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ABSTRACT

The Green’s function has ubiquitous and unparalleled usage in the efficient
problem-solving of partial differential equations (PDEs) and analyzing systems
governed by PDEs. However, obtaining a closed-form Green’s function for most
PDEs on various domains is often impractical. The numerical Green’s function
(NGF) method seeks an approximate Green’s function using traditional methods,
like finite element analysis, especially for complex problems in fracture mechan-
ics and dynamic scattering. We introduce the Deep Generalized Green’s Func-
tion (DGGF), a deep-learning approach that addresses the challenges of problem-
specific modeling, long time requirements, and data storage demands associated
with NGF. Our method efficiently solves PDE problems using an integral format
of solutions. It outperforms direct methods, such as FEM and physics-informed
neural networks (PINNs). Additionally, our method relieves the training burden
and scales to higher dimensions. Unlike the direct Gaussian approximation of a
Dirac delta function, our method can be used to solve PDEs in higher dimensions.
Because our method directly addresses the singularity, it can be used to solve dif-
ferent PDEs without prior knowledge. Unlike BI-GreenNet, which is limited to
PDEs with known expressions of the singular part of the Green’s function, our
method does not require prior knowledge of the singularity. The results confirm
the advantages of DGGFs and the benefits of Generalized Greens Functions as a
novel and effective approach to solving PDEs without suffering from singularities.

1 INTRODUCTION

Efficiently solving partial differential equations (PDEs) is a major area of study across science and
engineering. Closed-form solutions to PDEs offer the greatest efficiency, however, they have only
been obtained for a small set of relatively simple problems. Consequently, PDEs are most often
solved using computationally expensive numerical methods such as the finite difference method
(FDM) or the finite element method (FEM). The computational burden of these methods has moti-
vated investigation of more computationally efficient methods to solve challenging PDEs. In recent
years, deep neural networks (DNNs) have shown potential as a promising alternative PDE-solving
method, which can be mesh-free and data-driven. The most notable DNN-based PDE solving tech-
nique is the physics-informed neural network (PINN) (Raissi et al., 2019; Cuomo et al., 2022b;
Jin et al., 2021b; Cai et al., 2021), in which a DNN represents the PDE solution function, and the
PDE constraints serve as the training loss. Other methods are also proposed to integrate different
PDE-solving methods with deep learning, include DeepRitz (Yu et al., 2018), Deep Galerkin Meth-
ods (Sirignano & Spiliopoulos, 2018) which solves the variant forms of the problem instead of the
original strict differential form.

Despite their potential benefits, a significant drawback of DNN-based strategies lies in their training
cost, which remains significant compared to FEM approaches. Data-driven methods, like Fourier
Neural Operator (FNO) (Li et al., 2020), or DeepONet(Lu et al., 2021), learn an operator that maps
coefficients, excitation functions, or domain shape to the solution functions, which solves wide range
of problems with one pass of training. However, these data-driven methods require sufficient data
from simulations or experiments, which may be unavailable in the first place.

One potential pathway to overcome the computational challenges of PDEs is the use of Green’s
functions (GFs), wherein our goal is to find an integral kernel - termed the GF - which then can
be used to solve a given PDE problem using an integral over the domain of the PDE. The GF
approach thereby avoids the need to use a mesh and invert large matrices, as is required by FEM
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Figure 1: Schematic showing two types of PDE solvers: Direct Methods solve each PDE problem
individually, and the Green’s function method retrieves a kernel function first and constructs the
solution in convolutional forms.

and FDM. Additionally, once a GF is computed for a given differential operator it can be re-used
to efficiently solve a whole class of PDEs (e.g., those with different boundary conditions (BCs), or
stimulus functions - see Sec. X). Despite the significant advantages of GFs, only a small number of
differential operators have a (known) closed-form GF (e.g., two-dimensional (2-D) Poisson equation
on a square), greatly limiting their use to solve practical PDE problems. Numerical methods for GFs
(NGFs) have also been investigated however, these methods suffer from high computational costs,
often sacrifice accuracy, or may require multiple stages of modeling.

Recently, DNNs have also been investigated to learn the GF. Like other DNN-based approaches,
these methods are mesh-free and can potentially learn GFs for challenging real-world problems.
One major challenge for DNN-based approaches to solving PDEs is the presence of singularities,
especially the Dirac delta function. To approximate a GF, the differential operator applied to the
DNN must produce a singularity, which requires unbounded dense sampling near these singular-
ities. Some recent DNN-based approaches have been proposed to overcome this problem. One
is GF-Net (Teng et al., 2022), which utilizes Gaussians to approximate the Dirac delta function.
By employing smooth Gaussians, GF-Net significantly relaxes the Dirac delta function singularity.
However, this method represents one Green’s function on a single domain with multiple networks,
making it challenging to apply to larger domains. Training may be complex depending on the desired
accuracy level, and approximation errors may be of concern. The BI-GreenNet method is another
important technique for expressing the non-singular part of Green’s functions on different domains
using DNNs (Lin et al., 2023). This method takes advantage of the linearity of the Green’s func-
tion and performs well when the singular part of the Green’s function can be computed analytically.
However, a limitation is the need for an analytic solution for the singular part.

To overcome the challenges presented by the singularity of GF here we propose and demonstrate a
generalized Green’s function method and its DNN-based representation – termed Deep Generalized
Green’s function (DGGF). The DGGF addresses the singularity issue while inheriting all the benefits
of both the mesh-free neural network method and using the Green’s function to solve linear PDE
problems. Using a number of benchmark PDE problems, we demonstrate that the DGGF method
provides stable solutions, exhibits a fast convergence rate, and achieves high accuracy.

Our contributions are summarized below:

• We construct DGGFs that are applicable to all linear PDEs, and amenable to stable and
efficient numerical computation. We prove that DGGFs maintain desirable usages of the
original Green’s function,
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• We demonstrate achieved accuracy in constructing PDE solutions using DGGFs for four
different types of PDEs in various dimensions and for different boundary shapes and con-
ditions, and

• We experimentally demonstrate that the DGGF yields faster neural network training with
superior performance compared to state of the art DNN based Green’s function approaches.

2 RELATED WORKS

Traditional methods include Fourier and Laplace Transform Methods, FEM and FDM. The idea of
using a neural network to efficiently solve PDEs, to the best of our knowledge, dates back to the
1990s (Chen & Chen, 1995; Lagaris et al., 1998; Lee & Kang, 1990). However, the lack of compu-
tational power and auto-differentiation capabilities severely limited the efficacy of neural networks
in this domain. More recently, there has been a resurgence of the application of neural networks
in solving PDEs due to works on physics-informed neural networks (PINNs) (Ren et al., 2022) in
various scientific fields such as fluid dynamics (Wang et al., 2020; Jin et al., 2021a), thermodynam-
ics (Zobeiry & Humfeld, 2021), and electromagnetism (Baldan et al., 2021). A detailed discussion of
PINNs and their applications can be found in (Cuomo et al., 2022a). Several recent studies have pro-
posed PINN improvements including reweighting loss terms in the objective function (Wang et al.,
2021), new loss terms (Chiu et al., 2022), and more complicated neural network structures (Ren
et al., 2022). Different DNN-based PDE solving methods are listed and compared in the Table 4.
Another notable method for solving PDEs is DeepRitz (Yu et al., 2018), which solves the variational
form of the original strict differential form, resulting in relaxed constraints and often more robust
convergence to the solution function. However, the main limitation of this approach to calculating
the Green’s function is the time-consuming process of evaluating a multidimensional integral at ev-
ery epoch of the training process. To the best of our knowledge, there have been a limited number
of studies for approximating the Green’s function with DNNs. A notable approach, referred to as
GF-Net and described in (Teng et al., 2022), utilizes Gaussians to approximate the Dirac delta func-
tion. By employing smooth Gaussians, this method significantly relaxes the Dirac delta function
singularity. The use of Gaussian functions offers a systematic approach to achieve high accuracy
by reducing the Gaussian width. However, this method represents one Green’s function on a single
domain with multiple networks, making it challenging to apply to larger domains. Training may also
be complex depending on the desired accuracy level, and approximation errors may be of concern.

The BI-GreenNet method is another important technique for expressing the non-singular part of
Green’s functions on different domains using DNNs (Lin et al., 2023). This method takes advantage
of the linearity of the Green’s function and performs well when the singular part of the Green’s
function can be computed analytically. However, a limitation of this method is the need for an
analytic solution for the singular part.

Various related data-driven approaches (Gin et al., 2021; Boullé et al., 2022b;a) learn the Green’s
function of an unknown system by incorporating it into a convolution integral and attempting to
construct the solution function. These methods address a different type of problem, namely inferring
the properties of an unknown system, instead of directly solving the underlying PDE. By utilizing
the Green’s function in a convolutional form, these approaches eliminate the need for evaluating the
Dirac delta function. However, they may require fine sampling of the input function making them
potentially challenging to implement in various scenarios of interest.

3 DEEP GENERALIZED GREEN’S FUNCTION

3.1 PRELIMINARIES

In this section, we first introduce a general PDE problem and describe the traditional Green’s func-
tion method. A forward PDE problem on a domain D ⊂ Rn is meant to solve u(x) ∈ U : D → R
with a given function f(x) ∈ F : D → R with a linear differential operator L : U → F of order
p ∈ N+, subject to the following constraints,

{
Lu(x) = f(x), ∀ x ∈ D,

B[u(x)] = ub(x), ∀ x ∈ ∂D,
(1)
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where some appropriate BCs B are imposed such that 1 has a unique solution. If the problem is time-
dependent, the domain is extended toD×R+ and suitable initial values of u(x, t) and its derivatives
should also be specified. In the following derivation, we focus on time-independent cases but the
extension to time-dependent problem is straightforward.

To solve the problem in 1, FDM directly discretizes L with Euler formula on a grid while FEM
transforms the original differential form to a weak form on a mesh. In contrast, the Green’s function
method solves an adjoint problem to 1 first. Formally, the Green’s function, denoted by G(x,y) :
D ×D → R, is the solution to the following adjoint problem to the original problem 1,

{
L∗G(x,y) = δ(y − x), ∀ y ∈ D

B∗[G(x,y)] = 0, ∀ y ∈ ∂D
(2)

for every interior point in the domain, x ∈ intD. The Dirac delta function δ , strictly speaking, a
distribution, is infinite when the argument is zero and zero everywhere otherwise. The derivation of
the adjoint problem consists of two stages: determining first the explicit form of the adjoint operator
L∗, and then the adjoint BCs B∗; see Appendix A for more details. Once G(x, vy) in 2 is solved,
the solution u(x) is constructed in the following integral,

u(x) =

∫
D

G(x,y)f(y)dy +

∫
∂D

p(x,y)dsy, (3)

where the second term p(.) is a boundary term determined by a specific B in the original problem .
For Dirichlet BC, i.e., B[u(x)] = u(x), then p(x,y) = −ub(y)∂G∂n (x,y), where n is the outward
normal vector of the boundary (Kreyszig et al., 2008).

3.2 GENERALIZED GREEN’S FUNCTION

The main challenge for numerical evaluation of the Green’s Function comes from the highly singular
Dirac delta function. In this work, we propose to use an alternative form to replace the traditional
Green’s function, which is easier to evaluate numerically but mathematically equivalent in terms of
the solution construction. The derivation has two stages. First, we work with functions with compact
supports contained in the domain D such that any boundary terms automatically vanish. The second
stage aims at imposing the correct generalized adjoint BCs, which are dependent on the specific BC
type of the original problem in 1.

3.2.1 FORMAL GENERALIZED GREEN’S FUNCTION

Equation 3.1 can be viewed as a linear functional which maps f to the solution function value at
some point u(x). From the Riesz representation theorem, we can also formally propose a linear
functional which maps the Laplacian of the f , i.e. ∆f to the solution such that ∆f 7→ u(x), and
we use Gt as the new kernel to replace the traditional Green’s function G. The motivation is that by
taking the derivative of f , the Green’s functionG should be integrated in the integral 3.1 to maintain
the resulting value. The high singularity of the kernel in the solution integral is then alleviated by
this integration operation. Therefore, we have the following definition for the generalized Green’s
function.

Definition 3.1. The generalized Green’s function Gt : D×D → R on a compact domain is defined
to be the solution to the following generalized adjoint PDE problems:

{
L∗Gt(x,y) = −ψ(x,y),
B∗[Gt(x,y)] = 0.

(4)

where ψ : D ×D → R is chosen such that the integral holds, u(x,y) =
∫
D
Gt(x,y)∆f(y)dy.

Note that a similar generalized Green’s function concept is proposed in a posteriori error analysis
of FEM, where different forms of ψ are chosen for specific usages, for instance, estimating the
averaged error over a curve. However, the primary difference is that in our definition, the Laplacian
of f instead of the function itself is used and the solution function u is the main target of our method.
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Remark 3.1. Here, we use the Laplacian of the excitation function, namely ∆f =
∑n

i=1
∂2f
∂x2

i
. But

this choice is not limited to the Laplacian of f . It is manifest from the following derivation that the
known fundamental solution for all dimensions and the self-adjointness of the Laplacian makes the
application relatively simple.

Now, we derive the correct form of the function ψ(x,y) in the definition 3.1. The input function
ψ(x,y) can be first divided into the sum of two parts, a singular term ψs(x,y) and a regular term
ψr(x,y), such that ψ = ψs(x,y) + ψr(x,y). The singular part serves as the source of the Dirac
delta function with the application of the differential operator, in this case, ∆. And the regular part
is used to impose the correct boundary condition of ψ. The exact boundary condition value ψb is
elaborated in next section.

We then have the following lemma:
Lemma 3.1. The function ψ should have the property of −∆ψ(x,y) = δ(x,y). And the two parts
of the correct form of ψ should respectively satisfy:

−∆ψs(x,y) = δ(x− y), ∀x,y ∈ Rn, (Fundamental Solution) (5)
−∆ψr(x,y) = 0, ψr(x,y)|∂D = ψb(x,y)|∂D, (Boundary Value Problem). (6)

The singular part ψs(x,y) is the fundamental solution of the Laplace equation and is known in
closed-form:

ψs(x,y) =


− 1

2π ln(|x− y|), n = 2
1
4π

1
|x−y| , n = 3

− 1
4π2

1
|x−y|2 , n = 4,

(7)

where n is the dimension of the domainD. Then the problem reduces to solving for ψr(x,y) which
is a standard PDE boundary value problem that can be easily solved.

Next we prove that the alternative excitation function ψ in 3.1 make the solution integral in the
definition of the generalized Green’s function 3.1 hold.

Proof. The solution function u can be expressed as the convolution of the Dirac delta function with
itself. Refer to 5 and δ = −∆ψ gives,

u(x) = (u, δ) =

∫
D

u(y)δ(x− y)dy = (u,−∆ψ). (8)

The function ψ is linked to the generalized Green’s function L∗Gt = −ψ by the definition in 3.1.
Next, we interchange ∆ and L∗ by the Schwarz’s theorem and use the bilinear identity of L. It
yields,

(u,−∆ψ) = (u,∆L∗Gt) = (u, L∗∆Gt) = (Lu,∆Gt). (9)

We use the bilinear identity of ∆ again. Note that it is self-adjoint, ∆∗ = ∆, which gives

(Lu,∆Gt) = (∆Lu,Gt). (10)

Referring to the original problem in 1 we have Lu = f , arriving at the formal integral of using the
generalized Green’s function,

u(x) = (∆f,Gt) =

∫
D

∆yf(x,y)G
t(x,y)dy, (11)

where the subscript of ∆ denotes the variable that it operates on.

3.2.2 GENERALIZED ADJOINT BOUNDARY CONDITIONS

In previous section, the formal generalized Green’s function is derived and proved assuming all
related functions have compact support contained in the domain D. This condition implies that
any boundary terms vanish in the bilinear identity, i.e. (v, Lu) − (L∗v) = boundary terms, which
involves the function values of u, v or their directional derivative on the boundary.
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Here, we derive the suitable generalized BCs and write down the complete solution integral using
generalized Green’s function. In the proof above, 3.2.1 and 3.2.1 all have boundary terms if related
functions are not vanishing on the boundary. The first boundary term in 3.2.1 is

(u, L∗∆Gt)− (Lu,∆Gt) =

∫
∂D

p(u,∆Gt)ds, (12)

where p(·, ·) denotes the boundary terms corresponding to the specific form of L. Depending on
the BC type in the original problem 1, the correct BC on ∆Gt can be imposed. For example, if the
original problem is a Dirichlet boundary type, namely u = ub(x),∀x ∈ ∂D, then the corresponding
BC of Gt should be of the same type and homogeneous, i.e.

∆Gt(x,y) = 0,∀x ∈ ∂D, ∀y ∈ intD. (13)

By posing the correct BC, the unknown term in the boundary integral, such as derivatives of u,
would be multiplied by zero. If the reduced boundary term is denoted as p◦, for the Dirichlet BC,
we have

(u, L∗∆Gt) = (Lu,∆Gt) +

∫
∂D

p◦(ub,∆G
t)ds. (14)

Neumann BC or other boundary condition types can also be derived similarly. The second boundary
term in 3.2.1 comes from the known ∆ and the exact form is

(f,∆Gt)− (∆f,Gt) =

∫
∂D

[f∂nG
t −Gt∂nf ]ds, (15)

where ∂n denotes the directional derivatives along the outward normal of the boundary.

Finally, we arrive at the complete formula of the solution integral for the generalized Green’s func-
tion,

u(x) =

∫
D

∆yf(x, vy)G
t(x, vy)dy +

∫
∂D

[p◦(ub,∆G
t) + f∂nG

t −Gt∂nf ]ds. (16)

3.3 MODEL

In this section, we propose a unified paradigm for solving PDEs with neural networks and the gen-
eralized Green’s function. Our method involves three steps which generate one auxiliary neural
network and one primary neural network for the generalized Green’s function. Following the con-
cept of physics-informed neural networks, we represent the solution function with parameterized
neural networks while using the partial differential equations and BCs to define the loss function
which is minimized during training. The three steps are

• Step 1: Specify the suitable boundary condition for ψ. Solve for the alternative input
function ψ.

• Step 2: Solve the generalized Green’s function Gt.

• Step 3: Construct the solution using the generalized Green’s function neural network.

It should be noted that steps 1 and 2 are only executed once for a fixed PDE operator and domain D
but the trained neural network can be reused in step 3. We elaborate on each step in the following
sections.

3.3.1 SOLVING THE ALTERNATIVE INPUT FUNCTION ψ

As stated in Lemma 3.1, the regular part ψr(x,y) is the solution to the boundary value problem
defined with Lxψr(x,y) = 0, ψr(x,y) = g(x,y) where the boundary values are determined by
the analytic function of ψs(x,y). We use a neural network ψ̂r,θ(x,y) to represent the solution
ψr(x,y) to the boundary value problems. For each training iteration, a batch of random interior
point pairs of (xi ∈ D◦,yi ∈ D◦), i = 1, 2, ..., N ′

dm and a batch of random boundary point pairs
(xj ∈ ∂D,yj ∈ D◦), j = 1, 2, ..., N ′

bd are independently sampled using the Latin hypercube
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sampling method. These sampled points across the domain or on the boundary are used to evaluate
the residual loss or boundary loss, respectively. The total loss function at each iteration is,

Lθ =
λres
N ′

dm

N ′
dm∑
i

Lres +

N ′
bd∑
j

λbdLbd (17)

=
λres
N ′

dm

Ndm∑
i

|Lψ̂θ(xi,yi)|2 +
λbd
N ′

bd

Nbd∑
j

|ψ̂r,θ(xj ,yj)− g(xj ,yj)|2 (18)

λres, λdb are the weights to balance the magnitude between the PDE residual loss and the boundary
loss. The partial derivatives in L are all computed using the AutoGrad package in PyTorch. The
stochastic gradient descent (SGD) method is used to minimize the loss and results in an accurate
neural network representation of ψ̂r,θ(x,y).

3.3.2 SOLVING FOR THE GENERALIZED GREEN’S FUNCTION Gt.

With the help of the auxiliary neural network model ψ̂r,θ(x,y), the alternative excitation
function t(x,y) can be readily evaluated at every point across the domain, i.e. t(x,y) =

ψs(x,y) + ψ̂r,θ(x,y). Now we use the same framework as above to train the general-
ized Green’s function Ĝt

ϕ. For each training iteration, a batch of random interior point
pairs of xi ∈ D◦,yi ∈ D, i = 1, 2, ..., Ndm and a batch of random boundary point pairs
(xj ∈ ∂D,yj ∈ D◦), j = 1, 2, ..., Nbd are independently sampled using again the Latin hypercube
sampling method. For this problem, the residual loss takes the alternative excitation function t and
sets the boundary values are zero, which leads to the definition of the total loss as,

Lϕ =
λres
Ndm

Ndm∑
i

Lres +
λres
Nbd

Nbd∑
j

λbdLbd (19)

=
λres
Ndm

Ndm∑
i

|LĜt
ϕ(xi,yi)− (ψs + ψ̂r,θ)(xi,yi)|2 +

λres
Nbd

Nbd∑
j

|Ĝt
ϕ(xj ,yj)|2. (20)

Once the generalized Green’s function network finishes training, it can be used in equation (15) to
determine the solution function for any excitation function f with,

u(x0) =
∑
j

wjĜ
t
ϕ(x0,yj)∆f(yj). (21)

where yi,j = 1, 2, ..., n are the quadrature points for fast evaluation of the multi-dimensional inte-
gration, and wj are corresponding quadrature weights. It should be noted that the solution function
values at multiple x0 can be computed in parallel.

4 NUMERICAL EXPERIMENTS

We demonstrate performance of the DGGF in solving PDE problems compared to several modern
state-of-the-art baseline methods for different problem types. These methods are compared in the
Table 2. We include different domains, including a square (SQ), a circle (CR), and two B-spline
curve enclosed loops (B1 & B2), and two 3D boundaries including a cube with 1/8 corner cut (CC),
and an ellipsoid (EP), along with four different PDE types, listed in Table 4. The exact domain
shapes are illustrated in Fig. 4.

Specifically, we demonstrate that DGGF has higher accuracy compared to GF-Net and constructs
faster results compared to PINN on several classes of widely-studied PDEs. We present results of
different dimensions and boundary shapes in our experiments. For each type of PDE problem, we
are interested in the performance of DGGF compared to the following baseline models:

• Method (I): Gaussian Approximation of the Dirac delta function (GF-Net),
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Figure 2: Different types of domain boundaries explored in the experiments. The color map indicates
the generalized Green’s function of a given fixed source location for the Poisson equation.

Table 1: PDE problems explored in the experiments. Boundary shapes include square (SQ), circular
(CR), two Jordan curves B-spline 1 (B1) and B-spline 2 (B2), corner cut cube (CC), and an ellipsoid
(EP).

CLASS EXPRESSION BOUNDARY SHAPE

POISSON
∑

x,y,z ∂
2
x,y,z SQ, CR, B1, B2, CC, EP

HELMHOLTZ
∑

x,y,z ∂
2
x,y,z + k2 SQ, CR, B1, B2, CC, EP

HEAT(INITIAL VALUE PROBLEM)
∑

x,y,z ∂
2
x,y,z − ∂t SQ, CR, B1, B2, CC, EP

KLEIN-GORDON
∑

x,y,z ∂
2
x,y,z − ∂2

t − k2 SQ, CR, B1, B2, CC, EP

• Method (II): Physics-informed neural network (PINN),
• Method (III): Numeric Green’s Function (NGF),

We use the FEM solver FEniCSx (Alnaes et al., 2015; Scroggs et al., 2022b;a; Logg et al., 2012a;
Logg & Wells, 2010; Logg et al., 2012b; Kirby & Logg, 2006; Logg et al., 2012c; Ølgaard & Wells,
2010; Alnaes et al., 2014; Kirby, 2012) to obtain the solution close to the ground truth for all the
experiments using very fine meshes.

Figure 3: Results of 2-D experiments with different PDEs and boundaries showing the mean L2
norm error, including the DGGF (our approach shown as the blue colors), Gaussian (0.05 green
colors) and (0.1 shown as the orange colors), PINN (red), and NGF (purple).
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Table 2: Different Methods for Solving Green’s Functions

Method Excitation Form Problem Form Application Form

Theoretical Greens δ(x,y) LG(x,y) = δ(x,y) G ∗ f
DGGF Ht+b.t. LG◦(x,y;θ) = t(x,y;θ) G◦ ∗∆f + b.t.
GF-Net Gaussian LĜ(x,y;θ) = exp(−x2/σ2) Ĝ ∗ f
BI-GreenNet −Gth LGbd(x,y;θ) = −Gth (Gth +Gbd) ∗ f

Figure 4: Results of 3D experiments with different PDEs and boundaries showing the mean L2 norm
error, including the DGGF (our approach – blue colors), Gaussian (0.05 orange), and PINN (green).

4.1 MODEL TRAINING

For our method, the PINN, and the GF-Net, we use the exact same DNN structure and training
procedures throughout for all experiments for fair comparison. The DNN comprises 8 hidden
layers with Rectified Linear Units (ReLU) activation functions, and 100 neurons in each layer.
Note that the GF-Net method prescribes using multiple networks, instead of a single network, to
represent the fast-varying Green’s function on the whole domain. We tested this multi-network
approach on simple 2-D domain problems with 16 networks and results are included in the Ap-
pendix. The complexity of arbitrary segmentation of irregular domains hinders the implementa-
tion of this method on all the cases explored in this study. The hyperparameters involved in the
training of the models are Ndm, Nbd, N ′

dm, N ′
bd,λres, λbd. Please see Sec. 3.3 for interpretation

of these hyperparameters. For simplicity, we always set λres = 1 and search λbd ∈ [1, 5, 50],
Ndm ∈ [50000, 100000, 150000, 200000], Nbd ∈ [25000, 50000, 100000, 75000, 150000, 200000].
The lists of values for N ′

dm and N ′
bd are the same as that of Ndm and Nbd. We use the learning

rate of 1 × 10−3 with ADAM (Kingma & Ba, 2014) and zero regularization. GF-Net requires one
additional hyperparameter, which is the width of the Gaussian used to approximate the Dirac delta
function. For this, we tested two values ϵ ∈ {.05, 0.1}, for every problem considered below.

4.2 RESULTS: ACCURACY

A comparison of the accuracy between DGGF and baseline methods are present in Figure 4. It can be
observed that the DGGF outperforms GF-Net for both choices of the Gaussian width explored with
the single network representation. In particular, the DGGF realizes at least three orders of magnitude
smaller errors than that of the GF-Net, and is comparable to the PINN method. These results indicate
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(a) (b)

Figure 5: Stability of DGGF. Here we perform only Step 2 (Gt) in (a) and Step 1 + Step 2 (b). The
variance of accuracies across points in the domain (due to random initialization of neural networks)
is used to measure the stability of DGGF. Shown in (a) and (b) are variances of accuracies for each
point in the 2-D Box domain.

that by transforming the Green’s function to the generalized Green’s function, the neural network
model can learn a better kernel to construct the solution functions. Despite comparable accuracy,
our method is 20,000 times faster than the PINN in the solution function construction step. Use of
parallel convolution in our DGGF method takes 0.08 s for 2-D domains, compared to a 30 min
training time for the PINN method on any single 2-D problem.

4.3 ABLATION STUDY: STABILITY

We use 2-D Poisson problem with Box boundary to study the stability of the DGGF, i.e., the variance
of error caused by different neural network random initializations. We study two scenarios: (1)
only training the networks in step 2 of DGGF and (2) training networks in both step 1 and step 2.
Specifically, in both scenarios, we use a network of 8 layers, all with 100 neurons each. We set
Ndm = 100000, Nbd = 300000 and λbd = 5. Then we train 30 neural networks with different
initializations. The variances of their accuracies for estimating Green’s Function at various points in
domain are then computed. As can be seen in Figure 5, the variance of accuracy across the domain
is uniformly small. In particular, the variance of only training the network for Gt is to the order of
10−11, demonstrating the stability of DGGF.

5 CONCLUSIONS

To harness the full potential of Green’s function reusability, we introduce the concept of deep gen-
eralized Green’s function. By circumventing the singularity associated with the Dirac delta function
while preserving theoretical accuracy, our method offers a practical solution. Empirical tests con-
ducted on a comprehensive selection of partial differential equations (PDEs) have confirmed the
effectiveness of our approach. Notably, DGGF exhibits lower computational resource requirements,
faster convergence, and, crucially, enables efficient reuse for solving PDEs of the same type.
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REPRODUCIBILITY STATEMENT

We have submitted the code of our implementation of DGGF as supplementary material. The ex-
perimental details are elaborated in Section 4.
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