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Abstract

We propose Distribution Embedding Networks (DEN) for classification with small data.
In the same spirit of meta-learning, DEN learns from a diverse set of training tasks with
the goal to generalize to unseen target tasks. Unlike existing approaches which require
the inputs of training and target tasks to have the same dimension with possibly similar
distributions, DEN allows training and target tasks to live in heterogeneous input spaces.
This is especially useful for tabular-data tasks where labeled data from related tasks are
scarce. DEN uses a three-block architecture: a covariate transformation block followed by a
distribution embedding block and then a classification block. We provide theoretical insights
to show that this architecture allows the embedding and classification blocks to be fixed after
pre-training on a diverse set of tasks; only the covariate transformation block with relatively
few parameters needs to be fine-tuned for each new task. To facilitate training, we also
propose an approach to synthesize binary classification tasks, and demonstrate that DEN
outperforms existing methods in a number of synthetic and real tasks in numerical studies.

1 Introduction

While machine learning has made substantial progress in many technological and scientific applications, its
success often relies heavily on large-scale data. However, in many real-world problems, it is costly or even
impossible to collect large training sets. For example, in online spam detection, at any time, we may only
possess dozens of freshly labeled spam results. In health sciences, we may only have clinical outcomes on
a few hundred study subjects. Few-shot learning (FSL) has recently been proposed as a new framework
to tackle such small data problems. It has now gained huge attention in many applications such as image
classification (Koch et al., 2015; Finn et al., 2017), sentence completion (Vinyals et al., 2016; Munkhdalai
et al., 2018), and drug discovery (Altae-Tran et al., 2017); see Wang et al. (2020) for a survey.

The core idea behind most of FSL methods is to augment the limited training data with prior knowledge, e.g.,
images of other classes in image classification or similar molecules’ assays in drug discovery. In meta-learning
based FSL, such prior knowledge is formulated as a set of related training tasks assumed to follow the same
task distribution (Finn et al., 2017), with the goal that the trained model could quickly adapt to new tasks.
In practice, however, given an arbitrary target task, the degree and nature of its relationship to the available
auxiliary training data is often unknown. In this scenario, it is unclear if existing approaches can extract
useful information from the training data and improve the performance on the target task. In fact, there is
empirical evidence suggesting that learning from unrelated training tasks can lead to negative adaptation
(Deleu & Bengio, 2018). In our numerical studies, we also observe similar behavior; existing FSL approaches
perform poorly when training tasks are unrelated to the target task.
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Figure 1: Training and evaluation of DEN. We first pre-train DEN on training tasks with heterogeneous
covariate spaces. We then fine-tune the transformation block on a few labeled examples from the target task,
and use the fine-tuned model for classification on the query set.

In this paper, we investigate this important but under-studied setting—few-shot meta-learning with possibly
unrelated tasks. We specifically focus on classification tasks with tabular data. Unlike machine learning with
image and text inputs, large datasets of related tasks are not available for generic tabular-data classification.

A key challenge in this setting is that the input, in the form of covariate vectors for training and target tasks,
can live in different spaces and follow different distributions with possibly different dimensions. Existing
meta-learning techniques often assume a homogeneous input space across tasks and thus cannot be directly
applied in such cases with heterogeneous covariate spaces.

In this work, we propose Distribution Embedding Networks (DEN) for meta-learning on classification tasks
with potentially heterogeneous covariate spaces. DEN consists of a novel three-block architecture. It first
calibrates the raw covariates via a transformation block. A distribution embedding block is then applied to
form an embedding vector serving as the “summary” of the target task. Finally, a classification block uses
this task embedding vector along with the transformed query features to form a prediction.

Since the tasks can be unrelated, we learn a different transformation block for each task to form task-invariant
covariates for the rest of the network. In other words, the transformation block is task-dependent. We keep
the task-independent embedding and classification blocks fixed after pre-training, and use a few labeled
examples from the target task (i.e., the support set) to fine-tune the task-dependent transformation block.
Since our setting is significantly more challenging than the standard few-shot meta-learning setting due to
the heterogeneity among training and target tasks, we assume that we have access to a slightly larger support
set compared to the FSL setting (e.g., 50 examples in total across all classes rather than 5 examples per
class). We further assume that the support set follows the same distribution as the query set. To address the
challenge of variable-length covariates, the classification block is built upon a Deep Sets architecture (Zaheer
et al., 2017). Figure 1 shows an overview of the architecture and training and evaluation mechanisms.

To summarize our main contributions: (I) We propose a method for meta-learning with possibly unrelated
tabular-data training tasks—an important setting that expands the application of meta-learning but has
rarely been investigated in the literature; (II) We propose the three-block architecture, allowing the model
to be pre-trained on a large variety of tasks, and then fine-tuned on an unrelated target task; we provide a
scenario in which our three-block architecture can perform well; (III) Described in Section 5, we design a
procedure to generate artificial tasks for pre-training, and empirically verify its effectiveness when testing on
real tasks. This provides a principled way to generate training tasks and alleviates the cost of collecting real
training tasks. (IV) We compare DEN with various existing FSL approaches on both simulated and real
tasks, showing improved performance in most of the tasks we consider.

2 Related Work

There are multiple generic techniques applied to the meta-learning problem in the literature (Wang et al.,
2020). The first camp learns similarities between pairs of examples (Koch et al., 2015; Vinyals et al.,
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2016; Bertinetto et al., 2016; Snell et al., 2017; Oreshkin et al., 2018; Wang et al., 2018; Sung et al., 2018;
Satorras & Estrach, 2018; Liu et al., 2019; Mishra et al., 2018). For an unlabeled example on a new task,
we use its similarity score with labeled examples of the given task for classification. The second camp of
optimization-based meta-learning aims to find a good starting point model such that it can quickly adapt
to new tasks with a small number of labeled examples from the new task. This camp includes different
variants of MAML (Finn et al., 2017; Lee & Choi, 2018; Finn et al., 2018; Grant et al., 2018; Rusu et al.,
2019) and Meta-Learner LSTM (Ravi & Larochelle, 2017). More recently, Lee et al. (2020; 2021) proposed to
learn task-specific parameters for the loss weight and learning rate for out-of-distribution tasks. Their use of
task-embedding is conceptually similar to DEN. The third camp is conceptually similar to topic modeling,
such as Neural Statistician (Edwards & Storkey, 2017) and CNP (Garnelo et al., 2018), which learn a task
specific (latent) embedding for classification. The final camp utilizes memory (Santoro et al., 2016; Kaiser
et al., 2017; Munkhdalai & Yu, 2017; Munkhdalai et al., 2018). Note that all the above methods assume that
all training and target tasks are related and share the same input space.

A closely related problem is Domain Generalization (DG) which estimates a functional relationship between
the input x and output y given data from different domains (i.e., with different marginal P (x)); see, e.g.,
Wang et al. (2021) and Zhou et al. (2021) for surveys. The core idea lies behind a large class of DG methods is
to learn a domain-invariant feature representation (see, e.g., Muandet et al., 2013; Li et al., 2018a;b; Shankar
et al., 2018; Shen et al., 2018), which aligns the marginal P (x) and/or the conditional P (y|x) distributions
across multiple domains. In a similar spirit, DEN first adapts to the task via the transformation block and
then learns a task-invariant representation via the task-independent embedding block.

Learning from heterogeneous feature spaces has been studied in transfer learning, or domain adaptation (Dai
et al., 2008; Yang et al., 2009; Duan et al., 2012; Li et al., 2014; Yan et al., 2017; Zhou et al., 2019); see Day &
Khoshgoftaar (2017) for a survey. These approaches only focus on two tasks (source and target), and require
the model to learn a transformation mapping to project the source and target tasks into the same space.

Unlike meta-learning and DG methods, DEN is applicable for tasks with heterogeneous covariates spaces. This
phenomenon is especially prevalent in tabular data tasks, where the number and definition of features could
be vastly different across tasks. Iwata & Kumagai (2020) is among the first works that combine meta-learning
with heterogeneous covariate spaces. Both their approach and DEN rely on pooling to handle variable-length
inputs, using building blocks such as Deep Sets (Zaheer et al., 2017) and Set Transformers (Lee et al., 2019).
There are several differences between their approach and DEN. Firstly, DEN uses a covariate transformation
block, allowing it adapt to new tasks more efficiently. Secondly, their model is permutation invariant in
covariates and thus restrictive in model expressiveness; while DEN does not have this restriction. Thirdly, we
also provide theoretical insights and justification for our model architecture design.

3 Notations

Let T1, . . . ,TM be M training tasks. For each training task T, we observe an i.i.d. sample DT =
{(xT,i, yT,i)}i∈[nT] from some joint distribution PT, where [n] = {1, . . . , n} and xT,i ∈ RdT is the covari-
ate vector of the i-th example and yT,i ∈ [LT] is its associated label. We denote this sample in matrix form
by (XT,yT), where the j-th column xjT ∈ RnT is the j-th covariate vector. We let XT,k be the covariate
sub-matrix corresponding to examples with label k for k ∈ [LT]. When the context is clear, we drop the
dependency on T for simplicity of the notation, e.g., we write XT,k as Xk.

Let S be a target task that is not contained in the training tasks. We are given a set of labeled examples
(XS,yS), where the sample size nS is small. We refer to it as the support set. The goal is to predict labels for
unlabeled examples in the target task, which is called the query set. We denote T = {T1, . . . ,TM ,S}.

4 Distribution Embedding Networks

We first describe the model architecture of DEN for binary classification in Section 4.1, and then extend
DEN for multi-class classification in Section 4.2. Finally, we provide insights into the model architecture and
justify its design in Section 4.3.

3



Published in Transactions on Machine Learning Research (11/2022)

Transform
(1)

Query batch

XA
T

yAT

Support batch

XB
T

yBT

ZAT

ZBT
Distribution
Embedding
(2) or (4)

sT

Deep Sets
Structured
Classifier
(3) or (5)
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Figure 2: Block diagram of DEN for binary classification. During pre-training, for each gradient step we
sample task T ∈ {T1, . . . ,TM} and two batches of data from the task (XA
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fine-tuning, we treat the support set as the support batch, using which to derive distribution embedding to
make predictions on the query set, treated as the query batch.

4.1 Model Architecture for Binary Classification

To describe the model architecture of DEN for binary classification (illustrated in Figure 2), consider data
(X,y) in a given task T. DEN can be decomposed into three major blocks: transformation, embedding and
classification. We will describe these blocks in this section.

Transforming covariates with task-dependent transformation block. We first transform the co-
variates via a transformation block, i.e.,

Z = c(X), (1)

where c : Rd → Rd is applied to each row. Specifically, we use a piecewise linear function1 (PLF) for each
covariate, i.e., c(x) = (c1(x1), . . . , cd(xd)). PLFs can be optionally constrained to be monotonic, which would
serve as a form of regularization during training (Gupta et al., 2016). Note that the transformation block is
task-dependent—its parameters need to be re-trained for each new task. The goal is that, after applying
the corresponding transformation to each task, the relatedness across tasks increases. In contrast, existing
meta-learning approaches usually do not have the transformation block and thus require the raw tasks to be
related. This is conceptually similar to Muandet et al. (2013), where they consider the domain generalization
problem and directly learn an invariant feature transformation by minimizing the dissimilarity across domains.
To the contrary, we incorporate this block into a larger architecture and learn it in an end-to-end fashion.

One may instead consider other architectures than PLFs for the transformation block. We choose PLFs
since they can implement compact one-dimensional non-linearities and can thus be fine-tuned with a small
support set. Moreover, they are universal approximators: with enough keypoints, they can approximate any
one-dimensional bounded continuous functions. In Section 5.3 we show that this PLF transformation is key to
ensure good performance when training and target tasks have heterogeneous covariate spaces. PLFs cannot
model interactions between covariates, which is a sacrifice we may have to make in light of the small support
set. We study in Section 5.3 the trade-offs between the flexibility of PLF and the size of the support set.

Summarizing task statistics with task-independent distribution embedding block. The second
block in DEN is to learn a vector that summarizes the task distribution. This is similar to Garnelo et al.
(2018). Naïvely, one could learn a non-linear transformation φ which embeds (z, y) into a vector of smaller
dimension. However, this would not work since the dimension of z can vary across tasks. In contrast, we
embed the distribution P (z, y) of a given task into a vector using the transformed features Z in the following

1See Appendix A for the precise definition.
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way. For all a, b ∈ [d], we derive a distribution embedding of P (za, zb, y) by

sa,b =
(
h(Za,b1 ), h(Za,b2 ),y

)
, (2)

where h is a vector-valued trainable function, and the average is taken with respect to the training batch
during training and support set during inference, i.e.,

h(Za,bk ) =
∑n
i=1 h(zai , zbi )1{yi = k}∑n

i=1 1{yi = k}
,

and y = 1
n

∑n
i=1 yi. Note that n is about 50 in our setting, so the empirical average is close to the population

counterpart. Intuitively, we decompose a variable-length feature vector z into smaller pieces of fixed length
2, and use the h function to learn a pairwise embedding sa,b for each pair of the 2 features a and b. This
pairwise decomposition allows us to handle variable-length covariates. Note that the same function h is
shared across all tasks, and it can be chosen as a few fully connected layers. The distribution embedding of
P (z, y) is thus the set of embeddings of all pairs s =

(
sa,b

)
a,b∈[d].

Remark 4.1. The length 2 here is arbitrary. We can use pieces of length r for any r ≥ 1, i.e., obtain an
embedding st1,...,tr of P (zt1,...,tr , y) for all t1, . . . , tr ∈ [d]. The larger r is the more expressive the model will
be. We refer to r as the dependency order , and experiment with different values in Section 5.3.

Prediction with task-independent classification block. Given a query x, we first transform it via
z = c(x), and decompose the transformed features into sets of feature pairs. We then obtain the distribution
embedding vector sa,b of each pair in (2). Finally, we obtain the predicted logits using a Deep Sets architecture
(Zaheer et al., 2017):

q = Φ(z, s) = ψ

 ∑
a,b∈[d]

ϕ
([
za,b, sa,b

]) , (3)

where ϕ is a vector-valued trainable function and ψ is a real-valued trainable function. Both ϕ and ψ are
shared across tasks and can be chosen as fully connected layers. The Deep Sets architecture, which aggregates
all possible pairs of covariates, is proven to be a universal approximator of set-input functions (Zaheer et al.,
2017). We note that one may use other set input architectures to construct the classification block, e.g., Set
Transformer (Lee et al., 2019).

4.2 Model Architecture for Multiclass Classification

For multiclass classification tasks, we modify the distribution embedding and classification blocks. Specifically,
we modify the distribution embedding in (2) as

sa,b = 1
n

n∑
i=1

h
([
zai , z

b
i ,v(yi)

])
, (4)

where v : N→ Rm is a vector-valued, trainable function that is shared across tasks—v(k) is hence a vector
encoding of class k—and h is a vector-valued trainable function with input dimension m+ 2.

For the classification block, we modify the idea of Matching Net (Vinyals et al., 2016), which is also similar to
the modification adopted by Iwata & Kumagai (2020). This modification is suitable for tasks with different
numbers of label classes. Let Φ̃ be Φ in (3) without the last layer, i.e., Φ̃(z, s) =

∑
a,b∈[d] ϕ([za,b, sa,b]) is the

penultimate layer embedding of the query set example. We then obtain its class scores by

qk =
∑n
i=1 Φ̃(z, s)>Φ̃(zi, s)1{yi = k}∑n

i=1 1{yi = k}
. (5)

Note that i in the above equation is the index of support set examples (n in total). The score qk can thus be
interpreted as the average dot-product of the penultimate layer embedding of the given query example with
the penultimate embedding of the support set examples of class k. To obtain class probability, we apply a
softmax on qk’s.

5



Published in Transactions on Machine Learning Research (11/2022)

4.3 Rationale for the Architectural Design

For further insights into the model architecture, consider the optimal Bayes classifier:

P (y = k | x) = P (x | y = k)P (y = k)∑L
l=1 P (x | y = l)P (y = l)

. (6)

For a given task, if the conditional probability P (x | y = k) belongs to the same family of distributions for all
k ∈ [L], i.e., x | y = k ∼ φ(x;θk), then the Bayes classifier can be constructed by estimating the parameters
θk and P (y = k), and approximating the density φ as

P (y = k | x) = φ(x; θ̂k)P̂ (y = k)∑L
l=1 φ(x; θ̂l)P̂ (y = l)

. (7)

If, additionally, P (x | y = k) belongs to the same family of distributions for all k ∈ [L] and also all tasks,
then the Bayes classifers for all tasks should have the same functional form; only the parameters θk and
P (y = k) differ by task. In this case, we can simply pool the data from all tasks together to estimate θk,
P (y = k) for each task, and the task-independent function φ.

However, the distribution family φ(x;θk) may vary greatly across tasks. The task-dependent transformation
block allows the transformed covariates to be in the same distribution family approximately. Then, we utilize
the distribution embedding block to estimate the parameters θk and P (y = k). If all transformed covariates
belong to the same distribution family, then the function form to estimate the parameters θk and P (y = k)
should be identical for all tasks, which justifies our use of a task-independent distribution embedding block.
Finally, we use the task-independent classification block to approximate the task-independent function φ and
obtain a score for each label. The effectiveness of DEN depends crucially on the ability of the transformation
block to align distribution families of covariates across tasks. We study in Section 5.3 the performance of
DEN in relation to the flexibility of PLFs.

Finally, since the covariate dimension can vary across tasks, we decompose the covariate vector into sub-vectors
of fixed length r and apply a Deep Sets architecture to these sub-vectors. In fact, Proposition 4.3 shows that
if we consider the following family of densities, then the Bayes classifier must be of the form (3).
Definition 4.2. Let {f(·;θ) : Rr → R} be a parametric family of functions (not necessarily densities). For any
integer d ≥ r, we say a function g on Rd admits an f -expansion if it factorizes as g(z) =

∏
t1:r∈[d]r f(zt1:r ;θt1:r ),

where {θt1:r ∈ Rτ} is a set of parameters.

For instance, if z|y = 1 ∼ Nd(µ, σ2Id), then the conditional density p(z|y = 1) is proportional to
d∏
a=1

1
σ

exp
(
− (za − µa)2

2σ2

)
,

which admits an f -expansion with r = 1 and θa = (µa, σ).
Proposition 4.3. Let (z, y) be a random vector in Rd × [L] following some distribution P . Assume that the
conditional density p(z|y = k) admits an f -expansion for some parametric family of functions {f(·;θ)} on Rr

with parameters {θt1:r
k }. Then there exist functions ψ and ϕ such that

P (y = k | z) ∝ ψ

 ∑
t1:r∈[d]r

ϕ(zt1:r ,θt1:r
k , πk)

 , (8)

where zt1:r = (zt1 , . . . , ztr ), πk = P (y = k), and ψ and ϕ only depend on f .

The proof is included in Appendix A. Note that our model (3) has exactly the same structure as the
optimal Bayes classifier in (8) with r = 2 and s representing the parameters {θt1:r

k } and marginal {πk}.
Proposition 4.3 shows that, under appropriate conditions, our model class is expressive enough to include the
optimal Bayes classifier. This justifies our choice of the distribution embedding (2) and the Deep Sets structure
(3). DEN will consequently performed well when learning across tasks whose conditional distributions of the
PLF-transformed feature admits the same f -expansion. Heuristically, this means DEN is ideally applied to
meta-learning settings in which features across tasks can be transformed to have a similar structure.

6



Published in Transactions on Machine Learning Research (11/2022)

Table 1: Overview of training and evaluation.
Step Input data Transform Embedding Classification
Pre-training Heterogeneous tasks {(xT,i, yT,i)}T,i Trained Trained Trained
Fine-tuning Support set {(xS,i, yS,i)}i Trained cS Fixed Fixed
Evaluation Query xS,q and support set {(xS,i, yS,i)}i Fixed cS Fixed Fixed

4.4 Training and Inference

Figure 2 shows a high level summary of our three-block model architecture. The overall training and
evaluation procedure is summarized in Table 1. Note that all sets of r inputs use the same h and ϕ functions
through parameter sharing, which reduces the size of the model. For DEN applied on tasks with d features,
the feature transformation block has O(d) parameters. An embedding block with embedding order r, L layers
and H hidden nodes per layer has rH +H2(L− 1) parameters. A classification block with L layers and H
hidden nodes per layer for both the ϕ and ψ functions has (r + 2)H + 2H2L parameters. This DEN model is
roughly of the same size as a 3L-layer deep H-node wide neural network. Empirically, we found that the
computational complexity and resource requirement of DEN are similar to those of Vinyals et al. (2016) and
Iwata & Kumagai (2020) given similar model sizes.

During pre-training, in each gradient step, we randomly sample a task T ∈ {Tt}Mt=1 and two batches A and B
from (XT,yT). These two batches are first transformed using PLFs in (1). We then use (2) or (4) to obtain a
distribution embedding sT, taking the average with respect to the examples in the support batch. Next, we
use the distribution embedding to make predictions on the query batch using (3) or (5). Note that during
training, sT is identical across examples within the same batch, but it could vary (even within the same task)
across batches.

If PLFs can approximately transform the covariates so that they admit the same f -expansion, then the rest of
the network is task-independent. Thus, after pre-training on {Tt}Mt=1, for each new task S, we can fine-tune
the transformation block (1), while keeping the weights of other blocks fixed. Because PLFs only have a small
number of parameters, they can be trained on a small support set from the task S.

During inference, we first use the learned PLFs in (1) to transform covariates in both the support set and
the query set. We then utilize the learned distribution embedding block to obtain sS, where the average in
(2) and (4) is taken over the whole support set. Finally, the embedding sS and PLF-transformed query set
covariates are used to classify query set examples using (3) or (5).

5 Numerical Studies

In Section 5.1, we use OpenML tabular datasets to demonstrate the performance of DEN on real-world tasks.
DEN achieves the best performance among a number of baseline methods. We then introduce in Section 5.2
an approach to simulate binary classification tasks, which allows us to generate a huge amount of pre-training
examples without the need of collecting real tasks. Surprisingly, DEN (and several other methods) trained
on simulated data can sometimes outperform those trained on real data. In Section 5.3, we examine the
performance of DEN in relation to different architecture and hyper-parameter choices. The findings are: (a)
PLF and fine-tuning are crucial when the training and test tasks are unrelated (e.g., when training tasks are
simulated), whereas their effect is insignificant when the tasks are similar, and (b) the performance of DEN is
relatively stable for small values of the dependency order r in Remark 4.1.

Baseline methods for comparison with DEN include Matching Net (Vinyals et al., 2016), Proto Net (Snell
et al., 2017), TADAM (Oreshkin et al., 2018), PMN (Wang et al., 2018), Relation Net (Sung et al., 2018),
CNP (Garnelo et al., 2018), MAML (Finn et al., 2017), BMAML (Finn et al., 2018), T-Net (Lee & Choi,
2018) and Iwata & Kumagai (2020). Hyperparameters of all methods are chosen based on cross-validation on
training tasks. Hyperparameters, model structures and implementation details are summarized in Appendix
B. Note that we set the dependency order r = 2 if it is not stated explicitly. For MAML, BMAML and T-net,
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Table 2: Average test AUC (standard error) and the percent of times that each method achieves the best
performance on 20 OpenML datasets × 20 repeats.

Method Average Test AUC (%) % Best
Matching Net 50.11 (0.04) 0.00%
Proto Net 71.11 (0.72) 27.50%
PMN 56.11 (0.65) 0.75%
Relation Net 51.65 (0.28) 0.25%
CNP 58.01 (0.69) 7.00%
Iwata & Kumagai (2020) 70.35 (0.70) 26.75%
MAML 60.64 (0.82) 7.00%
T-Net 52.22 (0.41) 0.5%
DEN 70.12 (0.83) 30.25%

we fine-tune the last layer of the base model for 5 epochs on the support set. For the rest of the methods, we
train them with episodic training2 (Vinyals et al., 2016). For methods that do not readily handle variable
length inputs, we randomly repeat features to make all tasks have the same length of inputs.

5.1 Results on OpenML Classification Tasks

5.1.1 Binary classification

We compare DEN with baseline methods on 20 OpenML binary classification datasets (Vanschoren et al.,
2013) following the setup in Iwata & Kumagai (2020) (see a list of datasets in Appendix C). These datasets
have examples ranging from 200 to 1,000,000 and features ranging from 2 to 25.

We pre-train DEN and baseline methods on the OpenML datasets in the leave-one-dataset-out fashion. That
is, for each of the 20 OpenML datasets chosen as a target task, we pretrain the models on the remaining 19
datasets. For the target task, we randomly select 50 examples to form the support set, and use the rest of
the dataset as the query set. We repeat the whole procedure 20 times, and report the average AUC and the
percentage that each method achieves the best performance in Table 2 based on 20 test sets × 20 repeats.
DEN has average AUC comparable with the best methods, and the highest frequency that it achieves the
best AUC. As a comparison, directly training task-specific linear models on the support set of each task gives
an average test AUC of 57.15%. Directly training an 1 hidden layer, 8 hidden nodes neural network on the
support set gives an average test AUC of 54.58%. With 2 hidden layers, AUC drops to 53.00% and with 3
hidden layers, 49.74%. DEN significantly outperforms those methods. These results demonstrate the effect
of over-fitting for classical methods on small data, and the benefit of DEN over classical methods on those
small-data problems. In Section 5.2, we will further describe an approach to generate binary classification
training tasks through controlled simulation. DEN trained on simulated tasks, surprisingly, outperforms DEN
trained on real tasks, and, in fact, achieves the best performance among all competing methods.

5.1.2 Multiclass classification

In addition to binary classification tasks, we also compare DEN with baseline methods on 8 OpenML
multi-class classification datasets. These datasets have examples ranging from 400 to 1,000,000, features
ranging from 5 to 23, and number of classes ranging from 3 to 7. We train DEN and baseline methods on
the OpenML datasets in the same leave-one-dataset-out fashion as in the binary classification. Results are
summarized in Table 3. DEN achieved the best performance, followed by Matching Net. We also compare
against directly training a neural network (NN) on the support set, which achieved decent accuracy. But
DEN remains the best methods in majority (61.6%) of cases.

2Code is available at https://github.com/google-research/google-research/distribution_embedding_networks.
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Table 3: Average test accuracy (standard error) and the percent of times that each method achieves the best
performance on 8 OpenML datasets × 20 repeats.

Method Average Test Accuracy (%) % Best
Direct NN 45.68 (1.56) 13.6%
Matching Net 46.36 (1.55) 13.8%
Proto Net 33.68 (1.80) 4.9%
PMN 24.77 (0.63) 0.0%
Relation Net 33.49 (1.82) 4.9%
CNP 18.77 (1.53) 1.1%
Iwata & Kumagai (2020) 24.93 (0.62) 0.0%
DEN 48.60 (1.51) 61.6%

5.2 Generate Training Tasks through Controlled Simulation

In this section, we describe an approach to generate binary classification pre-training tasks based on model
aggregation. Comparing to pre-training meta-learning models on related real-world datasets, which could be
expensive to collect, this synthetic approach can easily give us a huge amount of pre-training examples. We
will show that meta-learning methods trained with simulated data can, surprisingly, sometimes outperform
those trained with real data.

Specifically, we first take seven image classification datasets: CIFAR-10, CIFAR-100 (Krizhevsky, 2009),
MNIST (LeCun et al., 2010), Fashion MNIST (Xiao et al., 2017), EMNIST (Cohen et al., 2017), Kuzushiji
MNIST (KMNIST; Clanuwat et al., 2018) and SVHN (Netzer et al., 2011). On each dataset, we pick nine
equally spaced cutoffs and binarize the labels based on whether the class id is below the cutoff. This gives
nine binary classification tasks for each dataset with positive label proportion in {0.1, 0.2, . . . , 0.9}.

To generate covariates for each task, we build 50 convolution image classifiers of various model complexities
(details in Appendix B) on each of the 63 tasks to predict the binary label. We take classification scores
on the test set as covariates. With these covariates and associated labels, we construct 7× 9 = 63 binary
classification tasks {T1, . . . ,T63}. Essentially, they are model aggregation tasks since we are combining 50
classifiers to make a prediction. Note that the accuracy of those image classifiers ranges from below 0.6 to
over 0.99, giving rise to covariates ranging widely in their signal-to-noise ratios.

Finally, to augment training data, we apply covariate sampling during pre-training. In each pre-training step,
we first randomly sample an integer C ∈ {1, . . . , 50} and a task from the 63 aggregation tasks {T1, . . . ,T63}
described above. Then, among the 50 convolution image classifiers we built, we randomly pick C of them and
use their classification scores as covariates to construct a sub-task. Finally, DEN takes labeled examples from
this sub-task and uses them for training in this step. We shall emphasize that although training tasks are
built based on image classification datasets, we do not use raw pixel values as covariates in pre-training.

OpenML binary classification with simulated training tasks. To illustrate the effectiveness of our
data simulation approach, we use the models pre-trained on these data and evaluate them on the same 20
OpenML binary classification tasks in Section 5.1 after fine-tuning. Interestingly, as shown in Table 4, for 5
out of the 9 methods considered, pre-training on the simulated data gives us statistically significantly better
test AUC. This suggests that the proposed approach to generate training tasks is not only convenient but
also effective. Moreover, DEN pre-trained on the simulated data outperforms all methods (either pre-trained
on the simulated data or OpenML data) significantly.

5.3 Effect of Dependence Order, PLF, and Fine-tuning

We continue our examination of DEN with pre-training on simulated data. In addition to comparing DEN
with competing methods, we also study the performance of DEN in relation to its dependence order r, and
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Table 4: Average test AUC (standard error) and the percent of times that each method achieves the best
performance on 20 OpenML datasets × 20 repeats. The models are pre-trained on simulated data. We also
report the improvement in average test AUC compared to pre-training on OpenML data.

Method Average Test AUC (%) % Best Improv. in Test AUC (%)
Matching Net 53.88 (0.46) 0.00% 3.77 (0.46)
Proto Net 71.12 (0.65) 28.00% 0.01 (0.97)
PMN 59.04 (0.68) 1.25% 2.93 (0.94)
Relation Net 57.97 (0.59) 0.00% 6.32 (0.65)
CNP 60.95 (0.69) 2.50% 2.94 (0.98)
Iwata & Kumagai (2020) 66.01 (0.74) 11.50% -4.34 (1.02)
MAML 61.16 (0.66) 2.75% 0.52 (1.05)
T-Net 53.35 (0.46) 0.25% 1.13 (0.62)
DEN 74.13 (0.68) 53.75% 4.01 (1.07)

Table 5: Average test AUC (standard error) on Nomao and Puzzles data.

Method Nomao Puzzles
Matching Net 73.18 (2.23) 62.65 (1.45)
Proto Net 80.56 (0.56) 73.77 (0.37)
TADAM 82.42 (0.35) 74.86 (0.25)
PMN 77.00 (3.13) 57.69 (1.53)
Relation Net 52.32 (1.61) 63.73 (1.79)
CNP 91.40 (0.36) 53.20 (0.12)
Iwata & Kumagai (2020) 66.85 (3.23) 61.32 (0.52)
MAML 78.92 (2.22) 54.92 (0.54)
BMAML 47.20 (3.40) 53.49 (1.88)
T-Net 61.42 (3.44) 54.55 (1.78)
DEN w/o PLF w/o FT 59.01 (1.04) 68.87 (0.38)
DEN w/o FT 94.42 (0.16) 70.74 (0.62)
DEN 95.21 (0.10) 78.11 (0.53)

the use of PLF and fine-tuning. For DEN, we explore three options: 1) fine-tune the PLF layer for 10 epochs,
2) take the PLF layer directly from the last pre-training epoch without fine-tuning, or 3) do not include a
PLF layer in DEN and hence no fine-tuning at all.

5.3.1 Tasks with Heterogeneous Covariate Spaces

We study and demonstrate the importance of PLF when the training and test tasks are heterogeneous.
Specifically, we use all 63 simulated tasks described in Section 5.2 for pre-training, and test the performance
on two real datasets: Nomao and Puzzles. We give a short description of each dataset in Section C.

For each dataset, we repeat the whole procedure 20 times and report the average AUC and standard error in
Table 5. It is clear that DEN outperforms other baseline methods significantly. More importantly, the results
also show that fine-tuning and PLF greatly improve the performance of DEN. Since DEN is pre-trained
on simulated tasks which are completely unrelated to the target task, this improvement demonstrates the
importance of fine-tuning and PLF when the training and target tasks are heterogeneous.

We also examine the effect of the size of the support set on the flexibility of the covariate transformation
block. Figure 3 shows that with enough support set examples (e.g., Puzzles task), having more PLF keypoints
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Figure 3: Average test AUC versus the number of PLF keypoints on Nomao and Puzzles data.

Table 6: Average test AUC (standard error) of DEN on Nomao data with different dependency order.

r = 1 r = 2 r = 3 r = 4
94.38 (0.46) 95.21 (0.10) 93.80 (0.25) 92.61 (0.55)

r = 5 r = 6 r = 7 r = 8
93.16 (0.45) 91.22 (0.74) 88.95 (2.02) 89.15 (1.34)

benefits the test performance due to the improved ability of task-adaptation. However, if the support set is
small (e.g., Nomao task), having a flexible covariate transformation block could even be marginally harmful.

Finally, we conduct an ablation study to examine the effect of dependency order in Remark 4.1 on the test
AUC on the Nomao dataset. In particular, we examine DEN with r ∈ [8]. The results in Table 6 show that
when r ≤ 5, the test AUC is relatively stable, with the best performance achieved at r = 2; whereas the test
AUC is much worse and unstable for larger r.

5.3.2 Tasks with Homogeneous Covariate Spaces

We study the performance of DEN in the case when the training and target tasks are homogeneous. To
ensure the task homogeneity, we use the model aggregation tasks described in Section 5.2 for both training
and evaluation. Specifically, we use the 5× 9 = 45 tasks described in Section 5.2 derived from CIFAR-10,
CIFAR-100, MNIST, Fashion MNIST and EMNIST to train DEN and other meta-learning methods. We
then pick four test tasks from SVHN and KMNIST of different difficulties, where the average AUCs over 50
classifiers are 68.28%, 78.11%, 91.51%, and 87.58%, respectively. Note that the training and test tasks are
totally separated, but they likely follow similar distributions since the covariates for training and tests are all
classifier scores.

For each test task, we randomly select 100 sets of C classifiers among the 50 candidate classifiers, resulting in
100 aggregation sub-tasks. For each aggregation sub-task, we form a support set with 50 labeled examples
and a disjoint query set with 8000 examples. We repeat the entire training and fine-tuning process for 5
times, and report the average AUC and its standard error.

Table 7 shows the result of aggregating an ensemble of C = 25 classifiers. Table 8 shows the result where the
number of classifiers C to be aggregated is sampled uniformly from [13, 25] and could vary across sub-tasks
(100 aggregation sub-tasks × 5 repeats). To allow baseline methods to take varying number of covariates, we
randomly duplicate some of the C classifiers so that all inputs have 25 covariates.

We observe that DEN significantly outperforms other methods in all tasks, and that DEN without PLF
and/or without fine-tuning is statistically no worse than DEN with fine-tuning on the PLF layer. This
suggests that fine-tuning the PLF layer is not necessary when the data distribution is similar among tasks.
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Table 7: Average test AUC (standard error) when aggregating 25 classifiers.

Method Test AUC (%)
Task 1 Task 2 Task 3 Task 4

Matching Net 70.01 (0.40) 82.13 (0.05) 95.29 (0.06) 93.82 (0.08)
Proto Net 90.95 (0.05) 89.84 (0.03) 98.07 (0.01) 97.40 (0.02)
TADAM 90.98 (0.05) 89.90 (0.03) 98.14 (0.01) 97.57 (0.02)
PMN 86.78 (0.10) 88.69 (0.03) 97.46 (0.02) 96.22 (0.05)
Relation Net 85.39 (0.15) 88.70 (0.02) 97.25 (0.02) 95.55 (0.08)
CNP 86.53 (0.09) 88.80 (0.02) 97.50 (0.02) 96.22 (0.05)
Iwata & Kumagai (2020) 89.33 (0.05) 89.17 (0.02) 97.93 (0.01) 97.73 (0.02)
MAML 86.10 (0.11) 88.78 (0.03) 97.48 (0.02) 96.13 (0.06)
BMAML 71.38 (0.84) 85.96 (0.21) 97.04 (0.08) 95.39 (0.18)
T-Net 86.23 (0.10) 88.76 (0.03) 97.47 (0.02) 96.11 (0.06)
DEN w/o PLF w/o Fine-Tuning 91.53 (0.03) 90.18 (0.02) 98.03 (0.01) 98.37 (0.01)
DEN w/o Fine-Tuining 91.76 (0.03) 90.20 (0.02) 98.18 (0.01) 98.41 (0.01)
DEN 91.80 (0.03) 89.77 (0.02) 97.38 (0.01) 97.23 (0.01)

Table 8: Average test AUC (standard error) when aggregating variable number of classifiers.

Method Test AUC (%)
Task 1 Task 2 Task 3 Task 4

Matching Net 75.16 (0.37) 81.12 (0.08) 95.86 (0.04) 93.61 (0.08)
Proto Net 90.02 (0.11) 89.65 (0.04) 97.94 (0.02) 97.57 (0.02)
TADAM 90.20 (0.10) 89.74 (0.04) 98.04 (0.01) 97.84 (0.01)
PMN 85.68 (0.24) 88.59 (0.04) 97.30 (0.03) 95.83 (0.08)
Relation Net 80.85 (0.65) 88.53 (0.04) 97.11 (0.04) 95.03 (0.12)
CNP 84.97 (0.28) 88.71 (0.04) 97.31 (0.04) 95.96 (0.07)
Iwata & Kumagai (2020) 89.26 (0.16) 89.05 (0.03) 97.82 (0.02) 97.75 (0.02)
MAML 85.39 (0.23) 88.53 (0.04) 97.32 (0.04) 95.86 (0.08)
BMAML 59.57 (1.07) 85.40 (0.24) 96.73 (0.10) 94.53 (0.23)
T-Net 85.51 (0.22) 88.55 (0.04) 97.35 (0.03) 95.94 (0.07)
DEN w/o PLF w/o Fine-Tuning 91.06 (0.09) 89.92 (0.03) 98.09 (0.01) 98.24 (0.01)
DEN w/o Fine-Tuning 91.17 (0.09) 89.95 (0.03) 97.95 (0.01) 98.10 (0.01)
DEN 91.29 (0.03) 89.83 (0.02) 97.60 (0.03) 97.47 (0.01)

6 Conclusion

In this work, we introduce a novel meta-learning method that can be applied to settings where both the
distribution and number of covariates vary across tasks. This allows us to train the model on a wider range
of training tasks and then adapt it to a variety of target tasks. Most other meta-learning techniques do not
readily handle such settings. In numerical studies, we demonstrate that the proposed method outperforms a
number of meta-learning baselines.

The proposed model consists of three flexible building blocks. Each block can be replaced by more advanced
structures to further improve its performance. DEN can also be combined with optimization based meta-
learning methods, e.g., MAML. A limitation of DEN is that it requires calculating the embedding for dr
different combinations of covariates, which is infeasible for high-dimensional tasks. A potential solution is to
use a random subset of these combinations. We leave the exploration of these options for future work.
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