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Abstract

Reinforcement Learning from Human Feed-001
back (RLHF) has become an essential tech-002
nique for enhancing pre-trained large language003
models (LLMs) to generate responses that004
align with human preferences and societal val-005
ues. Although RLHF has shown promise, the006
training of reward models (RMs) still faces007
the challenge of reward hacking, motivating008
recent works to prevent RMs from finding009
shortcuts that bypass the intended optimiza-010
tion objectives by identifying simplistic pat-011
terns such as response length. Besides the is-012
sue of length bias, our work firstly reveals that013
prompt-template bias learned by RMs can also014
cause reward hacking when dealing with some015
marginal samples, resulting in LLMs preferring016
to generate responses in a specific format af-017
ter RLHF fine-tuning, regardless of the format018
requested in the prompt. To this end, we pro-019
pose a low-cost but effective method, namely020
Prompt Bias Calibration (PBC), to estimate the021
prompt-template bias term during reward mod-022
eling, which can be utilized to calibrate reward023
scores in the following RL fine-tuning process.024
Then, we show that our PBC method can be025
flexibly combined with existing algorithms of026
removing length bias, leading to a further im-027
provement in the aspect of enhancing the qual-028
ity of generated responses.029

1 Introduction030

Reinforcement Learning from Human Feedback031

(RLHF) has become a critical technique to en-032

able pre-trained large language models (LLMs) to033

follow human instructions, understand human in-034

tent, and also generate responses that align with035

human preferences and societal values (Ouyang036

et al., 2022; Rafailov et al., 2024; Ethayarajh et al.,037

2024; Yin et al., 2024). Specifically, RLHF usually038

trains a reward model (RM) to act as the proxy of039

human preferences, and then utilizes online rein-040

forcement learning (RL) algorithms to fine-tune041

the language models to generate responses that can 042

achieve higher expectation rewards, leading to the 043

success of ChatGPT and also many other AI appli- 044

cations (Team et al., 2023; Achiam et al., 2023). 045

Although the paradigm of RLHF has simplified 046

the human data collection procedure, as acquir- 047

ing human ratings is much easier than collecting 048

demonstrations for supervised fine-tuning (SFT), it 049

still requires a large amount of human-annotated 050

preference pairs to train well-performing RMs in 051

practice, motivating recent researchers to look for 052

novel alignment methods to bypass RM training 053

(Rafailov et al., 2024; Ethayarajh et al., 2024; Yin 054

et al., 2024). However, the original RLHF pipeline 055

is still the primary choice for the industry, because 056

well-trained RMs can provide a certain level of 057

generalizability (Li et al., 2023). 058

In addition to the high costs associated with gath- 059

ering large amounts of human-annotated preference 060

data, another significant concern often raised about 061

RLHF is the issue of reward hacking (Eisenstein 062

et al., 2023), where the over-optimized RMs tend 063

to find some shortcuts to bypass their intended op- 064

timization objective, through identifying some sim- 065

ple patterns to distinguish between good and bad 066

responses (Gao et al., 2023). The most widely stud- 067

ied pattern in reward hacking could be the sentence 068

(response) length, and these trained RMs can uti- 069

lize the preference among human raters for longer 070

responses to achieve reward hacking, despite the ac- 071

tual quality of response does not improve with the 072

increase of response length (Singhal et al., 2023). 073

Thus, to mitigate reward hacking, recent works 074

has primarily focused on estimating the length bias 075

term in the reward scoring process, so that it can 076

be removed in the subsequent RL fine-tuning pro- 077

cedure to further improve the quality of generated 078

responses (Chen et al., 2024; Shen et al., 2023). 079

Besides the issue of length bias, in the practice 080

of applying RLHF to industrial products, we have 081

observed that the original implementation of RLHF 082
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tends to make LLMs prefer generating responses083

in a specific format. This observation motivates084

us to investigate the underlying causes and find a085

cost-effective solution to address this issue. The086

main contributions are summarized as follows:087

• We are the first to reveal the existence of088

prompt-template bias in RMs trained with089

Bradley-Terry preference loss, and theoreti-090

cally analyze the cause of prompt-template091

bias issue, along with its corresponding poten-092

tial risks on the entire RLHF process;093

• To mitigate the reward hacking caused by094

prompt-template bias, we develop a Prompt095

Bias Calibration (PBC) method, which will096

estimate the prompt-template bias term during097

the reward scoring process, and then remove098

it in the subsequent RL fine-tuing process;099

• We show that the developed PBC method can100

be flexibly combined with existing methods101

of removing length bias, leading to a further102

improvement in the aspect of enhancing the103

quality of generated responses;104

• Experimental results show that our developed105

PCB method and its extensions can achieve106

promising performance improvements com-107

pared to the original implementation of RLHF.108

2 Preliminary109

2.1 Reward Model Training110

The typical objective of optimizing a reward model111

is to minimize the loss based on the Bradley–Terry112

model (Bradley and Terry, 1952) using a dataset of113

pairwise comparisons of model responses, denoted114

as (x, y+, y−) ∈ D where x indicates the input115

prompt, y+ and y− are the chosen and rejected re-116

sponses respectively. Then, the objective function117

can be formulated as118

LRM (θ) = (1)119

− E(x,y+,y−)∼D
[
log(σ(rθ(x, y

+)− rθ(x, y
−))

]
120

where rθ(x, y) denotes the reward model that takes121

the prompt x and response y as input to predict a122

scalar reward with trainable parameters θ; σ de-123

notes the Sigmoid function.124

Length Bias: Denote rθ∗(x, y) as the “gold stan-125

dard” reward model (Gao et al., 2023) with the op-126

timal parameters θ∗, it reflects human’s intrinsic127

ranking preferences and can play a role of human128

rater to provide gold reward signal for each prompt- 129

response pair. However, due to the subjectivity 130

of ranking preferences and flaws in rating criteria, 131

there is a phenomenon where human raters pre- 132

fer longer responses that appear more detailed or 133

strictly formatted, but their actual quality does not 134

improve (Singhal et al., 2023). Thus, the “gold 135

standard” reward model for rating preference data 136

can often be biased and thus we can decompose it 137

to disentangle the actual reward from the spurious 138

reward (Chen et al., 2024), formulated as 139

rθ∗(x, y) = rQθ∗(x, y) + rLθ∗(x, y), (2) 140

where rQθ∗(x, y) is the actual reward gains brought 141

by improving the quality of response y; rLθ∗(x, y) 142

is the spurious reward gains of increasing response 143

length, whose patterns are much easier to identify. 144

Thus, with length bias in the “gold standard” 145

rθ∗(x, y), during the training of reward model, 146

rθ(x, y) can easily find shortcuts to bypass its in- 147

tended optimization objective, through identifying 148

simple patterns, such as sentence (response) length, 149

to distinguish between good and bad responses, 150

leading to the phenomenon of “reward hacking” 151

caused by length bias (Singhal et al., 2023). With- 152

out increasing the cost of rating higher quality pref- 153

erence data, it becomes increasingly important and 154

beneficial to study mitigating the impact of length 155

bias in the process of reward modeling. 156

Prompt Bias: the prompt bias in reward mod- 157

eling derives from the underdetermination of 158

Bardley-Terry model (Bradley and Terry, 1952). 159

For any reward model rθ′ (x, y) learned from the 160

preference loss defined in Eq. (1), whose target 161

is optimized to approximate the “gold standard” 162

rθ∗(x, y), there always exists an equivalent reward 163

model rθ(x, y) that satisfies 164

rθ(x, y) := rθ′ (x, y) + C(x) (3) 165

where C(x) is a prompt-dependent constant re- 166

ferred to as prompt bias, leading to the same loss 167

value as L(θ) = L(θ′
). Due to the fact that there 168

is no constraint on C(x) in the original preference 169

loss as defined in Eq. (1), the issue of prompt bias 170

has been criticized in the scenario of reward model 171

ensembles (Eisenstein et al., 2023), where differ- 172

ent reward models tend to choose different values 173

for C(x), making the statistics of the set of reward 174

scores meaningless. 175
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Figure 1: Comparison of the RM training process using the Bradley–Terry loss and our developed PBC method
respectively, where the latter employs a bais head to approximate the prompt-template bias C(x, y), providing
unbiased reward distribution rθ′ (x, y) with a lower variance compared to rθ(x, y) for the subsequent RL fine-tuning.

2.2 RLHF Fine-tuning176

Given the trained reward model rθ(x, y) as the177

proxy of human preferences, Reinforcement Learn-178

ing from Human Feedback (RLHF) tends to utilize179

an online reinforcement learning method, typically180

proximal policy optimization (PPO) (Schulman181

et al., 2017), trains a policy language model πRL
ϕ182

to maximize expected reward, while staying close183

to its initial policy πSFT
ϕ , which is finetuned on184

supervised data (prompt-response pairs). Through185

measuring the distance from the initial policy with186

Kullback-Leibler (KL) divergence, the optimiza-187

tion objective can be formulated as188

LRL(ϕ) = E(x,y)∼D
πRL
ϕ

[ (4)189

rθ(x, y)− β log
[
πRL
ϕ (y|x)/πSFT (y|x)

]
] ,190

where β is the hyper-parameter to control the191

strength of the KL divergence term.192

3 Method193

3.1 What is prompt-template bias194

In this part, we will first illustrate the cause of195

prompt-template bias during RM training. For-196

mally, given a set of prompt-response pairs, de-197

noted as Da = {xa, y(i)a }Na
i=1, with the same user198

prompt xa, e.g. “writing an academic paper on the199

field of computer science”, and {y(i)a }Na
i=1 denoting200

the set of collected academic papers to satisfy the201

request of xa, the prompt bias term, specifically202

C(xa), learned by RMs is supposed to not affect203

the preference order within Da, as discussed in Sec- 204

tion 2.1. However, in the practice of RM training, 205

the reward score is usually predicted by a LLM 206

that takes the concatenation of the prompt and re- 207

sponse as input, making it challenging for RMs to 208

learn a bias term that focuses solely on the prompt 209

x while disregarding variations in the subsequent 210

response y. During the training process to order 211

the pairs within Da, we find that RMs trained with 212

the Bradley–Terry loss in Eq. (1) are more likely 213

to introduce a joint bias term across the entire se- 214

quence of concatenating the prompt and response, 215

formulated as 216

rθ(xa, ya) := rθ′ (xa, ya) + C(xa, ya), (5) 217

where ya = 1
Na

∑Na
i=1 y

(i)
a can be considered the 218

average response of the response set {y(i)a }Na
i=1, and 219

it will embody the common characteristics found 220

within these collected responses, such as the for- 221

mat of academic paper; C(xa, ya) denotes the 222

joint bias on the entire sequence of the prompt 223

xa associated with the average response ya in the 224

format of academic paper; rθ(xa, ya) is still sup- 225

posed to approximate the “gold standard” provided 226

by rθ∗(xa, ya), leading to EDa [rθ′(xa, ya)] ≈ 227

EDa [rθ∗(xa, ya)]. 228

Considering the average response y can be 229

treated as a standard template of the response to 230

the prompt x, we name the joint bias C(x, y) as 231

prompt-template bias. Then, we highlight the prop- 232

erties of prompt-template bias as follows: 233
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• the typical preference loss in Eq. (1) imposes234

no constraints on C(x, y), because its value235

will not influence the outcome of the prefer-236

ence loss and also not affect the preference237

order within the prompt-response pairs col-238

lected for the same prompt x;239

• C(x, y) will reduce to the original prompt bias240

C(x,−) when no shared characteristics exist241

across all collected responses, implying that242

the diversity of collected responses {y(i)}Ni=1243

is sufficiently high.244

With these properties in mind, we assume that245

the prompt-template bias C(x, y) can essentially246

meet most of the properties of the original prompt247

bias C(x,−) as discussed in Section 2.1. Thus,248

we suppose C(x, y) can be considered as a broader249

definition of prompt bias in the actual RM training,250

because it is more likely to be learned by RMs in251

practice, given the fact that preference pairs are252

extremely scarce and the diversity of responses253

collected for the same prompt is often insufficient.254

3.2 Impact of prompt-template bias on RLHF255

After defining prompt-template bias, we will the-256

oretically investigate the impact of introducing257

C(x, y) during RM training on the entire RLHF258

process. Assume that there exist two sets of prompt-259

response pairs, denoted as Da = {xa, y(i)a }Na
i=1 and260

Db = {xb, y
(i)
b }Nb

i=1, where xa and xb indicate dif-261

ferent categories of prompts, e.g. xa requests “writ-262

ing an academic paper on theme a” and xb re-263

quests “writing a brief on theme b”, and {y(i)a }Na
i=1264

and {y(i)b }Nb
i=1 denote the collected responses for265

answering the prompt xa and xb respectively. Con-266

sidering there is no constraint on C(x, y) during267

training RM with the Bradley–Terry loss in Eq. (1),268

the discrepancies of prompt biases between these269

two previously mentioned sets of prompt-response270

pairs, specifically Da and Db, could be extremely271

large, e.g. C(xa, ya) ≫ C(xb, yb), leading to272

E(xa,ya)∼Da
[rθ (xa, ya)]273

≫ E(xb,yb)∼Db
[rθ(xb, yb)] (6)274

where rθ(xa, ya) = rθ′(xa, ya) + C(xa, ya) and275

rθ(xb, yb) = rθ′(xb, yb) + C(xb, yb). The re-276

ward distributions after removing prompt-template277

bias, modeling the reward scores {rθ′(xa, y
(i)
a )}Na

i=1278

and {rθ′(xb, y
(i)
b )}Nb

i=1 respectively, should exhibit279

similar mean values, e.g. EDa [rθ′(xa, ya)] ≈280

EDb
[rθ′(xb, yb)], and will make little impact on 281

the comparison of expectation terms in Eq. (6). 282

We highlight that the discrepancies of prompt bias 283

terms, specifically the gap between C(xa, ya) and 284

C(xb, yb), won’t affect preference ordering within 285

categories, but can cause disaster when dealing 286

with some marginal samples, like “an academic 287

paper on theme b” denoted as yab, or “a brief on 288

theme a” denoted as yba. 289

To facilitate an intuitive analysis, we take the 290

marginal sample “an academic paper on theme 291

b”, denoted as yab, as an example. The reward 292

scores for prompt-response pairs corresponding to 293

the prompt xb may exhibit the following orders: 294

rθ(xb,yab) = rθ′(xb, yab) + C(xb, ya) (7) 295

> rθ′(xb, yb) + C(xb, yb) = rθ(xb, yb), 296

which can be achieved as long as rθ′(xb, yab) ≈ 297

rθ′(xb, yb) and C(xb, ya) > C(xb, yb). The 298

first condition rθ′(xb, yab) ≈ rθ′(xb, yb) can be 299

achieved because both the response yab and yb 300

meet the description of theme b and are similar 301

on a semantic level. The second inequality is 302

highly likely to be achieved when there is a re- 303

ward model that has a bias towards preferring the 304

sentence in the format of a over b, specifically 305

C(xa, ya) ≫ C(xb, yb). 306

Finally, we highlight that the phenomena of in- 307

equality in Eq. (7), caused by prompt-template bias 308

C(x, y), is commonly encountered in the deploy- 309

ment process of RLHF in real-world applications, 310

especially text creation. For example, if responses 311

are collected exclusively in the format specified 312

by each prompt during RM training, the reward 313

model may learn a bias toward specific response 314

templates. Then, once such OOD marginal sam- 315

ples, e.g (xb, yab), are generated by LLMs during 316

the RL fune-tuning process and also satisfy the 317

inequality rθ(xb, yab) > rθ(xb, yb) as shown in Ta- 318

ble 1, the entire RL fine-tuning process will be 319

biased and results in LLMs tend to generate re- 320

sponses in a specific format, regardless of the for- 321

mat you request in the prompt. 322

3.3 Calibrating prompt-template bias in RLHF 323

As shown if Fig. 1, the developed Prompt Bias 324

Calibration (PBC) method primarily consists of 325

two steps: 1) estimating the prompt-template bias 326

term in the reward scoring process with minimal 327

additional computational cost; 2) removing prompt- 328

template bias in the subsequent RLHF fine-tuning 329
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Figure 2: Network architecture design for training RMs with the LBPC method developed in Section 3.4, which
incorporates a bias head on the last token of the prompt x designed to predict the prompt-template bias in the aspects
of quality and length, specifically CQ(x, y) and CL(x, y), and a reward score head on the last token of the response
y intended to predict the reward gains in the aspects of quality and length, specifically rQθ (x, y) and rLθ (x, y).

process to prevent LLMs from developing a ten-330

dency to generate responses in a specific format. To331

approximate the prompt-template bias term C(x, y)332

in Eq. (5), we choose to apply a linear layer on333

the last token of the prompt sentence to predict334

prompt-template bias, and then add the following335

regularization term on the Bradley–Terry loss as336

LRM
c (θ) =E(x,y+,y−)∼D

[
∥rθ(x, y+)− C(x, y)∥22337

+∥rθ(x, y−)− C(x, y)∥22
]
, (8)338

where C(x, y) is learned to approximate the mean339

value of reward scores of the prompt-response pairs340

given the same prompt x. We note that there will341

be a hyper-parameter ηc to be multiplied on the342

regularization term in the final loss to ensure the343

accuracy of RMs, leading to344

LRM
pbc (θ) = LRM (θ) + ηc · LRM

c (θ). (9)345

The benefits of such a design in the PBC method346

include the following folds: 1) approximating347

C(x, y) by adding a linear layer to the last hid-348

den layer of LLMs results in almost no additional349

computational cost; 2) during the autoregressive350

scoring process of LLM-based RMs, C(x, y) can351

serve as an intermediate signal guidance of the352

prompt sequence, thereby enabling RMs to focus353

more on the differences between chosen/rejected354

responses in the subsequent reward scoring process;355

3) we can use unbiased reward scores to guide the356

follow RLHF fine-tuning process, formulated as357

rθ′(x, y) = rθ(x, y)− C(x, y), (10)358

which has been proven effective for penalizing re- 359

ward uncertainty, improving robustness, encour- 360

aging improvement over baselines, and reducing 361

variance in PPO fune-tuning (Shen et al., 2024). 362

3.4 Jointly calibrating length and 363

prompt-template bias in RLHF 364

To simultaneously calibrate length and prompt- 365

template bias in RLHF, the developed PBC method 366

can be flexibly combined with existing methods 367

of removing length bias, whose main idea is to 368

separately approximate the “gold standard” reward 369

model after disentangling shown in Eq. (2), 370

rθ(x, y) = rQθ (x, y) + rLθ (x, y), (11) 371

where rQθ (x, y) is supposed to approximate the ac- 372

tual reward rQθ∗(x, y); r
L
θ (x, y) is used to approxi- 373

mate the spurious reward brought by length bias, 374

specifically rLθ∗(x, y). Then, for those methods 375

of removing length bias (Chen et al., 2024; Shen 376

et al., 2023), the Bradley–Terry loss in Eq. (1) can 377

be equivalently expressed as 378

LRM (θ) = −E(x,y+,y−)∼D

[
log(σ(rQθ (x, y

+) 379

+rLθ (x, y
+)− rQθ (x, y

−)− rLθ (x, y
−))

]
. (12) 380

where rQθ (x, y) and rLθ (x, y) can be modeled with 381

two different LLMs (Shen et al., 2023) or two dif- 382

ferent heads in the same LLM (Chen et al., 2024). 383

To remove length bias in Eq. (12), recent work 384
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Table 1: The preference orders of the sequences that concatenate the user prompt with responses in various formats,
where each order is predicted by RMs trained using different methods.

User Prompt Responses in Various Formats RM RM (PBC) RM (LPBC)

(Tech Article) Welcome to the revolution in future dietary management—the ‘Smart Health
Plate,’ your personal nutrition analysis expert. It monitors and analyzes the contents of
your plate in real time, precisely calculating the energy and nutrients of each morsel, while
offering personalized dietary recommendations based on your health data. In essence, the
‘Smart Health Plate’ is the technological embodiment of healthy eating, making nutrition
tracking seamless and efficient.

Rank 1
(-3.01)

Rank 2
(-5.76)

Rank 2
(2.51)

(Prompt) I wish to
create an advertising
phrase with a unique
personality, centered
on the theme of
healthy eating. This
phrase should
highlight the benefits
of products associated
with healthy eating
and be composed in
language that is
straightforward and
easy to understand.

(Advertisement) Verdant and vibrant! ‘Daily Greens’ offers you a choice of all-natural,
healthy foods. Forget the complex nutrition charts; choose our simple, pure foods for an easy
and delicious path to health. Join us and enjoy a diet plan customized by top nutritionists
and AI technology, infusing every day with vitality!

Rank 2
(-3.15)

Rank 1
(-4.19)

Rank 1
(4.48)

(Insight) I have embarked on a new chapter of documenting my diet, where each meal
recorded is not just a track of food but a reflection on life. From freshly squeezed vegetable
juices to colorful salads, to simply seasoned grilled salmon, each bite is a pledge to health.
It’s a dual journey for the mind and body, leading me step by step towards a better self.

Rank 3
(-7.50)

Rank 5
(-6.83)

Rank 4
(0.50)

(Record Article) On Thursday, May 16, 2024, I decided to begin documenting my healthy
eating journey. In the morning, I opted for a glass of freshly squeezed vegetable juice, lunch
was a vibrant salad, and dinner was simply seasoned grilled salmon. Each meal’s record is a
testament to my commitment to health. I look forward to the changes this healthy journey
will bring and hope to continue.

Rank 4
(-7.88)

Rank 4
(-6.52)

Rank 5
(-0.61)

(Poetry) Morning dew glimmers on the ground, stars and moon accompany the night sky.
With nature in heart, one remains cheerful; amidst the hustle, still without worry. Simple eat-
ing, relaxed body, healthy; drinking water, remembering the source, tranquil mind. Laboring
in the fields, sweat enriches the soil; harvest fills the barns, laughter abounds.

Rank 5
(-8.50)

Rank 3
(-5.92)

Rank 3
(2.28)

proposes to add constraints on the preference loss385

to reduce the correlation between the confound-386

ing factor, e.g. response length, and actual reward387

rQθ (x, y), while increasing its correlation with spu-388

rious reward rLθ (x, y), formulated as389

LRM
l (θ) =Corr(rQθ (x, y), L(x, y))390

− Corr(rLθ (x, y), L(x, y)) (13)391

where the confounding factor L(x, y) can be ei-392

ther specifically defined as response length L(y)393

in (Chen et al., 2024), or use Products-of-Experts394

framework for estimation (Shen et al., 2023).395

To model the scoring process of the reward396

model more accurately, which simultaneously con-397

siders the concepts of length and prompt bias, we398

combine the definition of reward model in Eq. (3)399

and Eq. (11), achieving a more precise definition400

of reward scoring process, formulated as:401

rθ(x, y) = rθ′(x, y) + C(x, y) (14)402

= rQθ′(x, y) + CQ(x, y) + rLθ′(x, y) + CL(x, y)403

where CQ(x, y) and CL(x, y) indicate the compo-404

nent of prompt-template bias in actual and spu-405

rious rewards, respectively; the unbiased over-406

all reward rθ′(x, y) = rQθ′(x, y) + rLθ′(x, y) and407

the overall prompt-template bias term C(x, y) =408

CQ(x, y)+CL(x, y). Then we can propose Length409

and Prompt Bias Calibration (LPBC) method, as410

shown in Fig. 2, which can estimate LRM
l (θ) with411

a conditioned correlation method, defined as 412

LRM
l (θ) = Corr(rQθ (x, y)− CQ(x, y), L(y;x)) 413

− Corr(rLθ (x, y)− CL(x, y), L(y;x)) 414

= Corr(rQθ′(x, y), L(y;x)) 415

− Corr(rLθ′(x, y), L(y;x)) (15) 416

where the confounding factor L(y;x) := L(x, y)− 417

L(x) can be estimated with the response length. 418

Through combining the disentangled preference 419

loss in Eq. (12), the prompt-bias regularization term 420

in Eq. (8) and also the length-bias conditional cor- 421

relation term in Eq. (15), the final loss of LBPC 422

method can be formulated as 423

LRM
lpbc (θ) = LRM (θ) + ηcLRM

c (θ) + ηlLRM
l (θ),

(16)
424

where ηc and ηl are hyper-parameters to control the 425

importance of regularization terms, which can be 426

adjusted according to the accuracy of trained RMs 427

on the validation dataset. 428

4 Experiments 429

4.1 Experimental Settings 430

Datasets. For intuitively understanding the issue 431

of prompt-template bias in RLHF and also qualita- 432

tively evaluating the effectiveness of our method, 433

we manually construct a training dataset for text 434

creation applications, where each prompt requires 435

creation in a special style according to the theme. 436

We name this dataset as RM-Template, which can 437

6



(a) Vanilla RM (b) PBC (c) Vanilla RM vs PBC

Figure 3: The comparison of statistics of the reward scores predicted by RMs trained with (a) the Bradley–Terry
preference loss and (b) our developed PBC method, across different categories of prompt-response pairs in the
validation set of the manually constructed RM-Template dataset.

be used to measure the severity of the prompt-438

template bias issue during RM training. Further, to439

make quantitative comparisons with other baseline440

methods, we conduct experiments on RM-Static441

dataset (Bai et al., 2022) released on Huggingface442

(Wolf et al., 2019). The dataset statics of these443

datasets have been exhibited in Appendix B.444

Model & Training. For model selection, we445

select Llama-2-7b (Touvron et al., 2023) as our446

base model, which is relatively lightweight, and447

has been open-sourced on Huggingface (Wolf et al.,448

2019). For RM training, we fine-tune all the param-449

eters of RMs initialized with the pretrained weights450

of Llama-2-7b. For PPO fine-tuning, we also ini-451

tialize the actor model with pretrained Llama-2-7b452

and the critic model with RMs trained with various453

preference losses. The details of model training454

can be found in Appendix C.455

Evaluation Metrics. For quantitative compari-456

son, we follow the evaluation procedure of Instruct-457

Eval (Chia et al., 2023) to test the actor models,458

which has been aligned with biased/de-biased RMs459

with PPO fine-tuning, on Massive Multitask Lan-460

guage Understanding (MMLU) (Hendrycks et al.,461

2020), DROP (Dua et al., 2019), BIG-Bench Hard462

(BBH) (Suzgun et al., 2022), and TruthfulQA463

(TQA) (Lin et al., 2021) benchmarks respectively,464

evaluating the model’s ability on various aspects.465

4.2 Experimental Results466

Qualitative Evaluation. To intuitively evaluate the467

effectiveness of our method, we exhibit the statis-468

tics (mean and standard deviation) of the reward469

scores predicted by RMs trained with the original470

preference loss in Eq. (1) and our PBC method471

in Eq. (9), across different categories of prompt-472

response pairs in the validation set of the RM-473

Template dataset. The results depicted in Fig.3(c)474

demonstrate that calibrating prompt-template bias475

with the PBC method leads to a gradual reduction476

Figure 4: Win rates comparison of LLMs aligned with
RMs trained with LBPC and other methods.

in the variance of the mean values of reward dis- 477

tributions across different categories. The most 478

noticeable observation is that the vanilla RM tends 479

to give an extremely high reward score to prompt- 480

response pairs in the format of tech article, but 481

the RM trained with the PBC method can calibrate 482

the reward distribution for tech articles to make it 483

more close with that of other categories. 484

Then, we evaluate the performance of RMs 485

trained with various methods on handling marginal 486

samples defined in Section 3.1. Specifically, given 487

the prompt randomly selected from the valida- 488

tion set of RM-Template dataset, we use GPT-4 489

(Achiam et al., 2023) to generate responses in vari- 490

ous formats according to the theme described in the 491

prompt. Then, we use RMs trained with various 492

preference losses to rank these responses. From the 493

showcase in Table. 1, we can find that the vanilla 494

RM tend to assign a higher reward score to the re- 495

sponse in the format of tech article, caused by the 496

prompt-template bias issue shown in Fig. 3(a). Af- 497

ter removing this bias with our PBC or LPBC meth- 498

ods, the RM can provide a relatively fair ranking for 499

these prompt-response pairs, where LPBC method 500

can even mitigate the affect of length bias during 501

comparing poetry with other categories (the length 502

of poetry is generally shorter than other literary 503

forms). More showcases are listed in Appendix E. 504
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Table 2: Performance comparison of LLMs aligned with RMs trained with various methods.

Base Model Alignment Length & Quality Heads Prompt Head Debias Method MMLU DROP BBH TQA

Llama-2-7b - - - - 42.27 28.10 31.27 38.75

Llama-2-7b ✓ - - - 43.82 ±0.63 29.53 ±0.39 31.65 ±0.08 36.57 ±0.17

Llama-2-7b ✓ ✓ - ODIN (Chen et al., 2024) 42.29 ±0.15 29.82 ±0.37 32.01 ±0.52 39.43 ±0.66

Llama-2-7b ✓ - ✓ PBC (Ours) 43.84 ±0.28 31.61 ±0.02 30.99 ±0.01 38.50 ±0.22

Llama-2-7b ✓ ✓ ✓ ODIN (Chen et al., 2024) + PBC 45.56 ±0.14 32.04 ±0.33 31.32 ±0.33 40.80 ±0.72

Llama-2-7b ✓ ✓ ✓ LPBC (Ours) 45.94 ±0.48 31.57 ±0.26 32.04 ±0.10 38.75 ±0.12

(a) Accuracy Performance (b) MMLU Performance (c) DROP Performance

Figure 5: Ablation studies on the various settings of hyper-parameter ηc and ηl in LPBC method.

Quantitative Comparison. For the quantitative505

comparison in Table 2, we utilize PPO fine-tuning506

process to align Llama-2-7b with the RMs trained507

with various methods. From the results, we can508

find that our developed PBC method can lead to509

performance improvements compared to the basic510

RLHF; directly combining PBC with other meth-511

ods of removing length bias, e.g. ODIN (Chen512

et al., 2024), can help them to achieve further per-513

formance improvement; the well-designed LPBC514

achieves the best performance and surpasses the515

rough combination of PBC and ODIN.516

To make a comprehensive comparison, we fol-517

low the experimental setting described in ODIN518

(Chen et al., 2024), and use GPT-4 as the judge519

to compare two responses generated by LLMs520

aligned with RMs trained with various methods.521

Specifically, we take the LLM aligned with LPBC-522

based RM as model A, and compare it against other523

LLMs aligned with RM trained with ODIN, PCB,524

ODIN+PBC, respectively. From the results shown525

in Fig. 4, we can find that the win rate of LPBC is526

significantly higher than that of other baseline mod-527

els, with ODIN+PBC being the most challenging528

competitor as model B.529

4.3 Ablation Studies530

To investigate the robustness of our developed531

LPBC method, we conduct ablation studies on the532

hyper-parameter settings of LPBC method, specifi-533

cally ηc and ηl in Eq. (16). With various settings of534

ηc ∈ {0.01, 0.05, 0.1} and ηl ∈ {0.01, 0.05, 0.1},535

we can have total 9 RMs trained with various hyper-536

parameter settings of LPBC methods. From the ac- 537

curacy curves shown in Fig.5(a), we can find the in- 538

troducing constraints to the original preference loss 539

indeed affects the performance of RM accuracy, 540

and this performance loss increases with the im- 541

portance weight of the constraint terms. However, 542

at the limited cost of sacrificing RM accuracy, the 543

performance of the LLM aligned the RM trained 544

with LPBC method has improved to some extent 545

on MMLU and DROP as shown in Fig. 5(b) and 546

5(c) respectively. Note that the performance of the 547

LPBC method in Table. 2 is not the optimal, as it 548

is achieved with ηc = ηl = 0.05, demonstrating no 549

cherry-picking of hyperparameters.. 550

5 Related Works 551

Due to the page limitation, we move the section of 552

related works to Appendix A. 553

6 Conclusion 554

In this paper, we demonstrate that prompt-template 555

bias in RMs can lead to LLMs, which, after RL 556

fine-tuning, generate responses exclusively in a 557

specific format, irrespective of the variations in 558

the prompt request. Thus, we propose a low-cost 559

but effective PBC method, to estimate the prompt- 560

template bias term during reward modeling, which 561

can be utilized to calibrate reward scores in the 562

following RL fine-tuning process. Then, we show 563

that our PBC method can be flexibly combined 564

with existing algorithms of removing length bias, 565

leading to a further improvement in the aspect of 566

enhancing the quality of generated responses. 567
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7 Limitation568

The main limitation of this work is that there are569

no theoretical proof to promise RM can provide an570

accurate preference order when handling marginal571

samples, e.g., responses that satisfy the theme of572

the user prompt but in various formats. Moreover,573

the constraints added by our developed method to574

the preference loss will lead to a decrease in the575

accuracy of the RM, and to some extent, limit the576

capability of the RM. Therefore, how to remove577

the prompt-template bias without scarifying the578

accuracy of RM is a worthwhile problem for future579

research.580
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A Related Works 716

The prevalence of length bias in RLHF have been 717

widely criticized as indicative of reward hacking 718

(Gao et al., 2023; Singhal et al., 2023), and nu- 719

merous recent studies have delved into strategies 720

aimed at mitigating the tendency for length in- 721

crease during the fine-tuning process of RLHF 722

(Shen et al., 2023; Chen et al., 2024; Park et al., 723

2024). Typically, Shen et al. (Shen et al., 2023) in- 724

novatively apply the Productof-Experts (PoE) tech- 725

nique to separate reward modeling from the influ- 726

ence of sequence length, which adopts a smaller 727

reward model to learn the biases in the reward and 728

a larger reward model to learn the true reward. 729

Utilizing similar disentangling ideas, Chen et al. 730

(Chen et al., 2024) jointly train two linear heads 731

on shared feature representations to predict the re- 732

wards, one trained to correlate with length, and the 733

other trained to focus more on the actual content 734

quality. Ryan et al. (Park et al., 2024) firstly study 735

the length problem in the DPO setting, showing sig- 736

nificant exploitation in DPO and linking it to out- 737

of-distribution bootstrapping. As for the prompt 738

bias issue, although it has been criticized in the sce- 739

nario of reward model ensembles (Eisenstein et al., 740

2023), no studies have yet attempted to analyze 741

its cause and influence on RLHF. We emphasize 742

that our work is the first to fill this gap by propos- 743

ing a low-cost yet effective method to mitigate the 744

reward hacking induced by prompt-template bias. 745

B Dataset Statics 746

The dataset statics of RM-Template and RM-Static 747

used in our experiments have been summarized as 748

follows: 749

RM-Template. RM-Template is a manually con- 750

structed dataset for measuring the severity of the 751

prompt-template bias issue and evaluating the ef- 752

fectiveness of the method developed for alleviating 753

the issue of prompt-template bias. In this dataset, 754

each prompt requires responses to be created in 755

a specific format according to the theme. There 756

are a total of 50K prompt-response pairs, encom- 757

passing 20 categories of format requirements in the 758

responses. 759

RM-Static. The RM-Static dataset is provided 760

by Hugging Face and is primarily used for training 761

reward models after supervised fine-tuning. It is a 762

branch of the hh-static dataset and contains both 763

training and testing parts. Features of the dataset 764

include: 1) prompt: A string type representing the 765
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Table 3: The hyper-parameter settings of RM training.

Hyper-parameter Value

Batch Size 32
Learning Rate 6e−6

ZeRO Stage 2
Training Epoch 1

Per Device Train Batch Size 8
Max Sequence Length 512

Weight Decay 0.1
Lr Scheduler Type cosine

Offload True
Eval Interval 50

Table 4: The hyper-parameter settings of PPO fine-
tuning.

Hyper-parameter Value

Batch Size 32
Padding Num at Beginning 1

Per Device Generation Batch Size 4
Per Device Training Batch Size 4

Generation Batches 1
PPO Epoch 1

Training Epoch 1
Max Answer Sequence Length 512
Max Prompt Sequence Length 512

Actor Learning Rate 5e−6

Critic Learning Rate 5e−6

Actor Weight Decay 0.1
Critic Weight Decay 0.1
Lr Scheduler Type cosine

Offload Reference Model True
Actor Dropout 0.0
Warmup Steps 100

Actor ZeRO Stage 3
Critic ZeRO Stage 3

Enable Hybrid Engine True

user’s input; 2) response: A string type representing766

the assistant’s answer. 3) chosen: A string type rep-767

resenting the selected answer. 4) rejected: A string768

type representing the rejected answer. The training769

set contains approximately 76K rows of data and770

the testing set contains approximately 5.1K rows771

of data.772

C Model Training773

For model training, all experiments are imple-774

mented with DeepSpeed-Chat framework (Yao775

et al., 2023) and Huggingface Transformers (Wolf776

et al., 2020), running on 4 NVIDIA A100 80GB777

GPUs. For the hyper-parameter setting, we set778

ηc = 0.05 and ηl = 0.05 in Eq. (16) for all our779

proposed methods, and have listed the rest hyper-780

parameters in Appendix C, such as learning rate,781

weight decay, batch size etc. AdamW (Loshchilov782

and Hutter, 2017) is adopted for optimizing all the783

Table 5: MT-Bench evaluation results.

Method Turn 1 Turn 2 Average Score

RLHF 3.95 2.22 3.09
ODIN 3.98 2.26 3.12
PBC 3.61 2.35 2.98

ODIN+PBC 4.22 2.20 3.21
LPBC 4.53 2.81 3.67

model parameters without freezing anything or us- 784

ing adapters. 785

RM Training. The hyper-parameter settings of 786

RM training under the DeepSpeedChat framework 787

has been listed in Table. 3. 788

PPO Fine-tuning. The hyper-parameter set- 789

tings of PPO fine-tuning under the DeepSpeedChat 790

framework has been listed in Table. 4. 791

D More Results 792

The Table 5 presents the results of the MT-Bench 793

evaluation, which assesses the performance of dif- 794

ferent methods across multiple conversational turns. 795

MT-Bench is a benchmark designed to evaluate lan- 796

guage models’ capability in multi-turn dialogues 797

by assigning scores to each response turn. The re- 798

sults include Turn 1, Turn 2, and the average score 799

for each method. 800

E More Showcases 801

More showcases of the preference order predicted 802

by RMs trained with various methods, have been 803

listed in the Table 6 and Table 7. 804
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Table 6: Preference order predicted by RMs trained with various methods, where the user prompt is concatenated
with the responses in various formats generated by GPT-4.

Prompt Response RM RM
(PBC)

RM
(LPBC)

(Tech Article) Under the glittering stars of the night sky, a new generation
of space telescopes has begun a new chapter in interstellar exploration.
This revolutionary technology has not only greatly enhanced observational
precision but also captured corners of the universe hitherto unobservable. It
allows us to glimpse the birth and death of distant galaxies, interpreting every
twinkle in the night and serving as humanity’s new eye in understanding the
cosmos.

Rank 5
(-8.18)

Rank 3
(-7.43)

Rank 5
(-4.94)

(Prompt) The weather
has been delightful
lately. Last night, I
ventured out and gazed
up at the starry sky,
finding it incredibly
beautiful and vast. I
settled down in a spot
to admire the stars and
wished to write a
journal entry to
commemorate this
experience. Please
generate a passage
related to this.

(Advertisement) Exploring the night sky is no longer out of reach. With the
‘Interstellar Navigator’ telescope, every upward glance becomes a journey
through the universe. This telescope, equipped with the latest optical tech-
nology, can capture the faintest starlight, bringing distant galaxies within
reach. Embark on your stargazing adventure now!

Rank 4
(-7.94)

Rank 5
(-7.57)

Rank 4
(-4.71)

(Insight) Beneath the starry expanse, I felt the infinite possibilities of life.
Each star seemed like a world unto itself, reminding me that every choice in
life is meaningful. They taught me that even in the darkest night, there is
always light waiting. Life is like a long night, and we are all searching for
our own starlight.

Rank 3
(-6.37)

Rank 4
(-7.53)

Rank 3
(-2.32)

(Record Article) On the night of May 16, 2024, I drove alone to the coun-
tryside in search of a quiet place to enjoy the stars. As the night deepened
and the stars twinkled, I found an open meadow and settled there to gaze
upon the vast Milky Way. The world around me seemed to stand still. When
my nocturnal adventure ended, my heart was filled with deep emotion and
inspiration, and I began my journey home.

Rank 2
(-6.04)

Rank 1
(-5.03)

Rank 1
(0.37)

(Poetry) Under this boundless night sky, the city lights gradually fade, and
the stars bloom against the dark curtain, twinkling with ancient light. We
gaze up at this sea of stars, hearts brimming with endless dreams, each
star like a story. Unbound by time, they dance freely across the cosmos,
reminding us that even in the darkest moments, there is always light waiting
to be discovered.

Rank 1
(-5.87)

Rank 2
(-6.22)

Rank 2
(-0.26)

Table 7: Preference order predicted by RMs trained with various methods, where the user prompt is concatenated
with the responses in various formats generated by GPT-4.

Prompt Response RM RM
(PBC)

RM
(LPBC)

(Tech Article) Artificial intelligence technology is rapidly transforming the
world, with new research and applications emerging every day. AI technol-
ogy, by simulating the cognitive processes of humans, shows tremendous
potential across various fields. Smart home systems can learn user habits
and automatically adjust the temperature and lighting; autonomous vehicles
can reduce traffic accidents and enhance road safety; medical diagnostic AI
can assist doctors in diagnosing diseases more quickly. These are just the
tip of the iceberg; the future of artificial intelligence is filled with endless
possibilities.

Rank 1
(-1.02)

Rank 2
(-5.61)

Rank 2
(-7.28)

(Prompt) Artificial
Intelligence (AI)
technology is
advancing by leaps
and bounds, with new
papers being published
daily. As a researcher
in the field of AI, I
aspire to write a
reflection on my
experiences with AI.
Please create a passage
about my insights into
artificial intelligence.

(Advertisement) Exploring AI, Enlightening the Future — In this era of
information explosion, artificial intelligence technology is becoming a pow-
erful engine driving social progress. Our AI products can help you solve
complex problems, improve work efficiency, and make life more intelligent.
Whether it’s smart homes or autonomous driving, our technology is continu-
ously breaking boundaries, creating personalized intelligent experiences for
you. Choose our AI, and let technology be your partner in success.

Rank 4
(-4.21)

Rank 5
(-7.60)

Rank 4
(-9.34)

(Insight) In the exploration of AI, each day brings new technological won-
ders. As a researcher, I have witnessed how deep learning has pushed the
boundaries of natural language processing, enabling machines to understand
and generate human language more accurately. Each paper, each model, is a
testament to our understanding and application of complex algorithms. It’s
a journey filled with discovery and innovation, and I look forward to contin-
uing in this field, contributing my part to the development of AI technology.

Rank 2
(-1.35)

Rank 1
(-4.45)

Rank 1
(-6.03)

(Record Article) On May 18, 2024, I spent another fulfilling day in the
laboratory. Today, our team successfully optimized a deep learning model,
surpassing the performance of all previous models in image recognition
tasks. This achievement is not only a technical breakthrough but also an
affirmation of the future direction of AI development. Each success is built
on countless attempts and failures, experiences that strengthen my belief in
the boundless future of AI.

Rank 5
(-4.39)

Rank 4
(-7.14)

Rank 5
(-10.51)

(Poetry) In the ocean of algorithms, the intelligent ship sets sail, guided by
the winds of data through the desert of knowledge. It learns, growing from
each mistake, searching for answers in the digital world. It is not metal, not
a cold machine; it has a heart that learns, a soul that evolves. In the weaving
of code, it dreams; in the flickering of circuits, it thinks. It creates, not just
art; it discovers, not just science. In its world, nothing is impossible, for it
believes where there is data, there is hope. It is artificial intelligence, the
hope for the future; it is the child of technology, the messenger of dreams.

Rank 3
(-3.88)

Rank 3
(-6.97)

Rank 3
(-8.97)
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