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Abstract
Inference tasks such as answer sentence se-001
lection (AS2) or fact verification are typically002
solved by fine-tuning transformer-based mod-003
els as individual sentence-pair classifiers. Re-004
cent studies show that these tasks benefit from005
modeling dependencies across multiple can-006
didate sentences ‘jointly’. In this paper, we007
first show that popular pretrained transform-008
ers perform poorly when used for fine-tuning009
on multi-candidate inference tasks. We then010
propose a new pretraining objective that mod-011
els the paragraph-level semantics across mul-012
tiple input sentences. Our evaluation on three013
AS2, and one fact verification dataset demon-014
strates the superiority of our pretrained joint015
models over pretrained transformers for multi-016
candidate inference tasks.017

1 Introduction018

Pretrained transformers (Devlin et al., 2019; Liu019

et al., 2019; Clark et al., 2020) have become the020

de facto standard for several NLP applications, by021

means of fine-tuning on downstream data. There022

are several downstream NLP applications that re-023

quire reasoning across multiple inputs candidates024

jointly towards prediction. Some popular examples025

include (i) Answer Sentence Selection (AS2) (Garg026

et al., 2020), which is a Question Answering (QA)027

task that requires selecting the best answer from a028

set of candidates for a question; and (ii) Fact Verifi-029

cation (Thorne et al., 2018), which reasons whether030

a claim is supported/refuted by multiple evidences.031

Inherently, these tasks can utilize information from032

multiple candidates (answers/evidences) to support033

the prediction of a particular candidate.034

Pretrained transformers such as BERT are used035

for these tasks as cross-encoders by setting them036

as sentence-pair classification problems, i.e, ag-037

gregating inferences independently over each can-038

didate. Recent studies (Zhang et al., 2021; Ty-039

moshenko and Moschitti, 2021) have shown that040

these tasks benefit from encoding multiple candi-041

dates together, e.g., encoding five answer candi- 042

dates per question in the transformer, so that the 043

cross-attention can model dependencies between 044

them. However, Zhang et al. only improved over 045

the pairwise cross-encoder by aggregating multiple 046

pairwise cross-encoders together (one for each can- 047

didate), and not by jointly encoding all candidates 048

together in a single model. 049

In this paper, we first show that popular pre- 050

trained transformers such as RoBERTa perform 051

poorly when used for jointly modeling inference 052

tasks (e.g., AS2) using multi-candidates. We show 053

that this is due to a shortcoming of their pretraining 054

objectives, being unable to capture meaningful de- 055

pendencies among multiple candidates for the fine- 056

tuning task. To improve this aspect, we propose 057

a new pretraining objective for ‘joint’ transformer 058

models, which captures paragraph-level semantics 059

across multiple input sentences. Specifically, given 060

a target sentence s and multiple sentences (from 061

the same/different paragraph/document), the model 062

needs to recognize which sentences belong to the 063

same paragraph as s in the document used. 064

Joint inference over multiple-candidates entails 065

modeling interrelated information between multi- 066

ple short sentences, possibly from different para- 067

graphs or documents. This differs from related 068

works (Beltagy et al., 2020; Zaheer et al., 2020) 069

on transformers that model long contiguous inputs 070

(documents) to get longer context for tasks such as 071

machine reading and summarization. 072

We evaluate our pretrained multiple candidate- 073

based joint models by (i) performing AS2 on 074

ASNQ, WikiQA, TREC-QA datasets; and (ii) Fact 075

Verification on the FEVER dataset. We show 076

that our pretrained joint models substantially im- 077

prove over the performance of transformers such 078

as RoBERTa being used as joint models for multi- 079

candidate inference tasks, as well as when being 080

used as cross-encoders for sentence-pair formula- 081

tions of these tasks. 082
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2 Related Work083

Multi-Sentence Inference: Inference over a set084

of multiple candidates has been studied in the085

past (Bian et al., 2017; Ai et al., 2018). The most086

relevant for AS2 are the works of Bonadiman and087

Moschitti (2020) and Zhang et al. (2021).088

Transformer Pretraining Objectives: Masked089

Language Modeling (MLM) is a popular trans-090

former pretraining objective (Devlin et al., 2019;091

Liu et al., 2019). Other models are trained us-092

ing token-level (Clark et al., 2020; Joshi et al.,093

2020; Yang et al., 2020; Liello et al., 2021) and/or094

sentence-level (Devlin et al., 2019; Lan et al., 2020;095

Wang et al., 2019) objectives. REALM (Guu et al.,096

2020) uses a differentiable neural retriever over097

Wikipedia to improve MLM pretraining. Giorgi098

et al. (2021) propose a contrastive learning objec-099

tive for cross-encoding two sentences coming from100

the same/different documents in a transformer.101

Modeling Longer Sequences: Beltagy et al.102

(2020); Zaheer et al. (2020) reduce the asymptotic103

complexity of transformer attention to model very104

long inputs for longer context. DCS (Ginzburg105

et al., 2021) proposes a cross-encoder for the task106

of document-pair matching, while CDLM (Caci-107

ularu et al., 2021) specializes the Longformer for108

this same task and cross-document coreference res-109

olution. These works encode a single contiguous110

long piece of text, which differs from our setting of111

having multiple short candidates, for a topic/query,112

possibly from different paragraphs and documents.113

Due to brevity of space, please refer to Appendix A114

for a detailed discussion of related work.115

3 Multi-Sentence Transformers Models116

3.1 Multi-sentence Inference Tasks117

AS2: We denote the question by q, and the set of118

answer candidates by C={c1, . . . cn}. The objec-119

tive is to re-rank C and find the best answer A for120

q. AS2 is typically treated as a binary classifica-121

tion task: first, a model f is trained to predict the122

correctness/incorrectness of each ci; then, the can-123

didate with the highest likelihood of being correct124

is selected as an answer, i.e., A=argmaxni=1 f(ci).125

Intuitively, modeling interrelated information be-126

tween multiple ci’s can help in selecting the best127

answer candidate (Zhang et al., 2021).128

Fact Verification: We denote the claim by F , and129

the set of evidences by C={c1 . . . cn} that are re-130

trieved using DocIR. The objective is to predict131

whether F is supported/refuted/neither using C132

Figure 1: Multi-sentence ‘Joint’ transformer model. Ei

refers to embedding for the question/each candidate.

(at least one evidence ci is required for support- 133

ing/refuting F ). Tymoshenko and Moschitti (2021) 134

jointly model evidences for supporting/refuting a 135

claim as they can complement each other. 136

3.2 Joint Model Architecture 137

For jointly modeling multi-sentence inference 138

tasks, we use a monolithic transformer cross- 139

encoder to encode multiple sentences using self- 140

attention as shown in Fig 1. To perform joint infer- 141

ence over k sentences for question q or claim F , the 142

model receives concatenated sentences [s0 . . . sk] 143

as input, where the first sentence is either the ques- 144

tion or the claim (s0=q or s0=F ), and the remain- 145

der are k candidates si=ci , i={1 . . . k}. We pad 146

(or truncate) each sentence si to the same fixed 147

length L (total input length L×(k + 1)), and use 148

the embedding for the [CLS] / [SEP] token in front of 149

each sentence si as its embedding (denoted by Ei). 150

Similar to Devlin et al., we create positional embed- 151

dings of tokens using integers 0 to L(k+1)−1, and 152

extend the token type ids from {0, 1} to {0 . . . k} 153

corresponding to (k + 1) input sentences. 154

3.3 Inference using Joint Transformer Model 155

We use the output embeddings [E0 . . . Ek] of sen- 156

tences for performing prediction as following: 157

Predicting a single label: We use two separate 158

classification heads to predict a single label for the 159

input to the joint model [s0 . . . sk]: (i) IE1: a linear 160

layer on the output embedding E0 of s0 (similar to 161

BERT) referred to as the Individual Evidence (IE1) 162

inference head, and (ii) AE1: a linear layer on the 163

average of the output embeddings [E0, E1, . . . , Ek] 164

to explicitly factor in information from all candi- 165

dates, referred to as the Aggregated Evidence (AE1) 166

inference head. For Fact Verification, we use pre- 167

diction heads IE1 and AE1. 168

Predicting Multiple Labels: We use two separate 169

classification heads to predict k labels, one label 170

each for every input [s1 . . . sk] specific to s0: (i) 171

IEk: a shared linear layer applied to the output em- 172

bedding Ei of each candidate si , i ∈ {1 . . . k} re- 173

2



Figure 2: Inference heads for joint transformer model.
Ei refers to embedding for the question/each candidate.

ferred to as k-candidate Individual Evidence (IEk)174

inference head, and (ii) AEk: a shared linear layer175

applied to the concatenation of output embedding176

E0 of input s0 and the output embedding Ei of177

each candidate si , i ∈ {1 . . . k} referred to as k-178

candidate Aggregated Evidence (AEk) inference179

head. For AS2, we use prediction heads IEk and180

AEk. Prediction heads are illustrated in Figure 2.181

3.4 Pretraining Paragraph-level Semantics182

Long documents are typically organized into para-183

graphs to address the document’s general topic184

from different viewpoints. The majority of trans-185

former pretraining strategies have not exploited186

this rich source of information, which can possibly187

provide some weak supervision to the otherwise188

unsupervised pretraining phase. To enable joint189

transformer models to effectively capture depen-190

dencies across multiple sentences, we design a new191

pretraining task where the model is (i) provided192

with (k + 1) sentences {s0 . . . sk}, and (ii) tasked193

to predict which sentences from {s1 . . . sk} belong194

to the same paragraph P as s0 in the document195

D. We call this pretraining task Multi-Sentences in196

Paragraph Prediction (MSPP). We use the IEk and197

AEk prediction heads, defined above, on top of the198

joint model to make k predictions pi corresponding199

to whether each sentence si, i∈{1 . . . k} lies in the200

same paragraph P ∈ D as s0. More formally:201

pi =

{
1 if s0, si ∈ P in D
0 otherwise

∀i={1, . . . , k}202

We randomly sample a sentence from a paragraph203

P in a document D to be used as s0, and then204

(i) randomly sample k1 sentences (other than s0)205

from P as positives, (ii) randomly sample k2 sen-206

tences from paragraphs other than P in the same207

document D as hard negatives, and (iii) randomly208

sample k3 sentences from documents other than D209

as easy negatives (note that k1+k2+k3= k).210

4 Experiments211

We evaluate our joint transformers on three AS2212

and one Fact Verification datasets. Note that we213

do not use GLUE (Wang et al., 2018) tasks as they214

only involve sentence pair classification.215

4.1 Datasets 216

Pretraining: To eliminate any improvements 217

stemming from usage of more data, we perform 218

pretraining on the same corpora as RoBERTa: En- 219

glish Wikipedia, the BookCorpus, OpenWebText 220

and CC-News. For our proposed pretraining, we 221

randomly sample sentences from paragraphs as s0, 222

and choose k1=1, k2=2, k3=2 as the specific val- 223

ues for creating positive and negative candidates 224

for s0. For complete details refer to Appendix B. 225

Fine-tuning: For AS2, we compare performance 226

with MAP, MRR and Precision of top ranked an- 227

swer (P@1). For fact verification, we measure 228

Label Accuracy (LA). Brief description of datasets 229

is presented below (details in Appendix B): 230

• ASNQ: A large AS2 dataset (Garg et al., 2020) 231

derived from NQ (Kwiatkowski et al., 2019). 232

• WikiQA: An AS2 dataset (Yang et al., 2015) 233

with questions from Bing search logs. 234

• TREC-QA: A popular AS2 dataset (Wang et al., 235

2007) containing factoid questions. 236

• FEVER: A popular dataset for fact extraction 237

and verification (Thorne et al., 2018). 238

4.2 Experimental Details and Baselines 239

We use k=5 for our experiments (following Zhang 240

et al., Tymoshenko and Moschitti), and perform 241

continued pretraining starting from RoBERTa-Base 242

using a combination of MLM and our MSPP pre- 243

training for 100k steps with a batch size of 4,096. 244

We use two different prediction heads, IEk and 245

AEk, for pretraining. For evaluation, we fine-tune 246

all models on the downstream AS2 and FEVER 247

datasets using the corresponding IEk and AEk pre- 248

diction heads. We consider the pairwise RoBERTa- 249

Base cross-encoder and RoBERTa-Base LM used 250

as a joint model with IEk and AEk prediction heads 251

as the baseline for AS2 tasks. For FEVER, we 252

use several baselines: GEAR (Zhou et al., 2019), 253

KGAT (Liu et al., 2020), Transformer-XH (Zhao 254

et al., 2020), and three models from Tymoshenko 255

and Moschitti: (i) Joint RoBERTa-Base with IE1 256

prediction head, Pairwise RoBERTa-Base with 257

max-pooling, and weighted-sum heads. For com- 258

plete experimental details, refer to Appendix C. 259

4.3 Results 260

The results for AS2 tasks are presented in Table 1, 261

averaged across 5 runs. From the table, we can 262

see that the RoBERTa-Base when used as a joint 263

model for multi-candidate inference using either 264
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Model ASNQ WikiQA TREC-QA

P@1 MAP MRR P@1 MAP MRR P@1 MAP MRR

Pairwise RoBERTa-Base 61.8 (0.2) 66.9 (0.1) 73.1 (0.1) 77.1 (2.1) 85.3 (0.9) 86.5 (1.0) 87.9 (2.2) 89.3 (0.9) 93.1 (1.0)
Joint RoBERTa-Base→ FT IEk 3.4 (2.3) 8.0 (1.9) 10.0 (2.4) 19.7 (1.9) 39.4 (1.6) 40.3 (1.8) 30.9 (5.4) 41.9 (2.4) 50.8 (3.9)
Joint RoBERTa-Base→ FT AEk 3.6 (2.7) 8.0 (2.2) 10.2 (2.8) 18.7 (3.9) 39.0 (2.8) 39.7 (2.9) 29.7 (6.9) 42.3 (3.2) 49.2 (5.0)
(Ours) Joint MSPP IEk → FT IEk 63.0 (0.3) 67.2 (0.2) 73.7 (0.2) 82.7 (2.2) 88.5 (1.5) 89.0 (1.5) 91.7 (2.2) 91.1 (0.5) 95.2 (1.3)
(Ours) Joint MSPP AEk → FT AEk 63.0 (0.3) 67.3 (0.2) 73.7 (0.2) 81.9 (2.6) 87.9 (1.4) 89.0 (1.5) 88.7 (0.8) 90.1 (1.0) 93.6 (0.6)

Table 1: Results(with std. dev. in parenthesis) on AS2 datasets with standard deviation. MSPP, FT refer to our
pretraining task and fine-tuning respectively. We indicate the prediction head (IEk/AEk) used for both pretraining
and fine-tuning. We underline statistically significant gains over the baseline (T-Test with 95% confidence level).

Model ASNQ WikiQA TREC-QA

Pairwise RoBERTa-Base 61.8 (0.2) 77.1 (2.1) 87.9 (2.2)
Joint RoBERTa-Base→ FT IEk 25.2 (3.1) 24.6 (3.1) 57.6 (4.8)
Joint RoBERTa-Base→ FT AEk 25.4 (3.3) 26.4 (2.2) 60.9 (4.9)

(Ours) Joint MSPP IEk → FT IEk 63.9 (0.8) 82.7 (3.0) 92.2 (0.8)
(Ours) Joint MSPP AEk → FT AEk 64.3 (1.1) 82.1 (1.1) 91.2 (2.9)

Table 2: P@1 of joint models for AS2 when re-ranking
the answer candidates ranked in top-k by Pairwise
RoBERTa-Base. Statistically significant results (T-Test
95%) are underlined. Complete results in Appendix D.

the IEk/AEk prediction heads performs inferior to265

RoBERTa-Base used as a pairwise cross-encoder.266

Across 5 experimental runs, we observe that fine-267

tuning RoBERTa-Base as a joint model faces con-268

vergence issues (across various hyper-parameters)269

indicating that the MLM pretraining task is not270

sufficient to learn text semantics which can be ex-271

ploited for multi-sentence inference.272

Our MSPP pretrained joint models (with both273

IEk, AEk heads) get significant improvements274

over the pairwise cross-encoder baseline and very275

large improvements over the RoBERTa-Base joint276

model. The former highlights modeling improve-277

ments stemming from joint inference over multiple-278

candidates, while the latter highlights improve-279

ments stemming from our MSPP pretraining strat-280

egy. Across all three AS2 datasets, our joint models281

are able to get the highest P@1 scores while also282

improving the MAP and MRR metrics.283

To demonstrate that our joint models can effec-284

tively use information from multiple candidates285

towards prediction, we perform a study in Table 2286

where the joint models are used to re-rank the top-k287

candidates ranked by the pairwise RoBERTa-Base288

cross-encoder. Our joint models can significantly289

improve the P@1 over the baseline for all datasets.290

The performance gap stems from questions for291

which the pairwise RoBERTa model was unable to292

rank the correct answer at the top position, but sup-293

port from other candidates in the top-k helped the294

joint model rank it in the top position. Due to space295

limitations, refer to Appendix E for some qualita-296

tive examples highlighting this improvement.297

The results for the FEVER task are presented298

in Table 3 and show that our joint models (pre-299

Model Dev Test

GEAR 70.69 71.60
KGAT with RoBERTa-Base 78.29 74.07
Transformer-XH 78.05 72.39
Pairwise RoBERTa-Base + MaxPool 79.82 -
Pairwise RoBERTa-Base + WgtSum 80.01 -
Joint RoBERTa-Base + FT IE1 79.25 73.56
(Ours) Joint Pre IEk + FT IE1 81.21 (0.24) 74.39
(Ours) Joint Pre IEk + FT AE1 81.10 (0.15) 74.25
(Ours) Joint Pre AEk + FT IE1 81.18 (0.14) 73.77
(Ours) Joint Pre AEk + FT AE1 81.21 (0.16) 74.13

Table 3: Results on FEVER dev and test sets. For our
method, prediction heads (IE1/AE1) are only used for
fine-tuning (FT), while for pretraining (Pre) we use the
(IEk/AEk) heads. ’-’ denotes models not released pub-
licly and have no reported results in any paper. Statisti-
cally significant results (T-Test 95%) are underlined.

trained with both the IEk and AEk heads and fine- 300

tuned with the IE1 and AE1 heads) outperform 301

all previous baselines considered, including the 302

RoBERTa-Base joint model directly applied for 303

multi-sentence inference. 304

Compute Overhead: A simplified latency analy- 305

sis for AS2 (assuming sentence length L): pairwise 306

cross-encoder will use k transformer steps with 307

input length 2L, while our joint model will use 308

1 step with input length (k+1)×L. Since trans- 309

former attention scales quadratic on input length, 310

our joint inference should take (k+1)2

4k times the 311

inference time of the cross-encoder, which is 1.8 312

when k=5. However, when we fine-tune for Wik- 313

iQA on one A100-GPU, we only observe latency in- 314

creasing from 71s→81s (increase of only 14.1%). 315

The input embeddings and feedforward layers vary 316

linearly with input length, reducing overheads of 317

self-attention. Refer to Appendix D.3 for details. 318

5 Conclusions 319

In this paper we have presented a multi-sentence 320

cross-encoder for performing inference jointly on 321

multiple sentences. We have proposed a novel pre- 322

training task to capture paragraph-level semantics. 323

Our experiments on 3 AS2 and 1 Fact verification 324

datasets show that our pretrained joint models can 325

outperform pairwise cross-encoders and pretrained 326

LMs when directly used as joint models. 327
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Appendix529

A Related Work530

Multi-Sentence Inference: Several research531

works (Bian et al., 2017; Ai et al., 2018) have ex-532

plored performing inference over more than one,533

or the entire set candidates in the past. For the534

task of AS2, Bonadiman and Moschitti (2020) ex-535

plore using using multiple answer candidates and536

improve the performance of older neural networks,537

however they fail to beat the performance of trans-538

formers. Zhang et al. (2021) use task-specific mod-539

els (termed answer support classifiers) in addition540

to the AS2 transformer for performance improve-541

ments. For fact verification, Tymoshenko and Mos-542

chitti (2021) propose jointly embedding multiple543

evidence with the claim towards improving the per-544

formance of baseline pairwise cross-encoder trans-545

formers.546

Transformer Pretraining: REALM (Guu et al.,547

2020) uses a differentiable neural retriever over548

Wikipedia to improve MLM pretraining. This549

differs from our pretraining setting as it uses550

additional data/knowledge stemming from the551

Wikipedia index to improve the pretrained LM552

for knowledge intensive tasks. DeCLUTR (Giorgi553

et al., 2021) uses a contrastive learning objective554

for cross-encoding two sentences coming from the555

same/different documents in a transformer. De-556

CLUTR is evaluated for sentence-pair classifica-557

tion tasks and embeds the two inputs independently558

without any cross-attention, which differs from our559

setting of embedding multiple candidates jointly560

for inference.561

Modeling Longer Sequences: Longformer (Belt-562

agy et al., 2020) uses a mixture of global and local563

attention to reduce complexity of full self-attention,564

to model very long contiguous inputs for longer565

context. For tasks with short sequence lengths,566

LongFormer works on par or slightly worse than567

RoBERTa (attributed to reduced attention compu-568

tation). Big Bird (Zaheer et al., 2020) uses a hy-569

brid attention (attending to random, nearby and the570

whole sequence) to model long contiguous inputs571

such as documents. Our proposed pretraining ob-572

jective is complementary to these works, and can573

possibly be combined with them to enhance repre-574

sentations of longer inputs. DCS (Ginzburg et al.,575

2021) goes beyond the input length of the Long-576

former by means of a cross-encoder for the task577

of document-pair matching (for retrieval). DCS is578

related to our work as it uses a contrastive pretrain- 579

ing objective over two sentences extracted from 580

the same paragraph, however different from our 581

joint encoding of multiple sentences, DCS individ- 582

ually encodes the two sentences and then uses the 583

InfoNCE loss over the embeddings. CDLM (Caci- 584

ularu et al., 2021) specializes the Longformer 585

to obtain document embeddings for the task of 586

document-pair matching and cross-document coref- 587

erence resolution. While the pretraining objective 588

in CDLM exploits information from multiple docu- 589

ments, it differs from our setting of joint inference 590

over multiple short sentences for tasks such as AS2 591

and fact verification. 592

B Datasets 593

We present the complete details for all the datasets 594

used in this paper along with links to download 595

them for reproducibility of results. 596

B.1 Pretraining Datasets 597

We use the Wikipedia1, BookCorpus2, OpenWeb- 598

Text (Gokaslan and Cohen, 2019) and CC-News3 599

datasets for performing pretraining of our joint 600

transformer models. We do not use the STORIES 601

dataset as it is no longer available for research use 602
4. After decompression and cleaning we obtained 603

6GB, 11GB, 38GB and 394GB of raw text respec- 604

tively from the BookCorpus, Wikipedia, OpenWeb- 605

Text and CC-News. 606

B.2 Finetuning Datasets 607

We evaluate our joint transformers on three AS2 608

and one Fact Verification datasets. The latter differs 609

from the former in not selecting the best candidate, 610

but rather explicitly using all candidates to predict 611

the label. Here are the details of the finetuning 612

datasets that we use for our experiments along with 613

data statistics for each dataset: 614

• ASNQ: A large-scale AS2 dataset (Garg et al., 615

2020)5 where the candidate answers are from 616

Wikipedia pages and the questions are from search 617

1https://dumps.wikimedia.org/enwiki/
20211101/

2https://huggingface.co/datasets/
bookcorpusopen

3https://commoncrawl.org/2016/10/
news-dataset-available/

4https://github.com/tensorflow/models/
tree/archive/research/lm_commonsense#
1-download-data-files

5https://github.com/alexa/wqa_tanda
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queries of the Google search engine. ASNQ618

is a modified version of the Natural Questions619

(NQ) (Kwiatkowski et al., 2019) dataset by convert-620

ing it from a machine reading to an AS2 dataset.621

This is done by labelling sentences from the long622

answers which contain the short answer string as623

positive correct answer candidates and all other an-624

swer candidates as negatives. We use the dev. and625

test splits released by Soldaini and Moschitti6.626

Split # Questions # Candidates Avg. # C/Q

Train 57,242 20,377,568 356.0
Dev 1,336 463,914 347.2
Test 1,336 466,148 348.9

Table 4: Data Statistics for ASNQ dataset
• WikiQA: An AS2 dataset released by Yang627

et al.7 where the questions are derived from query628

logs of the Bing search engine, and the answer can-629

didate are extracted from Wikipedia. This dataset630

has a subset of questions having no correct answers631

(all-) or having only correct answers (all+). We632

remove both the all- and all+ questions for our ex-633

periments (“clean" setting).634

Split # Questions # Candidates Avg. # C/Q

Train 2,118 20,360 9.6
Dev 122 1,126 9.2
Test 237 2,341 9.9

Table 5: Data Statistics for WikiQA dataset.
• TREC-QA: A popular AS2 dataset released by635

Wang et al.. For our experiments, we trained on636

the train-all split, which contains more noise but637

also more question-answer pairs. Regarding the638

dev. and test sets we removed the questions with-639

out answers, or those having only correct or only640

incorrect answer sentence candidates. This setting641

refers to the “clean" setting (Shen et al., 2017),642

which is a TREC-QA standard.643

Split # Questions # Candidates Avg. # C/Q

Train 1,226 53,417 43.6
Dev 69 1,343 19.5
Test 68 1,442 21.2

Table 6: Data Statistics for TREC-QA dataset.

• FEVER: A popular benchmark for fact extrac-644

tion and verification released by Thorne et al. The645

aim is to retrieve evidences given a claim, and then646

identify whether the retrieved evidences support or647

refute the claim or if there is not enough informa-648

tion to make a choice. For supporting/refuting a649

6https://github.com/alexa/
wqa-cascade-transformers

7http://aka.ms/WikiQA

claim, at least one of the retrieved evidences must 650

support/retrieve the claim. Note that the perfor- 651

mance on FEVER depends crucially on the retrieval 652

system and the candidates retrieved. For our experi- 653

ments, we are interested only in the fact verification 654

sub-task and thus we exploit the evidences retrieved 655

by Liu et al. using a BERT-based DocIR8. 656

Split # Claims # Evidences Avg. # E/C

Train 145,406 722,473 4.97
Dev 19,998 98,915 4.95
Test 19,998 98,839 4.94

Table 7: Statistics for the FEVER dataset where evi-
dences has been retrieved using (Liu et al., 2020).

C Experimental Setup 657

C.1 Complete Experimental Details 658

Following standard practice, the token ids, posi- 659

tional ids and token type ids are embedded using 660

separate embedding layers, and their sum is fed as 661

the input to the transformer layers. We use k=5 662

for our experiments (following Zhang et al.; Ty- 663

moshenko and Moschitti), and perform continu- 664

ous pretraining starting from the RoBERTa-Base 665

checkpoint using a combination of MLM and our 666

MSPP pretraining objective for 100,000 steps with 667

a batch size of 4096. We use a triangular learning 668

rate with 10,000 warmup steps and a peak value of 669

5 ∗ 10−5. We use Adam optimizer with β1 = 0.9, 670

β2 = 0.999 and ε = 10−8. We apply a weight 671

decay of 0.01 and gradient clipping when values 672

are higher than 1.0. We set the dropout ratio to 673

0.1 and we use two different prediction heads for 674

pretraining: IEk and AEk. We follow the strat- 675

egy of (Devlin et al., 2019; Lan et al., 2020), and 676

equally weight the the two pretraining loss objec- 677

tives: MLM and MSPP. 678

For evaluation, we fine-tune all models on the 679

downstream AS2 and FEVER datasets: using the 680

same IEk and AEk prediction heads exploited in 681

pretraining for AS2 and using either IE1 or AE1 682

prediction heads for FEVER. We finetune every 683

model with the same maximum sequence length 684

equal to 64 ∗ (k + 1) = 384 tokens. For ASNQ 685

we train for up to 6 epochs with a batch size of 512 686

and a learning rate of 10−5 with the same Adam 687

optimizer described above but warming up for only 688

5000 steps. We do early stopping on the MAP of 689

the development set. For WikiQA and TREC-QA, 690

we created batches of 32 examples and we used 691

8https://github.com/thunlp/KernelGAT/
tree/master/data
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a learning equal to 2 ∗ 10−6 and 1000 warm up692

steps. We train for up to 40 epochs again with early693

stopping on the MAP of the development set. On694

FEVER, we use a batch size of 64, a learning rate of695

10−5, 1000 warm up steps and we do early stopping696

checking the Accuracy over the development set.697

C.2 Baselines698

For AS2, we consider two baselines: (i) pair-699

wise RoBERTa-Base model when used as a cross-700

encoder for AS2, and (ii) RoBERTa-Base LM when701

used as a joint model with IEk and AEk prediction702

heads independently for AS2 tasks.703

For FEVER, we use several recent baselines704

from Tymoshenko and Moschitti: (i) GEAR (Zhou705

et al., 2019), (ii) KGAT (Liu et al., 2020), (iii)706

Transformer-XH (Zhao et al., 2020), (iv) joint707

RoBERTa-Base with IE1 prediction head (Ty-708

moshenko and Moschitti, 2021), (v) pairwise709

RoBERTa-Base when used as a cross-encoder with710

max-pooling head (Tymoshenko and Moschitti,711

2021), (vi) pairwise RoBERTa-Base when used712

as a cross-encoder with weighted-sum head (Ty-713

moshenko and Moschitti, 2021).714

C.3 Metrics715

The performance of AS2 systems in practical ap-716

plications is typically (Garg and Moschitti, 2021)717

measured using the Accuracy in providing correct718

answers for the questions (the percentage of correct719

responses provided by the system), also called the720

Precision-at-1 (P@1). In addition to P@1, we use721

Mean Average Precision (MAP) and Mean Recipro-722

cal Recall (MRR) to evaluate the ranking produced723

of the set of candidates by the model.724

For FEVER, we measure the performance using725

Label Accuracy (LA), a standard metric for this726

dataset, that measures the accuracy of predicting727

support/refute/neither for a claim using a set of728

evidences.729

D Complete Results and Discussion730

D.1 Results on AS2 with cascaded pairwise731

and Joint re-ranker732

Below we present results of evaluating our joint733

models to re-rank the top-k candidates ranked by734

the pairwise RoBERTa-Base cross-encoder. Our735

joint models can significantly improve the P@1,736

MAP and MRR over the baseline for all datasets.737

The performance gap stems from questions for738

which the pairwise RoBERTa model was unable739

Model Dev Test

GEAR 70.69 71.60
KGAT with RoBERTa-Base 78.29 74.07
Transformer-XH 78.05 72.39
Pairwise BERT-Base 73.30 69.75
Pairwise RoBERTa-Base + MaxPool 79.82 -
Pairwise RoBERTa-Base + WgtSum 80.01 -
Joint BERT-Base 73.67 71.01
Joint RoBERTa-Base + FT IE1 79.25 73.56
(Ours) Joint Pre IEk + FT IE1 81.21 (0.24) 74.39
(Ours) Joint Pre IEk + FT AE1 81.10 (0.15) 74.25
(Ours) Joint Pre AEk + FT IE1 81.18 (0.14) 73.77
(Ours) Joint Pre AEk + FT AE1 81.21 (0.16) 74.13

Methods with larger models and/or sophisticated retrieval
DOMLIN++ 77.48 76.60
DREAM 79.16 76.85

Table 8: Complete Results on FEVER dev and test sets.
For our method, prediction heads (IE1/AE1) are only
used for finetuning (FT), while for pretraining (Pre) we
use the (IEk/AEk) heads. ’-’ denotes models that are
not publicly released and have no reported results on
the test split in their published paper. Statistically sig-
nificant results (T-Test 95%) are underlined.

to rank the correct answer at the top position, but 740

support from other candidates in the top-k helped 741

the joint model rank it in the top position. 742

D.2 Results on FEVER 743

Here we present complete results on the FEVER 744

dataset in Table 8, by also presenting some addi- 745

tional baselines such as: (i) pairwise BERT-Base 746

cross-encoder (Tymoshenko and Moschitti, 2021), 747

(ii) joint BERT-Base cross-encoder with IE1 pre- 748

diction head, (iii) DOMLIN++ (Stammbach and 749

Ash, 2020) which uses additional DocIR compo- 750

nents and data (MNLI (Williams et al., 2018)) for 751

fine-tuning, (iv) DREAM (Zhong et al., 2020) that 752

uses the XL-Net model. Note that comparing our 753

joint models with (iii) and (iv) is unfair since they 754

use additional retrieval components, datasets and 755

larger models. We just include these results here 756

for the sake for completeness. Interestingly, our 757

joint models outperform DREAM and DOMLIN++ 758

on the dev set without using additional retrieval 759

and larger models. 760

D.3 Compute Overhead of Joint Models 761

Change in Number of Model Parameters: The 762

transformer block of our joint inference model is 763

identical to pretrained models such as RoBERTa, 764

and contains the exact same number of parame- 765

ters. Classification heads IE1, IEk and AE1 all 766

operate on the embedding of a single token, and 767

are identical to the classification head of RoBERTa 768

9



Model ASNQ WikiQA TREC-QA

P@1 MAP MRR P@1 MAP MRR P@1 MAP MRR

Pairwise RoBERTa-Base 61.8 66.9 73.1 77.1 85.3 86.5 87.9 89.3 93.1
Joint RoBERTa-Base→ FT IEk 25.2 44.0 45.6 24.6 49.3 49.7 57.6 73.7 74.6
Joint RoBERTa-Base→ FT AEk 25.4 44.8 46.2 26.4 50.6 51.1 60.9 74.6 76.7
(Ours) Joint MSPP IEk → FT IEk 63.9 71.3 73.1 82.7 88.5 89.0 92.2 93.5 95.4
(Ours) Joint MSPP AEk → FT AEk 64.3 71.5 73.4 82.1 87.9 88.7 91.2 93.5 94.9

Table 9: Complete results of our joint models for AS2 datasets when re-ranking the answer candidates ranked
in top-k by Pairwise RoBERTa-Base. MSPP, FT refer to our pretraining task and finetuning respectively. We
indicate the prediction head (IEk/AEk) used for both pretraining and finetuning.

(AEk operates on the concatenation of two token769

embeddings, and contains double the number of770

parameters as the RoBERTa). The maximum se-771

quence length allowed for both the models is the772

same (512). The exact number of parameters of our773

joint model with AEk and the RoBERTa model are774

124, 062, 720 and 124, 055, 040 respectively.775

Change in Inference Latency: While our joint776

model provides a longer input sequence to the777

transformer, it also reduces the number of forward778

passes that need to be done by a pairwise cross-779

encoder. A simplified latency analysis for AS2780

(assuming each sentence has a length L): pairwise781

cross-encoder will need to make k forward passes782

of the transformer with a sequence of length 2L783

(q with each candidate ci), while our joint model784

will only need to make 1 forward pass of the trans-785

former with input length (k+1)×L (q with k can-786

didates). Transformer self-attention is quadratic in787

input sequence length, so this should lead to the in-788

ference time of out joint model being (k+1)2

4k times789

the inference time of the cross-encoder. However,790

the input embedding layer and the feedforward791

layers are linear in input sequence length, so this792

should lead to a reduction in the inference time of793

our joint model by (k+1)
2k times the inference time of794

the cross-encoder. Empirically, when we fine-tune795

for WikiQA on one A100-GPU, we only observe796

latency increasing from 71s→81s (increase of only797

14.1%).798

E Qualitative Examples from AS2799

We present some qualitative examples from the800

three AS2 datasets highlighting cases where the801

pairwise RoBERTa-Base model is unable to rank802

the correct answer on the top position, but our pre-803

trained joint model (Joint MSPP IEk → FT IEk)804

can do this using supporting information from other805

candidates in Table 10.806
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ASNQ

Q: Who invented the submarine during the civil war?
A1: H.L. Hunley , often referred to as Hunley , was a submarine of the Confedera
A2: Hunley , McClintock , and Baxter Watson first built Pioneer , which was tested in February
1862 in the Mississippi River and was later towed to Lake Pontchartrain for additional trials .
A3: She was named for her inventor, Horace Lawson Hunley , shortly after she was taken into
government service under the control of the Confederate States Army at Charleston , South Carolina.
A4: 1864 painting of H.L. Hunley by Conrad Wise Chapman History Confederate States Name : H.L.
Hunley Namesake : Horace Lawson Hunley Builder : James McClintock Laid down : Early 1863
Launched : July 1863 Acquired : August 1863 In service : February 17 , 1864 Out of service : February
17, 1864 Status : Awaiting conservation General characteristics Displacement : 7.5 short tons ( 6.8
metric tons ) Length : 39.5 ft
A5: Johan F. Carlsen was born in Ærøskøbing April 9, 1841.
WikiQA

Q: What is the erb/heart?
A1: Heart valves are labeled with "B", "T", "A", and "P".First heart sound: caused by atrioventricular
valves - Bicuspid/Mitral (B) and Tricuspid (T).
A2: Second heart sound caused by semilunar valves – Aortic (A) and Pulmonary/Pulmonic (P).
A3: Front of thorax , showing surface relations of bones , lungs (purple), pleura (blue), and heart
(red outline).
A4: In cardiology, Erb’s point refers to the third intercostal space on the left sternal border where
sS2 is best auscultated .
A5: It is essentially the same location as what is referred to with left lower sternal border (LLSB).
TREC-QA

Q: When was the Khmer Rouge removed from power ?
A1: Sihanouk was named head of state after the Khmer Rouge seized power in 1975, but was locked
in his palace by the communists as they embarked on their brutal attempt to create an agrarian utopia .
A2: When a Vietnamese invasion drove the Khmer Rouge from power in 1979 , Duch fled with other
Khmer Rouge leaders into the jungles.
A3: Religious practices were revived after the Khmer Rouge were driven from power by a Vietnamese
invasion in 1979
A4: Moreover , 20 years after the Khmers Rouges were ousted from power , Cambodia still struggles
on the brink of chaos , ruled by the gun , not by law .
A5: Sihanouk resigned in 1976 , but the Khmer Rouge kept him under house arrest until they were
driven from power by an invading Vietnamese army in 1979 .

Table 10: Qualitative examples from AS2 datasets where the pairwise RoBERTa-Base model is unable to rank a
correct answer for the question at the top position, but our joint model (Joint MSPP IEk → FT IEk) can. Here
we present the answers A1, . . . , A5 in their ranked order by the pairwise RoBERTa-Base model. For all these
examples we highlight the top ranked answer by the pairwise RoBERTa-Base model in red since it is incorrect.
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