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Figure 1. We present JointDiT, a diffusion transformer modeling the RGB-Depth joint distribution. By leveraging the image prior of a
state-of-the-art diffusion transformer [7], JointDiT generates high-fidelity images and geometrically plausible and accurate depth maps.

Abstract

We present JointDiT, a diffusion transformer that models the
joint distribution of RGB and depth. By leveraging the ar-
chitectural benefit and outstanding image prior of the state-
of-the-art diffusion transformer, JointDiT not only gener-
ates high-fidelity images but also produces geometrically
plausible and accurate depth maps. This solid joint distri-
bution modeling is achieved through two simple yet effective
techniques that we propose, namely, adaptive scheduling
weights, which depend on the noise levels of each modality,
and the unbalanced timestep sampling strategy. With these
techniques, we train our model across all noise levels for
each modality, enabling JointDiT to naturally handle vari-
ous combinatorial generation tasks, including joint genera-
tion, depth estimation, and depth-conditioned image gener-

†Work done during an internship at Microsoft Research Asia.

ation by simply controlling the timesteps of each branch.
JointDiT demonstrates outstanding joint generation per-
formance. Furthermore, it achieves comparable results in
depth estimation and depth-conditioned image generation,
suggesting that joint distribution modeling can serve as a
viable alternative to conditional generation. The project
page is available at https://byungki-k.github.
io/JointDiT/

1. Introduction

In the era of generative AI, diffusion models have made
remarkable advancements in synthesizing images [26, 52].
The outstanding capability of text-to-image diffusion mod-
els has been found to be useful not only for image gener-
ation but also for solving important inverse problems [12–
14, 28], image inpainting [15, 44], image editing [16, 31],
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Figure 2. 3D lifting results of JointDiT and depth diffusion models, i.e., Marigold [32] and GeoWizard [21]. JointDiT also shows
more plausible 3D point clouds than depth estimation models in challenging illustration domains, likely due to the complementary behavior
of the RGB and depth branches across generative processes, i.e., the RGB branch focuses on texture, and the depth branch on structure.

and even further cross-modal conditional generation, such
as depth-conditioned image generation [6, 45, 72], and
image-conditioned depth estimation [21, 22, 32]. These
works have shown that using the image prior of diffusion
models is effective for modeling conditional distribution.

Recently, in image and depth modalities, joint distribu-
tion modeling [35, 60, 71] has shown that it not only en-
ables joint generation but also shows potential as a viable
alternative to existing depth estimation methods and depth-
conditional image generation methods within a single uni-
fied framework by treating them as special cases of joint
distribution modeling. It demonstrates that joint modeling
can be easily generalized for various tasks including con-
trollable and conditional generation and estimation. Despite
this versatility, the realism of the generation is limited.

In this work, we propose JointDiT, a diffusion trans-
former designed for solid joint distribution modeling of im-
age and depth. Figure 1 demonstrates the high-fidelity joint
generation results of JointDiT. The high-fidelity images and
geometrically accurate depth maps visually highlight the
joint distribution capability of JointDiT, which has not been
achieved. Furthermore, we design JointDiT to provide a re-
placeable alternative to conditional distribution models by
constructing a joint distribution at all noise levels for each
modality. For instance, the model performs joint generation
when both the image and depth map are noise, depth esti-
mation when only the image is clean, and depth-conditioned
image generation when only the depth map is clean.

To achieve this, we model the joint distribution by har-
nessing the strong image prior of a state-of-the-art diffusion
transformer [7] and building a parallel depth branch through
joint connection modules. By training on separate noise
levels for each modality, JointDiT flexibly facilitates com-

binatorial tasks of image and depth by simply controlling
the timestep of each branch. To enable separate noise level
training, we propose two simple yet effective techniques,
i.e., adaptive scheduling weights and unbalanced timestep
sampling strategy, designed for multi-modal diffusion train-
ing with separate noise levels. JointDiT achieves signif-
icantly superior joint generation results compared to pre-
vious joint generation methods [35, 60, 71] while demon-
strating comparable performance in conditional generation
tasks, such as depth estimation and depth-conditioned im-
age generation. JointDiT also enables plausible depth gen-
eration even for challenging domains such as cartoon im-
ages and pixel art illustrations, where depth estimation
methods [21, 32] often struggle, as shown in Fig. 2. We fur-
ther observe that the RGB and depth branches adopt com-
plementary behavior in the joint generation process, with
the depth branch capturing structural information and the
RGB branch focusing on complementary aspects related to
texture and appearance, which may underlie the plausible
results observed in challenging domains.

We summarize our contributions as follows:

• We present JointDiT, a model for solid joint distribution
modeling between image and depth modalities across all
noise levels by leveraging the image prior of diffusion
transformers. It supports combinatorial tasks, such as
joint generation, depth estimation, and depth-conditioned
image generation via simple timestep control.

• We propose adaptive scheduling weights and unbalanced
timestep sampling strategy for separate noise level train-
ing in multi-modality, which significantly improves per-
formance on combinatorial tasks. Through these tech-
niques, we demonstrate that joint distribution modeling



is a viable alternative to conditional generation.

2. Preliminaries

Flow matching. Flow matching is generative modeling
that learns a time-dependent vector field, which transports
one probability distribution to another. It is closely re-
lated to Continuous Normalizing Flows (CNFs) [11], which
model such transformations via differential equations. We
adopt the notation from Lipman et al. [39] to describe the
flow matching formulation and objective. Given the data
points x ∈ Rd and probability density path p : [0, 1]×Rd →
R>0 that is a time-dependent probability density function
satisfying

∫
pt(x)dx = 1, the time-dependent vector field

v : [0, 1]×Rd → Rd combines with a flow ϕ : [0, 1]×Rd →
Rd, leading to the ordinary differential equation (ODE):

d

dt
ϕt(x) = vt(ϕt(x)), ϕ0(x) = x, (1)

where ϕ0(x) = x is an initial condition. Through the push
forward equation, the probability density function at time t,
i.e., pt, is transformed by pt = [ϕt]∗p0. The ∗ and p0 rep-
resent the push forward operator and simple prior, e.g., the
standard normal distribution, and p1 represents a data distri-
bution. The objective of flow matching is to estimate vt(x)
using a learnable neural network vt,θ(x) by minimizing:

LFM = Et, pt(x)

[
∥vt,θ(x)− vt(x)∥

]
. (2)

However, obtaining the true vector field vt is intractable. To
address this, Lipman et al. [39] proposed Conditional Flow
Matching (CFM), which introduces a condition by sampling
the accessible data sample x1 from the unknown data dis-
tribution q(x1). By conditioning the true vector field on x1,
that is vt(x|x1), a tractable objective is obtained, as follows:

LCFM = Et, q(x1),pt(x|x1)

[
∥vt,θ(x)− vt(x|x1)∥

]
. (3)

3. Method

Our goal is to develop a unified network that models the
joint distributions between images and depth maps across
all noise levels. This network can be applied to various
tasks, including joint image-depth generation, depth esti-
mation from an image, and depth-conditioned image gener-
ation by adjusting the noise levels of each modality.

To achieve this, inspired by previous works [8, 35] that
employ separate noise sampling for images and conditions,
we extend the flow matching framework to learn a joint vec-
tor field vtx,ty (x, y|x1, y1) with two independent timesteps,
tx and ty . Here, x and y represent data points sampled from
the RGB image and depth map distributions, respectively.

To estimate vtx,ty (x, y|x1, y1), we design a learnable neu-
ral network vtx,ty,θ(x, y) and train it by minimizing the fol-
lowing Joint Conditional Flow Matching (JCFM) loss:

LJCFM(θ) = Etx,ty,q(x1,y1),ptx,ty (x,y|x1,y1)

[
∥ vtx,ty,θ(x, y)

− vtx,ty (x, y|x1, y1)∥
]
. (4)

Once the network successfully learns to estimate the vec-
tor field vtx,ty (x, y|x1, y1), various tasks can be performed
simply by adjusting tx and ty without any additional guid-
ance. For example, initially setting tx = 0, ty = 0 leads
to the joint generation of both images and depth maps.
When tx = 1, ty = 0, it performs depth estimation from
a given image, and when tx = 0, ty = 1, it becomes a
depth-conditioned image generation. In the later section,
we will denote the noisy image and depth map samples
(x, y) ∼ pt(x, y) as xt and yt for simplicity.

3.1. Joint Diffusion Transformer (JointDiT)
Figure 3 shows JointDiT architecture. JointDiT is built on
Flux [7], an advanced diffusion transformer model that con-
sists of multi-modal diffusion transformer (MM-DiT) and
parallel diffusion transformer (P-DiT) blocks [18, 19]. To
harness its strong image prior and the benefits of trans-
former architectures in dense prediction tasks [50], we ex-
tend it to joint image and depth distribution modeling by in-
troducing a parallel depth branch alongside the pre-trained
RGB branch. Thereafter, we add LoRAs [27] to the MM-
DiT and P-DiT blocks to process the additional depth do-
main. Additionally, joint connection modules are intro-
duced in each DiT block to model joint distribution by in-
terchanging features between the RGB and depth branches.
We train the LoRAs and joint connection modules while
keeping the pre-trained backbone model frozen.

In the joint connection modules (see Fig. 3-b), feature
exchange for joint distribution modeling occurs within the
attention mechanism of each DiT block. We adopt the
joint cross-attention module from the prior work [35]. This
module facilitates joint distribution training by exchanging
queries between the RGB and depth branches through at-
tention mechanisms. The motivation is that self-attention
plays a key role in the form and structure of images [63].

To further reinforce this motivation, we propose adap-
tive scheduling weights, which encourage the joint model
to follow the form and structure of the relatively cleaner do-
main between the RGB and depth branches. Specifically,
we adaptively schedule the amount of information trans-
ferred between branches by joint cross attention accord-
ing to the relative cleanliness of the given noisy image xtx

and the noisy depth yty . This approach is also intuitively
reasonable, as cleaner data inherently provides more use-
ful information for joint generation. The adaptive schedul-



Figure 3. Overall pipeline of JointDiT. Building on Flux [7], we introduce a parallel depth branch with trainable LoRAs [27]. The joint
connection module enables the aligned joint generation. We propose adaptive scheduling weights and an unbalanced timestep sampling
strategy for effective training using separate timesteps. MM-DiT and P-DiT denote the multi-modal [19] and parallel [18] diffusion
transformers, respectively. The two timestep distributions, f(t) and g(t), are described in the supplementary material.

ing weights are individually multiplied with the joint cross-
attention outputs, which corresponds to:

Gx = Attn(Sx) + wx(tx, ty) · JointAttn(Sx,Sy),

Gy = Attn(Sy) + wy(tx, ty) · JointAttn(Sx,Sy).
(5)

wx and wy are adaptive scheduling weights for:

wx(tx, ty) = sigmoid
(
α

(
ty

tx + ty
− 1

2

))
,

wy(tx, ty) = sigmoid
(
α

(
tx

tx + ty
− 1

2

))
,

(6)

where α is a scale factor. We set α to 3 for all experiments.
The above equations indicate that more weight is given to
the output of joint cross-attention for the noisier branch (rel-
atively closer to t = 0), letting it follow the domain struc-
ture of the cleaner branch.

We also introduce the unbalanced timestep sampling
strategy to enforce joint distribution modeling at any sep-
arate timesteps (See Fig. 3-c). Prior studies [19, 73] have
investigated the impact of timestep sampling strategies on
diffusion performance during training and have proposed

various timestep sampling methods beyond uniform distri-
bution. Similarly, our base training code also employs a
weighted timestep distribution for training† (f(t) in Fig 3-
c). However, with this timestep distribution, the joint dis-
tribution of tx and ty is likely insufficient to fully cover both
joint generation and conditional generation tasks, as shown
by Hang et al. [23], where insufficient timestep sampling
negatively affected diffusion performance. The unbalanced
timestep sampling strategy samples tx and ty independently
from two unbalanced timestep distributions, f(t) and g(t),
with half probability during training. For the remaining
half, the same timesteps sampled from f(t) are assigned to
tx and ty . We experimentally validate that these two simple
techniques are effective for building a solid joint distribu-
tion across all noise levels of images and depth maps, en-
hancing performance in joint generation, depth-conditioned
image generation, and depth estimation.

4. Experiments
We evaluate the performance of JointDiT across joint gener-
ation, depth estimation, and depth-conditioned image gen-

†https://github.com/kohya-ss/sd-scripts/tree/sd3
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Figure 4. 3D lifting results of LDM3D [60], JointNet [71], and our JointDiT. Our JointDiT generates highly plausible image-aligned
3D structures, surpassing previous joint generation methods in achieving superior consistency with real 3D space.

eration. We also analyze the behavior of the RGB and depth
branches, as well as the effectiveness of adaptive scheduling
weights and unbalanced timestep sampling. Experimental
details can be found in the supplementary material.

Implementation details. To collect the training dataset,
we randomly sample frames from a real-world internal
video dataset, which allows us to acquire real-world im-
ages with a larger field of view easily. The sampled frames
are resized while maintaining their aspect ratio, then center-
cropped, to produce 512 × 512 images. The depth maps
and text prompts are generated by Depth-Anything-v2 [68]
and LLaVa [40], respectively. We train our model on the
collected dataset, which consists of 50k pairs, for 75k itera-
tions with a batch size of 4 and a learning rate of 1e-5. We
use the LoRA rank of 64 in DiT blocks and apply text drop
with a probability of 10% [25]. The training is conducted
on a single NVIDIA H100 GPU for 3.5 days.

4.1. Joint Generation

We demonstrate JointDiT’s joint generation capability
through visualizations of generated images, depth maps,
and their 3D lifting results, which provide intuitive evidence
of joint RGB–Depth modeling and underscore the necessity
of joint distribution modeling. To obtain the 3D lifting re-
sults, we apply an inverse projection to the generated image
using the generated depth map. We compare our method
with LDM3D [60] and JointNet [71], as they provide raw
depth maps that facilitate 3D lifting visualization.

Figure 4 demonstrates the results. Compared to LDM3D
and JointNet, our JointDiT shows high-fidelity images, fine-
detailed depth maps, and geometrically accurate 3D lifting
results. In contrast, the 3D lifting results of JointNet and
LDM3D are geometrically inaccurate. We assume that this

significant gap in geometric accuracy is caused by the dif-
ferences in the image prior and the architecture between the
baseline models, i.e., stable diffusion [52] and Flux [7]. The
Flux model, which is built on the diffusion transformer ar-
chitecture, demonstrates superior image generation quality
over stable diffusion that adopts the UNet architecture. In
addition, the transformer architecture has been shown effec-
tive in depth estimation by several studies [1, 37, 50] since
it has the global receptive field different from the fully-
convolutional networks.

4.2. Depth Estimation
We assess the depth estimation capability of JointDiT with
different time steps, tx = 1 and ty = 0. We compare our
method with joint generation methods that support depth
estimation, e.g., JointNet [71] and UniCon [35]. We also
compare with discriminative depth estimation methods, in-
cluding depth-specialized models [49, 50, 68] and multi-
task learning-based methods [2, 3, 42, 43], as well as gen-
erative depth estimation methods that utilize a diffusion
model [21, 32]. Following the evaluation convention of
prior work, we compare each method on the NYUv2 [56],
ScanNet [17], KITTI [5], DIODE [64], and ETH3D [55]
datasets. The evaluation metrics are Absolute Mean Rela-
tive Error (AbsRel) and δ1. Table 1 summarizes the results.
Compared to joint generation methods, our model achieves
superior performance across all evaluation datasets. Fig-
ure 5 shows the depth estimation results of joint generative
methods on the ScanNet dataset. Compared to JointNet and
UniCon, our method captures sharp edges and fine details.

We also compare our method with generative depth esti-
mation models, which finetune most of the parameters of a
pre-trained diffusion model. Except for the ETH3D dataset,
our model achieves comparable performance with only a



Type Method NYUv2 [56] ScanNet [17] KITTI [5] DIODE [64] ETH3D [55]

AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑

Discriminative

MiDaS [49] 11.1 88.5 12.1 84.6 23.6 63.0 33.2 71.5 18.4 75.2

depth estimation

DPT [50] 9.8 90.3 8.2 93.4 10.0 90.1 18.2 75.8 7.8 94.6
Depth-Anything-V2 [68] 4.4 97.9 4.1 97.9 7.5 94.8 6.5 95.4 13.2 86.2
4M-21 [3] 11.8 88.7 10.6 89.1 15.6 78.9 32.1 75.1 8.4 93.8
MultiMAE [2] 9.2 91.6 8.7 92.3 16.9 75.1 35.2 71.9 10.6 89.9
Unified-IO [42] 6.8 95.9 7.5 95.0 28.1 52.0 36.4 70.0 13.9 83.9
Unified-IO 2 [43] 12.5 85.8 14.5 81.6 48.9 31.7 43.4 62.0 20.5 72.1

Generative Marigold [32] 5.5 96.4 6.4 95.1 9.9 91.6 30.8 77.3 6.5 96.0
depth estimation GeoWizard [21] 5.2 96.6 6.1 95.3 9.7 92.1 29.7 79.2 6.4 96.1

Generative
JointNet [71] 13.7 81.9 14.7 79.5 20.9 66.7 35.0 58.5 27.1 73.5

joint generation
UniCon [35] 7.9 93.9 9.2 91.9 — — — — — —

Ours 5.7 96.9 6.6 95.7 10.3 88.8 27.3 71.0 16.5 96.3
Ours+ft 5.0 97.3 5.6 96.5 10.9 87.7 26.6 71.1 9.3 96.8

Table 1. Depth estimation results. We compare ours with generative joint generation methods, as well as with discriminative and
generative depth estimation methods. Ours outperforms JointNet and UniCon. Additionally, it achieves comparable performance to
generative depth estimation methods, except on ETH3D. Bold indicates the best performance among the generative methods in this table.

UniCon OursJointNetInput image

Figure 5. Depth estimation results of joint generation models.
We visualize the depth estimation results of JointNet, UniCon, and
our method on the NYUv2 and ScanNet dataset. Our approach
captures thin and fine-grained details with only a timestep adjust-
ment, i.e., tx = 1 and ty = 0. In contrast, JointNet requires
additional fine-tuning for depth estimation.

small portion of parameter tuning, e.g., LoRA layers and
the joint connection module. On the ETH3D dataset, our
method appears to achieve higher AbsRel than generative
depth estimation methods, likely because we use the depth
predictions of Depth-Anything-V2 for training.

To verify the depth estimation performance itself, we
further trained our model for an additional 50k iterations
on synthetic datasets. We collect the synthetic training
dataset by filtering 80k data samples from Hypersim [51],
Replica [30], IRS [66], and MatrixCity [36]. The training
method remains the same as before. As shown in Tab 1, the
fine-tuned model, denoted as Ours+ft, achieved higher ac-
curacy on the NYUv2, ScanNet, and DIODE datasets com-
pared to generative depth estimation models. These results
suggest two aspects. First, the strong image prior and archi-
tectural properties of the diffusion transformer are effective
for dense prediction tasks, even with only a small subset of
trainable parameters. Second, solid joint distribution mod-

Method OpenImages 6K

FID↓ AbsRel ↓
Readout-Guidance [45] 18.72 23.19
ControlNet [72] 13.68 9.85
UniCon [35] 13.21 9.26

Ours 12.62 6.99

Table 2. Depth-conditioned image generation results. With the
same training dataset, ours achieves the lowest FID and AbsRel.

eling can serve as an alternative to conditional generation.

4.3. Depth-Conditioned Image Generation
We validate the depth-conditioned image generation qual-
ity, another joint generation with different time steps,
tx = 0 and ty = 1. Following the evaluation protocol
of UniCon [35], We compare our method with Readout-
Guidance [45], ControlNet [72], and UniCon. All meth-
ods are trained on the same dataset, i.e., 16k samples from
PascalVOC [20], and evaluated on 6k samples from Open-
Images [33]. The evaluation is based on the FID score
between the generated and original images, as well as the
consistency of depth estimation results, e.g., AbsRel. Ta-
ble 2 shows the depth-conditioned image generation results
on the OpenImages 6K dataset. Compared to other meth-
ods, our method shows a lower FID score and AbsRel. The
lower AbsRel indicates that the generated images accurately
preserve the original image’s geometry.

4.4. Ablation Studies

Joint RGB-Depth feature visualization. As shown in
Fig. 2, joint RGB-Depth modeling enables plausible depth



Adaptive Unbalanced ImageNet 6K Pexels 6K MSCOCO 30K

scheduling weights timestep FID↓ IS↑ CLIP↑ FID↓ IS↑ CLIP↑ FID↓ IS↑ CLIP↑
✗ ✗ 30.88 31.61 29.80 21.85 20.02 30.53 15.17 29.73 30.21
✗ ✓ 29.37 33.36 29.89 22.01 19.68 30.15 13.76 30.73 30.43
✓ ✗ 24.20 37.04 30.37 19.49 21.60 30.53 11.13 33.98 30.63
✓ ✓ 24.26 37.81 30.51 19.87 22.51 30.71 11.27 34.35 30.76

Table 3. Ablation studies on joint generation. Applying adaptive scheduling weights notably improves all evaluation metrics across all
datasets. The unbalanced timestep sampling strategy enhances IS and CLIP scores when combined with adaptive scheduling weights.

Adaptive Unbalanced
NYUv2 ScanNet OpenImages 6K

scheduling timestep AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑ FID↓ ImageReward
weights Rank1↑ Rank2 Rank3 Rank4↓

✗ ✗ 8.8 92.2 10.4 88.9 11.94 26.35 26.38 24.43 22.83
✗ ✓ 7.8 93.9 8.7 92.4 12.51 21.77 24.82 25.48 27.93
✓ ✗ 6.4 96.0 7.2 94.9 14.37 21.15 22.73 25.63 30.48
✓ ✓ 5.7 96.9 6.6 95.7 12.58 30.73 26.07 24.45 18.75

Table 4. Ablation studies on depth estimation and depth-conditioned image generation. Adaptive scheduling weights and unbalanced
timestep sampling are effective for depth estimation. In depth-conditioned image generation, using both methods together achieved the
best performance in ImageReward [67] ranking, trained to capture human preference, with the first rank highest and the last ranking lowest.

Input
image

Input
depth

1st block 7th block 13th block 17th block

Input
image

Input
depth

Figure 6. Feature visualization of RGB-Depth branches in
MM-DiT blocks. We observe that, at timestep t = 0.48, the depth
branch tends to focus on scene geometry, while the RGB branch
captures semantic patterns related to texture and appearance.

generation from text prompts, even for stylized domains
such as cartoon-style and pixel art illustrations. Further-
more, it tends to yield more structured and plausible 3D lift-
ing results, not only for stylized domains but also for realis-
tic image domains, compared to depth prediction from RGB
images alone, as can be found in the supplementary mate-
rial. The way the RGB and depth branches focus on textures
and structure, respectively, may hint at how such capability
achieves. Figure 6 shows the joint RGB-Depth features of
MM-DiT blocks, visualized following the method of Tu-

manyan et al. [63]. The depth branch focuses on capturing
underlying structural information, while the RGB branch
attends to complementary aspects related to texture and ap-
pearance. This behavior may suggest that the depth branch,
by focusing on geometric properties throughout the joint
generation process, enables plausible depth generation even
in scenes where depth estimation is challenging.

Adaptive scheduling weights and unbalanced timestep
sampling. We analyze the effectiveness of adaptive
scheduling weights and unbalanced timestep sampling in
achieving solid joint distribution modeling. For compar-
ison, we train four models on our dataset for 75k itera-
tions, varying the use of adaptive scheduling weights and
unbalanced timestep sampling by either applying or omit-
ting. When not using unbalanced timestep sampling, we re-
spectively sample tx and ty from timestep distribution f(t),
which is the distribution that our base training code sug-
gests. We first investigate the effect in joint generation by
assessing the quality of images generated from text prompts
on three datasets: 30k samples from MS-COCO [38], 6k
from ImageNet [53], and 6k from Pexels [47]. As evalua-
tion metrics, we use the Inception Score (IS) [54], Fréchet
Inception Distance (FID) [24], and CLIP similarity [48] as
evaluation metrics. Table 3 shows that the usage of adap-
tive scheduling weights significantly improves all metrics
across all evaluation datasets. When unbalanced timestep
sampling is applied together, IS and CLIP scores tend to
improve. These results suggest that considering the relative



noise level is important for effectively connecting different
modality generation branches in separate timestep training.

We also evaluate each model on depth estimation and
depth-conditioned image generation to assess the joint
distribution modeling performance at the most extreme
timesteps, specifically at tx = 0 and ty = 1, and vice
versa. We use the NYUv2, ScanNet, and OpenImages 6K
datasets to evaluate the performance of depth estimation and
depth-conditioned image generation. Table 4 reports the re-
sults. In depth estimation, applying either adaptive schedul-
ing weights or unbalanced timestep sampling improves per-
formance. The best results are achieved when both are used
together. For the depth-conditioned image generation, we
follow UniCon [35] for the evaluation setting, using 6K
samples from the OpenImages dataset. We report the FID
between original and depth-conditioned images, and also
the percentage of samples ranked 1st to 4th by ImageRe-
ward [67], a human preference-trained reward model for
text-to-image generation. As shown in Tab 4, applying only
adaptive scheduling weights results in lower performance
in terms of FID. However, when combined with unbalanced
timestep sampling, the performance becomes comparable
to other configurations. Notably, when adaptive schedul-
ing weights and unbalanced timestep sampling are applied
together, ImageReward ranking 1 has the highest propor-
tion, while the last ranking has the lowest. These results
demonstrate that the two techniques effectively model the
joint distribution at extreme timesteps.

5. Related Work

Text-to-image diffusion models. The success of
DDPM [26] has demonstrated the effectiveness of diffusion
models for text-to-image generation, utilizing a forward and
backward process formulated as a Markov chain. Score-
based generative models [57, 58] provided another perspec-
tive by modeling the diffusion process as learning the score,
i.e., the gradient of the log probability density, from noisy
data. It was further extended with Stochastic Differential
Equations (SDEs), which unify the forward and backward
processes in a continuous-time framework [59]. More re-
cently, Flow Matching [39] has been introduced as an alter-
native to diffusion models, enabling exact likelihood train-
ing through Continuous Normalizing Flows (CNFs) [11].

Stable Diffusion [52] improved the efficiency of the dif-
fusion process by operating in a latent space instead of
the image space, allowing for a more compact and expres-
sive representation. This approach demonstrated impres-
sive results. While early diffusion models primarily relied
on U-Net architectures, recent studies have shown that the
transformer-based architecture [65] can also be highly ef-
fective for diffusion models. The diffusion transformer [46]
benefits from the global receptive field and scalability of

the transformers, leading to improved generation quality.
Models such as Flux and PixArt-α [10] further demonstrate
these advantages, highlighting the potential of transformers
in text-to-image generation.

Joint and conditional diffusion models. Text-to-image
diffusion models have demonstrated their effectiveness in
conditional and joint generation tasks. ControlNet [72] in-
troduced an additional zero-initialized network, enabling
fine-grained control over conditional generation tasks such
as depth-to-image and pose-to-image synthesis. Building
on this, LooseControl [6] proposed a more relaxed condi-
tioning approach, allowing for weaker or more flexible in-
tegration of conditional information. Meanwhile, the im-
age prior of pre-trained diffusion models can be beneficial
in a wide range of computer vision tasks, such as sound-
to-image generation [61, 62], single-image 3D reconstruc-
tion [41, 70], and 3D object texturing [9, 69].

In depth-related tasks, prior works [21, 22, 32] have
demonstrated the effectiveness of diffusion priors for depth
estimation. Hyoseok et al. [28] further showed that such
priors can be used to solve inverse problems, specifi-
cally depth completion. Models such as JointNet [71],
LDM3D [60], and UniCon [35] were designed to model the
joint distribution between images and depth maps using dif-
fusion models. However, these models are based on a U-Net
based diffusion architecture, which has a limited receptive
field. This is in contrast to recent findings suggesting that
diffusion transformers provide a stronger image prior and a
global receptive field, which is particularly useful for dense
prediction tasks [1, 37, 50]. In this paper, we leverage the
advantages of diffusion transformer to model the solid joint
distribution between image and depth.

6. Conclusion

We propose JointDiT, which models solid joint distribution.
By harnessing the strong image prior and global receptive
property of a state-of-the-art diffusion transformer, we build
a unified model capturing multi-modal joint distribution at
any separate noise levels. To achieve solid distribution,
we present two simple yet effective techniques, called the
adaptive scheduling weights dependent on the noise lev-
els of modalities and unbalanced timestep sampling strat-
egy. Through comprehensive experiments, we show that
these two techniques notably improve the performance of
joint generation, depth estimation, and depth-to-image gen-
eration. Our complete model generates images and depth
maps, which form highly plausible and image-aligned 3D
structures when lifted into 3D space. Furthermore, JointDiT
achieves depth estimation performance comparable to that
of diffusion-based depth estimation models, demonstrating
that a joint distribution model can serve as a viable alterna-
tive for conditional distribution models.



Limitation. To generate an image and its correspond-
ing depth map, JointDiT requires an input batch size of 2
and additional parameters, resulting in a 19.8% increase in
network parameters and a 2.9× longer sampling time for
20 steps. Exploring adaptations to a lightweight diffusion
transformer model would be a promising research direction.
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A. Implementation Details

We provide the details of the experiment setup, dataset pre-
processing, proposed unbalanced timestep sampling strat-
egy, and architecture design of JointDiT.

A.1. Experiment Setup
We will describe in detail the configurations we used for
joint generation, depth estimation, depth-conditioned image
generation, and Joint RGB-Depth feature visualization. We
consistently use 20 denoising steps across all experiments.

Joint generation. We generate images and their cor-
responding depth maps by initially setting tx = 0 and
ty = 0 by sampling noises from a standard normal dis-
tribution. While the main paper presents joint generation
results conditioned on text prompts, we find that joint gen-
eration occurs even without a text prompt. To compare with
JointNet [71] and LDM3D [60], we generate 512×512 im-
ages and depth maps jointly. Despite being trained only
on a 512×512 resolution dataset, we observe that Joint-
DiT successfully operates at varying resolutions, such as
1024×1024.

Depth estimation. To estimate the depth map from a given
image, we set tx = 1 and ty = 0 and provide an empty text
prompt. Unlike Marigold [32] and Geowizard [21], we do
not use any ensemble technique. Since JointDiT can op-
erate at varying resolutions, we use the NYUv2, ScanNet,
KITTI, and DIODE datasets [5, 17, 56, 64] at their original
resolutions as model inputs. For the ETH3D dataset [55],
which has a 4K resolution, we resize the images while pre-
serving the aspect ratio so that the larger dimension is set
to 1024 pixels. This preprocessing strategy is consistently

Type LoRA applied components

MM-DiT

img mod.lin
img attn.qkv
txt mod.lin
txt attn.qkv

img attn.proj
txt attn.proj

P-DiT linear1
modulation.lin

Input stage
vector in.in layer

vector in.out layer
txt in

Table 5. LoRA-applied components. To build the depth branch
extending the original Flux model [7], we add LoRAs to MM-DiT,
P-DiT, and Input stage.

applied to the comparison methods as well, and for methods
that require a fixed input resolution, we use their designated
resolution for evaluation.

Depth-conditioned image generation. We generate
depth-conditioned images from given text prompts by ini-
tially setting tx = 0 and ty = 1. The conditioning
depth maps are obtained by Depth-Anything-V2 [68]. For
the experiment of Sec. 4.3 in the main paper, we fol-
low the evaluation setting of UniCon [35] to compare
with Readout-Guidance [45], ControlNet [72], and UniCon.
Specifically, we train our model and these methods on the
same training dataset, which includes 16k images of Pas-
calVOC [20], depth maps from Depth-Anything-V2 [68],
and text prompts extracted using BLIP2 [34]. For the eval-
uation, using the selected 6k images from the OpenIm-
ages dataset [33], we estimate depth maps using an off-the-
shelf model and generate images conditioned on these depth
maps and text prompts from BLIP2.

Joint RGB-Depth feature visualization. For the feature
visualization of Sec. 4.4 in the main paper, we strictly fol-
low the method proposed by Tumanyan et al. [63], and vi-
sualize the PCA results of the features from each MM-DiT
block. Similar to Tumanyan et al., who collected images
from semantically related domains (such as humanoid pic-
tures) for visualization, we perform joint generation on 50
samples for each domain, i.e., pixel art style illustrations
and indoor scenes that are used in the two examples shown
in Fig. 6 of the main paper. We extract features at approx-
imately 50% of the generation process (i.e., t = 0.48), and



apply PCA to visualize them. Due to the architecture struc-
ture of the Flux model, which applies positional encoding
immediately before every attention layer, we subsample the
even indices before applying PCA.

A.2. Data Preprocessing
We randomly sample RGB frames from the internal video
dataset, which has a resolution of 512×512 or higher. The
sampled frames are resized so that the smaller dimension
(width or height) is 512 pixels, followed by a 512×512 cen-
ter crop. We obtain text prompts from the 512×512 images
using LLaVA [40]. To generate the corresponding disparity
maps, we use Depth-Anything-V2 and normalize them so
that the maximum and minimum values are 1 and 0, respec-
tively.

Synthetic dataset. We further fine-tune our model to ver-
ify the depth estimation capability itself. We utilize the Hy-
persim [51], Replica [30], IRS [66], and MatrixCity [36]
datasets for fine-tuning. We first unify the ground-truth
depth or disparity maps of the synthetic datasets into dis-
parity maps because our model was previously trained on
the disparity maps of Depth-Anything-V2. Thereafter, we
define invalid regions for each dataset. For example, in Ma-
trixCity, the depth of the sky was set to the maximum value,
while in Replica, there exist depth values that are closer
than the camera plane. Then, we apply the bias and scale
to the ground-truth disparity map so that the mean and stan-
dard deviation match those of Depth-Anything-V2’s dispar-
ity estimation at valid regions. The annotations in invalid
regions are replaced with Depth-Anything-V2’s estimation.
This process allows us to obtain annotations for invalid re-
gions while ensuring consistency in depth map characteris-
tics, which can vary significantly when normalized by max-
imum and minimum values due to dataset-specific invalid
regions.

A.3. Unbalanced Timestep Sampling Strategy
When applying the unbalanced timestep sampling strategy,
the timesteps, i.e., tx and ty , are separately sampled from
the timestep distributions f(t) and g(t), respectively, or vice
versa. This is applied with a 50% probability during train-
ing, while for the remaining 50%, the same timestep sam-
pled from f(t) is used for both tx and ty . The timestep
distribution is as follows:

f(t) = 1− σ(z) · s
1 + (s− 1) · σ(z)

, where z ∼ N (0, 1). (7)

The σ(·) denotes the sigmoid function. In f(t), which is
suggested by our base training code†, s is set to 3.1582. We
set s to 0.25 to obtain g(t).

†https://github.com/kohya-ss/sd-scripts/tree/sd3

A.4. Architecture of JointDiT
To build the depth branch, we add LoRAs [27] to the origi-
nal Flux architecture [7]. Specifically, we add LoRAs to the
components connected before and after the attention mech-
anisms of the multi-modal diffusion transformer (MM-DiT)
and parallel diffusion transformer (P-DiT) blocks [18, 19]
that constitute Flux. Table 5 summarizes the LoRA-applied
components in the MM-DiT and P-DiT blocks. We use a
LoRA rank of 64 for both MM-DiT and P-DiT, and apply
relatively larger ranks of 512 or 1024 to the input stage. The
alpha value is set to half of the corresponding rank.

To design the joint connection module, we adopt the
joint cross-attention module from UniCon [35], followed
by a zero-initialized linear projection layer. The adaptive
scheduling weight is applied subsequently.

B. Additional Experiments
B.1. Advantages of Joint RGB-Depth Modeling
As mentioned in the main paper, we observe that joint RGB-
Depth generation tends to yield more plausible 3D lifting
results compared to estimating depth from generated im-
ages. Figure 7 presents the 3D lifting results by showing
top and side views. When using the depth generated by our
JointDiT, the results exhibit more well-structured and volu-
metric 3D geometry than those produced by Marigold [32]
and Depth-Anything-V2 [68].

Furthermore, as also discussed in the main paper, our
joint generation approach enables plausible depth synthesis
even in illustration domains, where depth estimation meth-
ods often struggle. Additional qualitative results are pre-
sented in Figure 12.

B.2. Jointly Generated Image Quality
We quantitatively compare the quality of jointly generated
images from JointNet [71], LDM3D [60], and our method.
For evaluation, we use the dataset from Section 4.4 of the
main paper, i.e., ImageNet 6K, Pexels 6K, and MSCOCO
30K. We measure the Inception Score (IS) [54], Fréchet In-
ception Distance (FID) [24], and CLIP similarity [48] as our
evaluation metrics. Table 6 summarizes the results. We also
include the results of baseline diffusion models, i.e., Stable
diffusion [52] and Flux [7]. Interestingly, Flux achieves rel-
atively high FID scores across all evaluation datasets despite
its outstanding text-to-image generation capability. We ob-
serve that Flux often generates stylized images. Figure 8
shows samples from ImageNet 6K and the corresponding
images generated by Flux. The generated samples appear
surreal, which leads to a higher FID between them and the
real image dataset. Our model achieves a lower FID score
than Flux by learning the joint distribution of images and
their corresponding depth maps on the real dataset. How-
ever, our IS score is lower than that of Flux, likely due to
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(Estimated depth)
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Figure 7. Comparison of 3D lifting results from our JointDiT, Marigold, and Depth-Anything-V2. The jointly generated depth from
JointDiT leads to more coherent 3D shapes and better preservation of structural details compared to the estimated depths.

Generation Method ImageNet 6K Pexels 6K MSCOCO 30K

modality FID↓ IS↑ CLIP↑ FID↓ IS↑ CLIP↑ FID↓ IS↑ CLIP↑

Image SD v2.1 [52] 23.13 40.49 31.16 20.53 24.73 31.37 15.00 37.13 31.37
Flux 25.96 46.12 30.90 24.71 25.32 31.09 22.85 41.40 30.77

JointNet [71] 25.92 37.23 30.50 20.28 24.94 30.72 12.62 35.88 30.80
Image & depth LDM3D [60] 37.72 31.73 30.45 32.50 20.26 30.52 25.58 29.36 30.81

Ours 24.26 37.81 30.51 19.87 22.51 30.71 11.27 34.35 30.76

Table 6. Quantitative evaluation on jointly generated images. We present the performance of the baseline model for comparison. Our
method achieves performance comparable to JointNet, while LDM3D demonstrates relatively poor results. Compared to our base model,
i.e., Flux, we achieve lower FID scores but also lower IS scores, likely due to the limited size of the training dataset.

Flux

Original
image

Figure 8. Comparison between original images and images
generated by Flux [7] on the ImageNet [53] 6K dataset. Flux
often generates stylized images, which leads to a higher FID be-
tween the real image dataset and the generated images.

the limited size of the training dataset.
Among the joint generation models, LDM3D shows rela-

tively poor performance. Our method achieves comparable
performance to JointNet. To further assess image genera-
tion quality, we evaluate the human preference score using
ImageReward [67], a trained model that estimates human
preference for given text prompts and images. We measure

the human preference ranking of the images generated by
the joint generation model from the same text prompt. Ta-
ble 7 summarizes the percentage of each method on each
evaluation dataset. Our method shows the highest rank 1
percentage and the lowest rank 3 percentage across all eval-
uation datasets. Compared to LDM3D, JointNet achieves
moderately better performance.

B.3. Ablation of the LoRA’s Rank
We adopt a LoRA rank of 64 in the DiT blocks of our
JointDiT model. To analyze the effect of the LoRA rank,
we train our model with different LoRA ranks and evalu-
ate depth estimation performance on the NYUv2 and Scan-
Net datasets [17, 56]. As shown in Table 8, as the LoRA
rank increases, the depth estimation performance improves,
achieving the best performance at the LoRA rank of 64. We
did not increase the LoRA rank beyond 64 because the num-
ber of model parameters grows exponentially.

B.4. Analysis of Failure Cases
We observe that our method shares similar limitations with
depth estimation methods [32, 68], particularly in handling
reflective surfaces such as mirrors. As shown in Fig. 9, both
our model and depth estimation models fail to recognize
mirrors as flat and planar regions.



Method
ImageNet 6K Pexels 6K MSCOCO 30K

ImageReward ImageReward ImageReward

Rank1↑ Rank2 Rank3↓ Rank1↑ Rank2 Rank3↓ Rank1↑ Rank2 Rank3↓
LDM3D [60] 27.56 35.90 36.54 26.21 33.42 40.37 27.74 34.04 38.22
JointNet [71] 29.91 33.32 36.77 31.65 33.87 34.48 28.85 35.70 35.46

Ours 42.53 30.79 26.69 42.14 32.72 25.15 43.41 30.26 26.32

Table 7. Human preference evaluation on images jointly generated by joint generation methods [60, 71] and Ours. We assess the
human preference using ImageReward [67] that was trained to estimate human preference. With both joint generation models and ours, we
conduct joint generation using the same text prompts and rank the results with ImageReward, obtaining the percentage for each ranking.
Our JointDiT achieved the highest rank 1 percentage and the lowest rank 3 percentage across all datasets.

LoRA rank NYUv2 [56] ScanNet [17]

AbsRel ↓ δ1 ↑ AbsRel ↓ δ1 ↑
16 9.1 90.6 9.8 89.7
32 6.6 95.7 8.5 92.4

64 (Ours) 5.7 96.9 6.6 95.7

Table 8. Ablation studies of the rank of LoRA. We evaluate the
depth estimation performance on NYUv2 and ScanNet while vary-
ing the LoRA rank. The results show that performance improves
as the LoRA rank increases.

Mirror

Input image Depth-Anything-V2 Marigold Ours

Figure 9. Failure cases in depth estimation. Red and Blue areas
indicate near and far depth predictions, respectively.

B.5. Joint Panorama Generation

JointDiT can be used for RGB-D panorama generation as
well. For panorama generation, we strictly follow the Joint-
Net [71] method combining whole and tile-based denoising
strategies [4, 29], to ensure a fair comparison. We denoise
image and depth tiles by using joint generative diffusion
models. During only early steps, we perform denoising on
the entire panorama, and throughout all steps, we aggregate
model estimations from both overlapped individual tiles and
the whole panorama. Figure 10 demonstrates the RGB-D
panorama results. Compared to JointNet, JointDiT shows
clear and structurally reasonable images along with sharp
depth maps.

C. Additional Qualitative Results

In this section, we demonstrate diverse qualitative results on
depth estimation and depth-conditioned image generation.

Joint generation. Utilizing our JointDiT model, we gener-
ate images and corresponding depth maps. We visualize the
images and depths with their 3D lifting results. As shown in
Fig. 11, our joint generation results are geometrically rea-
sonable in 3D, with the surface characteristics of the im-
ages being well-preserved in the 3D space (e.g., smooth or
rough textures). Furthermore, Figure 12 highlights the ef-
fectiveness of our joint generation approach in illustration
domains, where plausible 3D structures are obtained despite
the inherent difficulty of estimating geometry from stylized
images.

Depth estimation. We visualize the depth estimation re-
sults of joint generation methods that support depth esti-
mation, i.e., JointNet [71], UniCon [35], and Ours. We
obtain the depth estimation results from the publicly avail-
able code. Specifically, while UniCon does not provide raw
depth through its Gradio demo, we can obtain depth esti-
mation visualization results. To estimate depth, we pro-
vide each model with empty text prompts. To demon-
strate the results across various scenarios, we acquire depth
maps estimated from the NYUv2, ScanNet, and MSCOCO
datasets [17, 38, 56]. Figure 13 illustrates the results. Com-
pared to JointNet and UniCon, our method captures fine de-
tails in the depth and the shape of thin objects. This aligns
with the trends observed in the quantitative results.

Depth-conditioned image generation. We visualize the
depth-conditioned image generation results of JointNet,
UniCon, and our method. We utilize publicly available code
for the other two methods. To generate the results, we ob-
tain depth maps and text prompts from ImageNet 6K using
Depth-Anything-V2 [68] and LLaVA [40]. For JointNet,
we provide the depth estimation from MiDaS [49], as it was
trained using MiDaS’ depth estimation. Figure 14 demon-
strates the results. JointNet and UniCon generally gener-
ate images that match the given depth and text prompts, but
they sometimes do not fully understand the text prompt. For
example, UniCon generated a green dog instead of a green
frisbee, and JointNet failed to fully generate a red flower.



In comparison, our JointDiT shows generation results that
are well aligned with the given depth and text prompts, and
we observe that it generates more realistic images than the
other models.



5

Expansive view of an ancient Roman city with grand marble buildings, a massive 
colosseum, peoples, and lively markets..

A luxurious restaurant with elegant chandeliers and panoramic city 
views. Tables are adorned with white tablecloths, and candles.

JointNet

Panoramic view of a tropical beach with golden sand stretching endlessly. 
Palm trees sway, and wooden boats float near the shore.

A grand ancient library with towering bookshelves, spiral staircases, 
and candlelit wooden desks. 

Ours

Figure 10. RGB-D panoramic generation results of JointNet and Ours. Our JointDiT generates more three-dimensional and sharper
images and depth maps compared to JointNet.
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“Realistic portrait of an elderly man with a white beard, round glasses, and a flat cap”

RGB Depth 3D Point Cloud

“A small black kitten balancing a levitating potion bottle filled with shimmering blue liquid”

“Pasta with mushrooms and bacon”

“A massive ancient tree towering over a castle on a floating island, with waterfalls …”

“A colorful pineapple on a beach”

“A ethereal rainbow feather with a perfect gradient …”

Figure 11. Joint generation results of JointDiT. The joint generated images and depths are geometrically reasonable in 3D.



RGB Depth 3D Point Cloud

Figure 12. Joint generation results in illustration domains. The jointly generated images and depths from JointDiT produce geometri-
cally plausible 3D structures, even in stylized domains.



UniCon OursJointNetInput image

Figure 13. Depth estimation results of joint generation models. We visualize the depth estimation results of JointNet, UniCon, and our
method on the NYUv2, ScanNet, MSCOCO dataset [17, 38, 56]. Our method shows sharp and fine-detailed depth visualization, which
aligns with the trends observed in the qualitative results.



A red flower with
yellow centers is

blooming

A man in a suit is
playing the piano

Three dogs
playing with a
green frisbee

A black and white
photo of llamas
with backpacks

A cow in a field
with other cows

A gray fox sitting
on the ground

near a road

UniCon OursInput depth Original image JointNet

Figure 14. Depth-conditioned image generation results of JointNet, UniCon, and Ours. JointNet and UniCon often fail to reflect
the text prompt properly, e.g., the green dog generated by UniCon and the flower with green petals generated by JointNet. Our JointDiT
generates images that better reflect the text prompt and depth map, producing more realistic results compared to other methods.
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