
Solving Data-centric Tasks using Large Language Models

Anonymous ACL submission

Abstract

Large language models (LLMs) are rapidly re-001
placing help forums like StackOverflow, and002
are especially helpful for non-professional pro-003
grammers and end users. These users are often004
interested in data-centric tasks, such as spread-005
sheet manipulation and data wrangling, which006
are hard to solve if the intent is only commu-007
nicated using a natural-language description,008
without including the data. But how do we de-009
cide how much data and which data to include010
in the prompt?011

This paper makes two contributions towards012
answering this question. First, we create a013
dataset of real-world NL-to-code tasks manipu-014
lating tabular data, mined from StackOverflow015
posts. Second, we introduce a cluster-then-016
select prompting technique, which adds the017
most representative rows from the input data to018
the LLM prompt. Our experiments show that019
LLM performance is indeed sensitive to the020
amount of data passed in the prompt, and that021
for tasks with a lot of syntactic variation in the022
input table, our cluster-then-select technique023
outperforms a random selection baseline.024

1 Introduction025

Code-generating large language models (LLMs)026

promise to empower end users interested in data-027

centric tasks, ranging from string manipulations028

in spreadsheets to data cleaning and analysis in029

computational notebooks. For example, consider030

the following task on tabular data: given a column031

with full names, generate a new column with user032

names, by combining the first initial and last name,033

in lowercase. This task can be solved by a Pandas034

program that: 1) splits the full name into a list of035

strings, 2) extracts the first and last string from the036

list, 3) converts both to lowercase and joins the first037

letter of one string to the other. The challenge in038

generating this program is that data rows often have039

varied formats, e.g. most rows only have two names040

("John Smith"), but some have multiple middle 041

names ("Jake L Woodhall", "Jo Anna Emily Gray"). 042

If an LLM prompt does not include any data or 043

only includes rows with two names, the LLM is 044

more likely to generate a program that does not 045

generalize (e.g. one that extracts the last name as 046

the second element of the list instead of last). 047

In this paper, we focus on solving such tasks 048

that involve multi-step computations on the input 049

columns to generate additional columns. Towards 050

this goal, we mine StackOverflow to construct a 051

new dataset, dubbed SOFSET, of data-centric tasks, 052

equipped with a natural-language query and a small 053

input table. Using this dataset, we conduct experi- 054

ments on generating Pandas programs using GPT-4 055

and an open-source alternative CODELLAMA, with 056

the goal of analysizing LLMs’ sensitivity to the 057

amount of input data provided in the prompt. 058

Unlike input tables in StackOverflow posts, real- 059

world data tables are often large, hence sending 060

the entire table to the LLM is likely impractical, 061

expensive, or detrimental to performance. How 062

do we best convey the structure of a large input 063

table to the LLM? To address this question, we 064

propose a cluster-then-select prompting technique 065

that clusters input rows based on their syntactic 066

structure and then selects representative rows from 067

each cluster; e.g. in our “user name” example, the 068

technique would include a row for each number 069

of middle names. To evaluate this technique, we 070

perform experiments on SOFSET augmented with 071

larger input tables extracted from Kaggle. 072

In summary, this paper contributes: 073

• a real-world dataset of complex tasks for eval- 074

uating data-centric code generation; 075

• a cluster-then-select technique for selecting 076

rows to prompt with, from large input tables; 077

• an analysis that shows LLMs are sensitive to 078

the data quantity, choice and position of rows. 079

1

2 Related work080

Large language models for tabular data Code-081

generating LLMs like Codex (Chen et al., 2021)082

and PaLM (Chowdhery et al., 2022) have been083

fine-tuned for code-specific tasks and adapted for084

data-centric domains like SQL (Trummer, 2022;085

Rajkumar et al., 2022). (Li et al., 2020) investi-086

gate the ability of language models like BERT to087

perform entity matching on tabular data. (Narayan088

et al., 2022) use GPT-3 for data cleaning, error de-089

tection and entity matching tasks. (Hegselmann090

et al., 2023) focus on tabular classification tasks091

and investigate parameter-efficient tuning of LLMs.092

Prompting for data-centric tasks In this paper,093

we ask the question: how does data context impact094

code generation for data-centric tasks? Previous095

works have explored prompting with data: (Jain096

et al., 2022) provide both input and expected out-097

put tables (which might not be available in a realis-098

tic setting). (Gemmell and Dalton, 2023) prompt099

with transformed tables after filtering out rows that100

are not relevant for their question-answering tasks.101

(Hegselmann et al., 2023) serialize data tables into102

a textual representation for tabular classification103

tasks. (Yin et al., 2022) focuses on data-centric104

tasks in computational notebooks. These works105

focus on prompting for data analysis, classification106

and wrangling tasks (in-place data transformations)107

whereas we focus on multi-step data manipulation.108

We propose a new cluster-then-select prompting109

technique that clusters the input data and adds rep-110

resentative rows to the prompt.111

3 The SOFSET Dataset112

We collect a new dataset fashioned from real-world113

data-centric tasks from StackOverflow (SOFSET).114

We sample tasks deterministically from the high-115

est rated posts with the tag "ExcelFormulas" in116

StackOverflow (as of March 2022). These tasks are117

representative of real problems spreadsheet users118

face frequently since they correspond to the highest-119

rated posts. We manually check that the posts are120

genuine tasks and also remove post identifiers for121

anonymization. This gives us a total of 201 tasks.122

3.1 Dataset Annotation123

Each datapoint in our dataset is annotated with124

a concise textual query, a data input (column-125

major-flat table), an expected correct output (extra126

columns), a pandas solution and metadata. We127

manually write the textual queries, summarising128

the original verbose StackOverflow question. Each 129

query is annotated and verified by at least 3 inter- 130

nal annotators. For the data input, we use the table 131

from the original StackOverflow post (if available), 132

and add extra rows and corner cases until we have 133

at least 10 rows. As the NL query and tabular data 134

are not verbatim copies from StackOverflow and 135

we have a different target language (Pandas instead 136

of Excel Formulas), the evaluation data should not 137

be present in the training data. We choose Pandas 138

as the target language since LLMs are especially 139

good at generating Python but our methods and 140

dataset are programming-language agnostic. 141

3.2 Dataset Properties 142

What makes our dataset different from existing 143

ones? First, our dataset consists of complex data- 144

centric tasks with several input columns. Prior 145

python datasets like (Hendrycks et al., 2021; Chen 146

et al., 2021) are not data-centric. Second, our 147

dataset is larger than existing data-centric datasets, 148

JIGSAW (Jain et al., 2022) and CERT (Zan et al., 149

2022). JIGSAW has 79 unique tasks (median of 7 150

data rows) and CERT has 100 unique tasks (me- 151

dian of 3 rows). Our dataset has 201 unique tasks, 152

with a median of 10 rows. The SPIDER dataset (Yu 153

et al., 2018) is a text-to-SQL dataset which focuses 154

on relational query tasks whereas we focus on fine- 155

grained data wrangling and manipulation tasks. Fi- 156

nally, we propose a taxonomy of data-centric tasks, 157

classifying them into data-independent (IND), data- 158

dependent (DEP), and external-dependent (EXT), 159

based on the data required to produce a solution. 160

Data-independent tasks These tasks can be solved 161

using the query alone without any data access. An 162

example is the query "create a new column that 163

includes only the first 5 characters from Filename". 164

Data-dependent tasks These tasks cannot be 165

solved using the query alone: the model needs 166

access to the input table. For example, the query 167

"create a new column with the number of days be- 168

tween the two date columns" requires data access to 169

identify the correct column names and date format, 170

both absent from the query. 171

External-dependent tasks These tasks can only be 172

solved with external world knowledge in addition 173

to data access. The query "create a new column 174

that counts how many US holidays are between 175

the dates in Start Date and End Date", requires the 176

model to know about US holidays. 177

Following this taxonomy, SOFSET consists of 178

2

126 IND tasks, 44 DEP tasks and 31 EXT tasks.179

These tasks span diverse domains including string180

manipulation, date and time, math, address, and181

complex conditionals among others.182

3.3 Cluster-then-select prompting technique183

To solve tasks on large tables, we propose a cluster-184

then-select technique which prompts the model185

with a representative sample of the input data. In186

order to capture the syntactic variation in the input187

data, we rely on an existing tool (Padhi et al., 2018),188

which takes as input a set of strings and synthesizes189

a small set of regular expressions (regexes), such190

that each input string matches one of the regexes.191

In our “user name” example from the introduction,192

it would synthesize separate regexes for rows with193

zero, one, and two middle names. These regexes194

are then used to cluster the input strings, and we195

select some number of rows from each cluster.196

If the input table only has one column, select-197

ing n representative rows based on the clustering198

results is trivial: simply pick one row each from199

the top-n most populous clusters. In cases where200

the input contains more than one column, they may201

be clustered differently. We then select n rows that202

together cover as many strings as possible across203

all the columns. We frame this as a weighted maxi-204

mal coverage problem (max), which can be solved205

approximately in a greedy manner. In each itera-206

tion, the algorithm selects the rows whose elements207

maximize cluster coverage.208

Kaggle-augmented dataset In order to evaluate209

our cluster-then-select technique on larger datasets,210

we expand the 44 data-dependent tasks by adding211

more rows from open-source Kaggle datasets (kag),212

bringing the total to 1000. We first identify the spe-213

cific data domains in the original SOFSET rows214

(such as names, numbers, address, date, time etc)215

and then source comparable open-source datasets216

from Kaggle of the same domain. We then post-217

process the Kaggle data to maintain the original218

rows format, while also introducing greater varia-219

tion which increases the number of data clusters.220

62% of our DEP tasks have at least 2 clusters and221

we have tasks with up to 10 clusters. Since the222

Kaggle data is post-processed and is not tied to223

the task query in any way, it is unlikely to bias the224

LLM evaluation by being part of the training data.225

This larger dataset allows for a thorough evaluation,226

better mirroring real-world conditions.227

All (201 tasks) IND (126 tasks) DEP (44 tasks) EXT (31 tasks)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pa
ss

@
K

(K
=

1,
5)

(a)

(a)

(a)

(a)

(b)

(b)

(b) (b)

(c)

(c)

(c)

(c)

Pass@K for different data regimes across task classes
pass@1
pass@5

Figure 1: pass@k with (a) no-data, (b) first-row, and
(c) ten-rows passed to the model. The leftmost group
of bars represent pass@k with all classes followed by
separate pass@k for IND, DEP and EXT tasks.

4 Evaluation of data-centric tasks 228

We perform an analysis of the role of data on model 229

performance in data-centric tasks. We first use 230

the original SOFSET dataset to examine three data 231

regimes with increasing amounts of data: (a) no- 232

data (b) first-row and (c) ten-rows and the taxon- 233

omy of task classes of increasing difficulty in terms 234

of data required: IND, DEP and EXT. We then 235

use Kaggle-augmented DEP tasks to compare our 236

cluster-then-select technique (which selects repre- 237

sentative rows from the top-n most dense clusters) 238

against a random baseline (which selects random 239

rows from the input). For each data setting, we 240

construct a prompt which contains the task query 241

and selected rows as a pandas dataframe to gen- 242

erate code using GPT-4. Correctness is reported 243

based on whether the code produces the expected 244

output in terms of pass@k, the probability that at 245

least one of k samples of generated code produces 246

the correct output (Chen et al., 2021). 247

Does model performance vary with the amount 248

of data passed for different task classes? Figure 1 249

shows the impact of the amount of data on LLM 250

performance, first for the entire dataset and then 251

split by task classes. We see a larger drop in per- 252

formance with reduced (and no) data on DEP (and 253

EXT) tasks compared to IND tasks. Specifically, 254

the performance gap (pass@5) between first-row 255

and no-data regimes is larger for the DEP and EXT 256

classes (33.8% and 83.5% resp) compared to only 257

7.1% for IND tasks. The fact that there is any per- 258

formance drop for IND tasks indicates that having 259

3

No-Rows Random-Rows Representative-Rows
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

pa
ss

@
K

(K
=

1,
5)

no-data

random-1
random-5random-10

represent-1
represent-5

represent-10
pass@1
pass@5

1000-Rows

full-data

pass@1
(greedy)

Pass@K for data-dependent tasks (with more than 2 clusters)

Figure 2: pass@k for 39% (17 out of 44) DEP tasks
(with more than two clusters) with no-data, random se-
lection (random-n), representative selection (represent-
n) and pass@1 with greedy sampling for full-data (1000
rows). Completions are evaluated on 1000 rows.

data helps the model even when the problem can260

be solved independently of data. In the absence of261

data, almost no EXT task is solved (pass@1) but262

performance improves when a single row is passed.263

Is our cluster-then-select technique effective on264

larger input tables? We evaluate our cluster-then-265

select technique on Kaggle-augmented DEP tasks266

(with 1000 rows) since we expect to see the benefit267

of our approach more clearly on tasks dependent on268

data. In order to do so, we compare our represen-269

tative selection strategy against random selection270

where the rows are randomly selected from the in-271

put table. Among DEP tasks, we further only focus272

on 17 (out of 44) that have input columns with at273

least three clusters, since with two clusters or fewer274

we don’t expect to see much difference between the275

representative and random samples. We also eval-276

uate against two baselines: no-data (0 rows) and277

full-data (all 1000 rows). We run random selection278

experiments five times.279

Figure 3 shows that the model performs best280

with 10 most representative rows added to the281

prompt (pass@5 for represent-10 = 0.32). Rep-282

resentative selection performs slightly better than283

random for the same number of rows. Specifically,284

represent-1 and represent-10 outperform random-1285

and random-10 by 8% and 6% resp. In addition,286

random selection has high variance, especially for287

a small number of rows (e.g. pass@1 for random-288

1 varies from 0.20 to 0.31 across the five runs),289

which is not surprising, since the random strategy290

might select rows from different clusters or from 291

the same one. Thus, while random selection gives 292

comparable results on average, our cluster-then- 293

select technique offers a more consistent approach 294

to provide the model a representative sample of 295

the data. Further, the low pass@k for our no-data 296

baseline suggests that our dataset was not part of 297

the training data, as then the model would likely 298

perform well even without data input. We note that 299

while we evaluate on 1000 rows, the same cluster- 300

then-select technique could easily scale to datasets 301

with over 100K rows without much overhead. 302

Does the position of data rows in the prompt 303

also affect performance? For the full-data base- 304

line, we used a longer-context version of GPT-4 305

(32k) with temperature 0 (greedy selection to elim- 306

inate variance in the generations) for the same 307

17 DEP tasks. The right side of Figure 2 shows 308

pass@1 for this setting with ten runs: we permute 309

the 1000 rows in the dataframe ten times, in order 310

to measure the sensitivity of the model to row po- 311

sitioning. We observe a high variance in pass@1 312

values, ranging from 0.20 to 0.32 with an average 313

of 0.26. This shows that the position of rows in the 314

dataframe influences completions quality, which 315

aligns with previous findings about positional bi- 316

ases in prompts (Liu et al., 2023). Surprisingly, 317

the full-data setting (irrespective of row ordering) 318

performs worse than selecting one random row in 319

some cases (pass@1 for one random row ranges 320

from 0.12 to 0.27 with an average of 0.20). 1 321

5 Conclusion and Future Work 322

Our work highlights the importance of data for 323

code generation on data-centric tasks and proposes 324

a new dataset for evaluation of data-centric tasks. 325

We show that providing even one data row to the 326

model boosts performance compared to a no-data 327

baseline. Since providing the entire input data is 328

often infeasible, we propose a cluster-then-select 329

prompting technique that selects representative 330

rows from the data to be added to the prompt. 331

While randomly selecting rows also performs well, 332

for data with a high degree of syntactic variation, 333

it is more beneficial to add representative rows to 334

the prompt. For future work, handling a broader 335

problem space (e.g., multi-table inputs, hierarchical 336

table inputs) raises interesting challenges. 337

1Experiments with all DEP tasks on GPT-4 are in Fig-
ure 3 and CODELLAMA experiments are Figure 6, Figure 7,
Figure 8.

4

6 Limitations338

We discuss the limitations of our work in terms of339

the SOFSET dataset, the cluster-then-select prompt-340

ing technique and the models used for evalua-341

tion. Although starting from actual user-specified342

problems gives our results greater alignment with343

real spreadsheet user problems, the form that such344

queries take pose some potential limitations to our345

analysis. Users usually only show relevant columns346

of data in their queries when in actuality there347

might be many more unrelated columns in real348

spreadsheets. We have seen good results apply-349

ing LLMs to spreadsheets with many columns that350

are extraneous to the query but we do not perform351

a rigorous evaluation of the same. Furthermore,352

since we have collected only English queries from353

StackOverflow, our results may not generalize to354

other languages.355

Since we draw our conclusions from the genera-356

tions produced by the GPT-4 model, future models357

might invalidate our conclusions. Furthermore ac-358

cess to models such as GPT-4 cannot be taken for359

granted and the costs of running our evaluation360

are considerable. Even open source models like361

CODELLAMA require available GPU resources to362

evaluate.363

Finally, our cluster-then-select prompting tech-364

nique is based on the regular expression synthesis365

algorithm from (Padhi et al., 2018). Given that the366

clusters for the input data columns are defined by367

the specificity of this regex synthesis, using a dif-368

ferent synthesis algorithm could potentially result369

in a different set of clusters.370

7 Broader Research Impact371

To the best of our knowledge, research on prompt-372

ing large language models to solve data-centric373

tasks with tabular data is infrequent, despite the374

considerable importance of such scenarios. Solv-375

ing the problem of how to help LLM reason over376

large amounts of data is essential to the future of377

assisted decision making. Generating multi-step378

programs that require reasoning is the beginning of379

this journey and to make progress the community380

needs challenging real-world datasets to evaluate381

on. By releasing our new dataset, sharing the anal-382

ysis results of our experiments and releasing our383

prototype tool2, we offer valuable benchmarks and384

a baseline to the wider research community which385

promises to encourage further exploration.386

2discussed in Appendix C

8 Ethics Statement 387

There are broad ethical impacts resulting from the 388

creation of AI models that attempt to generate code 389

solutions from natural language descriptions and 390

these are discussed in detail in previous papers in- 391

cluding Codex (Chen et al., 2021), AlphaCode (Li 392

et al., 2022), and PaLM (Chowdhery et al., 2022). 393

These impacts include over-reliance, misalignment 394

between what the user expressed and what they 395

intended, potential for bias and under/over repre- 396

sentation in the model results, economic impacts, 397

the potential for privacy and security risks, and 398

even environmental considerations. All of these 399

considerations also apply to the work described 400

here. Our focus is to highlight how the presence 401

of data improves the performance of these models 402

but it is important to note that the quality of the 403

data used in the prompt will impact whether the 404

resulting generation exhibits bias, exposes private 405

data, etc. We explore the overall impact of provid- 406

ing data as part of the prompt but do not conduct a 407

more focused analysis of determining how bias in 408

the prompt data might influence the resulting code 409

generation, a task we leave for future work. 410

There is the question of the sources of data and 411

of consent to use the data in the manner exhibited 412

in this paper. We have reviewed each of the datasets 413

we have included in this paper to ensure that our 414

use is compatible with the intent of the authors and 415

publishers. Our datasets have also been reviewed 416

by our institution’s ethics board to review that this 417

is an ethical use. 418

We are wary of using the word "understand" in 419

this paper. It has been correctly argued that lan- 420

guage models do not really "understand" language 421

in the sense of connecting language’s syntactic con- 422

tent with the semantics of the physical world (Ben- 423

der and Koller, 2020; Webson and Pavlick, 2022). 424

There have long been critics of the use of such 425

terms in AI research (Agre et al., 1997). Nonethe- 426

less, large language models have shown themselves 427

in certain situations to be capable of the syntac- 428

tic manipulation of language which in humans we 429

take to be commonsense evidence of understanding. 430

This is the less contentious manner in which we 431

use the word. Thus our intention in using the word 432

is not to claim that models can connect data with 433

real-world concepts, but rather that the model can 434

manipulate language about data in a useful man- 435

ner, where "useful" is defined by our quantitative 436

benchmarks. 437

5

This paper does not directly contribute to a tool438

built on the assumed capabilities of language mod-439

els to understand data, but nonetheless, it is moti-440

vated by their potential applications in such tools.441

These tools may be deployed in many data appli-442

cations such as databases, spreadsheets, and busi-443

ness intelligence applications. Depending on the444

audience of the tool, various interaction design con-445

cerns arise. Explainability of the model is a key446

consideration, and the tool should offer decision447

support to evaluate mispredictions and potential448

next steps (Sarkar, 2022). Previous research of449

non-experts using inference driven tools for data450

manipulation has shown the importance of tool de-451

sign in the critical appreciation of the model and452

its limitations, and in the potential cost of errors453

(Williams et al., 2020; Sarkar et al., 2015). As an454

exploratory paper without a concrete application,455

we do not encounter these issues, but the project456

has nonetheless been reviewed by our institution’s457

ethics board.458

References459

Kaggle datasets.460

Maximum coverage problem.461

Philip E Agre et al. 1997. Lessons learned in trying to462
reform AI. Social science, technical systems, and463
cooperative work: Beyond the Great Divide, 131.464

Emily M Bender and Alexander Koller. 2020. Climbing465
towards nlu: On meaning, form, and understanding466
in the age of data. In Proceedings of the 58th an-467
nual meeting of the association for computational468
linguistics, pages 5185–5198.469

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming470
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-471
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,472
Greg Brockman, Alex Ray, Raul Puri, Gretchen473
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-474
try, Pamela Mishkin, Brooke Chan, Scott Gray,475
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz476
Kaiser, Mohammad Bavarian, Clemens Winter,477
Philippe Tillet, Felipe Petroski Such, Dave Cum-478
mings, Matthias Plappert, Fotios Chantzis, Eliza-479
beth Barnes, Ariel Herbert-Voss, William Hebgen480
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie481
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,482
William Saunders, Christopher Hesse, Andrew N.483
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan484
Morikawa, Alec Radford, Matthew Knight, Miles485
Brundage, Mira Murati, Katie Mayer, Peter Welinder,486
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya487
Sutskever, and Wojciech Zaremba. 2021. Evaluating488
large language models trained on code.489

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 490
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul 491
Barham, Hyung Won Chung, Charles Sutton, Sebas- 492
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha 493
Tsvyashchenko, Joshua Maynez, Abhishek B Rao, 494
Parker Barnes, Yi Tay, Noam M. Shazeer, Vinodku- 495
mar Prabhakaran, Emily Reif, Nan Du, Benton C. 496
Hutchinson, Reiner Pope, James Bradbury, Jacob 497
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, 498
Toju Duke, Anselm Levskaya, Sanjay Ghemawat, 499
Sunipa Dev, Henryk Michalewski, Xavier García, 500
Vedant Misra, Kevin Robinson, Liam Fedus, Denny 501
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, 502
Barret Zoph, Alexander Spiridonov, Ryan Sepassi, 503
David Dohan, Shivani Agrawal, Mark Omernick, An- 504
drew M. Dai, Thanumalayan Sankaranarayana Pil- 505
lai, Marie Pellat, Aitor Lewkowycz, Erica Oliveira 506
Moreira, Rewon Child, Oleksandr Polozov, Kather- 507
ine Lee, Zongwei Zhou, Xuezhi Wang, Brennan 508
Saeta, Mark Díaz, Orhan Firat, Michele Catasta, Ja- 509
son Wei, Kathleen S. Meier-Hellstern, Douglas Eck, 510
Jeff Dean, Slav Petrov, and Noah Fiedel. 2022. Palm: 511
Scaling language modeling with pathways. ArXiv, 512
abs/2204.02311. 513

Michael Droettboom, Roman Yurchak, Hood Chatham, 514
Dexter Chua, Gyeongjae Choi, Marc Abramowitz, 515
casatir, Jan Max Meyer, Jason Stafford, Madhur 516
Tandon, Michael Greminger, Grimmer Kang, Chris 517
Trevino, Wei Ouyang, Joe Marshall, Adam Seer- 518
ing, Nicolas Ollinger, Ondřej Staněk, Sergio, Teon L 519
Brooks, Jay Harris, Alexey Ignatiev, Seungmin Kim, 520
Paul m. p. P., jcaesar, Carol Willing, Cyrille Bogaert, 521
Dorian Pula, Frithjof, and Michael Jurasovic. 2022. 522
Pyodide: A Python distribution for WebAssembly 523
(0.19.0). 524

Carlos Gemmell and Jeffrey Dalton. 2023. Generate, 525
transform, answer: Question specific tool synthesis 526
for tabular data. arXiv preprint arXiv:2303.10138. 527

Stefan Hegselmann, Alejandro Buendia, Hunter Lang, 528
Monica Agrawal, Xiaoyi Jiang, and David Sontag. 529
2023. Tabllm: Few-shot classification of tabular 530
data with large language models. In Proceedings of 531
The 26th International Conference on Artificial In- 532
telligence and Statistics, volume 206 of Proceedings 533
of Machine Learning Research, pages 5549–5581. 534
PMLR. 535

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man- 536
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns, 537
Samir Puranik, Horace He, Dawn Xiaodong Song, 538
and Jacob Steinhardt. 2021. Measuring coding chal- 539
lenge competence with apps. ArXiv, abs/2105.09938. 540

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan 541
Natarajan, Suresh Parthasarathy, Sriram Rajamani, 542
and Rahul Sharma. 2022. Jigsaw: Large language 543
models meet program synthesis. In International 544
Conference on Software Engineering (ICSE). 545

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, 546
Julian Schrittwieser, Rémi Leblond, Tom Eccles, 547
James Keeling, Felix Gimeno, Agustin Dal Lago, 548

6

https://www.kaggle.com/datasets
https://en.wikipedia.org/wiki/Maximum_coverage_problem
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.5281/zenodo.5834941
https://doi.org/10.5281/zenodo.5834941
https://doi.org/10.5281/zenodo.5834941
https://proceedings.mlr.press/v206/hegselmann23a.html
https://proceedings.mlr.press/v206/hegselmann23a.html
https://proceedings.mlr.press/v206/hegselmann23a.html
https://www.microsoft.com/en-us/research/publication/jigsaw-large-language-models-meet-program-synthesis/
https://www.microsoft.com/en-us/research/publication/jigsaw-large-language-models-meet-program-synthesis/
https://www.microsoft.com/en-us/research/publication/jigsaw-large-language-models-meet-program-synthesis/

et al. 2022. Competition-level code generation with549
alphacode. arXiv preprint arXiv:2203.07814.550

Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan,551
and Wang-Chiew Tan. 2020. Deep entity matching552
with pre-trained language models. arXiv preprint553
arXiv:2004.00584.554

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-555
jape, Michele Bevilacqua, Fabio Petroni, and Percy556
Liang. 2023. Lost in the middle: How language557
models use long contexts.558

Avanika Narayan, Ines Chami, Laurel Orr, and Christo-559
pher Ré. 2022. Can foundation models wrangle your560
data? arXiv preprint arXiv:2205.09911.561

Saswat Padhi, Prateek Jain, Daniel Perelman, Oleksandr562
Polozov, Sumit Gulwani, and Todd Millstein. 2018.563
Flashprofile: a framework for synthesizing data pro-564
files. Proceedings of the ACM on Programming Lan-565
guages, 2(OOPSLA):1–28.566

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-567
danau. 2022. Evaluating the text-to-sql capabilities568
of large language models. ArXiv, abs/2204.00498.569

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten570
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,571
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.572
Code llama: Open foundation models for code. arXiv573
preprint arXiv:2308.12950.574

Advait Sarkar. 2022. Is explainable AI a race575
against model complexity? arXiv preprint576
arXiv:2205.10119.577

Advait Sarkar, Mateja Jamnik, Alan F Blackwell, and578
Martin Spott. 2015. Interactive visual machine learn-579
ing in spreadsheets. In 2015 IEEE Symposium on580
Visual Languages and Human-Centric Computing581
(VL/HCC), pages 159–163. IEEE.582

Immanuel Trummer. 2022. Codexdb: Generating code583
for processing sql queries using gpt-3 codex. ArXiv,584
abs/2204.08941.585

Albert Webson and Ellie Pavlick. 2022. Do prompt-586
based models really understand the meaning of their587
prompts? In Proceedings of the 2022 Conference of588
the North American Chapter of the Association for589
Computational Linguistics: Human Language Tech-590
nologies, pages 2300–2344, Seattle, United States.591
Association for Computational Linguistics.592

Jack Williams, Carina Negreanu, Andrew D Gordon,593
and Advait Sarkar. 2020. Understanding and infer-594
ring units in spreadsheets. In 2020 IEEE Symposium595
on Visual Languages and Human-Centric Computing596
(VL/HCC), pages 1–9. IEEE Computer Society.597

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek598
Rao, Yeming Wen, Kensen Shi, Joshua Howland,599
Paige Bailey, Michele Catasta, Henryk Michalewski,600
et al. 2022. Natural language to code generation in601
interactive data science notebooks. arXiv preprint602
arXiv:2212.09248.603

No-Data Random-Rows Representative-Rows
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

pa
ss

@
K

(K
=

1,
5)

no-data

random-1

random-5
random-10

represent-1

represent-5
represent-10

pass@1
pass@5

1000-Rows

full-data

pass@1
(greedy)

Pass@K for data-dependent tasks with selected rows (all tasks)

Figure 3: pass@k for DEP tasks with no-data, and n=1, 5
and 10 rows passed to the model, using random (random-
n), representative selection (represent-n). The comple-
tions are evaluated on 1000 rows.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 604
Dongxu Wang, Zifan Li, James Ma, Irene Li, 605
Qingning Yao, Shanelle Roman, Zilin Zhang, and 606
Dragomir R. Radev. 2018. Spider: A large-scale 607
human-labeled dataset for complex and cross-domain 608
semantic parsing and text-to-sql task. In Proceed- 609
ings of the 2018 Conference on Empirical Methods 610
in Natural Language Processing, Brussels, Belgium, 611
October 31 - November 4, 2018, pages 3911–3921. 612
Association for Computational Linguistics. 613

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, 614
Minsu Kim, Bei Guan, Yongji Wang, Weizhu Chen, 615
and Jian-Guang Lou. 2022. Cert: Continual pre- 616
training on sketches for library-oriented code genera- 617
tion. ArXiv, abs/2206.06888. 618

A Community Data License Agreement - 619

Permissive - Version 2.0 620

This is the Community Data License Agreement 621

- Permissive, Version 2.0 (the "agreement"). Data 622

Provider(s) and Data Recipient(s) agree as follows: 623

A.1 Provision of the Data 624

• A Data Recipient may use, modify, and share 625

the Data made available by Data Provider(s) 626

under this agreement if that Data Recipient 627

follows the terms of this agreement. 628

• This agreement does not impose any restric- 629

tion on a Data Recipient’s use, modification, 630

or sharing of any portions of the Data that 631

are in the public domain or that may be used, 632

modified, or shared under any other legal ex- 633

ception or limitation. 634

7

http://arxiv.org/abs/2307.03172
http://arxiv.org/abs/2307.03172
http://arxiv.org/abs/2307.03172
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425

A.2 Conditions for Sharing Data635

• A Data Recipient may share Data, with or636

without modifications, so long as the Data Re-637

cipient makes available the text of this agree-638

ment with the shared Data.639

A.3 No Restrictions on Results640

• This agreement does not impose any restric-641

tion or obligations with respect to the use,642

modification, or sharing of Results.643

A.4 No Warranty; Limitation of Liability644

• All Data Recipients receive the Data subject645

to the following terms:646

THE DATA IS PROVIDED ON AN "AS IS"647

BASIS, WITHOUT REPRESENTATIONS, WAR-648

RANTIES OR CONDITIONS OF ANY KIND,649

EITHER EXPRESS OR IMPLIED INCLUD-650

ING, WITHOUT LIMITATION, ANY WAR-651

RANTIES OR CONDITIONS OF TITLE, NON-652

INFRINGEMENT, MERCHANTABILITY OR653

FITNESS FOR A PARTICULAR PURPOSE.654

NO DATA PROVIDER SHALL HAVE ANY655

LIABILITY FOR ANY DIRECT, INDIRECT, IN-656

CIDENTAL, SPECIAL, EXEMPLARY, OR CON-657

SEQUENTIAL DAMAGES (INCLUDING WITH-658

OUT LIMITATION LOST PROFITS), HOW-659

EVER CAUSED AND ON ANY THEORY OF LI-660

ABILITY, WHETHER IN CONTRACT, STRICT661

LIABILITY, OR TORT (INCLUDING NEGLI-662

GENCE OR OTHERWISE) ARISING IN ANY663

WAY OUT OF THE DATA OR RESULTS, EVEN664

IF ADVISED OF THE POSSIBILITY OF SUCH665

DAMAGES.666

A.5 Definitions667

• "Data" means the material received by a Data668

Recipient under this agreement.669

• "Data Provider" means any person who is the670

source of Data provided under this agreement671

and in reliance on a Data Recipient’s agree-672

ment to its terms.673

• "Data Recipient" means any person who re-674

ceives Data directly or indirectly from a Data675

Provider and agrees to the terms of this agree-676

ment.677

• "Results" means any outcome obtained by678

computational analysis of Data, including for679

example machine learning models and mod-680

els’ insights.681

B Software License Agreement 682

MIT License 683

All rights reserved. 684

Permission is hereby granted, free of charge, to 685

any person obtaining a copy of this software and 686

associated documentation files (the "Software"), to 687

deal in the Software without restriction, including 688

without limitation the rights to use, copy, modify, 689

merge, publish, distribute, sublicense, and/or sell 690

copies of the Software, and to permit persons to 691

whom the Software is furnished to do so, subject 692

to the following conditions: 693

The above copyright notice and this permission 694

notice shall be included in all copies or substantial 695

portions of the Software. 696

THE SOFTWARE IS PROVIDED "AS IS", 697

WITHOUT WARRANTY OF ANY KIND, EX- 698

PRESS OR IMPLIED, INCLUDING BUT NOT 699

LIMITED TO THE WARRANTIES OF MER- 700

CHANTABILITY, FITNESS FOR A PARTICU- 701

LAR PURPOSE AND NONINFRINGEMENT. 702

IN NO EVENT SHALL THE AUTHORS OR 703

COPYRIGHT HOLDERS BE LIABLE FOR ANY 704

CLAIM, DAMAGES OR OTHER LIABILITY, 705

WHETHER IN AN ACTION OF CONTRACT, 706

TORT OR OTHERWISE, ARISING FROM, OUT 707

OF OR IN CONNECTION WITH THE SOFT- 708

WARE OR THE USE OR OTHER DEALINGS IN 709

THE SOFTWARE. 710

C Our Prototype Tool 711

This section explains the workflow of our system 712

using a running example in Fig. 5. In this exam- 713

ple, there is an input table full names and wants 714

to create a new column with user names, by con- 715

catenating the first initial and the last name and 716

converting them to lowercase. 717

The high-level workflow of our tool is depicted 718

in Fig. 4 and formalized in Algorithm 1. The tool 719

takes as input a user query Q expressed in natural 720

language, user input table T as a Pandas dataframe, 721

and the target cardinality k of distinct completions 722

to generate. To ensure termination within a rea- 723

sonable time, we set a limit kmax on the number 724

of calls to LLM (kmax = 8k). For our running 725

example, k is 1, Q is “create a new column in low- 726

ercase that concatenates the first initial and the last 727

name.”, and T is Data({"Names":["John Smith", 728

"Jack Will Anders", ...]}). At a high-level, 729

the algorithm first clusters the data in T based on 730

automatically synthesized regular expressions and 731

8

User Query Q

User Input Table T

Names

Create column in lowercase that
concatenates first initial and last name

Us
er

 ID
E

(e
.g

.,
Py

th
on

 n
ot

eb
oo

k o
r E

xc
el

)

…

Valid Completions C,O

Completion 1

Completion 10

Output 1

Output 10

…

Names

Selected Rows R

Names NamesNames Names

Prompt P

Code executable?

Output type matches?

…

EXEC

Outputs O

VALIDATE

Completions C

… Completion 20Completion 1Output 1 …

SELECT

LLM

PROMPT

Create column in lowercase that
concatenates first initial and the last

name

NamesNames

Figure 4: Our tool transforms an input table and a user query into a list of valid completions. The input data is used
to extract the selected rows R. The resulting rows and query are used to construct a prompt which is fed to a code
synthesis LLM, such as GPT-4 or CODELLAMA, generating multiple possible completions. The outputs of these
completions are then validated and the first k valid completions (along with the outputs) are returned.

Algorithm 1 Inference Algorithm
Input: Explicit: user query Q, input table T , cardinality k.

Implicit: completion limit kmax (with k ≤ kmax), num-
ber n of rows to be selected.

Output: Pair of lists (C,O), with |C| = |O| ≤ k, of unique
completions and their corresponding outputs.

1: procedure INFER(Q,T, k)
2: M ← CLUSTER(T) ▷ map elements into clusters
3: R← SELECT(T, n,M) ▷ select n most

representative rows from T
4: P ← PROMPT(Q,R) ▷ prompt creation
5: B,C,O ← kmax, [], [] ▷ initialize budget, caches
6: while B > 0 ∧ |C| < k do
7: c← LLM(P) ▷ sample completion
8: B ← B − 1 ▷ decrement budget
9: o← EXEC(c, T) ▷ execute against T

10: if VALIDATE(o) ∧ (c /∈ C) then
11: C ← C + [c] ▷ append completion to C
12: O ← O + [o] ▷ append output to O

13: return (C,O)

stores them in a map M (line 2). It then extracts732

representative rows of the table using SELECT (line733

3); combines the query Q and the rows R to cre-734

ate a prompt P using PROMPT (line 5); and then735

queries LLM repeatedly using this prompt until the736

target completions are reached or we exceed the737

budget of calls (lines 7-13). Each completion c738

(line 8) is executed on the input table (line 10) us-739

ing an EXEC procedure, and if the completion is740

new and its output o satisfies a VALIDATE proce-741

dure, the two are accumulated in C and O. The742

lists of completions and outputs are returned to the743

user (line 14). We now describe the key steps of744

the algorithm in more detail.745

CLUSTER Consider the input table T in Fig. 5.746

As is common in data-centric tasks, different rows 747

have slightly format: some only have first and 748

last name, while others have one or two middle 749

names, and some last names are hyphenated. It is 750

important to capture this syntactic variation in the 751

prompt, to make sure that the solution generalizes 752

to all rows (or as many rows as possible). For 753

example, if the LLM were only exposed to rows 754

with two names, it could attempt to extract the 755

last name as the suffix after the first space, which 756

would not generalize to rows with more than two 757

names. To capture such syntactic variation, are 758

rely on an existing tool FLASHPROFILE (Padhi 759

et al., 2018), which takes as input a set of strings 760

and synthesizes a set of regular expressions 761

(regexes) from a restricted class, such that each 762

input string matches one of the regexes. In 763

our running example, FLASHPROFILE would 764

synthesize four regexes: [A-Z][a-z]+[\\s] 765

[A-Z][a-z]+, which matches rows with just 766

two proper-case names, [A-Z][a-z]+[\\s] 767

[A-Z][a-z]+-[A-Z][a-z]+, which matches rows 768

with dashed last names, and two more (for three 769

and four names, respectively). Then, the output 770

of FLASHPROFILE can be used to cluster input 771

strings. 772

SELECT If the input table has only one column, 773

like in our running example, selecting representa- 774

tive rows based on the clustering results is trivial: 775

given the budget of n rows to be included into the 776

signature, simply pick one row each from at most 777

n largest clusters. In Fig. 5, assuming our budget 778

9

Python 3

import pandas as pd

df = pd.DataFrame()

df[‘Names’] = ['John Smith’, ‘Jack Will Anders’, ‘Ash Kelsey-Poe’,
‘Jo Anna Emily Gray’]

create a new column in lowercase where we concatenate the
first initial and the last name.

Prompt P

Representative Rows R

User Table T

Create a new column in lowercase
where we concatenate the first
initial and the last name.

Query Q

df['new_column'] = df['Name'].apply(lambda
x: x.split()[0][0].lower() + x.split()[-1].lower())

Valid Completion C

…….Output O

Figure 5: An example run, with the input table T and query Q. The tool extracts the four most representative rows
R and uses them, along with the query Q, to create a prompt to pass to the model. The first valid completion is used
to create an output column, which is shown to the user.

is n = 5, we pick one row from each of the four779

clusters generated by FLASHPROFILE (depicted780

with different colors), leading to four representa-781

tive rows. In case the input contains more than one782

column, FLASHPROFILE might cluster different783

columns differently. In this case we would like to784

select n rows that together cover as many strings785

as possible across all the columns. We frame this786

as a weighted maximal coverage problem— a well-787

known NP-complete problem (max) that can be788

solved approximately using the greedy algorithm789

described in Algorithm 2. The algorithm takes as790

input the table T , a map M from the rows of the791

table to the set of clusters covered by the element792

in each column of the row. It also takes as input793

the row budget n. The algorithm iterates over all794

the rows in T not already in R (line 3) and in each795

iteration selects the row whose elements maximize796

the size of the clusters covered (line 4), adding this797

row to R.798

Algorithm 2 Rows Coverage Algorithm SELECT

1: procedure SELECT(T , n, M)
2: while |R| < n do
3: for r ∈ Tr ∧ r /∈ R do
4: BEST ← argmax(

∑
{ |ci| s.t. ci ∈M [r] })

▷ greedily increase coverage
5: R← R ∪ BEST

return R

PROMPT Prompt creation procedure PROMPT cre-799

ates a textual prompt by concatenating the NL 800

query and the representative rows of T . The se- 801

lected rows R are in the form of a Pandas dataframe. 802

A concrete example of the resulting prompt is 803

shown in Fig. 5. 804

LLM The completion procedure LLM queries GPT- 805

4 (or another code-generating model), passing the 806

prompt P and predefined stop sequences. We use 807

stop sequences that we have found to allow the 808

LLM to generate at least one solution while typi- 809

cally not using the entire token budget. Note that 810

the LLM needs to produce multiple completions, 811

because it will filter out invalid completions, which 812

are not considered at all. A naive approach would 813

be to request a single completion, validate it, and 814

repeat the process until k distinct valid completions 815

are obtained; this, however, requires sending the 816

prompt to the LLM every time, which incurs a mon- 817

etary cost. An alternative approach is to batch the 818

completions, i.e. request some number b of com- 819

pletions in parallel; if the batch size b is too large, 820

however, this also incurs unnecessary cost, since 821

we are requesting more output tokens than we need. 822

Further details are available in Appendix D.4. 823

EXEC The procedure EXEC turns each LLM com- 824

pletion into a stand-alone executable program and 825

runs it to obtain the final output o. There are two 826

main challenges to be addressed in this step. First, 827

LLM completions do not have a consistent way 828

10

of identifying the final output: for example, the829

last line of the completion might be an expression830

that computes the output, or an assignment to a831

“result” variable, or a print statement. So our tool832

uses a predefined set of rewrite rules, which we de-833

veloped by analyzing the patterns in completions.834

The second challenge is that executing arbitrary835

LLM-generated code poses a security risk; for this836

reason, we execute completions in a sandbox. Fur-837

ther details are available in Appendix D.5.838

VALIDATE Finally, the procedure VALIDATE839

checks that the output value o is a dataframe with840

the right dimensions. The completions that ex-841

ecuted without runtime errors during EXEC and842

passed the output validation are deemed valid and843

are presented to the user. Further details are avail-844

able in Appendix D.6.845

D Experimental Setup846

D.1 Evaluation Parameters847

We report all results with GPT-4 as the LLM with a848

temperature of 0.5. We also do a performance com-849

parison for no-data, first-row and full-data regimes850

and the different selection strategies with CODEL-851

LAMA (Roziere et al., 2023) as the LLM.852

D.2 Evaluation Metrics853

The probability that at least one of k inferred out-854

puts is correct is called pass@k (Chen et al., 2021).855

More formally, pass@k is the probability that with856

a sample of k code completions, at least one is857

correct. To measure this probability empirically858

for each datapoint, we compute up to m valid859

programs by sampling from GPT-4 or CODEL-860

LAMA. We count the number s of correct comple-861

tions, and hence compute an estimate of pass@k862

as 1 −
(
m−s
k

)
/
(
m
k

)
(Chen et al., 2021). By com-863

puting m > k completions the estimate has lower864

variance than by simply computing k completions.865

Each pass@k on a whole dataset is the average866

of pass@k over all its datapoints. All evaluation867

results are averaged over tasks, computing m valid868

completions to estimate pass@k or pass@k(X%).869

In practice, we set m = 20 ∗ k when we report870

results for k = 1 or k = 5.871

D.3 Prompt Template872

For each task, we generate prompts according to the873

data regimes and selection strategies as described874

above. Below is an example prompt for the query875

"Create a new column with the difference in hours,876

All-Classes IND DEP EXT
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pa
ss

@
K

(K
=

1,
5)

(a)

(a)

(a)
(a)

(b)

(b)

(b)

(b)

(c)

(c)

(c)

(c)

Pass@K for different data regimes across task classes
pass@1
pass@5

Figure 6: pass@k (CODELLAMA) with (a) no-data, (b)
first-row, and (c) full-data (10 rows) passed to the model.
The leftmost group of bars represent pass@k with all
classes followed by separate pass@k for IND, DEP and
EXT tasks. Smaller models have a huge performance
drop. But the trend of performance improving with the
amount of data passed to the model is seen.

minutes and seconds between the two timestamps 877

in the format HH:MM:SS" with one selected row: 878

Python 3 879
i m p o r t pandas as pd 880
df = pd . DataFrame () 881
df [’ S t a r t ’] = [’ 2 / 2 2 / 2 0 1 5 1 : 0 6 : 2 0 PM’] 882
df [’ End ’] = [’ 2 / 2 3 / 2 0 1 5 3 : 0 8 : 2 0 PM’] 883

884
C r e a t e a new column wi th t h e d i f f e r e n c e 885
i n hours , m i n u t e s and s e c o n d s between t h e 886
two t i m e s t a m p s i n t h e f o r m a t HH:MM: SS" 887

D.4 Completions Generation 888

Parallelization. For efficiency, we request multiple 889

completions from GPT-4 per iteration in Alg.1. To 890

try to minimize both inference time and the load 891

on OpenAI’s servers, we adapt the batch size to an 892

estimate of the probability that the next completion 893

is valid. The batch size used in each iteration is 894

n = min (⌈r/p⌉, B, L), where r = k − |C| is 895

the number of valid completions still to obtain, B 896

is the remaining completion budget, and L is a 897

parallelization limit enforced by the CHATGPT 898

API. The probability estimate p is updated after 899

each iteration by counting the number of valid and 900

invalid completions in that iteration’s batch. 901

Since pass@k is calculated only from valid com- 902

pletions, it is not influenced by either paralleliza- 903

tion or batch size adaptation. We additionally re- 904

port the average "pool" size (valid and invalid com- 905

pletions) to measure the cost of retrieving valid 906

completions using the above approach in all our 907

11

Baseline Random-Rows Representative-Rows
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
pa

ss
@

K
(K

=
1,

5)

no-data

random-1

random-5

represent-1

represent-5

Pass@K for data-dependent tasks with selected rows
pass@1
pass@5

Figure 7: pass@k (CODELLAMA) for DEP tasks with
no-data, and n=1 and 5 rows passed to the model, using
random (random-n) selection, representative selection
(represent-n) and full-data (1000 rows). Completions
are evaluated on 1000 rows.

experiments.908

Stop sequences. The most effective stop sequence909

we found that allows GPT-4 to generate at least one910

solution while not usually using the entire token911

budget is a blank line followed by a line comment;912

i.e. \n\n#. Further, to keep GPT-4 from gener-913

ating what appears to be the rest of a forum post914

after a code snippet, we also use the stop sequence915

</code>.916

Completion cleanup. Having forum posts appar-917

ently in GPT-4’s training data means some comple-918

tions would raise SyntaxError exceptions when919

executed due to formatting artifacts, and therefore920

be invalid. Instead, to make the most of the com-921

pletion budget, we replace formatting artifacts. In922

particular, we replace HTML escape sequences923

such as < and " with Python operators924

and delimiters. Cleanup additionally removes un-925

necessary whitespace, blank lines and comments,926

and truncates completions at \n# when it appears927

after executable code.928

D.5 Execution of Completions929

Rewriting. Completions returned by GPT-4 do not930

clearly indicate which variables or expressions are931

intended to be the answer to a query. This must932

be inferred from the shape of the code. We found933

that an effective way to identify and expose the934

likely answer is to search backwards to find the last935

unindented (i.e. top-level) statement that has one of936

a few forms, and rewrite the completion so that its937

last statement is an assignment to a fresh identifier938

Baseline Random-Rows Representative-Rows
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

pa
ss

@
K

(K
=

1,
5)

no-data

random-1 random-5 represent-1 represent-5

Pass@K for data-dependent tasks (with more than 2 clusters)
pass@1
pass@5

Figure 8: pass@k (CODELLAMA) for 17 out of 44
DEP tasks (more than two clusters) with no-data, ran-
dom selection (random-n) and representative selection
(represent-n). Completions are evaluated on 1000 rows.

varout. The statement forms and rewrites are 939

• var = expr: append the statement varout = 940

var to the completion 941

• var[expri] = expr: append the statement 942

varout = var to the completion 943

• print(expr, ...): replace this statement and 944

the rest of the completion with varout = expr 945

• expr: replace this statement and the rest of 946

the completion with varout = expr 947

Rewriting also inserts import statements for 948

common libraries (e.g. import numpy as np). 949

The rewritten completion is appended to the code 950

that defines the input dataframe to create a com- 951

pleted program. The completed program and the 952

output variable name varout are sent to a sandbox 953

for execution. 954

Sandboxing. Because of security risks inherent 955

in running the LLM-generated code, we run com- 956

pleted programs in a sandbox. Our sandbox is a 957

JavaScript web service that runs Python programs 958

in Pyodide (Droettboom et al., 2022), a Python 959

distribution for WebAssembly. While Python pro- 960

grams running in Pyodide have access to the host’s 961

network resources, they at least are isolated from 962

other host resources including its filesystem, of- 963

fering some level of protection from malicious or 964

accidentally harmful completions. After running 965

the code, the sandbox returns the value of varout. 966

12

D.6 Validation of Completions967

For a completion to be considered a correct solu-968

tion in the calculation of pass@k, its actual output969

must match the expected output. Matching can-970

not be the same as equality and still conform to a971

reasonable notion of correctness; for example, the972

natural breakdown of a solution might generate in-973

termediate columns in the actual output that are not974

in the expected output. The actual output is allowed975

to vary from the expected output in the following976

ways and still match the expected output:977

1. Extra columns978

2. Different column order979

3. Different column headers980

4. Number expected; actual is a number within981

small relative error (default 0.01)982

5. Number expected; actual is a string that parses983

as a number within small relative error984

6. Boolean expected; actual is number 0 or 1985

7. Boolean expected; actual is a string that repre-986

sents a truth value987

8. String expected; actual is a string that differs988

only in case989

Allowed string truth value representations, allowed990

relative error, and whether string matching is case-991

sensitive are (optionally) overridden per data point992

as appropriate.993

13

	Introduction
	Related work
	The SofSet Dataset
	Dataset Annotation
	Dataset Properties
	Cluster-then-select prompting technique

	Evaluation of data-centric tasks
	Conclusion and Future Work
	Limitations
	Broader Research Impact
	Ethics Statement
	Community Data License Agreement - Permissive - Version 2.0
	Provision of the Data
	Conditions for Sharing Data
	No Restrictions on Results
	No Warranty; Limitation of Liability
	Definitions

	Software License Agreement
	Our Prototype Tool
	Experimental Setup
	Evaluation Parameters
	Evaluation Metrics
	Prompt Template
	Completions Generation
	Execution of Completions
	Validation of Completions

