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Abstract—Sparse time-frequency (T-F) analysis has been stud-
ied to obtain localized T-F representations of a signal. Among
various methods, optimization-based methods (e.g., basis pursuit)
offer flexibility in designing T-F representations by designing the
objective function. In particular, the convex-optimization-based
method that imposes a specified structure on the magnitude
of a T-F representation has realized T-F analysis tailored for
specific applications. However, the conventional method uses
the PDS (primal-dual splitting) algorithm, which is known to
require many iterations in some cases. In this paper, we propose
applying ADMM (alternating direction method of multipliers)
with acceleration techniques to reduce the number of iterations
required for obtaining structured sparse T-F representations.
Experiments show that the proposed algorithm can obtain the T-F
representation much faster than the conventional PDS algorithm.

Index Terms—Structured sparsity, convex optimization, per-
spective function, Nesterov acceleration, optimal step-size.

I. INTRODUCTION

Time-frequency (T-F) analysis is an indispensable tool in
acoustic signal processing [1], [2]. Among various approaches
for T-F analysis, the discrete Gabor transform (DGT) is widely
used owing to its simplicity and good performance. Let DGT
of a signal s ∈ RL using a window w ∈ CL be defined as

x[m,n] =

L−1∑
l=0

s[l]w[l − an] e−2πiml/M , (1)

where L ∈ N is the signal length, n = 0, . . . , N − 1 and
m = 0, . . . ,M − 1 are the time and frequency indices,
respectively, N,M ∈ N are the number of time and frequency
bins, respectively, and a ∈ N is the time step of DGT. In
this paper, we shortly write Eq. (1) as x = Gws, where x
is the vectorized version of the left-hand side of Eq. (1), and
Gw[m+ nM, l] = w[l − an] e−2πiml/M .

A T-F representation obtained by DGT exhibits spread due
to the windowing. To suppress spread and obtain a localized
representation, sparse-optimization-based methods have been
studied. These methods can promote a certain structure in
T-F representations by choosing a proper prior. The simplest
convex method is minimization of the ℓ1-norm of the repre-
sentation under the perfect reconstruction constraint [3]–[6]:

min
x

∥x∥1 s.t. G†
wx = s, (2)

where G†
w is the pseudo-inverse of Gw. There are many other

functions available for inducing desired structures [7]–[15].
In acoustic applications, it is often assumed that the magni-

tude of a T-F representation exhibits a specific structure across

T-F bins, such as piecewise smoothness or being approxi-
mately low-rank [16], [17]. When imposing such structures
on the magnitude, direct formulation results in a nonconvex
problem, so optimization algorithms may get stuck in a local
minimum. To resolve this issue, a convex optimization frame-
work has been proposed for structured sparse T-F representa-
tions [18]. However, this framework uses the PDS (primal-dual
splitting) algorithm to solve the optimization problem, which
is known to require many iterations in some cases [19].

In this paper, we propose an ADMM (the alternating di-
rection method of multipliers) algorithm [20] for structured
sparse T-F analysis and apply some acceleration techniques
[21]–[23] to it. As indicated by the experimental results, the
proposed algorithm can obtain structured sparse T-F represen-
tations much faster than the conventional PDS algorithm. Our
main contributions are summarized as follows: (i) deriving an
ADMM algorithm tailored for structured sparse T-F analysis;
(ii) incorporating acceleration techniques into the ADMM
algorithm; and (iii) evaluating effectiveness of the proposed
algorithms by qualitative and quantitative experiments.

II. STRUCTURED SPARSE T-F ANALYSIS
VIA CONVEX OPTIMIZATION

The magnitude spectrogram of an acoustic signal has spe-
cific structure across T-F bins. For example, most acoustic
signals change continuously over time, resulting in piecewise
smoothness of the magnitude spectrograms. Moreover, for
harmonic instruments, they often exhibit an approximate low-
rank property. Given these properties, it is desirable to obtain
sparse T-F representations that reflect these structures.

To achieve this, a convex optimization framework has been
proposed in [18]. It realizes structured sparse T-F representa-
tions by solving the following convex optimization problem:

min
(x,σ)

φ(x,σ) + λψ(Bσ) + ιC(x), (3)

where ψ : RJ → R∪{+∞} is a proper lower-semicontinuous
convex function, B ∈ CJ×MN is a matrix, λ > 0 is a
regularization parameter, ιC is the indicator function (i.e.,
ιC(x) = 0 if x ∈ C; ιC(x) = +∞ otherwise) of the set
C = {x ∈ CMN | G†

wx = s} that satisfies the perfect
reconstruction condition of the signal. φ is a convex function
defined for a pair (x,σ) ∈ CMN × RMN given by

φ(x,σ) =

MN∑
k=1

ϕ(xk, σk), (4)
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and ϕ : C× R → R+ ∪ {+∞} is the perspective function of
(| · |2 + 1)/2 [24], [25] defined by

ϕ(xk, σk) =


|xk|2
2σk

+ σk

2 (σk > 0),

0 (xk = 0 and σk = 0),

+∞ (otherwise).

(5)

By selecting ψ and B, the structure induced by ψ ◦ B is
reflected in the magnitude. Some examples are given below.

Example 1. Structures induced by ψ ◦B in Problem (3).

1) Total variation: Let D2D be the two-dimensional differ-
ence operator and ∥ · ∥2,1 be the mixed ℓ2,1-norm. By
setting ψ = ∥·∥2,1 and B = D2D, ψ◦B = ∥D2D(·)∥2,1
represents total variation, inducing piecewise smooth-
ness of the magnitude [26].

2) Low-rank: Setting ψ = ∥ · ∥∗ and B = I induces an
approximate low-rank property [27] of the magnitude,
where I denotes the identity operator and the nuclear
norm ∥ · ∥∗ treats the vector σ ∈ RMN as an M × N
matrix.

3) Harmonic enhancement: Setting ψ = ∥ · ∥2,1 and
B = FD2D enhances the harmonic structure of the
magnitude [28], where F denotes the unitary discrete
Fourier transform (DFT) in the frequency direction.

III. PROPOSED METHOD

Conventionally, Problem (3) was solved by the PDS al-
gorithm (see [18]), which often requires a large number of
iterations. Here, we propose the standard ADMM algorithm
[20], and then introduce its acceleration in the next section.

A. Derivation of ADMM Algorithm

Using auxiliary variables, Problem (3) can be rewritten as

min
(x,σ,χ,η,z,ξ)

φ(χ,η) + λψ(z) + ιC(ξ)

s.t. χ = x, η = σ, z = Bσ, ξ = x,
(6)

where x,χ, ξ ∈ CMN , σ,η ∈ RMN , and z ∈ CJ . Let

A =

[
I I O O
O O BT I

]T
, ν =

[
x
σ

]
, ω =

[
χT ξT zT ηT

]T
,

where O is a zero matrix with the proper size, and functions
f, g be defined by f(ν) = 0, g(ω) = φ(χ,η)+λψ(z)+ιC(ξ).
Then, Problem (6) can be further rewritten as

min
(ν,ω)

f(ν) + g(ω) s.t. Aν = ω. (7)

Applying ADMM to Problem (7) provides Alg. 1, where
the proximity operator proxγφ of γφ (with γ > 0) and the
projection PC are given as follows.

The proximity operator of γφ can be computed as

proxγφ(x,σ) = (proxγϕ(xk, σk))
MN
k=1 , (8)

Algorithm 1 ADMM algorithm for Problem (3)

Input: x[0],σ[0],χ[0], ξ[0], z[0],η[0],y
[0]
χ ,y

[0]
ξ ,y

[0]
z ,y

[0]
η , λ > 0, ρ > 0

for i = 0, 1, 2, . . . do
x[i+1] =

(
(χ[i] − 1

ρ
y
[i]
χ ) + (ξ[i] − 1

ρ
y
[i]
ξ )

)
/2

σ[i+1] = (BHB+ I)−1
(
(η[i] − 1

ρ
y
[i]
η ) +BH(z[i] − 1

ρ
y
[i]
z )

)
(χ[i+1],η[i+1]) = proxφ/ρ

(
x[i+1] + 1

ρ
y
[i]
χ ,σ[i+1] + 1

ρ
y
[i]
η

)
ξ[i+1] = PC

(
x[i+1] + 1

ρ
y
[i]
ξ

)
z[i+1] = prox(λ/ρ)ψ

(
Bσ[i+1] + 1

ρ
y
[i]
z

)
y
[i+1]
χ = y

[i]
χ + ρ(x[i+1] − χ[i+1])

y
[i+1]
ξ = y

[i]
ξ + ρ(x[i+1] − ξ[i+1])

y
[i+1]
z = y

[i]
z + ρ(Bσ[i+1] − z[i+1])

y
[i+1]
η = y

[i]
η + ρ(σ[i+1] − η[i+1])

end for

where the proximity operator for each entry is given as in [25]:

proxγϕ(xk, σk) =
(0, 0) (2γσk + |xk|2 ≤ γ2),(

0, σk − γ
2

)
(xk= 0 and 2σk> γ),(

xk − γs xk

|xk| , σk + γ s2−1
2

)
(otherwise),

(9)

and s > 0 is the unique positive root of the cubic equation
s3 +

(
2
τ σk + 1

)
s− 2

τ |xk| = 0 that can be solved as in [15]:

s =


3

√
− q

2 +
√
−r + 3

√
− q

2 −
√
−r (r < 0),

2 3
√
− q

2 (r = 0),

2 6

√
q2

4 + r cos
(

arctan (−2
√
r/q)

3

)
(r > 0),

(10)

with p = 2
γσk + 1, q = − 2

γ |xk|, and r = −p3

27 − q2

4 .
The projection PC onto the set C is given as in [29]:

PC(x) = x−Gw(G†
wx− s). (11)

Note that the proximity operator of (λ/ρ)ψ depends on the
choice of the function ψ.

B. Efficient Computation of Inverse Operation

In Alg. 1, (BHB + I)−1 appears in the σ-update. Since
BHB+ I ∈ CMN×MN , the complexity of direct computation
is O(M3N3), which is inefficient. Here, we show that it can
be efficiently computed for each matrix B in Example 1.

First, setting B = I gives (BHB + I)−1 = I/2. Next,
when B = D2D, given that spectrograms have periodic
boundary condition, the one-dimensional difference matrix
D ∈ RM×M is defined as a circulant matrix. Then, the two-
dimensional difference matrix D2D ∈ R2MN×MN given by
D2D = [DT

v DT
h ]

T with

Dv =


D

D
. . .

D

, Dh =


−I I

. . . . . .
−I I

I −I





Algorithm 2 ADMM w/ Nesterov acceleration for Problem (3)

Input: x[0],σ[0],χ[0], ξ[0], z[0],η[0],y
[0]
χ ,y

[0]
ξ ,y

[0]
z ,y

[0]
η , λ > 0, ρ > 0,

β[0] = 1, 0 < ϵ < 1, r[0] = +∞
Note: We define ω[i] =

[
(χ[i])T, (ξ[i])T, (z[i])T, (η[i])T

]T and y[i] =[
(y

[i]
χ )T, (y

[i]
ξ )T, (y

[i]
z )T, (y

[i]
η )T

]T in this algorithm below.

for i = 0, 1, 2, . . . do
x[i+1] =

(
(χ[i] − 1

ρ
y
[i]
χ ) + (ξ[i] − 1

ρ
y
[i]
ξ )

)
/2

σ[i+1] = (BHB+ I)−1
(
(η[i] − 1

ρ
y
[i]
η ) +BH(z[i] − 1

ρ
y
[i]
z )

)
(χ[i+1],η[i+1]) = proxφ/ρ

(
x[i+1] + 1

ρ
y
[i]
χ ,σ[i+1] + 1

ρ
y
[i]
η

)
ξ[i+1] = PC

(
x[i+1] + 1

ρ
y
[i]
ξ

)
z[i+1] = prox(λ/ρ)ψ

(
Bσ[i+1] + 1

ρ
y
[i]
z

)
y
[i+1]
χ = y

[i]
χ + ρ(x[i+1] − χ[i+1])

y
[i+1]
ξ = y

[i]
ξ + ρ(x[i+1] − ξ[i+1])

y
[i+1]
z = y

[i]
z + ρ(Bσ[i+1] − z[i+1])

y
[i+1]
η = y

[i]
η + ρ(σ[i+1] − η[i+1])

β[i+1] = (1 +
√

1 + 4β[i])/2

α[i+1] = (β[i] − 1)/β[i+1]

ω̂[i+1] = ω[i+1] + α[i+1](ω[i+1] − ω[i])

ŷ[i+1] = y[i+1] + α[i+1](y[i+1] − y[i])

r[i+1] = ρ∥ω̂[i+1] − ω[i]∥22 + ∥ŷ[i+1] − y[i]∥22/ρ
if r[i+1] < ϵi+1r[0] then

(ω[i+1],y[i+1]) = (ω̂[i+1], ŷ[i+1])

end if
end for

makes BHB+ I = DH
2DD2D + I, which can be written as

DH
2DD2D + I =
DHD+ 3I −I −I

−I
. . . . . .
. . . DHD+ 3I −I

−I −I DHD+ 3I

 . (12)

This is invertible from its positive definiteness. Since
DH

2DD2D + I is an N × N block circulant matrix and
each block is an M × M circulant matrix, its inverse can
be computed by the two-dimensional fast Fourier transform
with the complexity of O(MN logMN) [30]. Lastly, for the
case where B = FD2D, since F is unitary, BHB + I =
DH

2DF
HFD2D + I = DH

2DD2D + I holds, which reduces to
the case where B = D2D. Overall, the inverse operation in
Alg. 1 can be efficiently computed for all cases in Example 1.

IV. ACCELERATION OF ADMM ALGORITHM

In this section, we incorporate two acceleration techniques
for ADMM to speed up the algorithm. Specifically, we attempt
Nesterov acceleration [21], [22] and an optimal step-size
selection [23], both of which preserve convergence of ADMM.

A. Nesterov Acceleration

Nesterov acceleration has been incorporated into ADMM
[21], [22]. The ADMM algorithm with Nesterov acceleration
for solving Problem (3) is provided in Alg. 2. This involves
computation of the combined residual r[i+1] based on the
primal residual ∥ω̂[i+1]−ω[i]∥2 and the dual residual ∥ŷ[i+1]−

Algorithm 3 ADMM w/ an optimal step-size for Problem (3)

Input: x[0],σ[0],χ[0], ξ[0], z[0],η[0],y
[0]
χ ,y

[0]
ξ ,y

[0]
z ,y

[0]
η , λ > 0, p > 0,

ζχ = pχ[0] + 1
p
y
[0]
χ , ζξ = pξ[0] + 1

p
y
[0]
ξ , ζz = pz[0] + 1

p
y
[0]
z ,

ζη = pη[0] + 1
p
y
[0]
η , ρ[0] = p2

for i = 0, 1, 2, . . . do
x[i+1] =

(
(χ[i] − 1

ρ[i]
y
[i]
χ ) + (ξ[i] − 1

ρ[i]
y
[i]
ξ )

)
/2

σ[i+1] = (BHB+ I)−1
(
(η[i] − 1

ρ[i]
y
[i]
η ) + BH(z[i] − 1

ρ[i]
y
[i]
z )

)
(χ[i+1],η[i+1]) = proxφ/ρ[i]

(
x[i+1] + 1

ρ[i]
y
[i]
χ ,σ[i+1] + 1

ρ[i]
y
[i]
η

)
ξ[i+1] = PC

(
x[i+1] + 1

ρ[i]
y
[i]
ξ

)
z[i+1] = prox(λ/ρ[i])ψ

(
Bσ[i+1] + 1

ρ[i]
y
[i]
z

)
y
[i+1]
χ = y

[i]
χ + ρ[i](x[i+1] − χ[i+1])

y
[i+1]
ξ = y

[i]
ξ + ρ[i](x[i+1] − ξ[i+1])

y
[i+1]
z = y

[i]
z + ρ[i](Bσ[i+1] − z[i+1])

y
[i+1]
η = y

[i]
η + ρ[i](σ[i+1] − η[i+1])

Compute the step-size ρ[i+1] (explained in Sec. IV-B)
end for

y[i]∥2 when extrapolating variables, and the acceleration is
performed in such a way that the combined residual decreases.
If the combined residual is less than the threshold ϵi+1r[0],
where ϵi+1 (0 < ϵ < 1) is a decaying factor depending on
the iteration count i, the extrapolated variables are adopted;
otherwise, the variables before extrapolation are adopted. This
strategy ensures convergence of the algorithm [22].

B. Selecting Optimal Step-Size

The required number of iterations of ADMM depends on
the parameter ρ, and its improper choice may lead to a
slow algorithm. The recent study addresses the problem of
selecting an optimal parameter by adaptively changing it at
each iteration, improving the worst-case convergence rate of
ADMM [23]. The ADMM algorithm with an optimal step-size
is provided in Alg. 3, where the only difference from Alg. 1 is
that the parameter ρ is not fixed but updated at each iteration
as follows.

The optimal ρ is calculated using the following procedure
[23]. First, let ω[i] =

[
(χ[i])T, (ξ[i])T, (z[i])T, (η[i])T

]T
, y[i] =[

(y
[i]
χ )T, (y

[i]
ξ )T, (y

[i]
z )T, (y

[i]
η )T

]T
, and ζ =

[
ζT
χ, ζ

T
ξ , ζ

T
z , ζ

T
η ]

T,
and find at most four roots of the following quartic equation
with respect to p:

p4∥ω[i+1]∥22 − p3⟨ω[i+1], ζ⟩R
+ p ⟨y[i+1], ζ⟩R − ∥y[i+1]∥22 = 0, (13)

where ⟨·, ·⟩R denotes the real part of the inner product. Then,
let P be the set of all real roots of Eq. (13), and select p⋆ by

p⋆ ∈ argmin
p∈P

∥pω[i+1] + y[i+1]/p− ζ∥22, (14)

i.e., select the real root that minimizes the above squared error.
Using this p⋆ ∈ R, the step-size used in the next iteration is
finally given by ρ[i+1] = (p⋆)2. Note that the roots of Eq. (13)
can be obtained in the closed form, and selecting an optimal
ρ preserves convergence of ADMM, see [23].



Fig. 1. Structured sparse T-F representations obtained by the conventional PDS and the proposed ADMMacc when using the function
ψ ◦B = ∥D2D(·)∥2,1 with λ = 1/4. The upper left (Original) is the T-F representation obtained by DGT and the lower left (Reference) is
one obtained by ADMM (ρ = 4.5) after one million iterations. The upper and lower right show results from PDS (ρ = 1.99) and ADMMacc
(ρ = 10), respectively, after 10, 20, 30, 40 and 50 iterations. All figures are illustrated with the color range of 100 dB.

V. NUMERICAL EXAMPLE

In this section, we compare the iteration counts for obtaining
the structured sparse T-F representation of an acoustic signal.
Let us refer to the ADMM algorithms with Nesterov accelera-
tion and an optimal step-size as ADMMacc and ADMMopt
hereinafter, respectively. We compared four algorithms for
solving Problem (3): PDS [18], standard ADMM (Alg. 1),
ADMMacc (Alg. 2), and ADMMopt (Alg. 3). Since Problem
(3) cannot be solved analytically, we first obtained the T-F
representations by running the standard ADMM (ρ = 4.5)
over one million iterations and treated it as a reference. We
then compared how quickly each method obtained a result
close to this reference. In our experiments, we analyzed a
speech signal with the sampling rate of 22 050 Hz using the
Hann window of size L = 29 with hop size a = 26 and
number of frequency bins M = 212. We used three different
functions ψ◦B to induce specific structures on the magnitude:
∥ · ∥∗, ∥D2D(·)∥2,1, and ∥FD2D(·)∥2,1 with λ = 25, 1/4, and
1/2, respectively. The initial values for all algorithms were
set to x[0] = Gws and σ[0] = 1, and all the dual varibles
were set to 0. In Alg. 1–3, the other variables were initialized
with χ[0] = ξ[0] = x[0], z[0] = Bσ[0], and η[0] = σ[0]. The
decaying factor in Alg. 2 was set to ϵ = 0.95 and the initial
value of p in Alg. 3 was set to p = 2.

First, we conducted a visual comparison of the quickness of
obtaining structured sparse T-F representations. The example
of structured sparse T-F representations |x| obtained by PDS
(ρ = 1.99) and ADMMacc (ρ = 10) is shown in Fig. 1. The
proposed ADMMacc achieved a T-F representation close to
the reference with fewer iterations than PDS, especially in the
top half of the T-F representation.

Next, we quantitatively evaluated the difference among the
algorithms. As an evaluation metric, we adopted the multi-
scale structural similarity (MS-SSIM) [31] that quantifies
image similarity based on luminance, constrast, and structure
as it reflects similarity in terms of structural properties. MS-
SSIM for each algorithm is illustrated in Fig. 2. As shown in
the colored lines, the proposed ADMM algorithms achieved

Fig. 2. The transition of MS-SSIM (every 10 iterations up to 1000)
between the reference and the T-F representations obtained by each
algorithm. The function λψ ◦B is shown above each figure.

higher MS-SSIM with fewer iterations than the PDS algorithm,
regardless of the choice of ψ ◦ B. In addition, ADMMacc
(dashed lines) outperformed the standard ADMM (solid lines)
for every step-size ρ, which confirms effectiveness of the
acceleration. ADMMopt showed relatively high performance
without selecting a step-size ρ, but it was not better than
ADMMacc (ρ = 10). Constructing a method for obtaining
the best step-size ρ is remained as a future work.

VI. CONCLUSION

In this paper, we proposed the use of accelerated ADMM
for realizing structured sparse T-F representations. We also
provide specific examples of the penalty functions that can
be computed efficiently. The experiments showed that the
proposed algorithms can obtain structured sparse T-F repre-
sentations with fewer iterations than the conventional PDS
algorithm. Future works include investigation of computational
time of the proposed algorithm as well as exploration of its
specific application to acoustic signal processing.
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