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ABSTRACT

We analyze the training of a two-layer autoencoder used to parameterize a flow-
based generative model for sampling from a high-dimensional Gaussian mixture.
Building on the work of Cui et al. (2024), we find that the phase where the high-
level features are learnt during training disappears as the dimension goes to infinity
without an appropriate time schedule. We introduce a time dilation that solves this
problem. This enables us to characterize the learnt velocity field, finding a first
phase where the high-level feature (asymmetry between modes) is learnt and a
second phase where the low-level feature (distribution of each mode) is learnt.
We find that the autoencoder representing the velocity field learns to simplify by
estimating only the parameters relevant to the feature for each phase. Turning to
real data, we propose a method that, for a given feature, finds intervals of time
where training improves accuracy the most on that feature, and we provide an
experiment on MNIST validating this approach.

1 INTRODUCTION

In recent year, diffusion models have emerged as powerful techniques for learning to sample from
high dimensional distributions Sohl-Dickstein et al. (2015); Song et al. (2021); Song & Ermon
(2020); Ho et al. (2020), especially in the context of image generation and recently also for text
Lou et al. (2024). The key idea lies in learning the gradient of the log density of corrupted data or
score function from an optimization problem on samples and using the learnt velocity for generation.
Despite the remarkable performance of these models, there remain several open questions, including
understanding what makes a good noise-schedule, and how it is possible to overcome the curse of
dimensionality.

We consider the problem of training a neural network to learn the velocity field to generate samples
from a two-mode Gaussian Mixture (GM). This serves as a prototypical example to understand how
diffusion models handle the learning of features at different scales. In the two-mode GM we have
two well-separated scales: the macroscopic scale of the relative asymmetry between the modes, and
the microscopic scale of the distribution of each mode.

This problem was previously considered by Cui et al. (2024) but their analysis only handles the
balanced two-mode GM. On the other hand, when assuming access to the exact velocity field, Biroli
et al. (2024) find an that the generative model for the two-mode Gaussian Mixture has a speciation
time, defined as the time in generation, starting from noise, after which the mode where the sample
will belong to is determined.

In this work, we show that if we analyze the estimation of the velocity field using the right time
schedule so as to control where the speciation time happens, then we get accurate generation for the
two-mode GM model. More precisely, our contributions are as follows.

* We give an asymptotic characterization of the learnt velocity field, finding a separation into
two phases. We further show that having ©4(1) samples is enough to learn the velocity
field.

* We show that the neural network representing the velocity field learns to simplify for each
phase. In the first phase, it only concerns estimation of the high-level feature whereas in
the second phase, it concerns estimation of the low-level feature. This sheds light on the



advantage of Diffusion Models over Denoising Autoencoders, since the sequential nature
of Diffusion Models shown here allows them to decompose the complexity of the problem.

* For real data, this analysis suggests that training more at the times associated with a feature
would improve accuracy on that feature. In fact, we propose a method that, given a feature,
finds an interval of time where more traning improves accuracy on that feature the most.
We further validate this on the MNIST dataset. We provide the code for the experiments
here.

2 RELATED WORKS

Diffusions and flow-based generative models. Diffusion models Sohl-Dickstein et al. (2015);
Song et al. (2021); Song & Ermon (2020); Ho et al. (2020) learn to invert the ODE/SDE that maps
a given data distribution to Gaussian noise, for sampling. We refer the reader to Yang et al. (2024)
for a review on methods and applications. Albergo et al. (2023) introduce the stochastic inter-
polant framework which allow for interpolation between two distributions, both deterministically
and stochastically, in finite time.

Phase transitions of generative models in high dimensions. Several works analyze phase transi-
tions in the dynamics of generative models. Raya & Ambrogioni (2023) find that diffusion models
can exhibit symmetry breaking, where two phases are separated by a time where the potential gov-
erning the dynamics has an unstable fixed point. They give a full theoretical analysis for the data
being two equiprobable point masses in R, and also give a bound for the symmetry breaking time
for the case where the data is a sum of finitely many point masses. Our setting generalizes the case
of two equiprobable point masses in R to two Gaussians in R? that are not necessarily equiprobable.
Ambrogioni (2023) builds on Raya & Ambrogioni (2023) and shows several connections between
equilibrium statistical mechanics and the phase transitions of diffusion models. Ambrogioni (2023)
further conjectures that accurately sampling near times of “critical generative instability” affects the
sample diversity. We give an explicit description of this critical times and verify this conjecture
theoretically for sampling (see Proposition 1) and for learning (see Corollary 5) and empirically for
learning (see Section 6). Li & Chen (2024) also formalize the study of critical windows taking the
data to be a mixture of strongly log-concave densities. They give non-asymptotic bounds for the
start and end times of these critical windows, which have a closed form expression for the mixtures
of isotropic Gaussians case. In contrast, we provide sharp asymptotic characterizations for the phase
transition times. Biroli & Mézard (2023) analyze the Curie-Weiss model and analyticalaly charac-
terize the speciation time, defined as the time after which the mode that the sample will belong to
is determined. Biroli et al. (2024) generalize the result and find an speciation time ¢, ~ % log(X)
for an Ornstein-Uhlenbeck where A is the largest eigenvalue of the covariance of the data, usually
proportional to d. Montanari (2023) points out a similar phase transition when learning the velocity
field to generate from a two-mode unbalanced Gaussian mixture, leading into problems for accurate
estimation of the data. Montanari (2023) addresses this by using a different neural network to learn
each mode. In the current work, we show that it is not needed to tailor the network for each mode
if the right time schedule is used. It is worth noting that all these works are about sampling. We
provide a result for sampling in Proposition 1. Building on this, we give results for learning (i.e.
estimating the velocity field through a neural network) which is the main contribution of our paper.

Time-step complexity. Several results give convergence bounds detailing the required time-steps,
score accuracy, and/or data distribution regularity to sample accurately. Benton et al. (2024) show
that at most O(d log?(1/48)/€?) time steps are required to approximate a distribution corrupted with
gaussian noise of variance d to within €2 KL divergence. Chen et al. (2023) study probability flow
ODE and obtain 0(\/8) convergence guarantees with an smoothness assumption. An underlying
assumption in all these works is that the score or velocity field is learnt to certain accuracy. In the
present work, we address this problem in the special case of a Gaussian mixture.

Sample complexity for Gaussian Mixtures. Cui et al. (2024) study the learning problem for the
Gaussian mixture in high dimensions and demonstrate that n = ©4(1) samples are sufficient in
the balanced case where the two modes have the same probability. This is done through statistical
physics techniques of computing the partition function and using a sample symmetric ansatz. As we
show, due to the speciation time at d~'/2 which tends to zero as the dimension d grows, this analysis

misses one phase of learning. Gatmiry et al. (2024) show that quasi-polynomial (O(dp"lyaog(#))))



sample and time complexity is enough for learning k-gaussian mixtures. The data distribution is
more general than the one we consider, but on the other hand we give a ©4(1) sample and time
complexity.

Statistical physics for analyzing neural networks. Bordelon et al. (2021); Canatar et al. (2021)
use statistical physics methods to arrive at a notion of generalization which highlights the alignment
of a model with the spectral bias in sample complexity of different features. In a broadly similar line,
we will argue that that sample complexity in diffusion models is related to how well the schedule
aligns with the different phases of the velocity field.

3 BACKGROUND

Data model and diffusion model. Consider the two-mode Gaussian Mixture Model (GMM)
p=pN(p,0%1dg) + (1 = p)N(—p, 0°1da) (1)

where p € (0,1) and 2 € RY such that ||u||> = d and o > 0. A diffusion model for y starts with
samples from a simple distribution (say a Gaussian) and sequentially denoises them to get samples
from the data.

More precisely, consider the stochastic interpolant
Ty = o + Pray (2)

where g ~ N (0,1dg), 21 ~ p,and oy, B; : [0,1] = R, a3 =0 = By, g = 1 = B4 Itis proven in
Albergo et al. (2023) that if X; solves the probability flow ODE

with X ~ N (0,1dy), we then have for ¢ € [0, 1] that X, 4 z¢ and hence X;—1 ~ p.

Since the data is coming from the GMM, the expression for the exact velocity field b;(x) from
equation 3 can be computed exactly and it is given by combining equation 4 and equation 9 below.
Our goal is to understand how well a neural network can estimate this velocity field through samples,
in the large dimension d — oo limit assuming low sample complexity for the data n = ©4(1).

Objective function. To fulfill our goal, we rewrite the velocity field as
' !
o) = (5= S45) re.0)+ o, @
Qg Qg

where f(x,t) = E[z1]|z: = z] is the denoiser, which recovers the datapoint & = z; from a noisy
version of it ;. The denoiser is characterized as the minimizer of the loss (see Albergo et al. (2023))

1
RIf] = / E||f (21, t) — 1| Pdt. 5)

In practice, however, we usually do not have access to the exact data distribution. So we assume
we have a dataset D = {x’f "_, where x’f ~iigd p- On the other hand, we have unlimited samples
from 2y ~ N(0,Idg). In practice, this means that to each data sample a,, we can associate many
noise samples =" with v = 1,--- k. We then denote z}"" = auzf” + Bia}. At one step in
our analysis, we will assume infinitely many noise samples associated to each data sample, so that
we can take expectation with respect to the noise distribution. We also parameterize the denoiser
through a different neural network for each ¢, which will be denoted as fy, (). This gives

1 n k

R({0:}eero) = /O SO lfo (at”) — 2t |Pat. (6)

p=1v=1
Finally, if we denote {ét}te[o,l] the minimizer of equation 6, we then define

uy

bi(x) = (ﬁt - ZZﬁt) fa,(@) + P (N



and we can run the probability flow ODE
X, = bi(Xy)

with Xo ~ N(0,1dg).

Network architecture. We will analyze the case where the neural network parameterizing the
denoiser function f(x,t) consists of a two-layer Denoising Autoencoder with a trainable skip con-
nection, motivated by the U-net Ronneberger et al. (2015)

fo,(z) = ctx + uy tanh (w\t/gx ) (8)

where 0; = {c;, ug, we, b }, ¢, by € R, and ug, wy € R<. The structure of this Denoiser Autoencoder
is highly motivated by the exact denoiser, which since the data is the GMM, can be computed exactly
as follows (see Albergo et al. (2023), Appendix A)

BtO.Q a2
T+ tanh
a? + 022 o + 027 M

where h is such that e /(e" + e~") = p.

B

Elzy|z: = 2] =

ﬂ2,u x+h> 9)

We will consider the loss with regulatization for w; and u;. Since for each ¢ we assume a different
neural network, we can write the loss as

=2 > o™y = 1P + Flluel P + 5 lwel [ (10)

p=1lv=1

We note that Cui et al. (2024) consider the special case of tied weights u; = w; and b; = 0. This is
enough to capture the balanced GMM (i.e. p = 1/2) but fails at learning to sample from the GMM
for p # 1/2. This follows since xo has an even distribution and their choice of tied weights and
no bias yields an odd velocity field which results in an even distribution for z;. If the bias is added
and the weights are untied, the analysis of Cui et al. (2024) will still not able to learn to sample for
p # 1/2. This is because the gradient for w; vanishes as d — oo unless special care is given to the
small times where the phase transition happens, as will be explained next.

Separation into phases. The analysis of Biroli et al. (2024) assumes access to the exact velocity
field, and shows that the generative model from equation 3 with oy = /1 — ¢2 and 3; = ¢ undergo
a phase transition at time t, = 1/+/d. They call this the speciation transition, and it is defined as
the time in the generation process after which the mode that the sample will belong to at the end of
the process is determined. It is straightforward to check that their analysis shows that the speciation
transition would also be t;, = 1/ V/d if we instead consider a; = 1 —tand B; = t which are the
choices that we will use for our analysis. We will not prove this since this result is only to motivate
our work and will not be used in the proofs.

Having t, = 1/ \/d as speciation time means that in the asymptotic limit d — oo, the ¢, goes to zero
and the possibility of learning the relative asymmetry between the modes is lost. This is the essence
of why the analysis of Cui et al. (2024) can not learn p for p # 1/2.

We will dilate time so as to make the speciation time ts not disappear as d — oo. More precisely,
consider the time dilation 7 : [0,2] — [0, 1]

= it € [0,1]
s (1-g)e-1 ifte,2)

We note this fulfills 7(0) = 0,7(1) = x/+/d, and 7(2) = 1. Running the generative model with this
time dilation, we find that at generation time there is a separation into two phases: the first phase
with ¢ € [0, 1] where the high-level feature (the asymmetry between the modes) is estimated, and the
second phase with ¢ € [1, 2] where the low-level feature (the distribution of each mode) is estimated.
Further, the velocity fields are independent of d.

T(t) = (11



Proposition 1. Ler X; be the solution to the probability flow ODE from equation 3 with oy = 1 — 74
and By = 11 where T is defined in equation 11. Then

pe Xy

X — ]

p~N(0,071dy_1).
where oy fulfills the following

* First phase: Fort € [0, 1], we have

lim o; = 1.
d—oo

In addition, vy = limg_, % fulfills

1 ~pN(k,1)+ (1 —p)N(—k,1).

* Second phase: We have

lim oy = 0.
d—o0

In addition, My = limg_,oo “2X* fulfills
My ~ p™61 + (1 — pn)5_1
where p" is such that lim,_, ., p* =p

See Appendix A for the proof. Also see Appendix E for a generalization of the time dilation formula
in equation 11 for a GM with more than two modes.

It is straightforward to see that sgn (u - X;/d) stays constant during the second phase with high
probability (to be precise, with probability going to 1 as d — oo and k — o0.) This means that
in the first phase the high-level feature (the asymmetry between the modes) is learnt. This can be
also seen from the fact that p appears in the velocity field of the first phase through h, but does not
appear in the velocity field of the second phase. On the other hand, the variance of each mode o2
only appears in the second phase.

Rephrasing our previous discussion, the analysis of Cui et al. (2024) can not capture the learning
of the parameters for p # 1/2 because the first phase (where this parameter is learnt) disappears as
d — oo. Using the time dilation from equation 11, the first phase does not disappear. In the present
work, we show that this time dilation allows us to learn to sample from the GMM for p € [0, 1].

We will show this in two steps. First, in Section 4 we show that we can characterize the learnt
parameters of the velocity field in terms of a few projections, called the overlaps. Then, in Section 5
using the characterization of parameters in terms of overlaps, we show that using the learnt velocity
field for generation recovers both the high-level feature (given by the relative asymmetry) and the
low-level feature (given by the distribution of each mode.)

4 LEARNING

In this and the next section, we will assume we have access to n data samples and ask how well we
can generate the target distribution using a learnt denoiser as d — oo. More precisely, we let 6; be
the minimizer of the loss from equation 10. Then we parameterize an estimate of the denoiser féf

as in equation 1, use this to get an estimated velocity field b as in equation 7, and run an ODE with
this velocity field, whose solution we denote by Xt. In this section, we will characterize ét in the
d — oo limit. In the next section, we show that the result of running an ODE with the estimated
denoiser gives a distribution that approaches the target distribution when we take first d — oo and
then n — oo meaning that we have low-sample complexity, n = O4(1).

We make the analysis concrete by considering oy = 1 — 74, f; = 7¢. As mentioned in Section 3, the
analysis will use the time dilation from equation 11. We will first analyze the times ¢ € [0, 1] from
the first phase and then times ¢ € [1, 2] from the second phase.



4.1 FIRST PHASE

The interpolant in the first phase reads

Kt Kt
= (1—)x“+x"
t \/& 0 \/g 1
where ¢ € [0, 1] . We introduce overlaps in terms of which we will characterize the loss from equa-
tion 10 (note that all of these are functions of ¢ but we drop the dependence for notational simplicity.)

el L whw 2w peu )

v z,“/ - w _ u-w , _

=g "= "Ta T 7qg ™74 d d

The following result gives equations for the overlaps in the asymptotic d — oo limit which can be
solved numerically.

(12)

This allows us to explicitly give the values of the overlaps as n — oo, which we use in Section 5 to
argue that running a generative model with learnt parameters leads to accurate generation.

Result 1 (Sharp Characterization of Parameters in First Phase). For any t € [0, 1], in the d — oo
limit, the parameters minimizing the loss from equation 10 satisfy the following set of equations

__ 99
O A+ ng?

nes
m=——
A + ng?

C:qupn:()
q:m2+nq,2]
r=w?

(A +ng?)(0(@)(B) +n(Fs)(8s)) = (n*Fs + 103" )(F9)
F(A+ng?2)? = —n((\ +nd2)(0(@7) (@) + n(§75)(@5)) — (n2Ps” +no>S ) (64))
Wl + ) (A +ne2)% = (nkt) (A +ne?) (0(&5)(B) +n(@)(B5)) — (025" +nod")(¢bs))

here and in what follows we denote

1 n k
Y= e Z ZEZ,I,,V [y""] = PEoua [y Y |s" = 1] + (1 — D)Euw [y |s* = —1].
p=1v=1

See Appendix B.1 for a heuristic derivation of this result, at the rigor level of theoretical physics.
We also show in Appendix B.1.1 that using the equations from Result 1 and taking n — oo gives
very simple explicit equations for the overlaps

Corollary 1 (Parameters given infinite samples). Foranyt € [0, 1], taking d — oo and then n — oo
gives the following overlaps

C:qE:qn:anO
m=1
w = kKt
tanh(b) = 2(p — 3)
Note that the overlaps in the n — oo limit do not contain any information about o-2. This means that

the estimation of ¢ happens completely in the second phase. We now turn to getting formulas for
the Mean Squared Error. Define the scaled train and test MSE of the denoiser as

1 n k
MSCtrain = M Z Z ||f0t (xf’y) - x’fHQa

p=1lv=1
1 2
mses = 2 [[1f5, (1) = @[]

Using the above results we characterize the MSE as follows



Corollary 2 (Mean Squared Error). In the limit of d — oo,
mseain = 1+ 02 + C2 + q@ - 2(%7” + (0%7 - C(k)a)
msey = 1+ 0% + 2 + q¢? — 25¢ém

These reduce to

mse, =14 o2 — (”\Jr?)(HQQZZSJr na&Q)
train ()\ + 7’L¢2>2
mseéiess = 140 — M
(X + ng?)2

Forn — oo, we get
2 -
MS€rain = MS€rese = 0° + (1 — ¢s).

4.2 SECOND PHASE

We now consider times ¢ € [1, 2] which means we have

x,’;(zt)(l%)ngr(;eq(l;a)(tl))xﬁ.

Using similar definitions of overlaps as for the first phase (see Appendix B.2 for exact definitions),
we find closed-form equations for the overlaps in the asymptotic d — oo limit, and again find the
limit as n — oo for the overlaps. See Appendix B.2 for a heuristic derivation of this result

Result 2 (Sharp Characterization of Parameters in Second Phase). Foranyt € [1,2], in the d — oo
limit, the parameters minimizing the loss from equation 10 satisfy the following equations

c(l—1)
%= v
_o(l—ecr)
n = A+n
m:n(l—CT)
A+n
q:m2+nqg+n02q37
(1+0 YA +n)— )
CcC =

A+n)(1—=72)+ (1 +0%)7r%) + ((1 7)2 —7%(0 +n))
where T =1t — 1.

Corollary 3 (Parameters given inifite samples). For any t € [1,2], taking d — oo and then n — oo
gives the following overlaps
2

TO
C= ————
14 (02 —1)72

ge = ¢, =0

m=1—cr
where T =t — 1.
In an opposite way to what happens in the second phase, we see that the parameter p does not appear

in the overlaps whereas now o does. This combined with the behavior in the first phase, shows that
there is a separation into phases that can be learned by the generative model.

Corollary 4 (Mean Squared Error). In the limit of d — oo, we have
mseygin = (1+02)(1 —cr)? + (1 —7)% + ¢ — 2(1 — c1)(0g, +m) + 2¢(1 — 7)ge
msery = (14 02)(1 —er)? + (1 —71)2+q—2(1 —er)m
Forn — oo, we get

MS€iyain = Mserey = (1+0%)(1 = c7)” + (1 —7)°



5 GENERATION

We show that using the probability flow ODE with the learnt denoiser recovers both paramters p and
o2 from the target distribution. Let X; be the solution to the ODE from equation 3 using the exact

denoiser from equation 9, and let X, be the solution using the learnt denoiser whose parameters we
characterized in Section 4 (see the beginning of Section 4 for the exact definition of X,.) Assume
X, and X, have a shared initial condition X,—y = X;—o ~ N(0,1d4). Then X, — X, fulfills an
ODE with initial condition 0 whose velocity field is in the span of u; and p.

We get from Result 1 that in the first phase ¢ = m? + anl. This can be explicitly stated as

ul®

Jim T = g (M) ()

where n = o ZZ:1 z*. This means that u, is asymptotically contained in span(,7), in the sense
that the projection to the complement of span(z, 77) has asymptotically vanishing norm, for ¢ € [0, 1].
Similarly, from Result 2, we get ¢ = m? + ngg + anl, which means that u; is asymptotically
contained in span(y, 7, &) for ¢ € [1,2] where { = > s"x(. This means that to show that X is
close to Xt, it suffices to bound the projections of X; — X, onto u, 1, and €. In fact, we have the
following result (see Appendix C)

Result 3. Let X, be the solution of the probability flow ODE from equation 3 using the exact

denoiser from equation 9. Let Xy be the solution using the learnt denoiser. Assume X;—og = Xi—q ~
N(0,1dy). Then for w € span(u,n,&), with |[w|]z = 1, we have

. 'UJ'(XQ—XQ)_ 1
fin g =0 (3).

)L, with ||w||o = 1, we have

Forw € span(u,n,§

i w - (X2 — XQ)
m ——F—
d—o00 \/;1

Corollary 5 (Parameters p and o2 are estimated correctly). Let X, be the solution of the probability
flow ODE from equation 3 using the learnt denoiser; starting with Xo ~ N (0, 1dy). We have

=0.

- X
lim lim lim % ~pé+(1—p)o_q.

K—00 Nn—r00 d— 00

Forw L p, with ||w|| = 1, we have

. . w - Xo 2
o g N0

We conclude that thanks to our time dilation, the distribution generated using the learnt denoiser
captures both p and o2.

6 EXPERIMENTS

6.1 VERIFICATION OF HIGH-LEVEL FEATURE BEING CAPTURED

To show that the difference between the time dilated interpolant and the non time dilated one appears
in practice, we first run a simple experiment. We run Gradient Descent with the Adam optimizer
Diederik (2014) to learn the parameters wy, ¢¢, u¢, by in equation 1 both for oy = 1 — ¢, By = t and
the dilated version oy = 1 — 7%, 8; = 3. The results are in Figure 1. It is clear that the non dilated
interpolant is not able to estimate the relative asymmetry correctly whereas the dilated interpolant is
able to.

The code for this experiment is available here.
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Figure 1: We learn the parameters from for different choices of interpolant. In all experiments,
we take 100 discretization points, train for 5000 epochs, n = 128, d = 5000 with p = .8.
After having learnt the parameters, we run the probability flow ODE with the learnt parameters

for K = 2000 realizations (X7)}50, and then compute p, = + Zjil I [Zle(Xf Ty >0 =

+ Zszl I [Mtj > 0} , which is an estimate of P(M; > 0) = p where M; = p - X;/d. We learn the

parameters for with a; = 1 — ¢, 8; = t which gives the non-dilated interpolant in blue. We predict
the speciation to happen approximately at \/ﬁ ~ .014. Practice agrees with this, since we see

most of the speciation happening at the first two ODE steps. We also learn the parameters for with
oy =1 —m, B = 1,k = 4. This gives the dilated interpolant plot in orange. We see the dilated
interpolant estimates p = .8 much better than the non-dilated one.

6.2 TRAINING A GIVEN FEATURE ON REAL DATA

Recall that in the background we mentioned that the analysis of Biroli et al. (2024) shows that taking
a; = 1 —t and B; = t without any time-dilation gives an speciation time t;, = 1/ V/d. This then
means that the relative asymmetry between the modes (given by p) can not be captured as d — oo.
Our analysis then shows that if we dilate time by streching the interval [0, /+/d] to [0, 1] and the
interval [x/+/d, 1] to [1, 2], then we get accurate estimation of p.

When training diffusion models in practice, we first sample a batch of times ¢1, - - - , ¢ uniformly.
We then draw zff ~ N(0,1dy), 4 from our data distribution, and form a noisy sample z}, =
(1 —t")zh + traf for p=1,--- , k. We finally train on the loss
k
REO) =D Il folah,t") — ot (13)
p=1

where we took time as a parameter of the network as it is usually done in practice, as opposed to
having a separate network for each time ¢.

The insight of our analysis is that instead of taking the batch of times uniformly, we can sample more
times near the phase transition associated to a given feature, and in this way improve accuracy on
that feature.

For a given feature, we can find the times where that feature is learnt using the U-Turn method
(Sclocchi et al. (2024), Biroli et al. (2024)). Consider a dataset where each sample corresponds to
exactly one of finitely many classes. Examples of this are samples of the GMM which correspond
to one of two modes, or samples of MNIST which correspond to one of ten digits. The U-Turn then
consists of starting with a sample from the data, run a backward diffusion model from time ¢ = 1



to t = to, which noises the sample, and then run the forward diffusion model from time ¢t = ¢, to
t = 1 with noise independent from the backward run.

We are then interested in the probability that the sample before the backward and forward passes
belongs to the same class as the sample after them. For ¢y ~ 1, this probability is close to 1. For
to ~ 0, this probability is close to the underlying probability of the diffusion model generating a
sample of the given class. By running this for different ¢y, we can find at what times it is decided
to what class the samples belong to. Having found those times, our goal is to have a model that
generates samples for each class according to the probabilities that they appear in the dataset. We
can then improve the accuracy of the model on this by training on these times.

As a simple example, we train a U-Net (see Appendix D for details) to parameterize the Variance
Preserving SDE from Song et al. (2021) to generate either the 0 or 1 digits from MNIST. The
dataset we train on consists of 20% 1 digits and 80% 0 digits. We then measure how well is this
model in generating samples that represent this asymmetry. The model is trained on approximately
7400 samples for 9 epochs, by sampling times in [0, 1] uniformly as described in the beginning of
this section. We then generate 18500 new samples running this model using 1000 discretization
steps. | Among the 18500 generated samples, 88.2% are digits 0. (For determining this, we used a
discriminator with 99.2% accuracy on MNIST, see Appendix D for details.)

We then test our proposed method. First, we determine at what time the digit that the sample
represents is decided. We do this with the U-Turn method described above. Note that to do this,
we use the model that we already trained. The results are in Figure 2. We find that the times
important for deciding the digit are early in the generation for ¢ € [0.2, 0.6] and mostly concentrated
ont € [0.3,0.5].

We now train from scratch a model on 7400 samples for 9 epochs as before, except that we do
not sample the times uniformly. We instead sample times with probability 1/2 uniformly in the
interval [0.3, 0.5] and with probability 1/2 uniformly outside that interval. We then generate 18500
new samples with this new model using 1000 discretization steps, and find that 81.0% are 0s. We
similarly consider sampling times with probability 1/2 uniformly in the interval [0.2,0.6] and with
probability 1/2 outside that interval, generate samples, and find that 81.1% are Os. This validates
our hypothesis in the simple case of MNIST.

Although our theoretical analysis is for the probability flow ODE on the GMM data distribution, this
example on MNIST shows that the ideas developed here can be useful to the SDE generative models
used in practice for real data.
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