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Abstract

Long documents often exhibit structure with001
hierarchically organized elements of different002
functions, such as section headers and para-003
graphs. Despite the omnipresence of docu-004
ment structure, its role in natural language005
processing (NLP) remains opaque. Do long-006
document Transformer models acquire an in-007
ternal representation of document structure008
during pre-training? How can structural in-009
formation be communicated to a model after010
pre-training, and how does it influence down-011
stream performance? To answer these ques-012
tions, we develop a novel suite of probing tasks013
to assess structure-awareness of long-document014
Transformers, propose general-purpose struc-015
ture infusion methods, and evaluate the ef-016
fects of structure infusion on QASPER and017
Evidence Inference, two challenging long-018
document NLP tasks. Results on LED and019
LongT5 suggest that they acquire implicit un-020
derstanding of document structure during pre-021
training, which can be further enhanced by022
structure infusion, leading to improved end-023
task performance. To foster research on the024
role of document structure in NLP modeling,025
we make our data and code publicly available1.026

1 Introduction027

Long documents such as news articles, scientific028

papers, and clinical reports play a vital role in many029

human activities. These documents are usually030

organized into chapters, sections, subsections, and031

paragraphs, i.e. they are structured. This helps032

human readers to orient themselves in a document033

(Guthrie et al., 1991; Nguyen et al., 2021) and to034

build a mental model of the content (Taylor and035

Beach, 1984; Meyer et al., 1980). For example,036

when looking for the size of a dataset in an NLP037

paper, one would go via the "Experiments" section038

to the "Datasets" subsection (Fig. 1, bottom).039

1[repository link here], under MIT and CC-BY license.
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Figure 1: Transformer models receive unstructured text
as input (top right) – yet long texts exhibit structure (bot-
tom). We investigate whether Transformers learn rep-
resentations of document structure during pre-training
(§4), whether structure-awareness can be enhanced by
infusion after pre-training (§5), and what effects in-
fusion has on downstream task performance. Source:
QASPER (Dasigi et al. 2021 arxiv ID 1909.00694).

Although structure is omnipresent and useful 040

to humans, existing long-document Transformers 041

(e.g. Kitaev et al. 2020; Ainslie et al. 2020; Beltagy 042

et al. 2020; Ivgi et al. 2023) operate with linearized 043

textual input: a document is converted into a flat 044

string of characters, which removes the distinction 045

between different functional elements and their hi- 046

erarchy (Fig. 1, top right). 047

Understanding the structural capabilities of long- 048

document Transformers is important both theoreti- 049

cally and practically. From a theoretical standpoint, 050

prior work in probing has demonstrated the ability 051

of Transformers to learn syntactic representations 052

on the sentence level (Hewitt and Liang, 2019) 053

– yet little is known about their ability to induce 054

higher-level discourse structures from linearized 055

text. Probing methodology and datasets to sup- 056

port this line of investigation are missing. From 057

a practical perspective, recent works demonstrate 058
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that structure-aware modeling can improve down-059

stream task performance (Cao and Wang, 2022;060

Ruan et al., 2022; Zhang et al., 2022) – yet ex-061

isting studies are limited to the particularities of062

task-specific architectures and data formats, mak-063

ing it hard to generalize the findings to new tasks064

and document types. General-purpose methodol-065

ogy for communicating structural information to066

Transformer models is yet to be established.067

Our work aims to close this gap. Instead of068

comitting to the particularities of a specific doc-069

ument format, we build upon a task- and format-070

agnostic formalism of Intertextual graphs (ITG,071

Kuznetsov et al. 2022) to encode explicit docu-072

ment structure from the original documents. Us-073

ing this formalism, we (1) devise a novel suite of074

probing tasks to investigate structure-awareness075

of pre-trained Transformer models. We then (2)076

introduce a general-purpose structure infusion kit077

that allows communicating information about doc-078

ument structure to pre-trained Transformers, and079

(3) investigate the impact of document structure080

on end-task performance using two widely used081

long-document Transformer models – LED (Belt-082

agy et al., 2020) and LongT5 (Guo et al., 2022) –083

and two challenging long-document NLP datasets –084

QASPER (Dasigi et al., 2021) and Evidence Infer-085

ence (DeYoung et al., 2020). Our findings suggest086

that Transformers indeed acquire an implicit notion087

of document structure during pre-training, and that088

their structure-awareness can be enhanced via in-089

fusion, leading to up to 6.8 F1 points performance090

increase on downstream tasks. Our work lays the091

foundation for the systematic analysis of the role092

of document structure in long document modeling.093

2 Background094

Document structure. The term "structure" is095

used ambiguously for textual documents. Rhetor-096

ical structure is the hierarchical organization of097

semantic units, usually latent and not available for098

explicit processing. (Kintsch and van Dijk, 1978;099

Mann and Thompson, 1987). Abstract structure100

refers to the hierarchical organization of a text into101

elements such as sections, paragraphs, and lists2102

(Nunberg, 1990; Power et al., 2003). Concrete,103

or visual structure, includes aspects of typesetting104

such as font size, spacing and the location of textual105

2Power et al. (Power et al., 2003) also view phenomena
such as emphasis and quotation as parts of abstract document
structure. We do not consider them here, as they are rarely
preserved and not standardized.

elements in a typeset text, classically ordered into 106

pages (Power et al., 2003). In this work, we focus 107

on the study of abstract document structure as the 108

direct author expression of textual organization. 109

Long-document Transformers. The memory 110

and computational requirements of the standard 111

Transformer architecture (Vaswani et al., 2017) 112

scale quadratically with the input length, making 113

it hard to process long documents under compu- 114

tational constraints. Several innovations for in- 115

creased efficiency have been proposed, surveyed by 116

Tay et al. (2022). A popular and well-performing 117

approach is the combination local attention with a 118

varied distribution of global attention (Ainslie et al., 119

2020; Beltagy et al., 2020; Guo et al., 2022), used 120

by the top 5 models in the Scrolls benchmark for 121

long-document processing (Shaham et al., 2022)3. 122

We experiment with two representatives for this 123

approach: LED (Beltagy et al., 2020), which is em- 124

ployed in many recent works on long documents 125

(e.g. Dasigi et al. 2021; Cao and Wang 2022) and 126

LongT5 (Guo et al., 2022), the best available model 127

on the Scrolls leaderboard at the time of writing4. 128

Probing. To assess the internal representation 129

of document structure in Transformers, we utilize 130

probing tasks, i.e. diagnostic classification tasks 131

which investigate whether a linguistic feature is en- 132

coded in a representation, such as sentence length, 133

word content, syntax tree depth, and more (Con- 134

neau et al., 2018; Belinkov, 2022; Rogers et al., 135

2020). Early work on probing frequently employed 136

majority baseline or random initialized embeddings 137

to measure the encoded knowledge through the 138

delta. Control tasks were introduced as a better ap- 139

proximation of what a probing classifier is able to 140

learn in its own neural representation compared to 141

what linguistic features it can extract from the un- 142

derlying representations (Hewitt and Liang, 2019). 143

We follow this line of work by designing a novel 144

atomic control setting where we remove contextual 145

information. To measure contextual information 146

beyond a given span, we employ edge probing in- 147

troduced by Tenney et al., (2019). 148

Syntax trees have been shown to be encoded in 149

BERT (Hewitt and Manning, 2019), but the repre- 150

sentation of higher-order document structure has 151

not been investigated. For the first time, we show 152

3https://www.scrolls-benchmark.com/
leaderboard

4May 2023.
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that long-document Transformers internally repre-153

sent several aspects of document structure, and that154

this internal representation can be enhanced.155

Document structure in Transformers. Existing156

approaches that make use of document structure in157

Transformers broadly fall into two categories. In hi-158

erarchical processing (Zhang et al., 2022; Qi et al.,159

2022; Liu and Lapata, 2019; Ruan et al., 2022),160

complex, task specific architectures are built, from161

which results and analyses are hard to generalize.162

In structure infusion, additional structural informa-163

tion is added to pre-trained Transformer models.164

We employ the latter setting, because methods and165

models can be reused and analyzed more easily.166

Structure infusion through special tokens (Agha-167

janyan et al. 2022; Fisch et al. 2019), attention168

masks (Liu et al., 2021; Hong et al., 2022) absolute169

(Bai et al. 2021) or relative position embeddings170

(Cao and Wang, 2022) has been shown to improve171

downstream task performance. Here, we combine172

special tokens and position embeddings, as they173

only require changes at the input layer, making174

them easily transferrable to other transformer mod-175

els.176

3 Representing Structure177

A Title

B Abstract
C Paragraph -----------

D Section
E Subsection
F Paragraph ----------- ------
----------------

G Subsection
H Paragraph ----------- -----
------------------------
I Paragraph ----------- -------
----------

1

2

3

4
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B D ...

C G ...
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H I

b)

Node type
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Depthc)

Art-Title

ParagraphAbstract
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Figure 2: The document (a) is transformed into the
graph (b). Black lines show parent edges, blue arrows
show next edges. Parent edge direction is always top
to bottom. Arrowheads and next edges for nodes D to
I are omitted for clarity. Node depth (c) and node type
(d) information are infused in §5.

Formalism. We model the abstract structure of178

a document (Power et al. 2003, see §2) as an179

ordered graph G (Fig. 2) as in Kuznetsov et al.180

(2022), using their notation. The structural el-181

ements in a document such as section headings182

or paragraphs are represented as a set of typed 183

nodes NG. The node types correspond to the func- 184

tion of the element in the document. We consider 185

the types article-title, section-title, 186

abstract, and paragraph5. The set of typed, 187

directed edges EG encodes the hierarchical organi- 188

zation of the textual elements with parent edges 189

and the linear order with next edges. Node func- 190

tion and hierarchical organization can be seen as 191

orthogonal pieces of information that together fully 192

describe the abstract document structure. Current 193

Transformer models receive linear order informa- 194

tion via absolute or relative position embeddings, 195

but node function and hierarchical organization are 196

not explicitly input. 197

Data conversion. All datasets used in the present 198

work were converted to the intertextual graph (ITG) 199

format6 introduced in Kuznetsov et al. (2022), 200

which is a JSON representation of the graph data 201

structure introduced above. All our methods and 202

experiments are based on this format, and therefore 203

dataset agnostic, easily adaptable, and extensible. 204

4 Probing for Structure 205

4.1 Probing Suite Design 206

As the first step towards the systematic study of 207

the role of document structure in long document 208

processing, we propose a suite of seven probing 209

tasks that measure the ability of pre-trained Trans- 210

formers to capture structural information from their 211

input, described in Tab. 1. 212

All probing tasks are cast as classification and 213

evaluated via accuracy. Our implementation as- 214

sumes a model that computes vector representa- 215

tions of textual nodes. If a model has multiple 216

layers, node representations are computed as a 217

weighted scalar mix (Tenney et al., 2019) of the 218

representations from each layer. For tasks on node 219

pairs, the representations of two nodes are concate- 220

nated. Classification is implemented as a linear 221

layer projecting from the representation of a node 222

or a pair of nodes to the label space. Only the linear 223

layer and the scalar mix weights are updated during 224

training on the probing task. 225

5We do not consider sentences, as their borders often can-
not be extracted unambiguously from English texts.

6https://github.com/UKPLab/
intertext-graph
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Name Classification task Labels

Node type Type of nj with all nodes of type section and a
tree depth > 1 grouped as subsection[1].

Section,
subsection,
paragraph

Sibling Do nj and nk share the same parent np? Boolean
Ancestor Is nj on the parent path of nk and the root n0? Boolean
Position Position within an ordered set S for all nodes nj ∈

S with the same parent np.
Begin, inside,
outside

Parent predecessor Is np the parent of nj? Boolean
Tree depth Depth of nj from the root n0. Integer
Structural Shortest parent path between nj and nk. Integer

Table 1: Definitions of probing tasks and their labels. With nj,k,p,0 denoting nodes in the graph G. [1] Subsection
is a mixture of functional and hierarchical description, so it is not part of the node types defined in §3. It is added to
the node type probing task to increase the difficulty.

4.2 Experiments and Results226

Probing dataset. We instantiate our probing227

tasks with academic research papers from the open228

science platform F1000Research7, using the first229

version of each paper. Based on the pre-processing230

used for the F1000RD corpus (Kuznetsov et al.,231

2022) we convert each paper into the ITG format232

(Fig. 2). We remove all non-textual nodes8 and233

remove all papers exceeding the maximum input234

length of LED (16384 tokens) resulting in a prob-235

ing corpus of 2,499 documents. All probing tasks236

are balanced through downsampling on document237

basis, meaning that the label distribution is uniform238

in most cases (Tab. 3). For some probes, e.g. tree239

depth, not all labels occur in all documents, re-240

sulting in a non-uniform label distribution overall.241

Probing architecture. We compare probing of242

the "vanilla" LED and LongT5 encoders with two243

control configurations each: atomic and random.244

In the atomic control (Fig. 3), nodes are input to245

the model individually, i.e. without their document246

context. Comparing the vanilla and atomic configu-247

rations shows the effect of contextualization on the248

representation of structure. For the random control,249

all model weights except for the embedding layer250

are re-initialized randomly (Jawahar et al., 2019).251

It shows the effect of pre-training on the represen-252

tation of structure. Details on implementation and253

hyperparameters can be found in Appx. A.2.254

7https://F1000research.com, downloaded on
April 9th, 2021.

8For the node type probe we remove the document title
and abstract as well, as these occur once per document.

Results. In all probes except, LongT5 on 255

sibling, the accuracy of the vanilla and atomic 256

control is higher than the random control (Fig. 4). 257

This shows that LED and LongT5 learn to repre- 258

sent document structure during pre-training. In 259

several probes, the accuracy of the random control 260

is close to the vanilla model, implying that the in- 261

put token and position embeddings, which were 262

not re-initialized, contain much of the information 263

needed to solve the task. The scores of the atomic 264

control are lower than those of the vanilla configu- 265

ration on all probes, showing that contextualization 266

helps to represent document structure. 267

Vanilla LED and LongT5 achieve accuracies of 268

0.9 on some probes, e.g. node type, suggest- 269

ing that they are able to encode some aspects of 270

structural information well even without its explicit 271

input. It is surprising that the accuracy on the 272

sibling probe is far below that of parent 273

predecessor, because the information on the 274

parents of two nodes is enough to determine their 275

siblinghood. It seems that the combination of par- 276

ent information from the two nodes in a queried 277

pair is difficult. The structural probe can be 278

considered the most complex task, as it has the 279

most classes and nodes can be arbitrarily far apart 280

in the document graph. Thus, the large room for 281

improvement is expected. 282

We could show for the first time that long- 283

document Transformers can learn to represent doc- 284

ument structure, even though the models were not 285

explicitly trained for this. However, the representa- 286

tion of some aspects of structure is far from optimal. 287

In the following, we investigate whether structure 288

infusion, i.e. the input of additional, explicit infor- 289

4
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Figure 3: Probing classifier with the vanilla probing architecture encoding a full document (left) and the atomic
architecture encoding two nodes individually without any context (right).
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Figure 4: Probing of LED and LongT5 with atomic and random controls.

mation on document structure, improves the inter-290

nal representation of structure and if this translates291

to improvements on downstream tasks.292

5 Infusing Structure293

While previous work shows that the addition of294

structural information can improve the downstream295

performance of Transformer models (Liu and Lap-296

ata, 2019; Cao and Wang, 2022; Ruan et al., 2022),297

the use of task-specific architectures and document298

formats prevents the comparison of structure infu-299

sion methods across the studies, and makes it chal-300

lenging to relate this performance to the probing301

results. To remedy this, we introduce a task- and302

format-agnostic structure infusion kit, and demon-303

strate its wide applicability by studying the effects304

of structure infusion on LED and LongT5 and two305

challenging long-document tasks.306

5.1 Methodology 9307

Structure infusion. We infuse structural infor-308

mation through absolute position embeddings309

added to the token embeddings (indicated as emb,310

see Fig. 5) and special structural tokens that are311

prepended to the tokens of the corresponding node312

(tok). Both methods only modify the input layer313

of the Transformer and are therefore easily applica-314

ble to any Transformer model, irrespective of the315

implementation of self-attention.316

9We provide implementation details in Appx. A.3-A.6.

We infuse the two types of abstract structural 317

information that are missing in the input of com- 318

mon Transformer models (§3): node function and 319

hierarchical organization. Node function is infused 320

through embeddings and special tokens represent- 321

ing the node type (type). To infuse the hierarchi- 322

cal organization, special tokens and position em- 323

beddings represent the depth of a node in the graph, 324

i.e. its distance to the document root (depth). As 325

a baseline for structural tokens, we prepend each 326

node with the same separator token (sep). We 327

refer to the structure infusion configurations us- 328

ing their short descriptors, e.g. the combination 329

of node depth position embeddings and node type 330

tokens is shortened to emb-depth-tok-type. 331

Probing. The probing experiments were con- 332

ducted as described in §4 using the same probing 333

dataset, with the addition of structural information 334

in the input. We omit the atomic and random con- 335

trol in this section, because we are interested in 336

the capabilities of the configuration that is used for 337

downstream tasks. 338

Downstream task datasets. We selected 339

QASPER (Dasigi et al., 2021) and Evidence 340

Inference (DeYoung et al., 2020) by the following 341

criteria: they are based on long documents, abstract 342

document structure is available for all documents, 343

and several types of downstream tasks are covered, 344

to see possible differences in the effect of structure 345
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Figure 5: Structure infusion via special tokens and embeddings. Special tokens ("<Ti>", "<Ab>") are prepended
to the text of the corresponding node, embeddings are added to the token embeddings. The figure shows the
combination of hierarchical embeddings and node type special tokens, short description tok-type-emb-depth.
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Figure 6: Probing of structure-infused models. Bars show the difference in accuracy to the vanilla baseline.

infusion.346

QASPER is a collection of scientific papers347

from computational linguistics / NLP and corre-348

sponding questions with one or multiple answers349

with evidence. We model question answering as a350

generative problem and evidence selection as para-351

graph classification. Answer generation and evi-352

dence selection are evaluated with F1 scores using353

the evaluation script provided by the authors10.354

Evidence Inference is a dataset of reports from355

clinical studies, "prompts" in the form of interven-356

tion, comparator, and outcome, one or multiple357

labels for the prompt ("significantly increased",358

"significantly decreased", or "no significant dif-359

ference") and corresponding evidence spans. We360

model prompt answering as 3-way classification,361

and convert evidence span selection to node classi-362

fication by mapping evidence spans to nodes. As363

the authors do not provide an adaptable evalua-364

tion script, and for consistency with QASPER, we365

re-implemented evaluation, always choosing the366

annotation resulting in the highest score as gold367

standard. This means that we can only meaning-368

fully compare the models in our work.369

Fine-tuning. Models were fine-tuned on down-370

stream tasks for 10,200 steps with an effective371

10https://github.com/allenai/qasper-led-baseline

batch size of 8 in a multi task fashion. We report 372

mean test set results of 3 random seeds. 373

Pre-training. In all experiments in this section, 374

the models were pre-trained for 15,000 steps, with 375

an effective batch size of 16, with the respective 376

structure infusion configuration on the relevant 377

probing (F1000RD) or downstream task dataset 378

(QASPER or Evidence Inference), as we noted 379

this to be beneficial in early experiments (Guru- 380

rangan et al., 2020). "T5-style" denoising (Raffel 381

et al., 2020) was used as the pre-training task as 382

suggested in Xiong et al, (2022). 383

5.2 Probing of Structure-Infused Models 384

We see an improvement in all probes through struc- 385

ture infusion (Fig. 6). The node type and tree 386

depth probes show an accuracy of around 1 with 387

tree depth infusion, as this information suffices to 388

solve the tasks. Node type infusion does not lead 389

to perfect scores on the node type probe, as the 390

subsection node type is part of the probing task, but 391

not of the infusion (Tab. 1). 392

Except for LongT5 on sibling, the infusion 393

of node depth results in higher accuracy than 394

node type or node boundary information infused 395

on the same pathway. For the majority of LED 396

probes (sibling, position, tree depth, 397
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and structural), models with position embed-398

ding infusion show higher metrics than their coun-399

terparts with the same information in special to-400

kens, while for LongT5, the results are mixed.401

LED, based on BART (Lewis et al., 2020), is pre-402

trained from scratch with absolute linear position403

embeddings, which are added to the token em-404

beddings like our structural embeddings, while405

LongT5, based on T5 (Raffel et al., 2020), uses406

relative position embeddings. LED might therefore407

have a better capability to use the information from408

absolute embeddings.409

5.3 Structure infusion in Downstream Tasks410

QASPER For LED in answer generation, the411

emb-type-tok-depth configuration results in412

the best performance, with an improvement of 2.28413

F1 points over the vanilla configuration (Tab. 2).414

In evidence selection, emb-depth-tok-depth415

outperforms the vanilla configuration by 2.59 F1416

points. This is an improvement of 5.58 F1 points417

for answer generation and 14.04 F1 points for418

evidence selection over the LED state-of-the-art419

(SOTA) (Caciularu et al., 2022) on QASPER.420

The vanilla configuration already outperforms the421

SOTA by 3.30 and 11.45 F1 points, respectively.422

While it seems unintuitive that infusing the node423

depth through two pathways improves over a424

single pathway, this was also observed for the425

sibling, parent predecessor, and tree426

depth probes (Fig. 6).427

For LongT5, structure infusion through special428

tokens results in the highest scores. The best an-429

swer F1 of 46.76 with node type tokens improves430

the vanilla configuration by 0.87 points and is431

slightly higher than the current LongT5-base SOTA432

of 46.6 (Guo et al., 2022). In evidence selection, in-433

fusion of depth tokens increases the vanilla config-434

uration by 4.05 F1 points. To our knowledge, there435

are no reported scores for LongT5 on QASPER436

evidence selection.437

Evidence Inference For LED, the best per-438

formance in classification is obtained by the439

emb-depth-tok-type configuration, improv-440

ing 2.19 F1 points over the vanilla configuration.441

In evidence selection, emb-depth-tok-depth442

outperforms the vanilla baseline by 5.52 F1 points,443

but adding node separator tokens already leads to444

an increase of 5.26 F1 points.445

For LongT5, no structure infused vari-446

ant outperforms the vanilla configuration in447

classification, while in evidence selection, 448

emb-type-tok-type outperforms the base- 449

line by 6.84 F1 points. 450

Comparison of infusion configurations. In 451

most cases, adding node separator tokens improves 452

performance. This was expected, as it is common 453

practice to signify segment boundaries to models 454

(e.g. Beltagy et al. 2020) and could also be seen 455

in probing. For LED, the combination of position 456

embeddings and structural tokens exhibits the best 457

scores, which again resembles the probing results. 458

For LongT5, combining both infusion pathways 459

only results in the best scores on Evidence Infer- 460

ence evidence selection. Infusion via structural 461

tokens outperforms infusion via position embed- 462

dings for LongT5 on most subtasks. 463

The observed increases for LED of about 2 F1 464

points are similar to the reported performance in- 465

creases through document structure infusion on 466

other long-document datasets, showing that our 467

employed methods are effective. These works use 468

relative position embeddings (Cao and Wang, 2022) 469

or special attention patterns (Liu et al., 2021; Hong 470

et al., 2022), while we use structural tokens and 471

absolute position embeddings. Our methods are 472

easier to apply and adapt, as only the input to the 473

model needs to be modified. For LongT5, our ob- 474

served performance gains through structure infu- 475

sion of up to 6.84 F1 points suggest that this is a 476

promising research direction. 477

5.4 Correlation between Probing and 478

Downstream Tasks 479
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Figure 7: Pearson correlation between probing and
downstream tasks. * denotes significant correlation (p <
0.05).

To find aspects of document structure for which 480

the quality of representation is associated with 481

downstream task performance, we computed the 482
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LED LongT5
QAS EvI QAS EvI

Ans Evi Cla Evi Ans Evi Cla Evi

vanilla 36.80 42.05 74.30 61.55 45.89 52.09 81.54 70.39

tok-sep 37.35 42.54 75.17 66.81 45.54 54.12 81.08 75.92
tok-depth 36.24 41.90 74.60 64.19 46.60 56.14 80.90 76.88
tok-type 37.43 42.32 75.85 66.93 46.76 56.08 80.75 76.28
emb-depth 36.17 42.53 73.78 60.67 44.91 51.53 81.36 71.18
emb-type 36.03 42.92 74.71 61.05 46.37 53.89 80.86 68.91
emb-depth-tok-type 37.83 43.16 76.49 66.07 45.63 56.04 79.94 75.57
emb-type-tok-type 38.02 43.83 76.38 65.31 46.43 55.70 81.42 77.23
emb-type-tok-depth 39.08 44.41 75.30 64.58 44.72 55.60 80.71 75.86
emb-depth-tok-depth 37.74 44.64 76.34 67.07 45.33 54.27 80.98 75.96

Table 2: Downstream task results on test sets. All scores are F1 scores averaged over 3 runs with different random
seeds. Best result in column in bold, second best underlined. QAS: QASPER. EvI: Evidence Inference. Ans:
Answer F1. Evi: Evidence F1. Cla: Classification F1.

the Pearson correlation between probing and down-483

stream task metrics over all infusion configura-484

tions11 (Fig. 7). All combinations of probing and485

downstream tasks for LED, and evidence selection486

and all probing tasks for LongT5 have a correlation487

greater or around 0. In contrast, the performance488

of LongT5 on QASPER answer generation and Ev-489

idence Inference classification is mostly negatively490

correlated with the probing task metrics. These491

were also the tasks with the least improvements492

through structure infusion. As they are decoder-493

based tasks, while evidence selection is encoder-494

based (§A.5), it seems that LongT5 has less need495

for structure infusion on decoder-based tasks.496

For LED in both QASPER subtasks and Evi-497

dence Inference classification and for LongT5 in498

evidence selection on both Evidence Inference499

and QASPER, we see significant (p < 0.05)500

correlation with the ancestor and parent501

predecessor probes, which measure the repre-502

sentation of relations between nodes in one branch503

of the document tree. These usually have more504

defined semantic relationships among each other505

compared to nodes from different branches, e.g.506

a section heading has more relevant information507

about the paragraphs belonging to that section than508

about those in other sections. Our results suggest509

that better representation of these relations is asso-510

ciated with better downstream performance.511

11The absolute values from each set of bars in Fig. 6 were
paired with the unaggregated values from each column in
Tab. 2 for the same model.

6 Conclusion 512

In this work, we provided an in-depth analysis of 513

the representation of abstract document structure 514

in long-document Transformers. The experiments 515

with our novel probing suite show that LED and 516

LongT5 have learned to represent node function 517

and hierarchical organization through pre-training 518

without explicit supervision, but there is room for 519

improvement. 520

To investigate the effect of infusing the aspects 521

of document structure that are missing in Trans- 522

former inputs due to linearization, we developed 523

a modular structure infusion framework. Probing 524

shows that structure infusion enhances the internal 525

representation of document structure, and we see 526

performance improvements from structure infusion 527

on QASPER and Evidence Inference, two down- 528

stream tasks where this has not been shown before. 529

The significant correlation between several probing 530

and downstream tasks suggests that it is indeed the 531

improved representation of document structure that 532

leads to downstream task performance gains. 533

Our probing, structure infusion and downstream 534

task suite is easily extensible with new probing and 535

downstream tasks and other types of infused infor- 536

mation. Our probing methods are fully compatible 537

with the current generation of LLMs (Workshop, 538

2023; Touvron et al., 2023), as long as the inter- 539

nal states of the model can be accessed. Our work 540

paves the path towards systematic study of the role 541

of document structure in NLP. 542
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Ethical Considerations543

Long documents lie at the core of text work, and544

structure is omnipresent in long documents. We545

believe that developing a better understanding of546

the role of document structure in NLP would allow547

us to build more efficient, robust, and interpretable548

systems for the analysis of long texts. We envision549

a trade-off between structural modeling capabili-550

ties of NLP systems (which, as we show, can be551

enhanced by providing explicit document structure)552

and the computational and storage overhead associ-553

ated with processing additional structural informa-554

tion in the documents. Future work would inves-555

tigate this trade-off and determine in which cases556

this overhead is justified. As document structure is557

openly present in documents and easily accessible558

by humans, we do not envision additional ethical559

risks or misuse scenarios due to the use of docu-560

ment structure in NLP modeling. Our work only561

uses data published under permissive licenses; our562

adaptations of this data are made available under563

permissive conditions as well.564

Limitations565

We see our work as an important step towards the566

general study of the role of document structure in567

NLP modeling. Below we outline the limitations568

of our work, which present excellent opportunities569

for follow-up research.570

Dataset diversity. Our work unifies structured571

document data from multiple sources. Yet all of this572

data originates form the scientific domain. There573

are several benefits to this: scientific documents574

are long, clearly licensed, and exhibit structure575

– and the scientific domain offers multiple long-576

document processing tasks. In addition, focusing577

on one general domain allows us to control for578

domain shift during our measurements. We note579

that no part of our methodology is tailored to the580

particularities of the scientific domain – and as581

long as source documents can be converted into582

the domain-agnostic ITG formalism, our methods583

should be easily adaptable to other domains like584

Wikipedia. Similarly, we limit our studies to the585

English language, as other languages face scarcity586

both in terms of available long-document Trans-587

former models and academic texts. As more data588

and models become available, it will become possi-589

ble to evaluate our findings in new contexts.590

Large language models. While it would be591

technically possible to apply our kit to the recent592

decoder-only models such as LLaMA (Touvron 593

et al., 2023) or BLOOM (Fan et al., 2022), this 594

would require substantial computational resources 595

– which illustrates the challenges of long-document 596

processing by modern NLP models and does not 597

constitute a limitation of our proposed approach. 598

Similarly, commercially hosted models with in- 599

creased input length such as GPT-412 (32k tokens) 600

and Claude 13 (100k tokens) could be evaluated 601

and infused with document structure – yet their 602

closed-source nature and lack of access to model 603

weights prevents such investigation. We hope that 604

the progress in efficient NLP and the ongoing open- 605

source LLM development make such studies possi- 606

ble in the near future. 607

Correlated model states. The structure-infused 608

models in this work were first pre-trained using a 609

language modeling loss on probing or downstream 610

task data, and then further fine-tuned using a task- 611

specific loss. The probing and downstream task 612

datasets in our work are not identical; thus, strictly 613

speaking, the scores used to compute the correla- 614

tion in Fig. 7 come from models with the same 615

structure infusion configuration, but not the same 616

state. We believe this to be unproblematic and ex- 617

pect the states to be comparable, since each model 618

is pre-trained under the same regime. To confirm 619

this, future work could create probing datasets from 620

downstream task datasets to use the same model 621

state in probing and downstream tasks – at the cost 622

of a drastic increase in the number of probing ex- 623

periments. This technical limitation only pertains 624

to §5.4 and Fig. 7 and leaves all other results unaf- 625

fected. 626
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A Implementation Details 925

A.1 Models 926

In all experiments, we used the huggingface Trans- 927

formers14 (Wolf et al., 2020) implementations and 928

weights of LED base (162M parameters, Beltagy 929

et al. 2020) and LongT5 base with transient global 930

attention (220M parameters, Guo et al. 2022). 931

A.2 Probing 932

Dataset. Our probing dataset is split 0.6/0.2/0.2 933

across train, dev, and test using in-document bal- 934

ancing. For boolean and the position probe we 935

see a uniform distribution of instances per label, 936

compared to the node type probe where sub- 937

sections occur not in all documents, resulting in a 938

non-uniform distribution. The structural and 939

tree depth probes naturally feature a diverse 940

set of labels and instances. A full overview of the 941

label distribution can be found in Tab. 3. 942

Implementation and hyperparamenters. Our 943

probing kit is implemented using the AllenNLP 944

library (Gardner et al., 2018). We stack a frozen 945

pre-trained Transformer model with an endpoint 946

span extractor from AllenNLP, extracting and con- 947

catenating the first and last token of a given span. 948

Our hyperparameters are described in Tab. 4. 949

Layer utilization. The layer utilization shown 950

in Fig. 8 reveals differences between the probed 951

models and their controls. For LED, the vanilla con- 952

figuration shows a more uniform layer utilization 953

compared to the control configurations. The atomic 954

control puts more weight on the last layer for all 955

probes except node type and tree depth. 956

For LongT5, both vanilla and atomic put all weight 957

on the last layer. For LED and LongT5, the ran- 958

dom control mostly uses the first layer, which has 959

also been observed in other works (Voita and Titov, 960

2020). The random control relies solely on the 961

input embeddings, as there is no additional infor- 962

mation in the Transformer layers. Input words such 963

as "Introduction" and the number of tokens in a 964

text node can be used to infer the node type. Node 965

type and word overlaps between two nodes can 966

give hints to the relation between two nodes. With 967

LongT5, the intermediate layers are not used at all. 968

14https://huggingface.co/
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Figure 8: Layer utilization in probing of the vanilla LED and LongT5 models.

As the atomic control cannot compare the posi-969

tion embeddings of different nodes, it makes full970

use of the contextualization through the entire for-971

ward pass. To solve the node type task, the972

length of a node provides useful information. It973

is retained in the atomic position embeddings, ex-974

plaining the more uniform layer utilization on this975

probe. The random control puts most weight on976

the the first layer, which has also been observed977

in other works (Voita and Titov, 2020). It relies978

on the input embeddings, as there is no additional979

information in the Transformer layers.980

A.3 Structure Infusion981

Embeddings. Structural embeddings are added982

to the token embeddings of each token in a node983

(including special tokens) before the first encoder984

self-attention layer (Fig. 5). They were initialized985

according to a Gaussian distribution with mean 0986

and standard deviation 0.0305 (LED) and 4.875987

(LongT5). Standard deviation for LED was chosen988

to be the same as the standard deviation of the abso-989

lute linear position embeddings matrix. As LongT5990

does not have absolute position embeddings, the991

standard deviation for structural embedding initial-992

ization was chosen to result in the same ratio of993

token embedding standard deviation to structural994

embedding standard deviation as for LED.995

Special tokens. Special tokens are prepended996

to the tokens of the respective node, lead-997

ing to an increase in total sequence length998

(Fig. 5). They were initialized using the999

resize_token_embeddings() function in1000

the model implementation.1001

Number of added parameters. For the num-1002

ber of added parameters for each infusion config-1003

uration see Tab. 6. Each special token and each1004

embedding adds dmodel parameters to a model 1005

(dLED = dLongT5 = 768). There were 4 structural 1006

tokens / embeddings and 20 node depth tokens / 1007

embeddings. 1008

A.4 Pre-Training 1009

All structure infused models and baselines were 1010

pre-trained on the respective probing or evalu- 1011

ation dataset using a "T5-style" denoising task. 1012

Noise was added to the model input using 1013

code provided by the authors of the T5 (Raf- 1014

fel et al., 2020) paper15, which replaces spans 1015

of tokens in the input with numbered mask to- 1016

kens. The mask tokens were initialized using the 1017

resize_token_embeddings() function in 1018

the model implementation. Masking is controlled 1019

by two hyperparameters: noise density, the propor- 1020

tion of masked tokens in the input, and mean noise 1021

span length. We chose the noise density as 3%, the 1022

mean noise span length was uniformly chosen for 1023

each input sequence from 4, 8 or 12 tokens. 1024

The model is trained with a cross entropy loss 1025

to generate each mask token followed by the to- 1026

kens replaced by that mask, respecting the order 1027

of masked spans. To save computation, only one 1028

checkpoint was pre-trained for each combination 1029

of model, infusion configuration and dataset. This 1030

checkpoint was used in all replicates of a down- 1031

stream experiment. 1032

Training hyperparameters For training hyper- 1033

parameters, see Tab. 6. 1034

The only optimized hyperparameter is the learn- 1035

ing rate, which was done by grid search with the 1036

respective non-pretrained vanilla configuration on 1037

the QASPER dataset. 1038

15https://github.com/google-research/
text-to-text-transfer-transformer
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Label Dev Test Train

Anc False 7665 7999 23488
True 7665 7999 23488
Total 15330 15998 46976

Nod Paragraph 2353 2369 7046
Section 2278 2298 6708
Subsection 1250 1262 3611
Total 5881 5929 17365

Par False 7665 7999 23488
True 7665 7999 23488
Total 15330 15998 46976

Pos Begin 3049 3180 9406
End 3049 3180 9406
Inside 3049 3180 9406
Total 9147 9540 28218

Sib False 7665 7999 23488
True 7665 7999 23488
Total 15330 15998 46976

Str 1 2939 3044 8946
2 2939 3044 8946
3 2939 3044 8946
4 2912 3018 8823
5 1840 1926 5560
6 985 1124 3161
7 - 10 5
8 - - 5
Total 14554 15210 44392

Tre 1 2892 2895 8642
2 2892 2895 8642
3 1634 1639 4872
4 - 3 1
5 - - 1
Total 7418 7432 22158

Table 3: Label distribution across probing tasks. Anc:
Ancestor; Nod: Node type; Par: Parent
predecessor; Pos: Position; Sib: Sibling;
Str: Structural; Tre: Tree depth.

Training
Batch size 4 (VR), 64 (AT)
Epochs 20
Patience 10

Optimization
Algorithm Adam (Kingma and Ba, 2015)
β1, β2 0.9, 0.999
ϵ 10−8

Weight decay 0.01
Learning rate 10−3(LED), 10−1(LongT5)

Table 4: Vanilla and random (VR), and atomic (AT)
configuration hyperparameters.

Config nparameters

tok-type 3K
emb-type 3K
tok-depth 15K
emb-depth 15K

Table 5: Number of added parameters in structure infu-
sion

Masking
Noise density 3%
Mean noise span length [4,8,12]*

Training
Batch size 16 (PT), 8 (FT)
Steps 15000 (PT)

10200 (FT)
Optimization

Algorithm AdamW [1]
β1, β2 0.9, 0.999
ϵ 10−8

Weight decay 0.01
Learning rate 10−5 (LED)

10−4 (LongT5)
Warmup Linear (PT), - (FT)
Warmup steps 500 (PT), - (FT)

Table 6: Pre-training (PT) and fine-tuning (FT) hyper-
parameters. *: Mean noise span length is chosen uni-
formly from the given values for each input sequence.
[1] Loshchilov and Hutter 2019
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1039

A.5 Downstream Tasks1040

A.5.1 QASPER1041

Dataset conversion. Each entry in the QASPER1042

dataset (Dasigi et al., 2021) consists of a paper title,1043

abstract, full text in the form of a list of sections1044

with section name and corresponding paragraphs,1045

a list of figures and tables, as well as a list of ques-1046

tions, answers and evidence. We converted the1047

QASPER dataset into the Intertext Graph (ITG)1048

format (Kuznetsov et al., 2022) creating a node1049

for the title, abstract, each section title and each1050

paragraph, as well as figures and tables. We added1051

an additional abstract node with the content1052

"Abstract" to serve as the parent for the abstract1053

text.1054

All answer types (extractive, abstractive, yes/no,1055

unanswerable) were mapped to a single reference1056

answer string for each question as done by the1057

dataset authors. The provided evidence strings1058

were mapped to the ITG nodes through string1059

matching, which which was successful for 99.35%1060

of evidence pieces from the original dataset. For1061

0.41%, there was no match, and for 0.24% there1062

were multiple matches, which were discarded.1063

Questions, answers and evidence are stored in the1064

ITG metadata. We follow the original data splits,1065

resulting in 888 train, 281 validation and 416 test1066

documents.1067

Model input. For LED, model input was formed1068

as "<s> [question] </s> [document]".1069

For LongT5, the initial <s> token was not used, as1070

it is not pre-trained with this token. Figures and1071

tables were discarded for model input.1072

Evaluation. QASPER evaluation was imple-1073

mented by adapting the evaluation script provided1074

by the creators of the dataset16. If there are mul-1075

tiple reference answers to a question, the answer1076

that results in the highest score is chosen as the1077

gold standard. Answer generation is evaluated with1078

a token-level F1 score as in SQuAD (Rajpurkar1079

et al., 2016). Evidence selection is evaluated with1080

a node-level F1 score.1081

Answer generation. Answers were generated1082

with beam search, using 4 beams, length penalty1083

1.0 and a maximum generated length of 100 tokens.1084

16https://github.com/allenai/
qasper-led-baseline

Evidence selection. Evidence selection was im- 1085

plemented as paragraph classification. There can be 1086

multiple evidence paragraphs for a question. The 1087

final encoder hidden state h of the first token of 1088

each paragraph node in a document is used as 1089

the representation for the paragraph. This vector 1090

is passed through a fully connected linear layer 1091

W1 followed by a tanh nonlinearity and a linear 1092

layer W2 projecting to the score vector s ∈ R2 for 1093

evidence and no-evidence. 1094

s = W2 tanh(W1h), W1 ∈ Rd×d, W2 ∈ Rd×2

(1) 1095

Fine-tuning. Models pre-trained as described 1096

above on the QASPER train documents were fine- 1097

tuned on with the hyperparameters given in Tab. 6. 1098

Answer generation and evidence selection were 1099

trained with cross entropy loss: 1100

L = wALAnswer + wELEvidence (2) 1101

For LED and LongT5 the loss weights were set to 1102

wA = wE = 0.5. The checkpoint with the best 1103

score on the dev set was used for evaluation. 1104

A.5.2 Evidence Inference 1105

Dataset conversion. Evidence Inference 2.0 1106

(DeYoung et al., 2020) is provided as sets of arti- 1107

cles, prompts and labels with evidence. The article 1108

full texts are provided as plain text files and NXML 1109

files following the PubMed DTD schema17. We 1110

used the parser from the dataset creators18 to parse 1111

the NXML files, and converted the output to the 1112

ITG format. We added an additional abstract 1113

node with the content "Abstract" to serve as the 1114

parent for the abstract text. 1115

Evidence annotations are given as character off- 1116

sets pertaining to the articles in plain text format. 1117

We transform this span selection problem to a node 1118

classification problem by mapping evidence strings 1119

to ITG nodes. Evidence text at a given offset is 1120

extracted from a text file and then matched against 1121

ITG nodes using fuzzysearch19. Full string match- 1122

ing resulted in low recall, because of small dif- 1123

ferences between the plain text files and NXML 1124

files. For 92.03% of evidence spans, we find ex- 1125

actly one ITG node, for 5.10% we find no node, 1126

17https://pubmed.ncbi.nlm.nih.gov/
download/

18https://github.com/jayded/
evidence-inference

19https://github.com/taleinat/
fuzzysearch
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and for 2.07% we find more than one node, which1127

are discarded. The prompts, labels and evidence1128

for a document are stored in the ITG metadata. We1129

follow the original data splits, resulting in 35621130

train, 443 validation and 449 test documents.1131

Model input. For LED, model input1132

was formed as "<s> With respect1133

to [outcome], characterize the1134

reported difference between1135

patients receiving [intervention]1136

and those receiving [comparator].1137

</s> [document]". For LongT5, the initial1138

<s> token was not used, as it is not pre-trained1139

with this token.1140

Evaluation. Evidence Inference classification is1141

evaluated with macro F1 score. Evidence selection1142

is evaluated with a node-level F1 score. If there are1143

multiple annotations to a prompt, the annotation1144

that results in the highest score is chosen. We chose1145

to implement the evaluation similar to QASPER1146

evaluation for consistency, and thus different from1147

the implementation by the creators of the dataset.1148

The main differences are (1) the conversion of ev-1149

idence selection to a node classification task and1150

(2) choosing the classification annotation that re-1151

sults in the highest score, where in the original1152

implementation the class with the highest number1153

of annotations is chosen as the gold standard.1154

Classification. To get the class of a prompt-1155

document pair, a vector representation v of the1156

document is passed through a fully connected layer1157

M1, followed by a tanh nonlinearity and a linear1158

layer M2 projecting to the score vector l ∈ R.1159

l = M2(tanh(M1(v))), M1 ∈ Rd×d, M2 ∈ Rd×3

(3)1160

For LED, v was chosen as the final encoder hidden1161

state of the initial <s> token, because it has global1162

attention. As LongT5 does not have configurable1163

global attention, a dummy </s> token was input1164

to the decoder, which has full cross attention over1165

the input document. The final decoder hidden state1166

of this token served as v for LongT5.1167

Evidence selection. Evidence selection was im-1168

plemented as for QASPER (§A.5.1).1169

Fine-tuning. Models pre-trained as described1170

above on the Evidence Inference train documents1171

were fine-tuned with the hyperparameters given in1172

Tab 6. Classification and evidence selection were1173

trained with cross entropy loss: 1174

L = wCLClassification + wELEvidence (4) 1175

For LED, the loss weights were set to wC = 1176

wE = 0.5. For LongT5, they were set to wC = 1177

0.25, wE = 0.75. The checkpoint with the best 1178

score on the dev set was used for evaluation. 1179

A.6 Computation 1180

Experiments were performed on NVIDIA A100, 1181

A180 and A6000 GPUs. Depending on the GPU 1182

size and speed, pre-training, probing (all 7 tasks) 1183

and downstream task experiments took 1-2 days. 1184

Estimating an average of 1.5 days per experiment, 1185

the total number of GPU days is 264 (26 probing 1186

runs, 30 pre-training runs, 120 downstream fine- 1187

tuning runs). 1188
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