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Abstract

Human experts employ diverse strategies to complete a task, producing to multi-
modal demonstration data. Although traditional Adversarial Imitation Learning
(AIL) methods have achieved notable success, they often collapse theses multi-
modal behaviors into a single strategy, failing to replicate expert behaviors. To
overcome this limitation, we propose DPAIL, an adversarial IL framework that
leverages diffusion models as a policy class to enhance expressiveness. Building
on the Adversarial Soft Advantage Fitting (ASAF) framework, which removes
the need for policy optimization steps, DPAIL trains a diffusion policy using a
binary cross-entropy objective to distinguish expert trajectories from generated
ones. To enable optimization of the diffusion policy, we introduce a novel, tractable
lower bound on the policy’s likelihood. Through comprehensive quantitative and
qualitative evaluations against various baselines, we demonstrate that our method
not only captures diverse behaviors but also remains robust as the number of
behavior modes increases.

1 Introduction

Many sequential decision-making tasks involve multiple distinct expert behaviors to achieve the
same goal, resulting in multi-modal demonstration data. For example, human demonstrations of
robotic manipulation tasks often exhibit various grasping strategies, alternating between cautious
and aggressive movements. Capturing such diversity is important in imitation learning (IL), as an
agent should reproduce the range of expert strategies rather than collapse to an average behavior.
Generative modeling approaches offer a potential solution by learning rich distributions over expert
behavior. In particular, diffusion models, such as the Denoising Diffusion Probabilistic Model
(DDPM) [15], have emerged as powerful generative models capable of capturing complex, multi-
modal data distributions. Recent work [22] suggests that diffusion-based policies, trained to mimic
expert actions via behavioral cloning, can more faithfully reproduce stochastic and multi-modal
human demonstrations than conventional uni-modal policies. These successes motivate us to leverage
diffusion models for IL, aiming to model diverse expert behaviors as a multi-modal distribution.
However, a behavior cloned policy often struggles to generalize beyond the demonstrated data
distribution, suffering from compounding errors when it encounters novel states [25].

While behavioral cloning directly learns a policy from state-action examples via supervised learning,
inverse reinforcement learning (IRL) methods instead infer a reward function under which the expert is
optimal and then train a policy to maximize this reward [1, 37]. By capturing the underlying objectives
of expert behavior rather than specific actions, policies trained via IRL exhibit better generalization
and adaptability to variations in the environment or task dynamics. However, classical IRL was often
impractical, requiring repeatedly solving a full RL problem as an inner loop. Adversarial Imitation
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Learning (AIL) reframes IRL as a distribution-matching problem, enabling more efficient learning. In
particular, Generative Adversarial Imitation Learning (GAIL) [14] introduced a GAN-like framework
in which a discriminator is trained to distinguish expert from agent behaviors, and a policy modeled as
a generator is trained via policy gradient to produce trajectories that the discriminator cannot tell apart
from expert trajectories. This formulation effectively matches the occupancy measure of the learned
policy to that of the expert, and GAIL and its variants [36, 20] have demonstrated strong performance
on complex control tasks. However, the alternating optimization between the discriminator and policy
makes such adversarial methods computationally expensive and sometimes unstable.

Recent research has sought to simplify AIL by removing the costly policy optimization inner loop.
Barde et al. [6] proposed Adversarial Soft Advantage Fitting (ASAF), which avoids policy gradient
updates altogether. In ASAF, the discriminator is structured to output a parametric policy distribution
directly, conditioned on both the previous generator policy and a new learnable policy. When
optimized to equilibrium, this discriminator effectively solves for the optimal imitation policy,
eliminating the need for a separate policy update step, i.e. the updated policy is obtained for free
from the discriminator parameters. This elegant one-step formulation drastically simplifies training,
cutting out the policy gradient updates. Crucially, however, ASAF assumes the policy class is one for
which probabilities can be evaluated in closed form, e.g. policies modeled as Gaussian or normalizing
flow. This is because the training objective of the discriminator involves computing policy densitites,
an operation that is tractable for simple parametric or flow-based policies. This assumption breaks
down for diffusion models: diffusion policies generate samples via an iterative denoising process,
and their exact likelihood are generally intractable to compute. This incompatibility prevents a naive
approach to ASAF to diffusion-based policies.

In this paper, we bridge diffusion generative models with AIL without requiring any policy optimiza-
tion step. Building on the insights of ASAF, we introduce a diffusion policy imitation framework that
retains the ability to match expert distributions adversarially while harnessing the expressive power
of diffusion models for multi-modal behavior. The key contribution is a novel training objective:
we derive a tractable lower bound to the ASAF objective that enables us to train diffusion policies
efficiently despite the intractability of their exact densities. By optimizing this lower bound, our
method avoids explicit computation of marginal diffusion densities, yet still directs the diffusion
policy to fit expert demonstration distribution. Notably, our approach also complements recent
advances that integrate diffusion models into AIL. For example, diffusion models have been used
to strengthen the discriminator in AIL by modeling state-action distributions [18, 34]; in contrast,
our focus in on using diffusion as the policy model itself and devising a training algorithm that
circumvents policy gradient updates.

We summarize our main contributions as follows:

1. Diffusion Policies for AIL: To the best of our knowledge, we propose the first AIL framework
that employs diffusion policies to model a multi-modal expert behavior distributions.

2. ASAF for Diffusion Policies: We adapt the ASAF algorithm [6] to diffusion-based policies by
deriving a new training objective that bypasses intractable computation of marginal diffusion
densities. We show that this surrogate objective is a tight lower bound of the training objective in
ASAF, making our algorithm an instance of minorization-maximization algorithm [16].

3. Empirical Validation: We evaluate the proposed diffusion policy imitation method on standard IL
benchmarks, including continuous control tasks in the MuJoCo simulator [32] and maze navigation
tasks in the Maze2D environment [11]. Without the policy optimization loop, our diffusion-based
approach effectively learns to imitate the expert demonstrations on these tasks, demonstrating
that diffusion policies can capture the breadth of expert behaviors while maintaining competitive
performance with state-of-the-art imitation learning methods.

2 Related Works

2.1 Adversarial Imitation Learning (AIL)

AIL recasts imitation learning as occupancy-measure distribution matching, removing the expensive
full RL inner loop required by classical IRL algorithms. GAIL [14] was one of the first to formulate
this idea as a GAN-style minimax game between a policy generator and a discriminator, proving
its effectiveness in high-dimensional continuous-control tasks. A series of extensions broadened its
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expressiveness: InfoGAIL [20, 13] augments the adversarial objective with a mutual information
regularizer that pushes the policy to embed diverse behavioral patterns in latent variables, enabling it to
disentangle and reproduce multiple expert behavior modes. Building on this idea, Ess-InfoGAIL [10]
introduces a semi-supervised learning approach that extracts more meaningful representations from a
small amount of labeled demonstrations, thereby improving sample efficiency and stability. Although
these variants enhance the ability to imitate diverse expert behaviors, they still depend on the policy
update in the inner loop, inheriting the associated computational complexity and instability from
alternating optimization.

To alleviate this burden, Adversarial Soft Advantage Fitting (ASAF) [6] reformulates the AIL
objective so that the policy update occurs implicitly inside the discriminator, eliminating the need
for separate policy optimization. While computationally attractive, ASAF has so far been restricted
to policy classes with probabilities evaluatable in closed form, e.g. Gaussians or normalizing flows,
because its objective requires exact density evaluation.

2.2 Diffusion Models in Sequential Decision Making

Diffusion models [15, 30, 28, 31] have demonstrated remarkable success in generative modeling,
particularly in the domains of images and audio [8, 23, 5], and are now increasingly being applied to
sequential decision-making tasks. Diffusion-BC [22] showed that diffusion-based policies are more
accurate in replicating diverse human demonstrations in robotic manipulation tasks under behavior
cloning. Diffuser [17] uses diffusion model to generate trajectories guided by the reward function.
Diffuser Decision [2] uses conditional diffusion model with classifier-free guidance to generate
trajectories. Diffusion-QL [35] represents the policy as a diffusion model, and train it via Q-learning.

Diffusion models have been also adopted in the AIL setting. DiffAIL [34] replaces the standard binary
discriminator in AIL with an unconditional diffusion model trained via diffusion loss, enabling more
precise occupancy-measure matching of expert state–action pairs. DRAIL [18] instead incorporates a
conditional diffusion model as the discriminator to improve its ability to distinguish between agent
and expert state-action pairs.

Our work departs from these prior works by extending ASAF to diffusion-based policies, whose
exact densities are intractable to evaluate, via a tractable lower bound on the ASAF objective. This
development combines the efficiency and stability of ASAF with the rich, multi-modal expressivity
of diffusion models, achieving adversarial imitation learning without any explicit policy optimization
loop.

3 Preliminaries

3.1 Reinforcement Learning and Diffusion Models

Markov Decision Process (MDP) We model the RL problem as an MDP, defined by the tuple
M = (S,A, P, r, P0, γ), where S is the state space, A is the action space, P (s′|s, a) ∈ [0, 1] is the
state transition probability function, r(s, a) ∈ R is the reward function, P0(s) ∈ [0, 1] is the initial
state distribution, and γ ∈ [0, 1] is a discount factor. The objective is to learn a policy that maximizes
the expected return, maxE[

∑
t γ

tr(st, at)].

Diffusion Models Diffusion models [15] have emerged as powerful tools for RL tasks [17, 19, 3].
Following [17], we utilize diffusion probabilistic models [15] for generating trajectories. These
models are composed of two stochastic processes: forward noising process and reverse denoising
process. The forward process, shown in Eq. (1), is a Markov chain with a predefined Gaussian
transition, where data τ ∈ T is iteratively corrupted according to a fixed variance schedule:

q(τ i|τ i−1) := N (τ i;
√

1− βiτ
i−1, βiI), (1)

for i ∈ {1, . . . , N} and 0 < βi < 1. The variance schedule βi is chosen such that q(τN ) approxi-
mates N (0, I). The reverse (denoising) process, shown in Eq. (2), is another Markov chain with a
parameterized Gaussian transition, used for the data sampling distribution τ0 ∼ pθ(·):

pθ(τ
i−1|τ i) := N (τ i−1;µθ(τ

i, i),Σi) (2)
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where µθ(τ
i, i) is typically parameterized by a neural network. A common way to train this reverse

process is via the variational lower bound. However, rather than predicting the mean µ, DDPM [15]
propose to predict the forward noise ϵ, leading to the simplified loss function:

Eτ0,ϵ∼N (0,I),i∼U(1,N)[∥ϵ− ϵθ(τ
i, i)∥2], (3)

where τ i :=
√
αiτ

0 +
√
1−αiϵ, and αi :=

∏i
j=1(1−βj). Here, ϵθ is the noise prediction network

that estimates the noise ϵ added to the clean sample τ0 that leads to the noisy sample τ i.

3.2 Adversarial Imitation Learning

GAIL [14] This algorithm employs a GAN-like training for AIL, where a policy π acts as a
generator and an explicit discriminator D : T → [0, 1] serves as a binary classifier to distinguish the
trajectory τ ∈ T between the demonstration distribution pE induced by the expert policy πE and
the imitation policy distribution pπ. The policy and the discriminator are trained with the minimax
optimization objective:

min
π

max
D
L(D, pπ) (4)

where L(D, pπ) := Eτ∼pE
[logD(τ)] + Eτ∼pπ

[log(1−D(τ)] .

GAIL alternates between updating discriminator and the policy. The discriminator is updated using
the binary cross-entropy loss to differentiate expert samples from generated ones. The policy is then
updated through RL by using the discriminator output as the reward, e.g. −Eτ∼pπ [log(1−D(τ))].

ASAF [6] This algorithm, while adopting the same GAIL objective in Eq. (4), introduces the
structured discriminator, motivated by the analytical solution of the inner maximization [9]. Formally,
for any pair of policies π and π′, define

Dπ,π′(τ) =
pπ′(τ)

pπ′(τ) + pπ(τ)
. (5)

Then, the solution to the inner maximization in Eq. (4) is equal to the expert distribution, π∗ =
argmaxπ′ L(Dπ,π′ , π) = πE for any policy π, and the solution to the outer minimization is also
equal to the same solution, i.e. argminπ maxπ′ L(Dπ,π′ , π) = argminπ L(Dπ,πE

, π) = πE .

Based on this result, a practical implementation of ASAF sets π as the policy from the previous
iteration and updates the policy π′ to maximize the discriminator objective L.

4 Method

Our goal is to employ a diffusion-based policy to capture the multi-modal behaviors observed in
expert demonstrations. AIL methods typically involve training a discriminator and a generator via a
minimax objective, which often leads to training instability. In particular, when the discriminator
becomes too accurate, it can cause vanishing gradients for the generator, hindering the learning
process. When applying such adversarial training to diffusion policies, these issues are further
exacerbated. Specifically, computing policy gradient from reward signals requires backpropagation
through the entire diffusion sampling steps, resulting in substantial computational cost and additional
instability [21].

Therefore, we propose to train the diffusion policy using ASAF for improved efficiency and stability,
as ASAF does not require an explicit discriminator or separate policy gradient steps. The fundamental
bottleneck, however, is that ASAF requires efficient evaluations of pπ(τ), which is intractable for
diffusion models. To address this issue, we derive a lower bound of the discriminator training
objective that is tight at the optimal solution. With this lower bound as the surrogate objective, our
algorithm, Diffusion Policy Adversarial Imitation Learning (DPAIL), becomes an instance of a
Minorization-Maximization (MM) algorithm [16].

DPAIL: Diffusion Policy for Adversarial Imitation Learning without Policy Optimization In
line with Janner et al. [17], we assume trajectory-level diffusion models pθ(τ), instead of single-step
models. Throughout this paper, we denote τ0 as a trajectory to reuse notations from diffusion models.
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First, we focus on the first term of Eq. (4) that involves expert demonstrations. Using the structured
discriminator in Eq. (5), the maximization of the discriminator can be formulated as:

max
θ

Eτ0∼pE

[
logDθold,θ(τ

0)
]
= max

θ
Eτ0∼pE

[
log σ

(
log

pθ(τ
0)

pθold(τ0)

)]
. (6)

When pθ(τ
0) and pθold(τ0) are modeled as diffusion processes, it is computationally expensive to

directly calculate the marginal densities. We first leverage the fact that the perturbed transitions
q(τ i|τ i−1) of pθ and pθold are the same for all forward diffusion steps i ∈ [1, N ] since they have the
same variance schedule. This allows us to rewrite the log density ratio as follows:

log
pθ(τ

0)

pθold(τ0)
= log

∏N
i=1 q(τ

i|τ i−1)∏N
i=1 q(τ

i|τ i−1)

pθ(τ
0)

pθold(τ0)
= log

∏N
i=1 pθ(τ

i−1|τ i)∏N
i=1 pθold(τ i−1|τ i)

q(τN )

q(τN )

The last equality comes from the fact that the reverse and forward processes coincide when the
diffusion process reaches equilibrium, with q(τN ) being Gaussian that will be canceled out. In
addition, taking the expectation of this log density ratio over τ1:N ∼ q(·|τ0) does not change
anything since it is still ratio of marginal densities. Thus, we can rewrite Eq. (6) as

max
θ

Eτ0∼pE

[
log σ

(
Eτ1:N∼q(τ1:N |τ0) log

∏N
i=1 pθ(τ

i−1|τ i)∏N
i=1 pθold(τ i−1|τ i)

)]
= max

θ
Eτ0∼pE

[
fθ(τ

0)
]
. (7)

Finally, applying Jensen’s inequality to the concave function log σ(·), we can derive a lower bound
of f :

fθ(τ
0) ≥ Ei,τ i

[
log σ

(
N ·
[
KL
(
q(τ i−1|τ i, τ0)

∥∥pθold(τ i−1|τ i)
)
−KL

(
q(τ i−1|τ i, τ0)

∥∥pθ(τ i−1|τ i)
) ])]
(8)

where i∼ U(1, N), τ i∼ q(τ i|τ0).
Since q(τ i−1|τ i, τ0) is Gaussian by Bayes’rule, and both pθ(τ

i−1|τ i) and pθold(τ i−1|τ i) are parame-
terized as Gaussians, all KL divergences in Eq. (8) admit closed-form expressions. Following [15],
we do not predict the mean µθ of pθ directly. Instead, we train a noise prediction network ϵθ, under
which the mean is given by: µθ(τ

i, i) = 1√
1−βi

(
τ i − βi√

1−αi
ϵθ(τ

i, i)
)

. Substituting this into Eq. (8)

yields the first term of the L(1)
DPAIL objective as:

L(1)
DPAIL(θ, θ

old, τ0) := Ei,ϵ

[
log σ

(
N ·
(
∥ϵ− ϵθold(τ i, i)∥2−∥ϵ− ϵθ(τ

i, i)∥2
) )]

. (9)

Here, ϵθold is the noise prediction network for pθold , ϵ∼ N (0, I), i ∼ U(1, N), and τ i =
√
αiτ

0+
(1−αi)ϵ.

For the second term of Eq. (4) that involves generative sample τ̄0 from pθold , the lower bound of
the objective is derived similarly due to the symmetry of the sigmoid function 1 − σ(log pθ

pθold
) =

σ(log
pθold

pθ
):

L(2)
DPAIL(θ, θ

old, τ̄0) := Ei,ϵ

[
log σ

(
N ·
(
∥ϵ− ϵθ(τ̄

i, i)∥2−∥ϵ− ϵθold(τ̄ i, i)∥2
) )]

. (10)

Eq. (9) encourages accurate noise prediction for noised expert data by maximizing the gap in
prediction errors between ϵθ and ϵθold . In contrast, Eq. (10) discourages accurate noise prediction for
noised generative data in ϵθ. Detailed derivations are provided in Appendix A.

Monotonic improvement We employ the lower bound of Eq. (8),

Eτ0∼pE

[
L(1)

DPAIL(θ, θ
old, τ0)

]
+ Eτ̄0∼pθold

[
L(2)

DPAIL(θ, θ
old, τ̄0)

]
,

as a surrogate objective. Importantly, our algorithm becomes an instance of minorization-
maximization algorithm since (1) we optimize with a surrogate objective which is a lower bound
of the original objective (2) the lower bound is tight at the convergence θold = θ. This guarantees
monotonic improvement of the original training objective. Further explanations are provided in
Appendix A.
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Algorithm 1 DPAIL

Input: expert trajectories DE = {τn}NE
n=1

Randomly initialize pθ0 and set pθold ← pθ0
for k ∈ [0, . . . ,K] do

Collect trajectories Dθold = {τ̄n}
Nθold

n=1 using pθold by interacting with environment
Update θk+1 by optimizing the following loss in Eq. (9) and Eq. (10):

θk+1 = argmaxθ Eτ0∼DE
[L(1)

DPAIL(θ, θ
old, τ0)] + Eτ̄0∼Dθold [L

(2)
DPAIL(θ, θ

old, τ̄0)].
pθold ← pθk+1

end for

Practical implementation In our approach, the diffusion policy generates fixed-horizon sub-
trajectories of length H , instead of producing full trajectories. We then execute the resulting H
actions sequentially in the environment. To condition on the current state at the start of the sampling
process, we overwrite the corresponding state variable at every diffusion step with the current
observed state. The detailed procedures for action execution and sampling appear in Algorithm 2
and 3 in Appendix. Since there is a discrepancy between the trajectories sampled entirely from the
generator pπ and those obtained from the environment, we clip the denoising error ∥ϵ− ϵθold(τ̄ i, i)∥2
to prevent it from being too large. The complete DPAIL algorithm is summarized in Algorithm 1.
Additional implementation details can be found in Appendix D.

Comparison with DRAIL DRAIL [18] was introduced to incorporate diffusion models into the
discriminator in GAIL. It employs conditional diffusion models for the discriminator, with the loss
function given by:

Ldiff(τ
0, c) := Ei,ϵ[∥ϵϕ(τ i, i|c)− ϵ∥2] (11)

where c ∈ {c+, c−} denotes real or fake labels. This loss function forms the basis of the diffusion-
based discriminator Dϕ : T → [0, 1],

Dϕ(τ
0) := σ

(
Ldiff(τ

0, c−)−Ldiff(τ
0, c+)

)
,

which is trained using a binary cross-entropy loss to predict 1 for expert samples and 0 for generated
samples. The overall diffusion training objective of DRAIL is:

Eτ0∼pE
[log σ

(
Ldiff(τ

0, c−)−Ldiff(τ
0, c+)

)
] + Eτ̄0∼pπ

[log σ
(
Ldiff(τ̄

0, c+)−Ldiff(τ̄
0, c−)

)
]. (12)

Both DRAIL (Eq. (12)) and DPAIL (Eq. (9)) rely on differences in noise predictions errors within a
sigmoid function. In DRAIL, this difference arise from comparing predictions conditioned on two
different class labels c+ and c−, using the same noise prediction network ϵϕ. In contrast, DPAIL
computes the difference using two distinct noise prediction networks, ϵθ and ϵθold . Despite this
similarity in formulation, the two approaches differ fundamentally in how the diffusion model is used.
DRAIL trains a unimodal Gaussian policy via RL, using the diffusion models purely as a reward
signal, which limits its ability to represent multi-modal distributions. DPAIL, on the other hand,
directly leverages the generative capacity of diffusion models to reproduce the diverse behavior in the
expert demonstrations.

Extension to latent-conditioned diffusion policies Unlike InfoGAIL [20], our method does not
inherently learn latent representations, which makes it difficult to guide the policy’s behavior toward
specific modes. However, the DPAIL framework can be extended to incorporate latent variables z for
mode conditioning, as this is compatible with our derived lower bound. To enable this, we define a
latent-conditioned diffusion model where the joint probability of the generative process pθ(τ0:N , z)
factorizes as:

pθ(τ
0:N , z) = q(τN )q(z)

N∏
i=1

pθ(τ
i−1|τ i, z)

where q(z) is the latent prior and q(τN ) is the noise prior. To derive the corresponding tractable
lower bound, we follow a similar procedure to the main DPAIL formulation; the detailed derivation
is provided in Appendix F.
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5 Experiments

In this section, we evaluate our method across navigation and control tasks, including Maze2d and
MuJoCo environments. We begin with quantitative results that demonstrate its effectiveness at
modeling multi-modal expert demonstrations. Next, we provide qualitative trajectory visualization
to illustrate its ability to reproduce diverse behaviors. We then investigate how performance varies
with the size of the expert dataset and the number of behavior modes. Finally, we wrap up with the
analysis on the effects of the trajectory horizon H and the number of diffusion sampling steps N .

5.1 Experimental Setup

Environment We conduct experiments in six environments: (1) HalfCheetah-v3 and (2) Walker2d-
v3: The goal of these environments is to control a robot to move in the desired direction, including
running forward and backward. (3) Ant-v3: In this setup, a quadruped ant robot is tasked with
moving in one of four directions, including forward, backward, left, or right. (4) AntGoal-v3: This
environment requires a quadruped ant robot to navigate to a target position. We define eight target
locations, evenly distributed along a circle with a radius of 20. The target position is not observable
in the state representation. (5) maze2d-medium-v1: A point robot is tasked with navigating to one
of three goal positions in a medium-sized maze. (6) maze2d-large-v1: Similar to the medium-sized
maze task, but in a larger maze with five goal positions.

Multi-modal demonstration dataset For MuJoCo environments, we pre-train M expert policies
using SAC, where each policy corresponds to one of M behavior modes. We then sample K sets
of expert demonstrations using these pre-trained policies, with each set consisting of 10 trajectories
in MuJoCo. For Maze2d environments, we utilize the D4RL [11] dataset to collect demonstrations
consisting of trajectories from initial positions to goal positions. Specifically, we use 15 episodes for
maze2d-medium-v1 and 30 episodes for maze2d-large-v1.

Baselines We compare our method against the following baselines:

• BC [4, 24] learns a Gaussian policy via supervised learning, a mapping from observed states to the
corresponding expert actions.

• Diffusion [17, 7] trains diffusion policy models to predict action sequence conditioned on the state
via supervised learning.

• GAIL [14] learns a Gaussian policy by jointly training a generator and a discriminator. The
discriminator tries to distinguish trajectories produced by the policy from expert demonstrations,
while the policy is optimized to fool the discriminator.

• DiffAIL [34] integrates diffusion models into AIL by using the diffusion model loss as a reward. It
employs an unconditional diffusion model in the state-action reconstruction loss. Unlike GAIL, the
reward does not come from the estimated value of (5).

• DRAIL [18] combines diffusion models with GAIL by using conditional diffusion models as a
discriminator that performs binary classification.

• InfoGAIL [20, 13] is an extension of GAIL that trains Gaussian Mixture Models (GMM) to
capture multi-modal behaviors by incorporating an unsupervised representation. It uses a uniform
categorical distribution as the prior for the GMM.

• ASAF [6] is an alternative approach to train a Gaussian policy without policy optimization in AIL.

5.2 Experimental Results

To compare the performances of methods, we use normalized scores for MuJoCo tasks and success
rates for Maze2d tasks. For MuJoCo tasks, we compute returns across all modes, select the maximum
value, and normalize it relative to the corresponding expert performance, following [10, 7]. This
score is high even if the agent captures only a single mode of the expert behavior. In Maze2d tasks,
success is defined by whether the agent reaches one of the goals. We also evaluate behavioral diversity
by measuring the entropy of the mode index that yields the maximum return during evaluation. In
Maze2d, the goal index closest to the agent’s final state is used for entropy calculation. Table 1
summarizes the results.
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Table 1: Normalized score (Score) and entropy (Entropy) for MuJoCo and Maze2d tasks. Each
experiments is conducted using 5 different random seeds, and we collect 50 episodes for each seed.
We report the scores as mean ± standard error.

Environment Metrics (↑) BC Diffusion GAIL DiffAIL DRAIL InfoGAIL ASAF DPAIL

HalfCheetah-v3 Score 0.61 ± 0.18 1.01 ± 0.00 0.96 ± 0.03 0.99 ± 0.01 0.89 ± 0.04 0.65 ± 0.05 0.62 ± 0.08 1.02 ± 0.01
Entropy 0.23 ± 0.12 0.58 ± 0.05 0.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.01 0.33 ± 0.14 0.33 ± 0.11 0.61 ± 0.06

Walker2d-v3 Score 0.03 ± 0.00 0.58 ± 0.03 0.72 ± 0.01 0.53 ± 0.10 0.33 ± 0.04 0.55 ± 0.12 0.03 ± 0.00 0.78 ± 0.04
Entropy 0.26 ± 0.12 0.41 ± 0.10 0.00 ± 0.00 0.06 ± 0.06 0.21 ± 0.11 0.44 ± 0.11 0.40 ± 0.02 0.41 ± 0.13

Ant-v3 Score 0.18 ± 0.09 0.48 ± 0.04 0.01 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.03 ± 0.02 0.01 ± 0.00 0.56 ± 0.02
Entropy 0.28 ± 0.11 1.22 ± 0.05 1.19 ± 0.04 1.22 ± 0.04 1.26 ± 0.04 1.04 ± 0.03 1.07 ± 0.08 1.21 ± 0.02

AntGoal-v3 Score 0.04 ± 0.01 0.22 ± 0.03 0.57 ± 0.02 0.35 ± 0.07 0.41 ± 0.06 0.48 ± 0.03 0.02 ± 0.00 0.67 ± 0.01
Entropy 1.46 ± 0.26 1.52 ± 0.13 1.51 ± 0.07 1.75 ± 0.04 1.72 ± 0.03 1.78 ± 0.05 1.52 ± 0.12 1.73 ± 0.10

maze2d-medium-v1 Score 0.58 ± 0.17 0.93 ± 0.03 0.76 ± 0.19 0.92 ± 0.05 0.98 ± 0.01 0.76 ± 0.10 0.64 ± 0.09 0.99 ± 0.00
Entropy 0.66 ± 0.18 0.93 ± 0.08 0.12 ± 0.12 0.00 ± 0.00 0.00 ± 0.00 0.81 ± 0.05 0.75 ± 0.10 0.91 ± 0.02

maze2d-large-v1 Score 0.61 ± 0.18 0.94 ± 0.04 0.94 ± 0.01 0.96 ± 0.02 0.95 ± 0.03 0.74 ± 0.08 0.79 ± 0.10 1.00 ± 0.00
Entropy 0.61 ± 0.26 0.95 ± 0.20 0.10 ± 0.11 0.00 ± 0.00 0.45 ± 0.13 1.05 ± 0.06 0.54 ± 0.14 1.04 ± 0.11

Average Score 0.34 ±0.11 0.69 ± 0.11 0.66 ± 0.13 0.63 ± 0.14 0.59 ± 0.14 0.53 ± 0.10 0.35 ± 0.13 0.83 ± 0.06
Entropy 0.58 ±0.19 0.93 ± 0.15 0.63 ± 0.25 0.50 ± 0.28 0.61 ± 0.26 0.98 ± 0.20 0.76 ± 0.16 0.90 ± 0.19

(a) DPAIL (Ours) (b) GAIL (c) DiffAIL (d) DRAIL (e) InfoGAIL (f) ASAF
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Figure 1: Learned behaviors of baseline methods and DPAIL (ours) in MuJoCo tasks. The first row
shows HalfCheetah-v3, where the task is to move forward and backward (±x-axis) from a randomly
initialized position around (0, 0). Each plot illustrates five different trajectories generated from the
same policy. The second row shows AntGoal-v3, where the task is to reach one of eight target
positions distributed around a circle from a randomly initialized position near (0, 0). Each plot
illustrates ten different trajectories generated by the same policy.

In HalfCheetah-v3, all methods demonstrate strong performance except for BC. Specifically, GAIL,
DiffAIL, and DRAIL reach expert-level performance, but, yield zero or near-zero entropy, suggesting
they collapse to a single mode. While InfoGAIL attains higher entropy, it shows relatively lower
performance, which indicate the challenges of unsupervised representation learning. In contrast,
Diffusion and DPAIL achieve high performance and high entropy.

For more complex tasks with numerous behavior modes, such as Ant-v3 and AntGoal-v3, most
baseline methods (including Diffusion) perform poorly. GAIL, DiffAIL, DRAIL, and ASAF fail to
train, resulting in low returns and high entropy. These observations suggest instability when learning
from multiple modes—agents frequently oscillate among modes and fail to learn a stable policy.
Notably, training failures frequently yield nearly random behaviors, which lead to high entropy. For
example, most baseline methods fail on Ant-v3, culminating in low performance but high entropy.
Although InfoGAIL leverages the GMM to model diverse behaviors, it also exhibits low performance.
This suggests that combining RL policy training with unsupervised representation learning remains
as a challenging problem.

Meanwhile, Diffusion, an naive offline approach, sometimes outperforms several online methods
in terms of returns and entropy (e.g., in Ant-v3 and Maze2d), likely due to the stability of its
training process to effectively handle multiple modes. However, it struggles to perfectly imitate
expert behaviors with limited datasets. In contrast, DPAIL consistently achieves strong performance
alongside high entropy across all tasks. Even in environments with many behavior modes, DPAIL
successfully avoids mode-collapse due to the capability of diffusion models, and successfully learn
expert behaviors through the adversarial training. This demonstrates the effectiveness of our approach.
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Figure 2: Performance with respect to the number of demonstrations and modes. The x-axis denotes
the number of expert trajectories. The graph depicts the average score across 5 seeds with standard
error in Ant-v3 environment.

To qualitatively analyze the learned behaviors of our algorithm and baselines, we visualize trajectories
sampled from policies in Figure 1. In MuJoCo tasks, DPAIL demonstrates diverse and successful
behaviors across tasks. In contrast, most algorithms exhibit mode-collapse, where their learned
behaviors concentrated in only a few modes. Although InfoGAIL has high entropy, it struggles to
imitate even a single mode. We present additional qualitative results of the learned behaviors in the
Maze tasks in Appendix E.

5.3 Further Analysis

Impact of the number of demonstrations and modes To further assess DPAIL, we analyze its
performance across different demonstration dataset sizes ({3, 5, 10, 20} trajectories) and the number
of modes, ({1, 2, 3, 4}) in Ant-v3 environment, where most baseline methods fail to learn policies.
The results are presented in Figure 2.

In single-mode settings, all methods achieve stronger performance than in four-mode settings.
However, as the number of modes increases, most algorithms (excluding Diffusion and DPAIL)
experience significant performance degradation, ultimately failing to train. These findings highlight
the limitations of traditional AIL methods in handling multi-modal expert demonstrations.

While both Diffusion and DPAIL exhibit performance declines as the number of modes increases,
they do not fail to train policies. They maintain minimum normalized scores of 0.2 (Diffusion) and
0.4 (DPAIL) in the 3 trajectories demonstration and 4-modes setting. Notably, DPAIL consistently
outperforms Diffusion when the number of demonstrations is limited. However, once the number
of demonstrations becomes sufficiently large (e.g. 20 trajectories), Diffusion performs comparably
to DPAIL. These results demonstrates the effectiveness of DPAIL for scenarios requiring imitation
from limited, multi-modal demonstrations. Extended quantitative analyses supporting Figure 2 are
provided Table 5 in Appendix.

Inference compute versus planning horizon H DPAIL incurs higher inference cost due to N -step
diffusion sampling for action generation. To reduce this cost, we generate H-step sub-trajectories and
execute the resulting H actions sequentially, requiring diffusion sampling only every H time-steps.
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Figure 3: Inference compute versus planning horizon H

However, longer H introduces the
compounding errors between pre-
dicted and the true state transitions.
Figure 3 presents the trade-off be-
tween inference time per action (Time
Cost) and performance (Score) across
different values of H . As shown,
shorter horizon yield better perfor-
mance at higher time cost, while
longer horizons reduce inference over-
head bur degrade performance due to
the accumulated prediction errors.
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Diversity versus diffusion sampling step N The number of diffusion steps N di-
rectly influences the model’s ability to approximate the expert’s multi-modal distribution.
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Figure 4: Diversity versus diffusion sampling step N

To evaluate this effect, we vary N and
report both entropy and task perfor-
mance in Figure 4. As N increases,
entropy rises, indicating richer behav-
ioral diversity, while performance re-
mains nearly unchanged. This find-
ings indicate that at low N , the policy
captures only a few dominated modes,
whereas higher N values allow it to
represent a broader spectrum of be-
haviors.

6 Conclusion and Discussion

We presented Diffusion Policy for Adversarial Imitation Learning (DPAIL), a framework integrates
diffusion models into Adversarial Imitation Learning (AIL) to effectively capture multi-modal expert
behaviors. DPAIL avoids the mode-collapse and instability issues faced by many existing methods
when learning from multi-modal demonstrations. Extensive experiments on MuJoCo and Maze2d
tasks demonstrate that DPAIL consistently achieves high returns and maintains high diversity, even in
challenging environments with numerous expert modes.

7 Limitations and Future Work

While our approach effectively models multi-modal behaviors using diffusion models, it requires
more computation costs for action decision compared to other baselines. This overhead arises from
the iterative sampling process used by diffusion models. Several works [26, 12] have proposed
methods to accelerate sampling in diffusion process. Incorporating these techniques into DPAIL is
a promising direction to enhance its efficiency. Furthermore, while we demonstrate that DPAIL is
compatible with latent-conditioned diffusion policies, we did not provide an empirical validation.
We leave this as future work. Additionally, other directions exist for guiding policy behavior toward
specific modes beyond training a latent-conditioned policy. For instance, recent research [29] has
explored guidance mechanisms that steer the reverse diffusion process toward desired outcomes.
Extending our framework with such mechanisms could further improve controllability in multi-modal
settings.

Broader Impacts

The potential applications of our method extend across various fields, particularly in robotics and
industrial automation, where learning from demonstrations is crucial. In these domains, our approach
can significantly enhance autonomous decision-making by enabling effective imitation learning
from multi-modal expert demonstrations, where conventional algorithms often fail. By successfully
capturing this behavioral diversity, our work contributes to the advancement of more capable and
reliable AI for real-world deployment.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction should clearly state the main claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 7

13



Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Appendix D

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Appendix D

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Appendix D

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Standard Err is used

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Experiments

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We preserve anonymity.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Broader Impacts
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: No License Problem

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [No]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [No]

Justification:
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Details of the Derivation

A.1 Derivations of Eq. (9) and Eq. (10)

In this section, we provide detailed derivations of Eq. (9) and Eq. (10). Given the expert sample
τ0 ∼ pE , the reverse process pθ(τ i−1|τ i), and the corresponding forward process q(τ1:N |τ0),

Eτ0∼pE

[
log σ

(
Eτ1:N∼q(τ1:N |τ0) log

∏N
i=1 pθ(τ

i−1|τ i)∏N
i=1 pθold(τ i−1|τ i)

)]

= Eτ0∼pE

[
log σ

(
Eτ1:N∼q(τ1:N |τ0)

N∑
i=1

log
pθ(τ

i−1|τ i)
pθold(τ i−1|τ i)

)]

= Eτ0∼pE

[
log σ

(
N∑
i=1

Eτ1:N∼q(τ1:N |τ0) log
pθ(τ

i−1|τ i)
pθold(τ i−1|τ i)

)]

= Eτ0∼pE

[
log σ

(
N∑
i=1

Eτ i−1,τ i∼q(τ i|τ0)q(τ i−1|τ i,τ0) log
pθ(τ

i−1|τ i)
pθold(τ i−1|τ i)

)]

≥ Eτ0∼pE

[
Ei∼U(1,N),τ i∼q(τi|τ0) log σ

(
NEτ i−1∼q(τ i−1|τ i,τ0) log

pθ(τ
i−1|τ i)

pθold(τ i−1|τ i)

)]
(concavity)

= Eτ0∼pE

[
Ei∼U(1,N),τ i∼q(τi|τ0) log σ

(
NEτ i−1∼q(τ i−1|τ i,τ0) log

q(τ i−1|τ i, τ0)
pθold(τ i−1|τ i)

− log
q(τ i−1|τ i, τ0)
pθ(τ i−1|τ i)

)]
(13)

The posterior q(τ i−1|τ i, τ0) is tractable via Bayes’ rule, since both q(τ i−1|τ0) and q(τ i|τ i−1, τ0) =
q(τ i|τ i−1) are Gaussian distributions. The posterior q(τ i−1|τ i, τ0) can be written as the following:

q(τ i−1|τ i, τ0) = N (µ̃i(τ
i, τ0), β̃iI)

where µ̃i(τ
i, τ0) := 1√

1−βi

(
τ i − βi√

1−αi
z(τ i, τ0)

)
, z(τ i, τ0) :=

τ i−√
αiτ

0

√
1−αi

= ϵ. If we parameter-

ize the model pθ as N (µθ(τ
i, i), σ2

i I), then the KL divergence between these isotropic Gaussians
reduces to the squared error between the means: ||µ̃i(τ

i, τ0)− µθ(τi, i)||2. Ho et al. [15] proposes
to parameterize µθ using a predicted noise ϵθ, such as:

µθ(τ
i, i) =

1√
1− βi

(
τ i − βi√

1− αi

ϵθ(τ
i, i)

)
Substituting this into the squared error gives:∣∣∣∣∣∣µ̃i(τ

i, τ0)− µθ(τ
i, i)
∣∣∣∣∣∣2 =

∣∣∣∣∣∣∣∣ 1√
1− βi

(
τ i − βi√

1− αi

z(τ i, τ0)

)
− µθ(τ

i, i)

∣∣∣∣∣∣∣∣2
=

∣∣∣∣∣∣∣∣ 1√
1− βi

(
τ i − βi√

1− αi

ϵ

)
− 1√

1− βi

(
τ i − βi√

1− αi

ϵθ(τ
i, i)

)∣∣∣∣∣∣∣∣2
=

βi

(1− βi)(1− αi)

∣∣∣∣∣∣ϵ− ϵθ(τ
i, i)
∣∣∣∣∣∣2

Therefore, minimizing the KL divergence is equivalent to minimizing ||ϵ− ϵθ(τ
i, i)||2. Substituting

this into Eq. 13 leads to the following equation:

∴ Eτ0,i,ϵ

[
log σ

(
N · Ci

(
∥ϵ− ϵθold(τ i, i)∥2−∥ϵ− ϵθ(τ

i, i)∥2
) )]

.

Here, Ci =
βi

(1−βi)(1−αi)
, ϵ∼ N (0, I), and τ i∼ q(τ i|τ0), thus τ i =

√
αiτ

0+ (1−αi)ϵ. Follow-
ing Wallace et al. [33], we consider the weight N · Ci as a fixed constant value over i in practical
implementation. Similarly, given the generative sample τ̄0 ∼ pθold , the reverse process pθold(τ̄ i−1|τ̄ i),
and the corresponding forward process qθold(τ̄1:N |τ̄0) = q(τ̄1:N |τ̄0) (since they have the same
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variance schedule),

Eτ̄0∼pθold

[
log σ

(
Eτ̄1:N∼q(τ1:N |τ̄0) log

∏N
i=1 pθold(τ̄ i−1|τ̄ i)∏N
i=1 pθ(τ̄

i−1|τ̄ i)

)]

= Eτ̄0∼pθold

[
log σ

(
Eτ̄1:N∼q(τ̄1:N |τ̄0)

N∑
i=1

log
pθold(τ̄ i−1|τ̄ i)
pθ(τ̄ i−1|τ̄ i)

)]

= Eτ̄0∼pθold

[
log σ

(
N∑
i=1

Eτ̄1:N∼q(τ̄1:N |τ̄0) log
pθold(τ̄ i−1|τ̄ i)
pθ(τ̄ i−1|τ̄ i)

)]

= Eτ̄0∼pθold

[
log σ

(
N∑
i=1

Eτ̄ i−1,τ̄ i∼q(τ̄ i|τ̄0)q(τ̄ i−1|τ̄ i,τ̄0) log
pθold(τ̄ i−1|τ̄ i)
pθ(τ̄ i−1|τ̄ i)

)]

≥ Eτ̄0∼pθold

[
Ei∼U(1,N),τ̄ i∼q(τ̄i|τ̄0) log σ

(
NEτ̄ i−1∼q(τ̄ i−1|τ̄ i,τ̄0) log

pθold(τ̄ i−1|τ̄ i)
pθ(τ̄ i−1|τ̄ i)

)]
(concavity)

= Eτ̄0∼pθold

[
Ei∼U(1,N),τ i∼q(τ̄i|τ̄0) log σ

(
NEτ̄ i−1∼q(τ̄ i−1|τ̄ i,τ̄0) log

q(τ̄ i−1|τ̄ i, τ̄0)
pθ(τ̄ i−1|τ̄ i)

− log
q(τ̄ i−1|τ̄ i, τ̄0)
pθold(τ̄ i−1|τ̄ i)

)]

∴ Eτ̄0,i,ϵ

[
log σ

(
N · Ci

(
∥ϵ− ϵθ(τ̄

i, i)∥2−∥ϵ− ϵθold(τ̄ i, i)∥2
) )]

.

Ci =
βi

(1−βi)(1−αi)
, ϵ∼ N (0, I) and τ̄ i∼ q(τ̄ i|τ̄0), thus, τ̄ i =

√
αiτ̄

0+ (1−αi)ϵ.

A.2 Monotonic Improvement

In this section, we show that maximizing the surrogate objective guarantees a monotonic improvement
in the original training objective. Revisiting Eq. (8), we denote the lower bound by gθk,θ(τ

0), where
θk = θold:

fθ(τ
0) = log σ

(
Eτ1:N∼q(τ1:N |τ0) log

∏N
i=1 pθ(τ

i−1|τ i)∏N
i=1 pθk(τ

i−1|τ i)

)

≥ Ei∼U(1,N),τ i∼q(τi|τ0) log σ

(
NEτ i−1∼q(τ i−1|τ i,τ0) log

pθ(τ
i−1|τ i)

pθk(τ
i−1|τ i)

)
= gθk,θ(τ

0).

Since log σ(·) is a concave function, the lower bound gθk,θ(τ
0) is always less than or equal to the

original fθ(τ0) for all θ ∈ Θ: (1) fθ(τ0) ≥ gθk,θ(τ
0). Moreover, when θ = θk, the log term in both

sides becomes zero, yielding (2) fθk(τ
0) = gθk,θk(τ

0) = log 1/2.

If we maximize gθk,θ(τ
0) instead of fθ(τ0):

θk+1 = argmax
θ∈Θ

gθk,θ(τ
0),

then the following inequality holds:

fθk+1
(τ0) ≥ gθk,θk+1

(τ0) ≥ gθk,θk(τ
0) = fθk(τ

0).

Therefore, this procedure guarantees monotonic improvement of the original objective.

A.3 Comparison with DPO-Diffusion

DPO-Diffusion [33] is an algorithm for aligning diffusion models with human preferences by
considering ranked pairs (τ0w, τ

0
l ) that indicate a preference for τ0w over τ0l . Built upon the Bradley-

Terry (BT) model and the bijectivity between reward and policy, DPO-Diffusion optimizes the
diffusion model pθ with a reference distribution pref via:

E
(τ0

w,τ0
l
)
log σ

(
E

(τ1:N
w ,τ1:N

l
)

[
log

pθ(τ
1:N
w )

pref(τ1:N
w )

− log
pθ(τ

1:N
l )

pref(τ1:N
l )

])
, (14)
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where τ1:Nw ∼q(·|τ0w) and τ1:Nl ∼q(·|τ0l ). This objective function can be reformulated in terms of
noise prediction as:

E
(τ0

w,τ0
l
,i)
log σ

(
N(∥ϵw − ϵref(τ

i
w, i)∥2 −∥ϵw − ϵθ(τ

i
w, i)∥2 + ∥ϵl − ϵθ(τ

i
l , i)∥2 − ∥ϵl − ϵref(τ

i
l , i)∥2)

)
, (15)

where ϵw and ϵl correspond to τ iw and τ il , ϵθ and ϵref are the noise prediction network for pθ and pref.

By comparing the training objective functions, we can draw an interesting observation: if we denote
expert samples as τw and generative samples as τl, with the reference model corresponding to the
generator, the sigmoid in Eq. (15) is applied to the sum of the error difference on expert and generative
samples. In contrast, DPAIL evaluates these two error differences in indvidual sigmoid functions.

This distinction arises from DPO-Diffusion’s derivation via the BT model, whereas DPAIL is based
on the binary discriminator. Moreover, although DPO-Diffusion also aims to handle multi-modal
distributions, it targets offline RL and requires preference data, setting it apart from DPAIL’s focus on
direct expert imitation without preference annotations.

B Action Execution and Diffusion Sampling in DPAIL

In DPAIL, the diffusion policy generates fixed-horizon sub-trajectories of length H . The resulting H
actions are executed sequentially in the environment, so action sequence generation is performed
once every H environment steps. The action execution procedure is detailed in Algorithm 2. To
condition on the current state at the start of the sampling process, we overwrite the corresponding
state variable at each diffusion step with the current observed state. The sampling procedure is
detailed in Algorithm 3.

Algorithm 2 Action execution
1: s0 = env.reset()
2: for step t = 0, 1, 2... do
3: if t%H == 0 then
4: Sample actions a0:H ∼ pθold(·|st)
5: end if
6: at ← Get (t%H)−th action in a0:H .
7: rt, st+1 ← env.step(at)
8: end for

Algorithm 3 Sampling
1: Observe the current state st, τN ∼ N (0, I).
2: for diffusion step i = N, ..., 1 do
3: z ∼ N (0, I)
4: τ i−1= 1√

1−βi

(
τ i− βi√

1−αi
ϵθold(τ i, i)

)
+ σiz

5: Replace the initial state in τ i with st.
6: end for
7: Get action sequence a0:H from τ0.

C Environment Details

HalfCheetah-v3 and Walker2d-v3 The goal of these tasks is to move the agent forward and
backward along the x-axis as quickly as possible while maintaining balance. The state includes joint
angles, angular velocities and the x-coordinate. Each expert is trained using a reward function based
on the the forward reward, ±x-coordinate velocity.

Ant-v3 and AntGoal-v3 The goal of these tasks is to control a four-legged ant robot to move
forward, backward, left, or right as fast as possible while maintaining balance (Ant-v3), and to
navigate to one of eight target positions evenly distributed around a circle with a radius of 20
(AntGoal-v3). The state includes joint angles, angular velocities, and the (x,y) coordinates. Each
expert is trained using a reward function based on the the forward reward, ±x-coordinate velocity
or ±y-coordinate velocity in Ant-v3. In AntGoal-v3, each expert is trained using a reward function
based on the distance between the goal and the current robot’s position. We use the 10 trajectories
per mode as expert demonstrations, with each trajectory consisting of 1k transitions.

maze2d-medium-v1 and maze2d-large-v1 The goal of these tasks is to control a point robot to
navigate to one of the target positions. In the medium-sized maze, target positions are {(1.0, 6.0),
(6.0, 5.0), (6.0, 1.0)}, while in the large-sized maze, they are {(1.0, 10.0), (3.0, 8.0), (7.0, 10.0), (5.0,
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4.0), (7.0, 1.0)}. Expert demonstrations are selected from D4RL dataset 1. We use the 15 episodes for
maze2d-medium-v1 and 30 episodes for maze2d-large-v1.

D Implementation Details

Policy gradient method We use PPO [27] to train policies and GAE(λ) to compute advantage in
GAIL, DiffAIL, DRAIL and InfoGAIL. The corresponding hyperparameters for PPO are provided in
Table 3. At each k-th iteration, we perform m-steps rollout in the environment. The corresponding
hyperparameter settings for each algorithm are provided in Table 2.

Diffusion and DPAIL Both Diffusion and DPAIL utilize the same U-Net architecture with residual
blocks consisting of temporal convolution and group normalization, following [17] 2. We use N = 50
diffusion steps in both Diffusion and DPAIL for all tasks. Additionally, we normalize the state values
before feeding them into the network. For DPAIL, we clip the norm value of ∥ϵ− ϵθold(x̄i, i)∥ not to
be larger than 0.2.

GAIL, DiffAIL, DRAIL and ASAF For GAIL, DiffAIL, DRAIL, and ASAF, we use a multi-layer
perceptron (MLP) with two hidden layers of size [64, 64] for the Gaussian policy. We also normalize
the state values before feeding them into the policy network. The discriminator in GAIL is an MLP
with two hidden layers of size [100, 100]. The discriminator architectures of both DiffAIL and
DRAIL are based on an MLP U-Net structure based on the official repository 3, and N = 50 diffusion
steps.

InfoGAIL For InfoGAIL, we use discrete latent variables, setting the number of latent variables
to 8 for all tasks. We concatenate the one-hot encoding of the latent variable with the state and use
the resulting vector as input to a Gaussian policy. We also normalize the state values before feeding
them into the policy network. The discriminator network and class prediction network in InfoGAIL
share an MLP with two hidden layers of size [100, 100] and output the corresponding values. For the
coefficient of unsupervised regularization term, we perform a greedy search over the range [0.1, 0.2,
0,3, 0,5].

Form of the reward in GAIL, DiffAIL, DRAIL and InfoGAIL For Mujoco tasks, we use a
commonly adopted reward function of the form r(s, a) = − log(1 − D(s, a)), which acts as a
survival bonus, encouraging agents to survive longer in the environment to accumulate more rewards.
For Maze tasks, we use the reward function r(s, a) = log(D(s, a)), which serves as a penalty signal.
This is well-suited for goal-reaching tasks, as it incentivizes the agent to reach the goal as quickly as
possible. In AntGoal-v3, we adopt the survival-style reward r(s, a) = − log(1−D(s, a)) and we
find this to work well in practice.

Details of ASAF ASAF aims to match the trajectory distribution under a stationary
policy π(a|s). For π, the trajectory distribution pπ(τ) is decomposed as pπ(τ) =

P (s0)
∏T−1

t=0 π(at|st)P (st+1|st, at). To optimize Eq. (4) for trainable policy πθ and generator
policy πG, ASAF defines the discriminator in policy space as

Dπθold ,πθ
(τ) = σ

(
log

pπθ
(τ)

pπθold (τ)

)
= σ

(∑
t

log πθ(at|st)− log πθold(at|st)

)
(16)

where the transition probability P (st+1|st, at) cancels out, leaving only to the ratio of policy terms.
In practice, ASAF segments trajectories into windows of length w, updates πθ via a binary cross-
entropy loss, and then sets πθold as the updated πθ to the next iteration. This procedure iteratively
updates πθ until convergence. We offer the ASAF algorithm in Algorithm 4.

1https://github.com/Farama-Foundation/D4RL
2https://github.com/jannerm/diffuser
3https://github.com/NVlabs/DRAIL
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Algorithm 4 Adversarial Soft Advantage Fitting (ASAF)

Input: expert trajectories DE = {τn}NE
n=1

Randomly initialize πθ0 and set πθold ← πθ0
for k = {0 · · ·K} do

Collect trajectories Dθold = {τ̄n}
Nθold

n=1 using πθold by interacting with environment
Update θk+1 by optimizing the following loss:

θk+1 = argmax
θ

Eτ∼DE

[
logDπθold ,πθ

(τ)
]
+ Eτ̄∼Dθold

[
log
(
1−Dπθold ,πθ

(τ)
)]

,

where Dπθ,πθold (τ) is defined in Eq. (16).
pθold ← pθk+1

end for

Table 2: Hyperparameters used for baselines across various environments.
Method Hyperparameter HalfCheetah-v3 Walker2d-v3 Ant-v3 AntGoal-v3 maze2d-medium-v1 maze2d-large-v1

Diffusion
lr 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
horizon H 4 4 4 4 16 16
# Epoch 1000 1000 1000 1000 1000 1000

GAIL

policy lr 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
discriminator lr 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
# rollout length m 50000 50000 50000 50000 10000 10000
# Iteration K 200 200 10000 600 100 100

DiffAIL

policy lr 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
discriminator lr 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
# rollout length m 50000 50000 50000 50000 10000 10000
# Iteration K 200 200 10000 600 100 100

DRAIL

policy lr 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
discriminator lr 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
# rollout length m 50000 50000 50000 50000 10000 10000
# Iteration K 200 200 10000 600 100 100

InfoGAIL

policy lr 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
discriminator lr 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
coef MI 0.2 0.2 0.1 0.1 0.3 0.3
# rollout length m 50000 50000 50000 50000 10000 10000
# Iteration K 200 200 10000 600 100 100

ASAF

policy lr 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003
window w 64 64 64 64 64 64
# rollout length m 50000 50000 50000 50000 10000 10000
# Iteration K 200 200 400 400 100 100

DPAIL (Ours)

lr 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
horizon H 4 4 4 4 16 16
# rollout length m 10000 10000 10000 10000 5000 5000
# Iteration K 200 200 200 200 200 200

Table 3: PPO training hyperparameters used for each task.
Hyperparameter HalfCheetah-v3 Walker2d-v3 Ant-v3 AntGoal-v3 maze2d-medium-v1 maze2d-large-v1

clipping range ϵ 0.2 0.2 0.2 0.2 0.2 0.2
discount factor γ 0.99 0.99 0.99 0.99 0.995 0.995
gae parameter λ 0.97 0.97 0.97 0.97 0.97 0.97
# epoch per iteration 50 50 50 50 40 40
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E Additional Experimental Results

We present the learned behaviors of baselines methods and DPAIL in Figures 6 and 7. The expert
demonstration behaviors are visualized in Figure 5. To evaluate the multi-modal learning capability
of imitation learning methods, we measure the entropy of the learned behaviors to quantify diversity.
Additionally, to assess the similarity between the learned trajectories and expert demonstrations, we
compute Maximum Mean Discrepancy (MMD) between their respective state-action distributions,
using an RBF kernel with 20 bandwidths, as shown in Table 4. Since MMD quantifies the divergence
between distributions, lower values indicate better recovery of all modes present in the expert
distribution.

(a) HalfCheetah-v3 (b) Walker2d-v3 (c) Ant-v3 (d) AntGoal-v3 (e) maze2d-medium-v1 (f) maze2d-large-v1
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Figure 5: Expert demonstrations across 6 tasks.
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(a) DPAIL (Ours) (b) GAIL (c) DiffAIL (d) DRAIL (e) InfoGAIL (f) ASAF

Figure 6: Learned behaviors of baseline methods and DPAIL (ours) in Maze2d tasks. The first row
depicts maze2d-medium-v1, while the second row depicts maze2d-large-v1. Each graph illustrates 5
different trajectories generated by the same policy. The initial position is marked with circle, and the
goal positions are marked with stars.

(a) DPAIL (Ours) (b) GAIL (c) DiffAIL (d) DRAIL (e) InfoGAIL (f) ASAF
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Figure 7: Learned behaviors of baseline methods and DPAIL (ours) in MuJoCo tasks. The first row
shows Walker2d-v3, where the task is to move forward and backward (±x-axis). The second row
shows Ant-v3, where the task is to move forward, backward, left and right (±x-axis, ±y-axis). Each
plot illustrates ten different trajectories generated by the same policy.

E.1 Impact of the Number of Demonstrations and Modes
We provide additional experimental results on the impact of the number of demonstrations and
modes in Ant-v3 (Table 5) and AntGoal-v3 (Table 6). In both tasks, increasing the number of modes
generally degrades the performance of most algorithms. However, DPAIL exhibits greater robustness,
benefiting from the expressiveness of diffusion models.
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Table 4: MMD(↓) between state-action distributions between expert demonstrations and learned be-
haviors. DPAIL has the lowest value on most tasks, indicating better recovery of expert distributions.

Environment BC Diffusion GAIL DiffAIL DRAIL InfoGAIL ASAF DPAIL

HalfCheetah-v3 0.029 0.027 0.038 0.038 0.045 0.039 0.031 0.025
Walker2d-v3 0.127 0.091 0.165 0.182 0.212 0.099 0.190 0.096
Ant-v3 0.334 0.018 0.281 0.341 0.335 0.282 0.311 0.012
AntGoal-v3 0.571 0.082 0.385 0.443 0.401 0.192 0.551 0.021
maze2d-medium-v1 4.9e-4 9.1e-5 4.8e-4 4.2e-4 4.5e-4 5.0e-4 5.5e-4 8.0e-5
maze2d-large-v1 5.1e-3 1.0e-4 3.0e-4 1.5e-4 5.0e-4 5.3e-4 5.9e-3 9.2e-5

Table 5: Normalized score (Score) and entropy (Ent) on varying the number of demonstrations and
modes in Ant-v3.

# of modes # of demos metrics BC Diffusion GAIL DiffAIL DRAIL InfoGAIL ASAF DPAIL

1

3 Score 0.13 ± 0.03 0.38 ± 0.12 0.39 ± 0.08 0.50 ± 0.20 0.27 ± 0.12 0.23 ± 0.03 0.27 ± 0.12 0.48 ± 0.25
Ent 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

5 Score 0.15 ± 0.06 0.4 ± 0.23 0.39 ± 0.08 0.55 ± 0.25 0.22 ± 0.15 0.21 ± 0.01 0.22 ± 0.15 0.53 ± 0.22
Ent 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

10 Score 0.17 ± 0.09 0.57 ± 0.21 0.50 ± 0.18 0.55 ± 0.40 0.47 ± 0.28 0.23 ± 0.00 0.47 ± 0.28 0.67 ± 0.29
Ent 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

20 Score 0.10 ± 0.09 0.74 ± 0.08 0.51 ± 0.12 0.69 ± 0.14 0.45 ± 0.24 0.25 ± 0.07 0.45 ± 0.24 0.72 ± 0.05
Ent 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

2

3 Score 0.10 ± 0.06 0.40 ± 0.22 0.17 ± 0.19 0.14 ± 0.29 0.28 ± 0.10 0.12 ± 0.01 0.10 ± 0.12 0.47 ± 0.10
Ent 0.75 ± 0.30 0.60 ± 0.08 0.36 ± 0.20 0.48 ± 0.18 0.29 ± 0.18 0.52 ± 0.22 0.42 ± 0.29 0.62 ± 0.11

5 Score 0.14 ± 0.06 0.43 ± 0.15 0.17 ± 0.25 0.13 ± 0.25 0.26 ± 0.10 0.15 ± 0.01 0.20 ± 0.14 0.48 ± 0.08
Ent 0.88 ± 0.09 0.49 ± 0.24 0.34 ± 0.18 0.46 ± 0.26 0.31 ± 0.18 0.53 ± 0.26 0.46 ± 0.32 0.60 ± 0.13

10 Score 0.18 ± 0.15 0.52 ± 0.09 0.15 ± 0.23 0.26 ± 0.29 0.31 ± 0.23 0.13 ± 0.02 0.15 ± 0.02 0.64 ± 0.08
Ent 0.71 ± 0.41 0.59 ± 0.09 0.18 ± 0.15 0.52 ± 0.30 0.19 ± 0.15 0.65 ± 0.15 0.39 ± 0.25 0.61 ± 0.04

20 Score 0.15 ± 0.03 0.59 ± 0.09 0.16 ± 0.02 0.32 ± 0.25 0.28 ± 0.11 0.12 ± 0.01 0.12 ± 0.09 0.63 ± 0.18
Ent 1.01 ± 0.25 0.66 ± 0.01 0.44 ± 0.25 0.51 ± 0.23 0.36 ± 0.32 0.52 ± 0.18 0.44 ± 0.30 0.59 ± 0.08

3

3 Score 0.05 ± 0.01 0.34 ± 0.11 0.13 ± 0.20 0.12 ± 0.01 0.08 ± 0.08 0.03 ± 0.01 0.03 ± 0.01 0.53 ± 0.07
Ent 0.93 ± 0.32 0.85 ± 0.11 0.76 ± 0.17 0.82 ± 0.19 0.98 ± 0.10 0.95 ± 0.08 0.81 ± 0.12 1.01 ± 0.16

5 Score 0.06 ± 0.05 0.44 ± 0.13 0.11 ± 0.21 0.10 ± 0.24 0.10 ± 0.05 0.02 ± 0.01 0.01 ± 0.02 0.55 ± 0.03
Ent 0.90 ± 0.46 0.81 ± 0.16 0.73 ± 0.41 0.68 ± 0.17 0.57 ± 0.30 0.93 ± 0.12 0.79 ± 0.10 0.62 ± 0.18

10 Score 0.06 ± 0.01 0.43 ± 0.17 0.12 ± 0.11 0.13 ± 0.13 0.07 ± 0.05 0.02 ± 0.01 0.01 ± 0.01 0.55 ± 0.13
Ent 0.90 ± 0.29 0.91 ± 0.16 0.82 ± 0.18 0.90 ± 0.07 0.69 ± 0.37 0.99 ± 0.08 0.75 ± 0.38 1.11 ± 0.50

20 Score 0.03 ± 0.04 0.60 ± 0.04 0.11 ± 0.13 0.15 ± 0.05 0.12 ± 0.09 0.01 ± 0.00 0.05 ± 0.06 0.64 ± 0.14
Ent 1.00 ± 0.24 0.88 ± 0.06 0.83 ± 0.14 0.96 ± 0.12 0.98 ± 0.09 1.06 ± 0.03 0.65 ± 0.48 0.91 ± 0.14

4

3 Score 0.08 ± 0.01 0.21 ± 0.11 0.08 ± 0.03 0.02 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.00 ± 0.00 0.39 ± 0.06
Ent 0.90 ± 0.27 1.18 ± 0.05 0.85 ± 0.42 1.22 ± 0.08 1.06 ± 0.05 1.07 ± 0.08 1.01 ± 0.19 1.20 ± 0.11

5 Score 0.09 ± 0.01 0.28 ± 0.09 0.01 ± 0.00 0.04 ± 0.05 0.07 ± 0.09 0.02 ± 0.01 0.01 ± 0.00 0.42 ± 0.01
Ent 0.95 ± 0.21 1.17 ± 0.06 0.95 ± 0.09 1.31 ± 0.04 1.07 ± 0.70 1.19 ± 0.08 0.89 ± 0.16 1.20 ± 0.14

10 Score 0.06 ± 0.07 0.48 ± 0.11 0.01 ± 0.00 0.02 ± 0.01 0.02 ± 0.08 0.03 ± 0.02 0.00 ± 0.00 0.56 ± 0.06
Ent 0.75 ± 0.22 1.22 ± 0.12 1.19 ± 0.10 1.21 ± 0.10 1.26 ± 0.11 1.04 ± 0.07 1.07 ± 0.19 1.21 ± 0.05

20 Score 0.05 ± 0.05 0.60 ± 0.02 0.01 ± 0.00 0.04 ± 0.02 0.03 ± 0.01 0.02 ± 0.02 0.00 ± 0.00 0.65 ± 0.04
Ent 1.01 ± 0.36 1.13 ± 0.08 1.29 ± 0.03 1.31 ± 0.06 1.30 ± 0.05 1.31 ± 0.05 0.87 ± 0.35 1.18 ± 0.15

Table 6: Normalized score (Score) and entropy (Ent) on varying the number of demonstrations and
modes in AntGoal-v3.

# of modes # of demos metrics BC Diffusion GAIL DiffAIL DRAIL InfoGAIL ASAF DPAIL

1

3 Score 0.39 ± 0.17 0.62 ± 0.18 0.74 ± 0.08 0.94 ± 0.02 0.78 ± 0.10 0.62 ± 0.04 0.40 ± 0.21 0.80 ± 0.02
Ent 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

5 Score 0.43 ± 0.20 0.65 ± 0.21 0.84 ± 0.09 0.96 ± 0.02 0.83 ± 0.05 0.68 ± 0.09 0.41 ± 0.38 0.83 ± 0.08
Ent 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

10 Score 0.46 ± 0.14 0.79 ± 0.05 0.92 ± 0.02 0.94 ± 0.02 0.93 ± 0.04 0.64 ± 0.13 0.47 ± 0.26 0.82 ± 0.12
Ent 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

20 Score 0.52 ± 0.20 0.84 ± 0.04 0.86 ± 0.05 0.94 ± 0.01 0.80 ± 0.07 0.65 ± 0.00 0.53 ± 0.16 0.88 ± 0.01
Ent 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

2

3 Score 0.08 ± 0.03 0.51 ± 0.08 0.68 ± 0.22 0.81 ± 0.04 0.72 ± 0.07 0.45 ± 0.06 0.02 ± 0.01 0.69 ± 0.10
Ent 0.50 ± 0.13 0.46 ± 0.23 0.20 ± 0.17 0.54 ± 0.09 0.23 ± 0.10 0.54 ± 0.21 0.51 ± 0.27 0.68 ± 0.12

5 Score 0.10 ± 0.08 0.54 ± 0.19 0.74 ± 0.11 0.86 ± 0.08 0.74 ± 0.13 0.47 ± 0.10 0.04 ± 0.04 0.71 ± 0.07
Ent 0.56 ± 0.12 0.42 ± 0.33 0.15 ± 0.11 0.64 ± 0.05 0.20 ± 0.09 0.64 ± 0.17 0.53 ± 0.31 0.71 ± 0.17

10 Score 0.13 ± 0.09 0.58 ± 0.21 0.77 ± 0.07 0.80 ± 0.04 0.72 ± 0.05 0.49 ± 0.12 0.03 ± 0.03 0.80 ± 0.06
Ent 0.68 ± 0.10 0.42 ± 0.24 0.17 ± 0.17 0.53 ± 0.14 0.15 ± 0.13 0.68 ± 0.08 0.65 ± 0.25 0.52 ± 0.18

20 Score 0.15 ± 0.09 0.83 ± 0.09 0.75 ± 0.11 0.86 ± 0.07 0.76 ± 0.13 0.49 ± 0.07 0.16 ± 0.15 0.87 ± 0.04
Ent 0.54 ± 0.13 0.33 ± 0.18 0.43 ± 0.18 0.62 ± 0.09 0.43 ± 0.16 0.61 ± 0.16 0.51 ± 0.17 0.52 ± 0.15

4

3 Score 0.01 ± 0.00 0.37 ± 0.12 0.52 ± 0.13 0.52 ± 0.21 0.54 ± 0.22 0.40 ± 0.28 0.02 ± 0.01 0.64 ± 0.10
Ent 0.94 ± 0.05 0.99 ± 0.13 1.02 ± 0.28 1.02 ± 0.09 1.04 ± 0.20 1.19 ± 0.16 0.92 ± 0.28 1.14 ± 0.26

5 Score 0.03 ± 0.01 0.39 ± 0.26 0.54 ± 0.09 0.50 ± 0.19 0.50 ± 0.17 0.38 ± 0.11 0.03 ± 0.04 0.66 ± 0.07
Ent 0.97 ± 0.03 1.00 ± 0.15 1.00 ± 0.38 1.09 ± 0.18 1.05 ± 0.18 1.23 ± 0.15 0.82 ± 0.30 1.16 ± 0.27

10 Score 0.04 ± 0.02 0.45 ± 0.28 0.67 ± 0.95 0.66 ± 0.08 0.67 ± 0.11 0.52 ± 0.14 0.15 ± 0.31 0.75 ± 0.06
Ent 1.02 ± 0.07 1.05 ± 0.06 0.88 ± 0.21 0.94 ± 0.24 0.96 ± 0.25 1.25 ± 0.12 0.56 ± 0.42 1.05 ± 0.17

20 Score 0.02 ± 0.01 0.39 ± 0.26 0.54 ± 0.09 0.50 ± 0.19 0.50 ± 0.17 0.38 ± 0.11 0.03 ± 0.04 0.66 ± 0.07
Ent 0.98 ± 0.26 1.00 ± 0.15 1.00 ± 0.38 1.09 ± 0.18 1.05 ± 0.18 1.23 ± 0.15 0.82 ± 0.30 1.16 ± 0.27

8

3 Score 0.02 ± 0.01 0.20 ± 0.07 0.43 ± 0.11 0.32 ± 0.04 0.39 ± 0.07 0.39 ± 0.11 0.01 ± 0.00 0.52 ± 0.05
Ent 1.26 ± 0.10 1.50 ± 0.38 1.48 ± 0.27 1.78 ± 0.12 1.79 ± 0.23 1.77 ± 0.05 1.43 ± 0.33 1.70 ± 0.27

5 Score 0.03 ± 0.01 0.23 ± 0.09 0.47 ± 0.06 0.37 ± 0.08 0.40 ± 0.10 0.45 ± 0.09 0.01 ± 0.00 0.54 ± 0.03
Ent 0.98 ± 0.20 1.56 ± 0.48 1.78 ± 0.17 1.82 ± 0.13 1.81 ± 0.13 1.79 ± 0.08 1.65 ± 0.23 1.76 ± 0.41

10 Score 0.04 ± 0.04 0.22 ± 0.07 0.58 ± 0.05 0.35 ± 0.16 0.41 ± 0.15 0.48 ± 0.07 0.01 ± 0.00 0.67 ± 0.03
Ent 1.46 ± 0.58 1.52 ± 0.31 1.51 ± 0.17 1.75 ± 0.11 1.72 ± 0.07 1.78 ± 0.13 1.52 ± 0.27 1.73 ± 0.23

20 Score 0.01 ± 0.00 0.53 ± 0.18 0.58 ± 0.02 0.45 ± 0.08 0.41 ± 0.10 0.46 ± 0.02 0.01 ± 0.00 0.74 ± 0.02
Ent 1.51 ± 0.24 1.18 ± 0.41 1.30 ± 0.14 1.75 ± 0.20 1.75 ± 0.23 1.79 ± 0.12 1.46 ± 0.16 1.78 ± 0.44

26



F Derivation with latent variable z

We define conditional diffusion models with an latent variable z, where the joint probability
pθ(τ

0:N , z) factorizes as:

pθ(τ
0:N , z) = q(τN )q(z)

N∏
t=1

pθ(τ
i−1|τ i, z)

where q(z) is the prior and q(τN ) is the standard normal distribution. To evaluate the log-ratio
log pθ(τ

0)
pθold (τ0) , we rewrite it with the posterior q(z|τ0) as:

log
pθ(τ

0)

pθold(τ0)
=

∏N
i=1 q(τ

i|τ i−1)∏N
i=1 q(τ

i|τ i−1)

q(z|τ0)
q(z|τ0)

pθ(τ
0)

pθold(τ0)
=

∏N
i=1 pθ(τ

i−1|τ i, z)∏N
i=1 pθold(τ i−1|τ i, z)

q(z)

q(z)

q(τN )

q(τN )

where q(τN ) and q(z) cancel out. Taking expectation of this log-ratio over τ1:N ∼ q(·|τ0), z ∼
q(·|τ0) does not change the value.

max
θ

Eτ0∼pE

[
log σ

(
E z∼qϕ(z|τ0),

τ1:N∼q(τ1:N |τ0)

log

∏N
i=1 pθ(τ

i−1|τ i, z)∏N
i=1 pθold(τ i−1|τ i, z)

)]

Given the expert sample τ0 ∼ pE , the approximate variational posterior qϕ(z|τ0), the reverse process
pθ(τ

i−1|τ i, z), and the corresponding forward process q(τ1:N |τ0), these lead to the following
lowerbound:

Eτ0∼pE

[
log σ

(
E z∼qϕ(z|τ0)

τ1:N∼q(τ1:N |τ0)

log

∏N
i=1 pθ(τ

i−1|τ i, z)∏N
i=1 pθold(τ i−1|τ i, z)

)]

= Eτ0∼pE

[
log σ

(
E z∼qϕ(z|τ0)

τ1:N∼q(τ1:N |τ0)

N∑
i=1

log
pθ(τ

i−1|τ i, z)
pθold(τ i−1|τ i, z)

)]

= Eτ0∼pE

[
log σ

(
N∑
i=1

E z∼qϕ(z|τ0)

τ1:N∼q(τ1:N |τ0)

log
pθ(τ

i−1|τ i, z)
pθold(τ i−1|τ i, z)

)]

= Eτ0∼pE

[
log σ

(
N∑
i=1

E z∼qϕ(z|τ0)

τ i−1,τ i∼q(τ i|τ0)q(τ i−1|τ i,τ0)

log
pθ(τ

i−1|τ i, z)
pθold(τ i−1|τ i, z)

)]

≥ Eτ0∼pE

[
E i∼U(1,N),

z∼qϕ(z|τ0),τ i∼q(τ i|τ0)

log σ

(
NEτ i−1∼q(τ i−1|τ i,τ0) log

pθ(τ
i−1|τ i, z)

pθold(τ i−1|τ i, z)

)]
(concavity)

= Eτ0∼pE

[
E i∼U(1,N),

z∼qϕ(z|τ0),τ i∼q(τ i|τ0)

log σ

(
NEτ i−1∼q(τ i−1|τ i,τ0) log

q(τ i−1|τ i, τ0)
pθold(τ i−1|τ i, z)

− log
q(τ i−1|τ i, τ0)
pθ(τ i−1|τ i, z)

)]

∴ L(1)
DPAIL(θ, θ

old, τ0, z) = Eτ0,z,i,ϵ

[
log σ

(
N · Ci

(
∥ϵ− ϵθold(τ i, z, i)∥2−∥ϵ− ϵθ(τ

i, z, i)∥2
) )]

.

Here, Ci = βi

(1−βi)(1−αi)
, z ∼ qϕ(z|τ0), ϵ ∼ N (0, I), and τ i ∼ q(τ i|τ0), thus τ i =

√
αiτ

0+

(1−αi)ϵ. Similarly, for given generative samples τ̄ ∼ pθold , we can also get L(2)
DPAIL(θ, θ

old, τ̄0, z).
The overall objective becomes:

∴ E τ0∼pE ,
z∼qϕ(z|τ0)

[
L(1)

DPAIL(θ, θ
old, τ0, z)

]
+E τ̄0∼pθold ,

z∼qϕ(z|τ̄0)

[
L(2)

DPAIL(θ, θ
old, τ̄0, z)

]
+

[
Eqϕ(τ0,z)[log

qϕ(τ
0, z)

q(τ0)qϕ(z)
]

]
︸ ︷︷ ︸

:=MI(τ0,z)

where the last term encourages learning meaningful unsupervised representation z ∼ qϕ(z|τ̄) by
maximizing mutual information.
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