparameters for each run are sampled randomly from the specified distributions. We do not
use weight regularization for any model.

Table 9: Hyperparameter Search Space for Different Loss Methods on Cremi dataset

Hyperparameter Topograph Dice clDice HuTopo BettiMatching Mosin

α [0.00001, 0.02]β N/A [0.001, 0.1]u [0.0, 0.15]u [0.0, 0.15]u [0.001, 0.5]β

ClDice alpha N/A N/A [0.1, 0.8]u N/A N/A N/A
α warmup epochs {20, 50, 80} N/A N/A {20, 50, 80} {20, 50, 80} N/A

Learning rate [0.0001, 0.01]β

Channels {[16, 32, 64, 128], [32, 64, 128, 256], [16, 32, 64, 128, 256], [32, 64, 128, 256, 512]}
Residual units {2, 3, 4, 5}
Batch size {8, 16, 32}
β : Log-uniform distribution, u: Uniform distribution

A.12 THRESHOLDING EFFECT
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Image Label Dice ClDice HuTopo Betti Matching Topograph

Figure 15: Qualitative results for the platelet dataset.
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Image Label Dice ClDice HuTopo Betti Matching Topograph

Figure 16: Qualitative results for the TopCoW dataset.
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(a) (b)

(c)

Figure 17: Intuitive illustration of the considered topological information. (a) Persistence barcode
of dimension 1 for the image displayed in (b). (b) Output probability map of a segmentation network
before binarization. (c) Crop of the component that is highlighted in (b) through a red circle. Here,
we show a greyscale image and calculate the corresponding persistence diagram. All topological
features that are ”stabbed” by the red line (0.5 threshold) will be maintained and considered in our
method. The endpoint of the interval in the red circle is distant from the binarization threshold and is,
therefore, not considered a relevant topological structure for model training. The other disregarded
features can be clearly interpreted as noise.
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