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Abstract

Cooperative multi-agent reinforcement learning (MARL) has
made substantial strides in addressing the distributed decision-
making challenges. However, as multi-agent systems grow in
complexity, gaining a comprehensive understanding of their
behaviour becomes increasingly challenging. Conventionally,
tracking team rewards over time has served as a pragmatic mea-
sure to gauge the effectiveness of agents in learning optimal
policies. However, we argue that relying solely on the empiri-
cal returns may obscure crucial insights into agent behaviour.
In this paper, we explore the application of explainable AI
(XAI) tools to gain profound insights into agent behaviour.
We employ these diagnostics tools within the context of Level-
Based Foraging and Multi-Robot Warehouse environments
and apply them to a diverse array of MARL algorithms. We
demonstrate how our diagnostics can enhance the interpretabil-
ity and explainability of MARL systems, providing a better
understanding of agent behaviour.

Introduction
Multi-agent Reinforcement Learning (MARL) has shown
immense promise in tackling complex decision-making chal-
lenges across various domains, such as robotics, healthcare,
and energy. For example, MARL has been used to coordinate
robotic surgery teams (Scheikl et al. 2021), optimise smart
grid operations (Roesch et al. 2020), and manage air traffic
flow (Vidhate and Kulkarni 2017).

Standard methods for evaluating MARL in the coopera-
tive setting rely solely on measuring empirical returns or
statistics derived from them (Gorsane et al. 2022). Although
tracking returns over time is a reasonable way to measure
whether agents are learning optimal policies, recent scrutiny
has revealed the limitations of evaluation methods, prompting
the development of more robust solutions (Whiteson et al.
2011; Agarwal et al. 2022; Gorsane et al. 2022). Yet these
standard measures often fail to explain the underlying be-
haviour of MARL algorithms (Canese et al. 2021; Son et al.
2022). Addressing this challenge is where the growing field
of Explainable Artificial Intelligence (XAI) steps in.

XAI consists of machine learning (ML) techniques that can
provide human interpretable insights into the inner workings
of ML models (Arrieta et al. 2020). It has been extensively

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

explored in single-agent RL (Heuillet, Couthouis, and Díaz-
Rodríguez 2021; Hu et al. 2022; Vouros 2022; Puiutta and
Veith 2020; Dazeley, Vamplew, and Cruz 2023), where vari-
ous methods have been proposed to analyse and visualise the
policies, value functions, and salient features of individual
agents. However, explainability remains underrepresented in
the context of MARL, where agents interact with each other
and the environment in complex and dynamic ways. Existing
tools for MARL explainability are limited and specialised
for specific scenarios or algorithms (Shapley 1953; Heuillet,
Couthouis, and Díaz-Rodríguez 2022). Therefore, there is
a need for more general and robust tools that can enhance
interpretability and understanding of MARL systems.

In this paper, we argue that it is necessary not to rely on
empirical performance for the evaluation of MARL algo-
rithms; instead, we can supplement performance analysis
with XAI tools to provide direct insights into agent behaviour
to provide a more holistic view of results. To accomplish this,
we adapt multiple simple implementation-agnostic methods
for analyzing behaviour and we demonstrate how they can
detect and offer valuable insights. Specifically, we assess
learning stability using Policy Entropy and Agent Update
Divergence and analyse a Task Switching metric to provide
insights into the learned action distributions of MARL agents.
From this analysis in the Level-Based Foraging (LBF) and
Multi-Robot Warehouse(RWARE) domains (Papoudakis et al.
2021), we uncover insights into how premature convergence
limits the performance of Multi-Agent Proximal Policy Opti-
misation (MAPPO) on LBF compared to Multi-Agent Advan-
tage Actor-Critic (MAA2C) and show how the limitations of
Q-learning methods on RWARE are not purely a byproduct
of sparsity as originally hypothesised by (Papoudakis et al.
2021).

Diagnostics Tools
To assess agents’ behaviour during training or evaluation, we
investigate a diverse set of tools used as diagnostics of policy
learning. We provide an overview of these tools which are
typically based on metrics derived from prior work that we
adapt to the MARL setting.

Policy Entropy. (Abdallah 2009) demonstrated that only
tracking global returns may mask potential policy instability
issues in agents. To address this, the authors proposed using
Policy Entropy as a measure of stability during learning. This



metric is used to measure the uncertainty or randomness
of a stochastic policy of an agent i, which is a probability
distribution over actions given an observation and we can
compute the Policy Entropy of agent i’s policy πi as follows

H(πi) = −
∑

ai∈Ai

πi(ai|oi) log πi(ai|oi), (1)

where oi is the agent’s observation and ai ∈ Ai denotes an
action from the agent’s action set Ai.
Intuitively, this measures how spread out the probabilities,
given by a policy πi, are across different actions. If the prob-
abilities are evenly distributed (i.e., the policy is highly un-
certain), the entropy is higher and it indicates that the agent’s
choices are more diverse and exploratory, as it is not favour-
ing any specific action strongly. Contrarily, if the probabilities
are concentrated on a few actions (i.e., the policy is more
deterministic), the entropy is lower and it indicates that the
agent tends to concentrate its probability on a smaller subset
of actions.

Agent Update Divergence. The per-step KL divergence
is used as a metric to assess the policy changes of each agent
throughout the training process. It provides insights into the
stochastic nature of the policy, serving as a monitor of the
evolution of the policy. A persistent high KL divergence ob-
served over time indicates a propensity for a stochastic policy
that persists in exploring varied strategies. Conversely, a low
KL divergence implies that the agent’s policy is trending
towards predictability, converging either towards a determin-
istic behavioural or, possibly, a suboptimal strategy. If we
define the cross-entropy between two policies π and π′ as
H(π, π′) = −

∑
a∈A π(a|o) log π′(a|o)), the update diver-

gence for each agent i is given by
Dkl(πi∥π′

i) = H(πi, π
′
i)−H(πi), (2)

where πi and π′
i are the current and old policy of agent i.

Task Switching. During training agents often assume dis-
tinct roles (Wang et al. 2020; Phan et al. 2021). While some
MARL methods such as ROMA (Wang et al. 2020) explic-
itly account for this, it is not a typical feature of algorithms.
Although the above KL divergence has been proposed as a
measure of agent action diversity, it can vary even among
agents with similar policies due to observation differences
(Hu et al. 2022). For example, in a football game, defenders
with identical roles may respond differently based on unique
observations (Kurach et al. 2020). Therefore, we explore
implementation-agnostic methods to monitor agent diversity
in MARL training by using a Task Switching tool. We imple-
ment such a tool by tracking the usage of each agent’s action
at each timestep t during the evaluation phase and computing
the overall likelihood of each agent’s action being selected as

Ti = σ

(
T∑

t=0

ati

)
, (3)

where ati represents the one-hot encoded vector of the action
chosen by agent i at timestep t with T being the terminal
timestep of the evaluation phase and σ the softmax function.

A Task Switching metric makes it possible to quantify
the frequency at which an agent selects specific actions dur-
ing the evaluation phase and it can be useful in diagnosing

Figure 1: Top: Multi-Robot Warehouse (RWARE). Bottom:
Level-based foraging (LBF)

the learning of agents by measuring how often they use the
different actions.

The Task Switching tool is complementary to the Policy
Entropy and Agent Update Divergence tools, since it mea-
sures the actual behaviour of the agents after acquiring some
knowledge, during the evaluation phase, rather than during
the learning phase in addition to the fact that the actual be-
haviour of the agents depends not only on their policies, but
also on their observations and roles in the environment.

Experiment
We conducted experiments using the same training setup as
(Papoudakis et al. 2021). We used the optimized hyperparam-
eters and the EPyMARL framework, following the evaluation
protocol proposed by (Gorsane et al. 2022). In addition, we
trained a range of algorithms, from Q-learning to policy gra-
dient (PG) methods, across seven distinct scenarios in the
Level-Based Foraging (LBF) environment and three distinct
scenarios in the Multi-Robot Warehouse (RWARE), using 10
different seeds. Experiment results are depicted in Figure 2.

Environment. In our study, we directed our attention to-
ward the two environments, LBF and RWARE, as outlined
in prior works (Albrecht and Ramamoorthy 2015; Albrecht
and Stone 2019; Papoudakis et al. 2021). In these environ-
ments, the reward signal is notably sparse, rendering it a more
challenging task during the learning phase compared to envi-
ronments like the Starcraft Multi-Agent Challenge (SMAC)
(Samvelyan et al. 2019; Papoudakis et al. 2021).

LBF represents a mixed cooperative-competitive environ-
ment that emphasises coordination between agents. As il-
lustrated in Figure 1, agents are placed within a grid world
and assigned different levels. To collect food, the cumulative
level of participating agents must meet or exceed the food’s
designated level. Agents receive points equivalent to the level
of the collected food and their own level.
RWARE (Christianos, Schäfer, and Albrecht 2020; Pa-
poudakis et al. 2021) is a multi-agent environment that is
designed to represent a simplified setting where robots move
goods around a warehouse. This environment requires agents
(circles) to move requested shelves (green squares) to the
goal (dark squares) and back to an empty square as illustrated
at the top of Figure 1. Tasks are partially observable with a
very sparse reward signal as agents have limited sight and are
rewarded only upon successful delivery.

Algorithms. Our analysis focuses on a subset of com-
monly used MARL algorithms, including both centralized



training with decentralized execution (CTDE) and indepen-
dent learning (IL) methods (Zhang and Yu 2020; Gronauer
and Diepold 2021; Annie et al.). These algorithms belong to
two categories: Q-learning-based algorithms, such as Inde-
pendent Q-Learning (IQL) (Tan 1997), Value-Decomposition
Networks (VDN) (Sunehag et al. 2017), and QMIX (Rashid
et al. 2018), and PG algorithms, such as Multi-Agent Prox-
imal Policy Optimization (MAPPO) (Yu et al. 2022) and
Multi-Agent Advantage Actor-Critic (MAA2C) (Foerster
et al. 2018). We employed parameter sharing across all al-
gorithms during training which was shown by (Papoudakis
et al. 2021) to lead to greater episode returns when compared
to cases without parameter sharing.
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Figure 2: Algorithm performance on LBF and RWARE in-
cluding probability of improvement(right), and sample effi-
ciency curves(left). Top row: Performance of algorithms on
7 LBF tasks. Bottom row: Performance of all algorithms on
3 RWARE tasks.

Case Studies
After running experiments on seven scenarios in the LBF en-
vironment, each with ten different seeds, our results point out
that relying solely on empirical returns may not offer a com-
plete understanding of algorithmic performance in MARL.
However, when complemented by simple XAI methods, these
results can provide valuable insight into the environmental
and algorithmic factors of the MARL setting. In the following,
from Figure 3 to 5, different agents have similar behaviour
which indicates that they have learned similar or redundant
policies that do not vary much across scenarios and this out-
come can be attributed to the use of parameter sharing in the
learning process.

Why does MAA2C outperform MAPPO? We attempt
to answer this question using the above diagnostic. We focus
on the LBF scenario Foraging-15x15-3p-5f, using one seed,
to examine the performance disparities between MAA2C
and MAPPO. Based on the fact that the core architecture of
PPO (Yu et al. 2022) extends A2C by introducing a clipping
function, it is plausible to attribute the reduced performance
of MAPPO to its sensitivity to the clipping ratio, which can
lead to an early suboptimal policy. A smaller clipping ratio
can make PPO overly cautious, slowing down the learning

process. Conversely, a larger clipping ratio can make PPO
overly aggressive, potentially destabilising the learning pro-
cess. This hypothesis is supported by the slower convergence
of the MAPPO algorithm across all LBF scenarios, which
initially struggles to improve its policy, as shown in Figure 3
and 4. Furthermore, MAPPO continues to face challenges in
reaching a performance level comparable to MAA2C in the
LBF environment, as shown in Figure 2, where the probabil-
ity that MAA2C outperforms MAPPO in all LBF scenarios
on 10 different seeds is close to 1.
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Figure 3: Training stability results on Foraging-15x15-3p-5f
(one seed). Top row: Policy Entropy. Bottom row: Agent
Update Divergence.

The learning dynamics, characterised by the Agent Up-
date Divergence and Policy Entropy metrics, exhibit notable
differences between agents trained under the MAA2C and
MAPPO algorithms. Specifically, MAA2C demonstrates a
more effective learning trajectory, marked by consistent steps
in policy improvement.
In Figures 3a and 3c, as well as in the average values across
all agents, we observe distinct patterns for agents trained
with MAA2C. Initially, their learning progresses slowly, but
subsequently, their policies undergo significant changes. This
phenomenon can be attributed to continuous exploration of
the environment, leading to the discovery of more effective
strategies. Moreover, the increased certainty in action se-
lection suggests successful policy updates. These metrics
collectively indicate that the policies remain stochastic and
exploratory, evolving frequently over time without full con-
vergence.
In contrast, when examining the behaviour of agents trained
with the MAPPO algorithm in Figures 3b and 3d, we observe
a different pattern. It appears that the sensitivity to the clip-
ping ratio in MAPPO may hinder the agents from converging
rapidly, in addition to the fact that the environment is highly
random (levels and coordinates). The policy may become
trapped in a local optimum early in training, persisting for
over one million steps. This situation limits the algorithm’s
ability to explore effectively and discover a superior policy
during the initial stages of training.



In Figure 4, action 0 corresponds to the "no operation" action,
action 5 is used to pick up nearby food, and the remaining ac-
tions are movement actions. The Task Switching plots reveal
that MAA2C becomes more sensitive to changes in action
selection, as indicated by the converging action probabili-
ties. This enhanced sensitivity allows MAA2C to explore
and utilise a broader range of actions, leading to a reduction
in actions that are associated with lower rewards. In con-
trast, MAPPO exhibits greater action dominance, particularly
in one action (action 4). The differences in performance be-
tween MAA2C and MAPPO can be attributed to their distinct
learning strategies.
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Figure 4: Task Switching on Foraging-15x15-3p-5f (one seed).
Top: MAA2C. Bottom: MAPPO.

Sparsity or something else? From figure 2, it would seem
that Q-learning methods are almost completely unable to
learn in the RWARE setting. (Papoudakis et al. 2021) reason-
ably hypothesise that this is due to the sparsity of the setting
making value decomposition difficult for VDN and QMIX
and that IQL is hampered by its limited exploration capabili-
ties. However, both VDN and QMIX have shown a limited
capacity to learn some sparse settings (Mguni et al. 2022)
and IQL is in some cases able to find policies that can solve
highly complex sparse settings in the MARL domain (Ma-
hajan et al. 2019). From figure 5, we can find an alternative
explanation for the poor performance of the Q-learning meth-
ods. For the high-performing policies found by MAA2C and
MAPPO, we can see that there is a high reliance on action 0
which has been revealed by the Task Switching measurement.
This indicates that the performance issues are potentially not
purely due to sparsity but the Q-learning methods not learn-
ing to exploit a specific action. As Q-learning methods use
a replay buffer to train from off-policy data, they may not
encounter samples exploiting this action in combination with
the relevant states frequently enough, making learning the
heavily weighted optimal policy difficult. Manually parsing
environment trajectories to find this data would be difficult,
thus this finding shows how even simple XAI methods can
make algorithmic failure points and environment features
easier to detect.

Conclusion
This paper highlights the importance of explainability in
MARL research. While traditional performance metrics may
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Figure 5: Comparison of task-switching for MAPPO and
IQL algorithms on the RWARE setting Top: IQL. Bottom
MAPPO.

not fully reveal the true behaviours of agents, we demonstrate
how diagnostic tools—specifically, Policy Entropy, Agent
Update Divergence, and Task Switching— can provide a
more comprehensive overview of agents’ behaviour in multi-
agent systems. Our work contributes to the growing field of
explainable MARL by providing a set of simple yet effective
tools that can be applied to various MARL algorithms and en-
vironments. Further exploration of explainability in MARL is
encouraged to address challenges and fully harness its poten-
tial in solving complex problems. It is essential to acknowl-
edge the limitations of our work, including the computational
overhead that escalates with an increasing number of agents
and the potential inefficiency of the Task Switching tool in
scenarios with continuous action spaces. Looking ahead, we
envision future research delving deeper into the application
of these tools in more MARL environments. Expanding and
refining these diagnostic tools will benefit both researchers
and practitioners in the field, pushing the boundaries of ex-
plainable multi-agent reinforcement learning and enhancing
our ability to tackle complex real-world challenges.
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