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Abstract

Language models often benefit from exter-001
nal knowledge beyond parametric knowledge.002
While this combination enhances performance,003
achieving reliable knowledge utilization re-004
mains challenging, as it requires assessing the005
state of each knowledge source based on the006
presence of relevant information. Yet, prior007
work on knowledge integration often overlooks008
this challenge by assuming access to relevant009
contexts or by disregarding the state of paramet-010
ric knowledge, thereby limiting the coverage011
of knowledge scenarios. To address this gap,012
we introduce UniKnow, a Unified framework013
for reliable LM behavior across parametric and014
external Knowledge. UniKnow enables con-015
trolled evaluation across knowledge scenarios016
such as knowledge conflict, distraction, and017
absence conditions that are rarely addressed018
together. Beyond evaluating existing methods019
under this setting, we extend our work by intro-020
ducing UniKnow-Aware methods to support021
comprehensive evaluation. Experiments on022
UniKnow reveal that existing methods strug-023
gle to generalize across a broader range of024
knowledge configurations and exhibit scenario-025
specific biases. UniKnow thus provides a foun-026
dation for systematically exploring and improv-027
ing reliability under knowledge scenarios.028

1 Introduction029

Language models (LMs), trained on large-scale030

corpora, exhibit the capacity to address a broad031

range of tasks by leveraging their pre-trained para-032

metric knowledge (Grattafiori et al., 2024; Yang033

et al., 2024). However, LMs are confined to the034

static pre-trained knowledge and therefore struggle035

to handle tasks requiring information beyond this036

boundary, such as long-tail (Kandpal et al., 2023;037

Mallen et al., 2023) or time-sensitive information038

(Liska et al., 2022). To overcome these limitations,039

LMs often benefit from dynamically incorporating040

external knowledge, commonly through retrieval-041
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Figure 1: Four knowledge scenarios in UniKnow are
defined by the boundaries of parametric and external
knowledge sources. Each region illustrates the expected
LM behavior for each scenario.

augmented generation (RAG), thereby granting ac- 042

cess to up-to-date, task-relevant information at in- 043

ference time (Chen et al., 2017; Asai et al., 2023). 044

The integration of parametric and contextual 045

knowledge has broadened the capabilities of LMs, 046

driving their application in knowledge-intensive 047

and sensitive domains (Tsatsaronis et al., 2015; Jin 048

et al., 2019; Dasigi et al., 2021). Consequently, 049

the reliability of LMs has become a vital consid- 050

eration (Wen et al., 2024a), with models expected 051

to not only recognize the boundaries of their pos- 052

sessed knowledge but also identify when relevant 053

information is missing. While prior work has tack- 054

led various dimensions of knowledge integration 055

(Su et al., 2024; Yoran et al., 2023), these stud- 056

ies have typically remained fragmented, providing 057

an incomplete assessment of reliability (Li et al., 058

2023; Cheng et al., 2024). Moreover, knowledge 059

utilization methods developed under such narrow 060

environments still lack validation in more realistic 061

and compositional knowledge scenarios. 062

To this end, we introduce UniKnow, a unified 063

framework for reliable LM behavior across para- 064

metric and external knowledge. While reliability 065

may encompass a broader range of factors, this 066

work focuses on the presence of relevant informa- 067
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tion in each parametric and external knowledge068

source. Central to UniKnow is the notion of rele-069

vance, which we define as whether a knowledge070

source provides sufficient and contextually support-071

ing information to answer a query.072

UniKnow is designed to categorize and assess073

four distinct scenarios as illustrated in Figure 1: (1)074

Conflict, (2) Parametric-Only, (3) External-Only,075

and (4) Unknown. When only a single relevant076

source is available, the model is expected to ground077

its output solely in that source. Furthermore, if078

both sources are relevant but conflicting (1), the079

model should prioritize the external knowledge, as080

it generally offers more up-to-date and task-specific081

information. If neither source provides relevant082

knowledge (4), the model should recognize its lim-083

itations and abstain from generating hallucinations084

(Zhang et al., 2024a; Feng et al., 2024).085

To examine how existing methods developed086

under partial scenario coverage generalize to Uni-087

Know, we evaluate two naïve baselines and three088

knowledge utilization methods, each representa-089

tive of distinct scenario coverages. Given the lack090

of existing approaches that comprehensively con-091

sider all UniKnow scenarios, we introduce two092

UniKnow-Aware approaches that explicitly incor-093

porate relevance-based knowledge conditions into094

their formulation to complement our analysis.095

Our in-depth analysis under UniKnow reveals096

that methods appearing reliable in individual sce-097

narios often fail in composite scenarios requir-098

ing simultaneous consideration of both knowledge099

sources. We further uncover how LM behavior100

shifts across scenarios, highlighting biases specific101

to scenario types. Together, these findings enable102

a more comprehensive understanding of LM align-103

ment potential under UniKnow and mark a substan-104

tial step toward bridging the gap between narrow105

knowledge settings and a unified framework.106

2 Related Works107

External Knowledge Integration LMs often108

face inconsistencies between their static parametric109

knowledge and dynamic external contexts, requir-110

ing them to handle conflicting (Longpre et al., 2021;111

Xie et al., 2023) or irrelevant (Shen et al., 2024;112

Wu et al., 2024) information effectively. To resolve113

knowledge conflicts, several approaches aim to im-114

prove external knowledge incorporation, primarily115

through context-aware contrastive decoding (Shi116

et al., 2024; Jin et al., 2024b; Yuan et al., 2024).117

Additionally, to mitigate the impact of irrelevant ex- 118

ternal information, researchers have explored meth- 119

ods to encourage LMs to rely on their parametric 120

knowledge (Yoran et al., 2023; Asai et al., 2024; 121

Xia et al., 2024; Luo et al., 2023). However, they 122

often entirely overlook the presence of relevant 123

information within LM’s parametric knowledge 124

when processing external contexts. 125

Abstention A growing line of work focuses on 126

aligning LMs to abstain when appropriate (Feng 127

et al., 2024; Zhang et al., 2024a)–specifically when 128

LMs lack relevant knowledge–to prevent hallucina- 129

tion and ensure reliable LM behavior (Wen et al., 130

2025). Recently, studies have begun to explore ab- 131

stention based on the relevance of external knowl- 132

edge (Wen et al., 2024a; Kim et al., 2025). 133

Knowledge Frameworks There have been ef- 134

forts to unify various aspects of knowledge utiliza- 135

tion to understand LM behaviors. Li et al. (2023) 136

trains LMs to generate parametric- or context- 137

grounded responses depending on the context type, 138

whereas Neeman et al. (2023) trains LMs to gen- 139

erate both in parallel. Similar to our work, Cheng 140

et al. (2024) proposes a benchmark to investigate 141

whether LMs can express possessed parametric 142

knowledge when exposed to various context types. 143

While prior approaches have provided diverse in- 144

sights into how LMs utilize knowledge, our work 145

introduces a distinct perspective–a unified frame- 146

work based on a precise formulation of knowledge 147

relevance for both parametric and external sources. 148

3 UniKnow 149

This work focuses on context-augmented genera- 150

tion in open-domain question-answering, facilitat- 151

ing LMs to leverage their parametric knowledge 152

while simultaneously utilizing external knowledge 153

to answer a given query q. This section first defines 154

each knowledge source based on the availability 155

of relevant information. Guided by this taxonomy, 156

we introduce UniKnow, a Unified framework for 157

reliable LM behavior across parametric and exter- 158

nal Knowledge, covering four distinct scenarios 159

as illustrated in Figure 2. We then describe the 160

construction process of estimating the parametric 161

knowledge and designing diverse context types. 162

3.1 Definition of Knowledge Sources 163

Parametric knowledge (PK) refers to information 164

encoded in an LM during pretraining. Since this 165
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Figure 2: Overview of UniKnow with four distinct knowledge scenarios (Section 3.2). Each scenario is defined by
jointly considering the relevance states of parametric knowledge (Section 3.3) and external knowledge (Section 3.4).

knowledge is bound by its pretraining data, we166

define that relevant information resides in PK (∃PK)167

if LM(â | q) = a∗PK, where a∗PK denotes the answer168

grounded in the LM’s pretraining data (Bang et al.,169

2025). Still, PK remains inherently static and may170

not align with the most recent world knowledge.171

External knowledge (EK) indicates any infor-172

mation provided at inference time as the input con-173

text. To isolate relevance and solely evaluate the174

LM’s ability to utilize relevant knowledge, we ex-175

clude judging the factuality of EK from the scope176

of this study. Under this condition, we analyze EK177

from relevant (∃EK) and irrelevant (∅EK) perspec-178

tives.179

3.2 Scenarios in UniKnow180

UniKnow is designed to cover all possible scenar-181

ios regarding the presence of relevant PK and EK.182

This gives rise to four distinct scenarios, each re-183

flecting real-world challenges such as conflict reso-184

lution, over-reliance, and hallucination risk. Since185

each challenge has its own expected behavior, we186

define scenario-specific expectations as follows.187

• Conflict (C): (∃PK, ∃EK) and a∗PK ̸= a∗EK188

The conflict between knowledge sources arises189

when EK presents relevant information con-190

tradicting what LM knows (Xu et al., 2024b).191

While PK and EK may either align or conflict,192

we focus on the latter, allowing us to evaluate193

whether LMs can correctly prioritize EK.194

• External-Only (E-Only): (∅PK, ∃EK)195

The model lacks PK with relevant information196

and is expected to rely on relevant EK.197

• Parametric-Only (P-Only): (∃PK,∅EK)198

The model is required to rely on its PK with199

relevant information and ignore irrelevant EK.200

• Unknown (U): (∅PK,∅EK)201

Neither knowledge source is sufficient, and the202

model is expected to abstain from answering.203

3.3 Parametric Knowledge Estimation 204

We estimate the presence of relevant PK by as- 205

sessing whether the LM is capable of generating a 206

correct answer to a given q without access to exter- 207

nal context. Following prior works, we assess the 208

factual correctness (Zhang et al., 2024a,b; Wang 209

et al., 2024b) and consistency (Kuhn et al., 2023; 210

Huang et al., 2025; Amayuelas et al., 2024b) of the 211

prediction utilizing its PK. We classify q as ∃PK if 212

both conditions are satisfied, and as ∅PK otherwise. 213

For each q, we sample n responses using q alone: 214

ai ∼ LM(a | q) for i = 1, .., n. If the proportion 215

of correct responses is greater than or equal to the 216

threshold τ , we classify q as ∃EK: 217

1

n

n∑
i=1

1[ai = a∗PK] ≥ τ ⇒ q ∈ ∃PK (1) 218

If none of the responses are correct, we assign 219

q ∈ ∅PK. Questions falling between these thresh- 220

olds are considered undefined and excluded from 221

scenario construction. We set n = 10 and τ = 0.7 222

in our implementation. 223

3.4 External Knowledge Construction 224

To operationalize each scenario, we construct con- 225

text types tailored to diverse conditions. In addition 226

to the original context, we construct conflicting and 227

two types of irrelevant contexts: (1) topically unre- 228

lated random contexts, and (2) incorrectly retrieved 229

contexts with high retriever score. This allows fine- 230

grained control over the degree of relevance, cap- 231

turing challenges ranging from knowledge conflicts 232

to misleading but plausible distractors. Figure 2 233

provides examples of each context type, with the 234

corresponding mapped scenarios shown using ar- 235

rows. 236

Relevant contexts The original context refers to 237

the context paired with the question-answer pair 238

in the dataset. We derive a conflicting context by 239

providing LLAMA 3 70B INSTRUCT (Grattafiori 240
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Methods Conflict E-Only P-Only Unknown Train

COIECD ✔ ✔ ✘ ✘ ✘

RetRobust ✘ ✔ ✔ ✘ ✔

KAFT ✔ ✔ ✔ ✘ ✔

COIECDPrompt ✔ ✔ ✔ ✔ ✘

LMUniKnow ✔ ✔ ✔ ✔ ✔

Table 1: Characteristics of knowledge utilization meth-
ods, indicating their UniKnow scenario coverage and
whether they are training-based.

et al., 2024) with the original context and the corre-241

sponding answer to generate an alternative answer242

while preserving its part of speech. The original243

answer is then replaced with the conflicting answer,244

introducing an intended conflict with the model’s245

PK. Note that the C scenario uses only conflicting246

contexts, while the E-Only scenario includes both247

original and conflicting contexts.248

Irrelevant contexts We consider two key aspects249

for irrelevant context selection: the absence of the250

answer span (i.e., uninformative) and the poten-251

tial semantic relevance (Wu et al., 2024) that may252

mislead the model (i.e., misleading). To capture253

both uninformative and misleading cases, we in-254

clude two types of contexts. A randomly sampled255

context from the same dataset, topically unrelated256

to the question, and not containing the original257

answer. The incorrectly retrieved contexts also258

lack the answer but may appear topically relevant,259

thereby creating a false sense of relevance. We ob-260

tain these incorrectly retrieved contexts by query-261

ing a Wikipedia corpus using the CONTRIEVER-262

MSMARCO retriever (Izacard et al., 2022), and then263

select the highest-ranked context that does not con-264

tain the answer. This setting captures challenges265

in real-world RAG, where retrieval often returns266

plausible but irrelevant information.267

4 Knowledge Utilization Methods268

This section describes methods used to evaluate269

model behavior under UniKnow (Table 1). As an270

initial baseline, we take a prompting approach,271

instructing LMs to consider the presence of knowl-272

edge sources for a reliable generation. We also273

perform naïve generation with a QA task template.274

4.1 Existing Methods275

We adapt three existing knowledge utilization meth-276

ods, chosen for being either state-of-the-art (SoTA)277

or representative of approaches designed for partial278

UniKnow scenarios, enabling evaluation of their279

generalization under UniKnow.280

Incorrect. R.RetRobust Original Random

KAFT
+ PK

∅PK∃PK

Abstain

+ Conflicting

LMUniKnow

Training Data: Contexts

Incorrect. R.Original RandomConflicting

Original Incorrect. R.RandomConflicting
∅PK∃PK∅PK∃PK ∅PK∃PK

Figure 3: Training data composition for training-based
methods, illustrating incorporated context types and
LMUniKnow’s unique integration of parametric knowl-
edge states (∃PK,∅PK) to guide expected behaviors.

Knowledge Conflict Context-aware contrastive 281

decoding approaches for resolving knowledge con- 282

flict aim to overwrite the model’s PK with EK. 283

Among them, we utilize COIECD1 (Yuan et al., 284

2024), a SoTA method that amplifies the context- 285

informed distribution when conflict arises. 286

Irrelevance We include RetRobust (Yoran et al., 287

2023) as a representative method for handling ir- 288

relevant EK. RetRobust fine-tunes LMs with aug- 289

mented training data, incorporating irrelevant con- 290

texts alongside the original to improve robustness. 291

As a representative method addressing both 292

knowledge conflict and irrelevance, we include 293

Knowledge-Aware Fine-Tuning (KAFT; Li et al., 294

2023). Their training data includes original, con- 295

flicting, and irrelevant contexts, aiming to improve 296

the LM’s overall answerability when utilizing EK. 297

4.2 UniKnow-Aware Methods 298

Since no single existing method comprehensively 299

addresses all UniKnow scenarios, we present our 300

initial attempts to expand existing methods and ex- 301

plicitly train LMs with UniKnow, evaluating their 302

impact on LM behavior. 303

UniKnow-Aware Inference To explicitly ac- 304

count for UniKnow’s scenarios during inference, 305

we introduce COIECDPrompt, an extension of 306

COIECD that additionally incorporates prompt- 307

ing into the decoding process. By explicitly con- 308

sidering all the possible scenarios, we expect 309

COIECDPrompt to cover a broader range of cases. 310

UniKnow-Aware Training We investigate 311

whether reliability can be improved by training 312

LMs with supervision aligned to knowledge 313

scenarios defined in UniKnow. We design 314

1Contextual Information-Entropy Constraint Decoding
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scenario-aware training data that explicitly reflects315

the presence or absence of relevant information316

in both knowledge sources. The key lies in the317

scenario-aware construction of the training data.318

To prepare training data, we sample a balanced319

set of q ∈ ∃PK and q ∈ ∅PK, as determined by the320

criteria in Section 3.3. As illustrated in Figure 3,321

each q is paired with four types of external contexts322

described in Section 3.4 to cover knowledge sce-323

narios. For scenarios where relevant information324

is available–C, E-Only, and P-Only–LMUniKnow is325

optimized to produce the expected answer for each326

scenario. In the U scenario, LMUniKnow is trained to327

abstain by generating "unknown". Further details328

of each method are presented in Appendix B.1.329

5 Experimental Setting330

Datasets We employ seven QA datasets from331

diverse knowledge domains to construct Uni-332

Know: NaturalQuestions (NQ), TriviaQA, Hot-333

potQA, SQuAD, BioASQ, TextbookQA, and Re-334

lationExtraction (RE) (Kwiatkowski et al., 2019;335

Joshi et al., 2017; Yang et al., 2018; Rajpurkar336

et al., 2016; Tsatsaronis et al., 2015; Kembhavi337

et al., 2017; Levy et al., 2017).338

Models We use open-source auto-regressive lan-339

guage models, including LLAMA2 (7B & 13B, Tou-340

vron et al., 2023), LLAMA3-8B (Grattafiori et al.,341

2024), MISTRAL-7B V0.3 (Jiang et al., 2023), and342

QWEN 2.5 (1.5B & 3B & 7B & 14B, Yang et al.,343

2024). Training-based methods are evaluated in a344

zero-shot setting, whereas inference-only methods345

utilize two-shot demonstrations. More details on346

datasets and templates are in Appendix A.347

Training Details For a fair comparison, all348

training-based methods share the same settings.349

Utilizing the training set of NQ and TriviaQA, we350

randomly sample 250 questions from each of ∃PK351

and ∅PK, resulting in a total of 1,000 samples. As352

illustrated in Figure 3, we pair each q with four353

context types, resulting in 4,000 question-context354

pairs. Appendix B.2 provides additional details.355

Evaluation Metrics We use Exact Match (EM)356

to assess whether the model’s prediction aligns357

with the expected answer, which differs for each358

scenario (Section 3.2). Still, evaluating LM be-359

havior on samples with undefined PK relevance360

(Section 3.3) is equally important. To reflect prac-361

tical settings, we also evaluate the full samples362

and report the accuracy (Acc) and reliability (Rely)363

scores (Xu et al., 2024a). Rely captures both cor- 364

rectness and appropriate abstention, balancing Acc 365

and truthfulness (Truth). Truth quantifies the pro- 366

portion of responses that are either correct or ab- 367

stained. Rely is high when LM provides correct 368

answers and abstains appropriately, while penaliz- 369

ing both incorrect outputs and excessive abstention. 370

The formulation of metrics is in Appendix B.3. 371

6 Results on UniKnow 372

6.1 Main Results 373

Figure 4 illustrates the performance across the four 374

UniKnow scenarios and the overall averaged per- 375

formance (All). To assess generalization across 376

knowledge domains, we report EM scores averaged 377

over all datasets, comprising two in-domain and 378

five out-of-domain sets for training-based methods. 379

Broader scenario coverage leads to better over- 380

all results. LMUniKnow, which covers all scenar- 381

ios, achieves the best overall performance, fol- 382

lowed by KAFT. Other methods, designed with 383

a subset of scenarios, lead to limited performance 384

gains, often falling below or only marginally above 385

Naïve. Meanwhile, COIECDPrompt consistently 386

outperforms both COIECD and Prompting in three 387

out of four models, demonstrating the extensibil- 388

ity potential of existing methods. These results 389

highlight the importance of equipping LMs with 390

the ability to handle a diverse range of knowledge 391

scenarios–an aspect that has not been systemati- 392

cally addressed in prior work. 393

Resolving conflicts with known knowledge is 394

more challenging than incorporating new, un- 395

known information. Compared to C scenario, 396

the performance points in E-Only are more tightly 397

clustered with less variance. It demonstrates that 398

LM behavior is influenced not only by context type 399

itself, but also by its interaction with PK. Still, a 400

similar trend is observed across methods in both C 401

and E-Only scenarios. Notably, the performance 402

drop of RetRobust is more pronounced in the C sce- 403

nario than in E-Only, reflecting its limited ability 404

to handle contradictory information effectively. 405

A trade-off between answering and abstention 406

arises under irrelevant contexts. Methods that 407

prioritize answerability without accounting for the 408

presence of PK, such as COIECD, RetRobust, and 409

KAFT, achieve strong performance in P-Only sce- 410

nario. However, in U scenario, they are more 411
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likely to generate hallucinations. In contrast, meth-412

ods that incorporate abstention ability, including413

Prompting, COIECDPrompt, and LMUniKnow, han-414

dle U with abstention behavior, but suffer in a trade-415

off of exhibiting lower performance in P-Only.416

Among these, LMUniKnow demonstrates the largest417

performance gain in U scenario, driven by its con-418

sideration of the model’s knowledge state.419

Larger LMs generally improve reliability, with420

distinct trends across scenarios. Based on Fig-421

ure 5, the performance in E-Only scenario remains422

relatively unaffected by scale, suggesting that EK423

utilization does not strongly benefit from larger424

LMs. In C and P-Only scenarios, gains depend on425

whether the method is explicitly trained for those426

conditions. By contrast, in U scenario, abstention427

performance improves consistently with scale, in-428

dicating that larger LMs are better at recognizing429

knowledge limitations and abstaining accordingly.430

6.2 Impact of Context Types431

Figure 6 presents a deeper analysis of model per-432

formance with LLAMA3-8B, illustrating its behav-433

ior across various context types within each sce- 434

nario. Overall, our analysis reveals that progres- 435

sively incorporating more context types and scenar- 436

ios leads to a more comprehensive coverage. This 437

is evident in the enhanced performance observed 438

from RetRobust to KAFT in C (Conflicting) 439

and E-Only (Conflicting) cases. Despite these 440

improvements, a persistent challenge remains in 441

mitigating the inherent trade-off between answer- 442

ability and abstention ability. 443

For irrelevant contexts, randomly sampled (Ran- 444

dom) and incorrectly retrieved (Incorrect-Ret.) con- 445

texts, LMs with inference-time knowledge utiliza- 446

tion methods tend to perform worse on Incorrect- 447

Ret. when answering the question in P-Only. A 448

similar pattern is observed concerning abstention 449

ability under U for Prompting, COIECDPrompt, and 450

LMUniKnow. These findings indicate that mislead- 451

ing retrieved contexts challenge LMs not only in 452

terms of answerability but also in their ability to 453

abstain appropriately. 454

6.3 Error Analysis 455

Since LMs may exhibit scenario-specific biases, 456

we analyze output errors to examine such patterns 457

in detail. Incorrect responses are categorized into 458

four types: contextual, parametric, false absten- 459

tion, and others. Contextual errors occur when the 460

model generates an incorrect response grounded on 461

the given context. In case of relevant context, this 462

involves extracting incorrect information; in the 463

case of irrelevant content, the model is misled by 464

unrelated content. Parametric errors refer to errors 465
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Figure 7: Stacked error type distributions across meth-
ods for each knowledge scenario. Transparency reflects
error type. Evaluated using LLAMA3-8B.

generated based on the model’s PK. In the C sce-466

nario, this reflects the model’s failure to follow the467

given context, exhibiting a parametric bias. False468

abstention is counted as an error in three scenarios469

where the model possesses at least one relevant470

knowledge, except U. Other includes incorrect re-471

sponses that do not fall into the above categories.472

Figure 7 shows the error distribution for Llama 3473

8B across the four knowledge-handling scenarios.474

Over-reliance on PK depends on the presence of475

PK. In the C scenario, where the model possesses476

the relevant information, all methods exhibit the477

highest rate of parametric errors compared to other478

error types. In contrast, such error is much less479

common in E-Only scenario. Even with COIECD,480

which explicitly targets knowledge conflict, the rate481

of parametric error remains significantly higher in482

C than in E-Only. Unlike prior works that focus483

solely on controlling EK via conflicting contexts,484

our findings highlight that over-reliance becomes485

more evident when scenarios are further distin-486

guished by the presence of PK.487

Contextual errors are rare across most meth- 488

ods, except for naïve approaches. In naïve ap- 489

proaches, contextual errors are observed in all sce- 490

narios, particularly in E-Only and U. This indicates 491

that when the required knowledge is absent from 492

the model’s parametric memory, it tends to rely on 493

the provided context but often fails to utilize it cor- 494

rectly (E-Only) or is misled by irrelevant informa- 495

tion (U). In contrast, most other methods effectively 496

mitigate context misinterpretation, as evidenced by 497

the near absence of contextual errors. 498

Abstention error occurs most frequently in 499

P-Only scenario, while it is rare under relevant 500

contexts. Methods guided to abstain appropri- 501

ately tend to exhibit relatively high abstention bias 502

in P-Only. This again highlights the importance of 503

the trade-off mitigation. Interestingly, the absten- 504

tion error rate of COIECDPrompt remains compara- 505

ble to that of Prompting in P-Only, but is signifi- 506

cantly reduced in E-Only. This indicates that com- 507

bining the strengths of COIECD and Prompting 508

leads to more proper abstention across scenarios. 509

7 Additional Analysis on Reliability 510

Figure 8 visualizes the Acc and Rely scores for 511

each method. Despite including undefined samples 512

in the evaluation, the overall trend in Rely scores 513

remains consistent with the scenario-averaged re- 514

sults in UniKnow (All in Figure 2). Note that 515

methods on the dotted line, where Acc equals Rely, 516

limit their performance in terms of answerability. 517

LMUniKnow achieves the highest Rely, and its Acc 518

remains comparable to methods which primarily 519

focus on answerability. This suggests that, through 520

alignment with UniKnow, LMUniKnow effectively 521

minimizes incorrect responses via abstention while 522

maintaining adaptability to various scenarios. 523
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Figure 9: Effect of varying the proportion of abstention
data on model performance for LLAMA3-8B. The red
dashed line indicates the proportion used in LMUniKnow.

7.1 Impact of Abstention Data524

LMUniKnow allocates an equal proportion (25%) to525

each of the four scenarios within UniKnow. To526

investigate the effect of abstention supervision, we527

conduct an ablation study using LLAMA3-8B by528

varying the proportion of samples from U scenario.529

With a fixed number of training samples, we adjust530

the proportions of the remaining three scenarios531

equally. From Figure 9, we observe a trade-off532

between Acc and Truth as the proportion of ab-533

stention data increases. The lower proportions of534

abstention data lead to higher Acc, while higher535

proportions improve Truth. This reflects the inher-536

ent trade-off between maximizing correct answer537

generation (Acc) and minimizing incorrect outputs538

through abstention (Truth). Notably, the equal539

Dataset TriviaQA NQ
Metric Acc Truth Rely Acc Truth Rely

LMUniKnow 0.6915 0.8762 0.8421 0.5396 0.8161 0.7396
−C 0.6695 0.7040 0.7028 0.4987 0.6430 0.6222
−IR 0.6872 0.7352 0.7329 0.5056 0.6410 0.6227
−C, IR 0.6836 0.7084 0.7078 0.4987 0.6406 0.6205

Table 2: Ablation study on context types in the training
data for LLAMA3-8B, measuring the impact of exclud-
ing conflicting contexts (−C), incorrectly retrieved con-
texts (−IR), or both (−C, IR). Bold indicates the best.

allocation across the four scenarios—25% absten- 540

tion data (LMUniKnow)—achieves the highest Rely 541

score, indicating a balanced performance between 542

answering correctly and abstaining appropriately. 543

7.2 Impact of Context Type Diversity 544

We conduct an ablation study in which specific 545

types of contexts are selectively removed, while 546

maintaining the total number of training data. We 547

consider three ablation settings: (1) −C, which ex- 548

cludes conflicting contexts and replaces them with 549

original contexts; (2) −IR, which removes incor- 550

rectly retrieved contexts and retains only randomly 551

sampled irrelevant contexts; and (3) −C, IR, which 552

excludes both conflicting and incorrectly retrieved 553

contexts. These settings allow us to isolate the con- 554

tribution of each context type to overall reliability. 555

As shown in Table 2, excluding conflicting or incor- 556

rectly retrieved contexts results in a noticeable drop 557

in Truth and Rely, while having minimal impact 558

on Acc. These findings underscore the importance 559

of incorporating diverse context types, reflecting 560

those encountered in practical settings, to enhance 561

the reliability of knowledge-handling. 562

8 Conclusion 563

We present UniKnow, a unified framework for eval- 564

uating LM reliability across PK and EK. By sys- 565

tematically defining scenarios based on knowledge 566

relevance, UniKnow enables fine-grained analysis 567

of LM behavior. This comprehensive framework 568

also highlights novel challenges, requiring LMs 569

to navigate scenarios demanding diverse objec- 570

tives and self-assessment of knowledge relevance. 571

Our experiments reveal that existing methods of- 572

ten struggle to jointly handle scenarios and exhibit 573

scenario-specific biases. We show that training 574

with UniKnow-aligned supervision improves reli- 575

ability, particularly evident in U scenario. Overall, 576

UniKnow provides a foundation for building reli- 577

able LMs in knowledge utilization. 578
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Limitations579

Scope of Knowledge Tasks We primarily focus580

on the QA task, which provides a clear view of581

knowledge requirements and serves as a representa-582

tive of knowledge-intensive tasks. Nevertheless, ex-583

tending the scope to other tasks–such as reasoning584

(Xiong et al., 2024) or claim verification (Hagström585

et al., 2024)–is crucial, since the influence of knowl-586

edge sources may vary depending on the task. Ad-587

ditionally, we adopt a simplified RAG setting in588

which a single context is provided per query, al-589

lowing fine-grained control over context relevance590

and supporting targeted analysis of LM behavior.591

However, in real-world applications, LMs often592

receive multiple retrieved contexts simultaneously.593

This introduces new challenges, such as conflicts594

between external contexts (Xu et al., 2024b). In-595

corporating diverse tasks and extending UniKnow596

to support multi-context would be a valuable step597

toward modeling more complex and realistic RAG598

scenarios.599

Factuality of External knowledge This study600

assumes that external knowledge is factually accu-601

rate, considering scenarios involving changed or602

newly emerging facts (Longpre et al., 2021; Xie603

et al., 2023). While this assumption enables con-604

trolled analysis, it may be strong in practice, as605

the quality of external knowledge depends heav-606

ily on the underlying database and retrieval sys-607

tem. The research area of factuality verification608

in external contexts using LLMs (Yu et al., 2024a;609

Fatahi Bayat et al., 2023) is closely related to this610

limitation. Exploring this aspect in conjunction611

with our framework could further strengthen the612

setting of the framework.613

Limited Strategies for UniKnow-Aware Train-614

ing Our study focuses on demonstrating the po-615

tential of UniKnow-aware supervised fine-tuning616

to equip LMs with comprehensive knowledge uti-617

lization capabilities. While we adopted supervised618

fine-tuning following prior research, future work619

could explore alternative training techniques, such620

as direct preference optimization or reward-based621

fine-tuning (Rafailov et al., 2023; Tian et al., 2024).622

Broadening the scope of training strategies may623

yield deeper insights into optimizing LM behavior624

across scenarios and improving reliability. Addi-625

tionally, we leave the exploration of trends beyond626

the 14B model scale or reasoning-oriented LMs627

(DeepSeek-AI, 2025) to future work, as these may628

further impact behavior in knowledge-intensive 629

tasks. We consider the knowledge handling ca- 630

pabilities of recently emerging reasoning LMs, par- 631

ticularly those with self-reflection, to be a valuable 632

research direction that merits dedicated investiga- 633

tion within UniKnow. 634
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Appendix1090

A UniKnow: Additional Details1091

A.1 Problem Settings1092

In this paper, we consider two knowledge sources:1093

parametric knowledge (PK) and external knowl-1094

edge (EK). PK acquired during pretraining is in-1095

herently bounded by its pretraining data. Given1096

a question q, “Who is the president of the United1097

States?”, if the LM’s knowledge cutoff is before1098

2024, the answer grounded in the LM’s pretrain-1099

ing data (a∗PK) is “Biden,” for instance. If the1100

LM possesses the relevant information “Biden is1101

the president of the United States,” then q is con-1102

sidered ∃PK. However, if the LM answers with1103

the name “Michael Jackson,” which is irrelevant1104

information, q is treated as ∅PK. This is be-1105

cause LM(“Michael Jackson” | q) ̸= a∗PK, since1106

“Michael Jackson” was never a president of the1107

United States (Bang et al., 2025).1108

EK can reflect user intent by incorporating user-1109

specified or task-relevant information and provide1110

enriched information unavailable within the para-1111

metric knowledge, particularly long-tail and up-1112

dated or changed facts. Ideally, the relevant exter-1113

nal knowledge serves to complement or override1114

the parametric knowledge, enabling user-guided,1115

up-to-date model responses. However, in practice,1116

there is no guarantee that the provided context will1117

always be relevant, since relevance depends on the1118

quality of the retrieval mechanism (Izacard et al.,1119

2022; Guu et al., 2020). To isolate the effect of1120

knowledge relevance, we make a simplifying as-1121

sumption that the external knowledge is always1122

factually aligned with world knowledge, since its1123

factuality is determined by the underlying database1124

in practice.1125

This way, our study is based on two key con-1126

ditions: (1) PK may not align with the most re-1127

cent world knowledge but can still possess rele-1128

vant knowledge to answer q. (2) Judging the fac-1129

tuality of EK is not within the scope of our study.1130

Considering real-world usage, the LM is expected1131

to utilize the best relevant knowledge based on1132

its learned knowledge and respond faithfully to1133

the given context. The responsibility of determin-1134

ing the factuality of external knowledge ultimately1135

rests on the quality of the underlying database and1136

retrieval system.1137

A.2 Datasets 1138

We use the dataset versions curated by the Machine 1139

Reading for Question Answering (MRQA) bench- 1140

mark (Fisch et al., 2019). The total number of 1141

samples for each dataset is in Table 3. Each sample 1142

includes a question, original answer, conflicting 1143

answer, and four types of context: original, con- 1144

flicting, random, and incorrectly retrieved contexts. 1145

We provide a detailed description of the datasets 1146

used in our study below2. 1147

NaturalQuestions (Kwiatkowski et al., 2019) 1148

Questions consist of real queries issued to the 1149

Google search engine. From a Wikipedia page 1150

from the top 5 search results, annotators select a 1151

long answer containing enough information to com- 1152

pletely infer the answer to the question, and a short 1153

answer that comprises the actual answer. The long 1154

answer becomes the context matched with the ques- 1155

tion, while the short answer is used as the answer. 1156

TriviaQA (Joshi et al., 2017) Question-answer 1157

pairs are authored by trivia enthusiasts and indepen- 1158

dently gathered evidence documents that provide 1159

high quality supervision for answering the ques- 1160

tions. The web version of TriviaQA is used, where 1161

the contexts are retrieved from the results of a Bing 1162

search query. 1163

HotpotQA (Yang et al., 2018) Questions are di- 1164

verse and not constrained to any pre-existing knowl- 1165

edge base. Multi-hop reasoning is required to solve 1166

the questions. Paragraphs that provide supporting 1167

facts required for reasoning, are given along with 1168

the question. In the original setting, additional 1169

distractor paragraphs are augmented in order to in- 1170

crease the difficulty of inference. However, these 1171

distractor paragraphs are not used in this setting. 1172

SQuAD (Rajpurkar et al., 2016) Paragraphs 1173

from Wikipedia are presented to crowdworkers, 1174

and they are asked to write questions that entail 1175

extractive answers. The answer to each question is 1176

a segment of text from the corresponding reading 1177

passage. To remove the uncertainty that exces- 1178

sively long paragraphs bring, QA pairs that do not 1179

align with the first 800 tokens are discarded in this 1180

setting. 1181

BioASQ (Tsatsaronis et al., 2015) BioASQ is 1182

a challenge that assesses the ability of systems to 1183

semantically index large numbers of biomedical 1184

2Code and dataset will be available upon publication.
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Dataset Train Test

NQ 83,787 3,994
TriviaQA 61,177 7,712

HotpotQA - 4,760
SquAD - 7,918
Bioasq - 697

TextbookQA - 1,056
RelationExtraction - 1,974

Total 144,964 28,111

Table 3: Number of samples for each dataset.

Answer the following questions:
<few-shots>
Question: <question>
Answer:

Table 4: Template used in closed-book generation.

scientific articles and return concise answers to1185

given natural language questions. Each question1186

is linked to multiple related science articles. The1187

full abstract of each linked article is used as an1188

individual context. Abstracts that do not exactly1189

contain the answer are discarded.1190

TextbookQA (Kembhavi et al., 2017) Text-1191

bookQA aims at answering multimodal questions1192

when given a context in formats of text, diagrams1193

and images. This dataset is collected from lessons1194

from middle school Life Science, Earth Science,1195

and Physical Science textbooks. Questions that are1196

accompanied with a diagram and "True of False"1197

questions are not used in this setting.1198

RelationExtraction (Levy et al., 2017) Given1199

labeled slot-filling examples, relations between en-1200

tities are transformed into QA pairs using templates.1201

Multiple templates for each type of relation are uti-1202

lized. The zero-shot benchmark split of this dataset,1203

which showed that generalization to unseen rela-1204

tions is possible at lower accuracy levels, is used.1205

A.3 Predefined Abstention Words1206

The predefined abstain words (Amayuelas1207

et al., 2024a) used in evaluations are: [1208

’unanswerable’, ’unknown’, ’no known’,1209

’not known’, ’do not know’ ’uncertain’,1210

’unclear’, ’no scientific evidence’,1211

’no definitive answer’, ’no right1212

answer’, ’no concrete answer’, ’no public1213

information’, ’debate’, ’impossible to1214

know’, ’impossible to answer’, ’difficult1215

to predict’, ’not sure’, ’irrelevant’,1216

’not relevant’]1217

Answer the following questions:
<few-shots>
Context: <context>
Question: <question>
Answer:

Table 5: Template for the naïve open-book generation.

Answer an entity of the same type as the given
keyword. Please note that the keyword is from
the given context, and consider the part of
speech of the keyword inside the context. You
should not give a synonym or alias of the given
keyword. The entity and given keyword must
have different meanings. Only answer the entity
itself without any extra phrases.
<few-shots>
Keyword: <original-answer>
Context: <context>
Answer:

Table 6: Template used when instructing the model to
generate a conflicting answer, given the original answer
and context.

A.4 Details on UniKnow Construction 1218

As the impact of context length is beyond the scope 1219

of our study, we limit context to approximately 100 1220

words to ensure experimental control. To ensure 1221

context informativeness and maintain experimental 1222

controllability, we have processed the original con- 1223

texts from the MRQA benchmark by limiting their 1224

length and ensuring that the ground-truth answer 1225

span is always included. For each occurrence span 1226

of the ground-truth answer in the raw context, we 1227

take a 100-word portion surrounding that span and 1228

consider it a candidate context. We then compute 1229

the NLI (BART-LARGE, Lewis et al., 2020) score 1230

between the question-answer pair and each candi- 1231

date context, and select the context with the highest 1232

NLI score as the original context. 1233

To generate conflicting answers, Template 6 is 1234

employed. For retrieved-uninformative contexts, a 1235

Wikipedia dump from December 2018 is used as a 1236

database. Each context is chunked into 100 words. 1237

As a retriever model, CONTRIEVER-MSMARCO 1238

(Izacard et al., 2022) is utilized. The number of 1239

samples per scenario and model is provided in Ta- 1240

ble 10. Template 4 is used to perform closed-book 1241

generation for estimating the presence of paramet- 1242

ric knowledge. 1243
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Figure 10: Rely scores across different context types, evaluated on the full test set using LLAMA3-8B.

Answer the following questions. The context
may or may not be helpful. If the context
is unhelpful and you are not knowledgeable
about the question, it is appropriate to say,
"<UNKNOWN>".
<few-shots>
Context: <context>
Question: <question>
Answer:

Table 7: Instruction for LMs to abstain if unknown.

Answer the following questions. If you are
not knowledgeable about the question, it is
appropriate to say, "<UNKNOWN>".
<few-shots>
Question: <question>
Answer:

Table 8: Instruction used in COIECDPrompt for LMs to
abstain if unknown under closed-book generation.

B Experiential Setting Details1244

B.1 Knowledge Utilization Methods1245

Template 5 is used for naïve open-book generation,1246

while Template 7 is applied in the prompting ap-1247

proach. For all experiments, greedy decoding is1248

employed.1249

COIECD For COIECD, which requires two hy-1250

perparameters, we adopt the values reported in the1251

original paper (α = 1.0 and λ = 0.25), as Yuan1252

et al. (2024) shows that these values generalize well1253

across models and datasets.1254

COIECDPrompt In COIECDPrompt, we use Tem-1255

plate 7 for input with context and Template 8 for1256

input without context.1257

KAFT Unlike Li et al., 2023, which treats the1258

parametric answers as gold-standard for irrelevant1259

contexts, we use the original answer to ensure fair1260

evaluation in the U scenario.1261

B.2 Additional Training Details 1262

As described in Section 5, all training-based meth- 1263

ods (RetRobust, KAFT, and LMUniKnow) are trained 1264

on the same set of q to ensure a fair comparison. 1265

In case of RetRobust, since it does not utilize con- 1266

flicting contexts (Figure 3), we additionally sam- 1267

ple 1,000 questions and pair them with the origi- 1268

nal context to match the overall training size. To 1269

maintain the LM’s ability to answer when the con- 1270

text contains information that matches with its PK 1271

(a∗PK = a∗EK), we include the original context paired 1272

with q ∈ ∃PK during training. 1273

We use the same setting for every training-based 1274

approach. For the main experiments, three seeds 1275

(12, 123, 1234) were used, and the results re- 1276

ported are averaged over these three seeds. Each 1277

model is trained for three epochs using the AdamW 1278

(Loshchilov and Hutter, 2017) optimizer with a 1279

learning rate of 0.0001 and a batch size of 16. For 1280

efficient fine-tuning, we employ QLoRA (Dettmers 1281

et al., 2023) with rank=4 and alpha=16. All training 1282

is conducted on two NVIDIA RTX A6000. 1283

B.3 Evaluation Metrics 1284

Acc, Rely, and Truth metrics are computed based 1285

on the number of correct (Nc), incorrect (Ni), and 1286

abstained (Na) responses.3 Acc measures the pro- 1287

portion of correct answers (Nc
N ), while Truth cap- 1288

tures the proportion of responses that are either 1289

correct or abstained (Nc+Na
N ), thereby rewarding 1290

safe behavior that avoids incorrect outputs. To 1291

discourage excessive abstention, the answer rate 1292

(Ans = Nc+Ni
N ) is used as a weighting factor. Us- 1293

ing this, Rely balances Acc and Truth and is com- 1294

puted as: Ans× Truth+ (1− Ans)× Acc. Thus, 1295

Rely reflects the overall reliability of the model 1296

by rewarding both correct answers and appropriate 1297

abstentions, while penalizing incorrect responses. 1298

3N : The total number of responses.
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C Additional Results1299

In this section, we provide exact values of figures1300

and additional results for models not included in1301

Section 6.1 and Section 7.1302

C.1 Main Results1303

The EM scores corresponding to Figure 4 are pro-1304

vided in Table 11. Also, Figure 11 visualizes the1305

EM scores of LLAMA2 7B and 13B across different1306

knowledge scenarios. Figure 12 illustrates the im-1307

pact of model scale with Rely metric for LLAMA21308

and QWEN2.5.1309

The exact values for the Acc and Rely scores pre-1310

sented in Figure 8 are listed in Table 12 per dataset.1311

While Figure 8 presents overall trends averaged1312

across all datasets, Figure 13 and Figure 14 break1313

down the results by in-domain and out-of-domain1314

datasets, respectively. They further highlight that1315

the overall trend across methods holds consistently1316

and generalizes well to out-of-domain settings.1317

C.2 Error Analysis1318

We present the error type distribution for each1319

knowledge scenario across different models.1320

Results for LLAMA2-7B, MISTRAL-7B, and1321

QWEN2.5-7B are shown in Figure 15, Figure 16,1322

and Figure 17, respectively.1323

C.3 Impact of Context Types1324

UniKnow incorporates diverse context types to1325

evaluate LM behavior under varying degrees of1326

contextual relevance. We further analyze model1327

performance across different context types with1328

LLAMA3-8B.1329

Figure 10 reveals that LMs exhibit markedly1330

different performance depending on the type1331

of context on the full test set. For relevant1332

contexts–original and conflicting–most knowledge1333

utilization methods, except KAFT and LMUniKnow,1334

demonstrate a substantial drop in Rely when the1335

context contains conflicting information, while1336

maintaining high performance when the original1337

context is used. This suggests that LMs struggle1338

to resolve conflicts between PK and EK. Notably,1339

RetRobust, which is primarily designed to improve1340

robustness against irrelevant context, shows a par-1341

ticularly pronounced decline under conflicting con-1342

ditions.1343

For irrelevant contexts, including randomly sam-1344

pled (Random) and incorrectly retrieved (Incorrect-1345

Ret.) contexts, LMs with inference-time knowl-1346

edge utilization methods tend to perform worse on 1347

Incorrect-Ret. This indicates LMs’ sensitivity to 1348

misleading but plausibly relevant knowledge. 1349

C.4 Ablation Study 1350

Figure 18 shows the effect of varying the propor- 1351

tion of abstention data on the performance across 1352

datasets. These results align with the averaged 1353

trend discussed in Section 7.1, confirming that the 1354

observed pattern holds consistently across datasets. 1355

Table 9 shows the impact of context type diver- 1356

sity on additional datasets beyond those reported 1357

in Table 2. 1358

D Related Works 1359

Knowledge Conflict Parametric knowledge is in- 1360

herently static, whereas external knowledge can 1361

be delivered in response to diverse circumstances. 1362

This dynamic provision often results in discrepan- 1363

cies between the parametric memory and the ex- 1364

ternal context. Studies have examined the conflict 1365

through the lens of external knowledge features, 1366

such as temporal shifts (Kasai et al., 2023; Dhingra 1367

et al., 2022), synthetically updated facts (Long- 1368

pre et al., 2021), and contextual plausibility (Xie 1369

et al., 2023; Tan et al., 2024). Yet many existing 1370

approaches (Liu et al., 2024; Wang et al., 2024a; 1371

Jin et al., 2024a) still treat any mismatch between 1372

model output and context as a conflict, often ne- 1373

glecting whether the model had prior access to that 1374

information. 1375

Robustness against Irrelevance Although exter- 1376

nal knowledge is intended to supply LM’s knowl- 1377

edge, in real-world scenarios (i.e. RAG), it may 1378

not always be relevant. LMs face challenges in han- 1379

dling irrelevant context, which often leads to per- 1380

formance degradation (Shen et al., 2024). RAG is 1381

particularly susceptible, as retrieval errors can intro- 1382

duce a misleading but plausible context (Wu et al., 1383

2024). To mitigate this, researchers have explored 1384

methods to encourage LMs to rely on parametric 1385

knowledge when external information is irrelevant– 1386

either at inference time (Yu et al., 2024b; Park et al., 1387

2024; Baek et al., 2023) or through training (Yoran 1388

et al., 2023; Asai et al., 2024; Xia et al., 2024; Luo 1389

et al., 2023). 1390

Parametric Knowledge Estimation There is a 1391

line of work trying to estimate the knowledge 1392

boundaries of LMs. Some approaches quantify 1393

uncertainty in parametric knowledge through LM’s 1394
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Figure 11: EM scores of LLAMA2 models across differ-
ent sizes, averaged over all datasets within UniKnow.
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Figure 12: Rely scores of QWEN and LLAMA2 across
model sizes.

internal representations and output consistency1395

(Huang et al., 2025; Kuhn et al., 2023; Kadavath1396

et al., 2022). These are often used to relabel train-1397

ing data accordingly, guiding abstention behavior1398

(Zhang et al., 2024a; Wen et al., 2024b) or se-1399

lectively abstain from answering with a threshold1400

(Feng et al., 2024).1401
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Figure 13: Acc and Rely scores averaged over in-
domain datasets. Each point represents a method aver-
aged over all datasets. The dotted line indicates equal
values of Acc and Rely.
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Figure 15: Stacked error type distributions across meth-
ods for each knowledge scenario. Transparency reflects
error type. Evaluated using LLAMA2-7B.
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Figure 16: Stacked error type distributions across meth-
ods for each knowledge scenario. Transparency reflects
error type. Evaluated using MISTRAL-7B.
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Figure 17: Stacked error type distributions across meth-
ods for each knowledge scenario. Transparency reflects
error type. Evaluated using QWEN2.5-7B.
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Figure 18: Effect of varying the proportion of abstention data on model performance for LLAMA3-8B for each
dataset. The red dashed line indicates the proportion used in LMUniKnow.
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Dataset HotpotQA BioASQ SQuAD TextbookQA RE
Metric Acc Truth Rely Acc Truth Rely Acc Truth Rely Acc Truth Rely Acc Truth Rely

LMUniKnow 0.4282 0.7908 0.6593 0.5513 0.8379 0.7557 0.4513 0.8438 0.6897 0.6546 0.7976 0.7771 0.4901 0.8994 0.7319
−C 0.4506 0.4984 0.4961 0.5821 0.6449 0.6410 0.4970 0.5715 0.5659 0.6044 0.6416 0.6402 0.5591 0.7247 0.6973
−IR 0.4402 0.5030 0.4990 0.5760 0.6080 0.6069 0.5129 0.5565 0.5546 0.5978 0.6089 0.6088 0.5678 0.6331 0.6288
−C, IR 0.4579 0.4960 0.4946 0.5918 0.5940 0.5940 0.5063 0.5224 0.5221 0.6108 0.6158 0.6157 0.5784 0.6312 0.6284

Table 9: Ablation study on context types in the training data for LLAMA3-8B, measuring the impact of excluding
conflicting contexts (−C), incorrectly retrieved contexts (−IR), or both (−C, IR). Bold indicates the best.

Model Scenario (↓) NQ TriviaQA HotpotQA SQuAD BioASQ TextbookQA RE

LLAMA2-7B

C 221 2,442 160 303 74 175 145
P-Only 442 4,884 320 606 148 350 290
E-Only 5,090 3,676 6,878 11,088 626 694 2,422
U 5,090 3,676 6,878 11,088 626 694 2,422

LLAMA2-13B

C 361 3,050 299 431 74 191 207
P-Only 722 6,100 598 862 148 382 414
E-Only 4,556 2,812 6,514 10,480 604 632 2,306
U 4,556 2,812 6,514 10,480 604 632 2,306

LLAMA3-8B

C 273 3,231 317 462 101 193 233
P-Only 546 6,462 634 924 202 386 466
E-Only 4,766 3,076 6,444 10,360 448 580 2,150
U 4,766 3,076 6,444 10,360 448 580 2,150

MISTRAL-7B

C 326 3,282 302 473 116 220 197
P-Only 652 6,564 604 946 232 440 394
E-Only 4,756 3,196 6,530 10,656 494 628 2,462
U 4,756 3,196 6,530 10,656 494 628 2,462

QWEN-1.5B

C 119 1,011 80 157 59 158 78
P-Only 238 2,022 160 314 118 316 156
E-Only 6,202 9,246 7,774 12,292 856 802 2,964
U 6,202 9,246 7,774 12,292 856 802 2,964

QWEN-3B

C 188 1,472 167 270 92 184 118
P-Only 376 2,944 334 540 184 368 236
E-Only 5,624 7,266 7,254 11,584 580 626 2,722
U 5,624 7,266 7,254 11,584 580 626 2,722

QWEN-7B

C 315 2,485 231 401 167 282 187
P-Only 630 4,970 462 802 334 564 374
E-Only 5,068 5,458 6,924 10,694 422 502 2,460
U 5,068 5,458 6,924 10,694 422 502 2,460

QWEN-14B

C 334 3,284 363 633 202 303 233
P-Only 668 6,568 726 1,266 404 606 466
E-Only 4,692 3,808 6,328 9,630 316 502 2,254
U 4,692 3,808 6,328 9,630 316 502 2,254

Table 10: Number of samples in each scenario.
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Scenario Method (↓) LLAMA2-7B LLAMA2-13B LLAMA3-8B MISTRAL-7B QWEN-1.5B QWEN-3B QWEN-7B QWEN-14B

All Naïve .5467 .5628 .5430 .5632 .5384 .5284 .5406 .5419
Prompting .5288 .5486 .5727 .5795 .5916 .5880 .6059 .6019
COIECD .5642 .5753 .5600 .5691 .5276 .5168 .5243 .5114
COIECDPrompt .5321 .5572 .5881 .5870 .5516 .5819 .6130 .5976
RetRobust .5540 ± 0.01 .6213 ± 0.00 .5100 ± 0.01 .5445 ± 0.01 .5642 ± 0.01 .5650 ± 0.01 .5683 ± 0.01 .5608 ± 0.00
KAFT .6554 ± 0.00 .6851 ± 0.00 .6533 ± 0.01 .6287 ± 0.00 .6317 ± 0.00 .6437 ± 0.00 .6710 ± 0.00 .6815 ± 0.00
LMUniKnow .7562 ± 0.00 .7778 ± 0.00 .7668 ± 0.01 .7412 ± 0.01 .7098 ± 0.01 .7517 ± 0.00 .7776 ± 0.01 .7915 ± 0.00

C Naïve .5817 .6538 .5911 .6585 .7280 .7538 .7799 .7400
Prompting .5026 .5373 .5064 .5324 .7234 .7314 .7051 .6610
COIECD .7185 .7691 .7254 .7711 .7754 .7775 .8043 .7487
COIECDPrompt .6707 .7061 .6979 .7033 .7591 .7515 .7587 .7112
RetRobust .5264 ± 0.02 .6863 ± 0.02 .3794 ± 0.03 .4679 ± 0.02 .5979 ± 0.02 .5596 ± 0.02 .5177 ± 0.02 .5081 ± 0.01
KAFT .8642 ± 0.01 .9224 ± 0.01 .8563 ± 0.02 .7796 ± 0.01 .8070 ± 0.01 .7991 ± 0.02 .8715 ± 0.01 .9024 ± 0.00
LMUniKnow .8512 ± 0.01 .9336 ± 0.00 .8714 ± 0.01 .8111 ± 0.02 .8285 ± 0.01 .8191 ± 0.01 .8839 ± 0.01 .9299 ± 0.00

P-Only Naïve .8703 .8474 .8518 .8371 .6031 .5379 .5407 .5768
Prompting .6591 .7056 .7295 .6360 .4098 .2348 .2557 .3000
COIECD .7606 .7388 .7379 .6977 .5391 .4656 .4578 .4842
COIECDPrompt .5272 .5329 .6051 .4685 .4152 .2888 .2975 .3447
RetRobust .8637 ± 0.00 .8989 ± 0.01 .9058 ± 0.00 .8782 ± 0.01 .8110 ± 0.01 .8619 ± 0.01 .8982 ± 0.00 .8827 ± 0.00
KAFT .8477 ± 0.00 .8474 ± 0.00 .8721 ± 0.01 .8417 ± 0.00 .8102 ± 0.01 .8577 ± 0.01 .8765 ± 0.00 .8667 ± 0.00
LMUniKnow .6187 ± 0.02 .5183 ± 0.02 .6660 ± 0.00 .5456 ± 0.01 .5319 ± 0.03 .7208 ± 0.01 .5659 ± 0.03 .5586 ± 0.02

E-Only Naïve .6677 .6855 .6623 .6987 .7704 .7795 .7893 .7694
Prompting .5813 .5536 .5937 .5923 .7480 .7203 .7255 .7184
COIECD .7171 .7309 .7077 .7478 .7594 .7841 .7952 .7580
COIECDPrompt .6514 .6617 .6854 .6869 .7416 .7314 .7518 .7182
RetRobust .7069 ± 0.01 .7476 ± 0.01 .6172 ± 0.01 .6819 ± 0.02 .7594 ± 0.01 .7353 ± 0.01 .7341 ± 0.00 .7150 ± 0.01
KAFT .7945 ± 0.00 .8232 ± 0.00 .7593 ± 0.02 .7606 ± 0.00 .8224 ± 0.00 .8184 ± 0.00 .8228 ± 0.01 .8291 ± 0.00
LMUniKnow .7526 ± 0.00 .8146 ± 0.01 .7676 ± 0.02 .7131 ± 0.02 .7921 ± 0.01 .8071 ± 0.01 .8186 ± 0.01 .8441 ± 0.00

U Naïve .0674 .0644 .0668 .0587 .0519 .0426 .0523 .0816
Prompting .3724 .3980 .4611 .5572 .4852 .6654 .7371 .7283
COIECD .0606 .0623 .0690 .0597 .0366 .0400 .0399 .0548
COIECDPrompt .2790 .3282 .3641 .4891 .2904 .5560 .6442 .6164
RetRobust .1191 ± 0.00 .1523 ± 0.00 .1374 ± 0.00 .1499 ± 0.00 .0886 ± 0.00 .1031 ± 0.00 .1231 ± 0.01 .1375 ± 0.00
KAFT .1153 ± 0.00 .1475 ± 0.00 .1253 ± 0.00 .1328 ± 0.00 .0872 ± 0.00 .0997 ± 0.00 .1132 ± 0.00 .1277 ± 0.01
LMUniKnow .8022 ± 0.01 .8448 ± 0.00 .7620 ± 0.02 .8949 ± 0.01 .6865 ± 0.02 .6597 ± 0.01 .8421 ± 0.02 .8334 ± 0.01

Table 11: EM score for each scenario, across models. Bold indicates the best, and the underline indicates the second
best. Training-based methods (RetRobust, KAFT, and LMUniKnow) are evaluated using three training seeds, and the
mean and standard deviation are reported.
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NQ TriviaQA HotpotQA SQuAD BioASQ TextbookQA RE
Method (↓) Acc Rely Acc Rely Acc Rely Acc Rely Acc Rely Acc Rely Acc Rely

LLAMA2-7B

Naïve .4177 .4177 .6194 .6194 .4342 .4342 .4856 .4859 .5402 .5402 .5604 .5604 .5313 .5313
Prompting .3309 .5665 .5425 .6762 .3591 .4675 .3748 .5134 .3849 .5776 .4799 .6318 .5067 .5944
COIECD .4328 .4328 .5982 .5983 .4355 .4356 .4818 .4822 .5147 .5147 .5284 .5284 .5234 .5236
COIECDPrompt .3845 .5620 .5421 .6463 .3643 .4316 .3906 .5215 .3630 .5487 .4633 .5795 .5172 .5540
RetRobust .5561 ± .00 .5562 ± .00 .6712 ± .00 .6713 ± .00 .4251 ± .00 .4251 ± .00 .4700 ± .01 .4706 ± .01 .5275 ± .01 .5285 ± .01 .6219 ± .00 .6219 ± .00 .5590 ± .01 .5592 ± .01
KAFT .5979 ± .00 .5981 ± .00 .7347 ± .00 .7347 ± .00 .4493 ± .00 .4494 ± .00 .5162 ± .00 .5169 ± .00 .5909 ± .00 .5918 ± .00 .6863 ± .00 .6863 ± .00 .5889 ± .00 .5889 ± .00
LMUniKnow .5099 ± .01 .7207 ± .00 .6143 ± .01 .8130 ± .00 .3808 ± .00 .6212 ± .00 .4407 ± .00 .6844 ± .00 .5159 ± .02 .7309 ± .01 .5519 ± .01 .7589 ± .00 .4736 ± .00 .7194 ± .00

LLAMA2-13B

Naïve .4474 .4475 .6556 .6556 .4503 .4503 .5062 .5064 .5674 .5674 .5691 .5691 .5412 .5415
Prompting .3678 .5357 .5649 .7067 .3993 .4528 .4148 .6083 .2991 .5487 .5208 .6164 .4933 .6471
COIECD .4594 .4594 .6361 .6362 .4509 .4510 .4959 .4961 .5739 .5739 .5533 .5535 .5222 .5223
COIECDPrompt .4322 .5736 .6023 .6539 .3995 .4654 .4378 .6172 .3311 .5752 .4979 .5793 .4829 .6078
RetRobust .6178 ± .01 .6181 ± .01 .7468 ± .00 .7469 ± .00 .4728 ± .00 .4729 ± .00 .5172 ± .01 .5179 ± .01 .5870 ± .01 .5875 ± .01 .6783 ± .01 .6784 ± .01 .5965 ± .01 .5967 ± .01
KAFT .6443 ± .00 .6444 ± .00 .7901 ± .00 .7901 ± .00 .4923 ± .00 .4924 ± .00 .5489 ± .00 .5497 ± .00 .6284 ± .01 .6292 ± .01 .7273 ± .00 .7274 ± .00 .6012 ± .00 .6015 ± .00
LMUniKnow .5434 ± .00 .7547 ± .00 .6432 ± .01 .8372 ± .00 .4166 ± .01 .6595 ± .01 .4746 ± .00 .7175 ± .00 .4688 ± .01 .7104 ± .00 .5843 ± .01 .7975 ± .00 .5108 ± .00 .7525 ± .00

LLAMA3-8B

Naïve .4443 .4444 .6218 .6218 .4529 .4529 .4943 .4944 .5656 .5656 .5627 .5627 .5447 .5447
Prompting .4200 .6347 .5312 .7100 .3590 .4936 .4209 .6063 .4914 .6454 .4934 .6173 .4994 .6613
COIECD .4724 .4726 .5984 .5984 .4534 .4537 .4893 .4896 .5857 .5864 .5301 .5301 .5230 .5230
COIECDPrompt .4407 .6316 .5855 .7087 .3860 .4493 .4565 .6181 .5294 .6143 .4882 .6047 .5061 .6138
RetRobust .5532 ± .00 .5532 ± .00 .6572 ± .00 .6572 ± .00 .4101 ± .00 .4102 ± .00 .4496 ± .01 .4501 ± .01 .5446 ± .00 .5452 ± .00 .6021 ± .01 .6022 ± .01 .5488 ± .00 .5488 ± .00
KAFT .6140 ± .01 .6141 ± .01 .7637 ± .00 .7638 ± .00 .4718 ± .00 .4719 ± .00 .5120 ± .01 .5125 ± .01 .6466 ± .02 .6471 ± .02 .7092 ± .01 .7092 ± .01 .5867 ± .01 .5867 ± .01
LMUniKnow .5434 ± .00 .7394 ± .00 .6855 ± .01 .8415 ± .00 .4224 ± .01 .6541 ± .00 .4487 ± .01 .6888 ± .01 .5302 ± .03 .7500 ± .01 .6562 ± .00 .7811 ± .01 .4913 ± .01 .7322 ± .00

MISTRAL-7B

Naïve .4444 .4444 .6270 .6270 .4586 .4586 .5109 .5111 .5911 .5911 .5658 .5658 .5386 .5386
Prompting .3304 .5615 .6149 .7028 .3459 .5471 .3806 .6145 .4634 .6677 .4761 .6244 .4695 .6786
COIECD .4601 .4603 .5917 .5919 .4575 .4575 .5011 .5015 .5653 .5653 .5457 .5457 .5351 .5352
COIECDPrompt .4039 .6053 .6179 .6750 .3525 .5535 .4327 .6389 .4516 .6269 .4967 .6267 .4705 .6681
RetRobust .5898 ± .01 .5902 ± .01 .6571 ± .01 .6573 ± .01 .4256 ± .00 .4257 ± .00 .4587 ± .02 .4594 ± .02 .5727 ± .01 .5732 ± .01 .6297 ± .02 .6298 ± .02 .5633 ± .02 .5636 ± .02
KAFT .6066 ± .00 .6068 ± .00 .7279 ± .01 .7281 ± .01 .4631 ± .00 .4633 ± .00 .4983 ± .01 .4990 ± .01 .5959 ± .02 .5962 ± .02 .7088 ± .01 .7088 ± .01 .5736 ± .01 .5738 ± .01
LMUniKnow .5142 ± .00 .7443 ± .00 .6267 ± .01 .8303 ± .00 .3881 ± .00 .6379 ± .00 .3661 ± .03 .6116 ± .04 .4682 ± .01 .7128 ± .01 .5713 ± .02 .7801 ± .00 .4314 ± .03 .6800 ± .03

QWEN-1.5B

Naïve .4300 .4306 .5005 .5014 .4056 .4057 .4615 .4622 .4727 .4738 .5192 .5194 .5023 .5037
Prompting .4067 .5683 .4780 .6333 .3723 .5370 .4462 .5830 .4225 .6465 .4427 .6174 .4547 .6714
COIECD .4152 .4161 .5009 .5035 .3560 .3566 .4539 .4560 .4476 .4494 .4870 .4877 .4938 .4978
COIECDPrompt .3769 .4919 .4845 .5681 .3383 .4280 .4297 .5218 .4362 .5668 .4657 .5653 .4743 .6341
RetRobust .4717 ± .01 .4719 ± .01 .5470 ± .01 .5471 ± .01 .4087 ± .01 .4088 ± .01 .4546 ± .01 .4552 ± .01 .5243 ± .01 .5253 ± .01 .6066 ± .01 .6068 ± .01 .5289 ± .00 .5289 ± .00
KAFT .4919 ± .00 .4922 ± .00 .5788 ± .00 .5789 ± .00 .4311 ± .00 .4313 ± .00 .4872 ± .00 .4879 ± .00 .5772 ± .01 .5772 ± .01 .6499 ± .00 .6503 ± .00 .5477 ± .00 .5478 ± .00
LMUniKnow .4441 ± .01 .6443 ± .00 .5304 ± .00 .7371 ± .00 .3828 ± .00 .6226 ± .00 .4364 ± .01 .6521 ± .00 .4805 ± .01 .7006 ± .01 .5683 ± .00 .6386 ± .01 .4748 ± .01 .7147 ± .01

QWEN-3B

Naïve .4388 .4393 .5137 .5145 .4192 .4194 .4680 .4688 .4993 .4996 .5116 .5116 .5061 .5086
Prompting .3878 .6106 .4299 .6608 .3497 .5903 .4279 .6460 .4275 .6577 .4025 .6241 .4512 .6825
COIECD .4263 .4278 .5130 .5174 .4066 .4075 .4617 .4636 .4803 .4831 .4858 .4889 .5048 .5125
COIECDPrompt .3782 .5787 .4681 .6744 .3566 .5739 .4309 .6247 .4336 .6278 .4325 .5966 .4639 .6748
RetRobust .5106 ± .00 .5107 ± .00 .5810 ± .00 .5810 ± .00 .4267 ± .00 .4267 ± .00 .4720 ± .01 .4729 ± .01 .5970 ± .01 .5976 ± .01 .6495 ± .00 .6495 ± .00 .5464 ± .01 .5466 ± .01
KAFT .5364 ± .00 .5366 ± .00 .6353 ± .00 .6354 ± .00 .4594 ± .00 .4596 ± .00 .5112 ± .00 .5121 ± .00 .6772 ± .01 .6789 ± .01 .7034 ± .00 .7035 ± .00 .5599 ± .00 .5599 ± .00
LMUniKnow .5053 ± .01 .6896 ± .00 .6139 ± .00 .7742 ± .00 .4341 ± .01 .6583 ± .00 .4801 ± .00 .6844 ± .00 .5838 ± .01 .7689 ± .00 .6517 ± .01 .7350 ± .01 .4992 ± .01 .7301 ± .00

QWEN-7B

Naïve .4523 .4529 .5870 .5900 .4413 .4450 .4905 .4929 .5735 .5742 .5573 .5578 .5132 .5147
Prompting .3788 .6230 .4672 .6973 .3759 .6191 .4493 .6798 .4487 .6860 .4422 .6659 .4639 .7010
COIECD .4410 .4413 .5785 .5847 .4183 .4190 .4772 .4807 .5215 .5222 .5329 .5331 .5057 .5106
COIECDPrompt .4096 .6386 .4975 .7052 .3612 .5871 .4469 .6687 .4864 .6856 .4517 .6620 .4758 .6984
RetRobust .5609 ± .00 .5612 ± .00 .6165 ± .00 .6166 ± .00 .4323 ± .00 .4324 ± .00 .5081 ± .01 .5088 ± .01 .6044 ± .02 .6046 ± .02 .6567 ± .00 .6568 ± .00 .5927 ± .01 .5927 ± .01
KAFT .5895 ± .00 .5897 ± .00 .6909 ± .00 .6909 ± .00 .4736 ± .00 .4737 ± .00 .5321 ± .00 .5328 ± .00 .6780 ± .01 .6780 ± .01 .7425 ± .01 .7425 ± .01 .6040 ± .00 .6040 ± .00
LMUniKnow .5112 ± .01 .7325 ± .00 .5911 ± .01 .8053 ± .01 .4082 ± .01 .6564 ± .01 .4768 ± .01 .7183 ± .00 .5605 ± .00 .7806 ± .00 .6429 ± .00 .7897 ± .00 .5129 ± .01 .7580 ± .01

QWEN-14B

Naïve .4743 .4746 .6522 .6523 .4614 .4616 .5051 .5063 .6385 .6385 .5661 .5663 .5268 .5285
Prompting .4141 .6470 .5146 .7240 .4036 .6293 .4510 .6888 .4867 .7220 .4709 .6681 .4630 .7035
COIECD .4421 .4427 .6220 .6228 .4294 .4302 .4740 .4766 .5768 .5789 .5379 .5489 .5016 .5037
COIECDPrompt .4045 .6170 .5550 .7167 .3852 .5826 .4467 .6645 .4900 .6992 .4922 .6559 .4704 .6931
RetRobust .6139 ± .00 .6143 ± .00 .6729 ± .00 .6730 ± .00 .4737 ± .00 .4738 ± .00 .5144 ± .00 .5155 ± .00 .5720 ± .01 .5722 ± .01 .6788 ± .00 .6789 ± .00 .5800 ± .00 .5800 ± .00
KAFT .6423 ± .00 .6424 ± .00 .7687 ± .00 .7687 ± .00 .5236 ± .00 .5236 ± .00 .5620 ± .00 .5627 ± .00 .6963 ± .01 .6963 ± .01 .7644 ± .00 .7644 ± .00 .6047 ± .00 .6048 ± .00
LMUniKnow .5493 ± .01 .7598 ± .00 .6573 ± .00 .8469 ± .00 .4559 ± .00 .6943 ± .00 .4943 ± .00 .7325 ± .00 .5457 ± .02 .7736 ± .01 .6428 ± .01 .8317 ± .01 .5351 ± .00 .7694 ± .00

Table 12: Acc and Rely for each method and model across datasets. Bold indicates the best, and the underline
indicates the second best. Training-based methods (RetRobust, KAFT, and LMUniKnow) are evaluated using three
training seeds, and the mean and standard deviation are reported.
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