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Abstract
Deep models are increasingly used to analyze
brain graphs to diagnose and understand brain
diseases. However, due to the multi-site data ag-
gregation and individual differences, brain graph
datasets exhibit widespread distribution shifts,
which impair the model’s generalization ability
to the test set, thereby limiting the performance
of existing methods. To address these issues,
we propose a Causally Invariance-aware Aug-
mentation for brain Graph Contrastive Learn-
ing, called CIA-GCL. This method first gener-
ates a brain graph by extracting node features
based on the topological structure. Then, a
learnable brain invariant subgraph is identified
based on a causal decoupling approach to cap-
ture the maximum label-related invariant infor-
mation with invariant learning. Around this in-
variant subgraph, we design a novel invariance-
aware augmentation strategy to generate meaning-
ful augmented samples for graph contrast learn-
ing. Finally, the extracted invariant subgraph
is utilized for brain disease classification, effec-
tively mitigating distribution shifts while also
identifying critical local graph structures, enhanc-
ing the model’s interpretability. Experiments on
three real-world brain disease datasets demon-
strate that our method achieves state-of-the-art
performance, effectively generalizes to multi-site
brain datasets, and provides certain interpretabil-
ity. The code is available at https://github.
com/qinsheng1900/CIA-GCL.

1. Introduction
Brain connectomes have consistently been regarded as a rich
source of information in neuroscience and neuroinformatics
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(Sporns et al., 2005), and their value has become more ap-
parent in recent years (Liu et al., 2022; Bazinet et al., 2023;
Liu et al., 2024a). Functional magnetic resonance imaging
(fMRI) provides a non-invasive solution to capture abnormal
interactions between regions of interest (ROIs) in the brain
by tracking blood oxygen level-dependent (BOLD) signals
that naturally fluctuate over time (Chen et al., 2017) (Chong
et al., 2019). Based on fMRI data, the brain functional
connectivity (BFC), which captures statistical dependencies
between ROIs, is modeled as an undirected graph. BFC
abnormalities are often linked to cerebral diseases, making
brain graph analysis valuable for computer-aided diagno-
sis of many brain diseases (Liu et al., 2024b; Taspinar &
Ozkurt, 2024; Ji et al., 2024).

In the field of brain graph analysis, the rapid development
of deep learning techniques has been notable in recent years.
Cui et al. proposed a pipeline of node feature construction,
message passing, and graph pooling for brain graph anal-
ysis (Cui et al., 2023). Zheng et al. introduced a Granger
causality-inspired network that identifies causally relevant
subgraphs for disease diagnosis (Zheng et al., 2024a). How-
ever, these existing methods fail to handle the characteristics
of brain graph data, resulting in poor performance:

• Local distinguishing biomarkers resist capture. The
brain graph exhibits “small-world” properties with a
degree distribution following a power law, concentrat-
ing key information in modular structures (Liang et al.,
2010). However, the low signal-to-noise ratio (SNR)
and high dimensionality of fMRI data (Vizioli et al.,
2021) make it challenging for models to focus on criti-
cal features, limiting the extraction of discriminative
neuroimaging biomarkers for disease detection.

• Data shift hinders generalization. Due to multi-site
collection protocols and individual differences (Eslami
et al., 2021; Mueller et al., 2013), the brain graph data
often suffers from significant distribution shifts. These
shifts hinder the generalization of models, leading to
degraded performance on test sets. Models may rely on
spurious correlations, such as site-specific information
or extracting fragile features from specific samples that
lack robustness across test distributions.

Graph contrastive learning (GCL) (Sun et al., 2021) has
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emerged as an effective approach to cope with fMRI data
due to its robustness in capturing distinguishing features
across different graph augmentations. Peng et al. used
sliding windows to build positive samples from fMRI im-
ages and applied semi-supervised learning for classification
(Peng et al., 2023). Xu et al. introduce ContrastPool with a
contrastive dual-attention block to improve graph neural net-
work (GNN) based model (Xu et al., 2024a). Although these
methods have achieved promising results, their random trun-
cating of BOLD signals or changing edges to construct
augmented samples may destroy the local structure with
rich saliency information. These operations may disrupt the
semantic feature in brain graph data and thus cannot cope
with the data shift well (Soon et al., 2021).

Meanwhile, the invariant learning (Zhu et al., 2024; Sui
et al., 2024) emerges as a prevalent strategy for tackling
the challenge of generalization to out-of-distribution (OOD)
data which aims to exploit the invariant relationships with la-
bels across different distributions (Chang et al., 2020; Ahuja
et al., 2021). Therefore, if the invariant properties of the
brain graph can be used to guide the augmented sample gen-
eration, it is expected to identify the distinguishing markers
and mitigate the impact of the data distribution shift.

In this paper, we propose a Causally Invariance-aware Aug-
mentation for brain Graph Contrastive Learning, called CIA-
GCL. We begin by constructing the brain graph using the
complete BOLD data, then analyze the brain graph data
from a causal perspective. Under the causal assumption,
we enable the model to progressively learn how to extract
invariant subgraphs during optimization. And through the
constraints of two loss functions, the invariant subgraph
maintains two properties of Causal Relationship with Label
and Invariance Property. Subsequently, we design a novel
invariance-aware augmentation strategy based on the invari-
ant subgraph to generate an augmented sample set. This
strategy ensures that the augmented samples retain the lo-
cal structures, label preservation, and provide diversity. In
GCL, we use the invariant subgraph as the anchor graph and
the augmented sample set as the positive samples to enhance
the model’s ability to capture discriminative features. The
principal contributions can be summarized as follows:

• We propose a novel CIA-GCL framework for brain
graph analysis, designed to address the challenges of
data shift in multi-site brain data.

• We propose a brain invariant subgraph extraction
method based on causal disentanglement and invari-
ant learning to better capture the discriminative local
structures in brain graphs.

• We design a novel invariance-aware augmentation strat-
egy to generate augmented samples with diverse distri-
bution shifts, facilitating invariant subgraph learning.

• Systematic experiments conducted on three real dis-
ease datasets demonstrate that the proposed method
outperforms several state-of-the-art methods.

2. Related Works
2.1. Brain Graph Analysis

Medical research links brain diseases to abnormal brain net-
work patterns (Rudie et al., 2013), and brain graph analysis
identifies connectivity changes to aid in diagnosis and under-
standing. The GCL-based methods, with their robustness in
capturing discriminative features from graph augmentations,
show potential for brain graph analysis.

Wang et al. calculated correlations of truncated BOLD sig-
nals to build positive samples for contrastive learning to cre-
ate node features (Wang et al., 2022). Yang et al. proposed a
GNN pretraining framework that leverages contrastive learn-
ing for brain graph analysis (Yang et al., 2023). A-GCL used
adversarial contrastive learning to extract sparse graph-level
features for analysis (Zhang et al., 2023). CMV-CGCN
leveraged GCL to integrate functional and high-order func-
tional connectivities along with phenotypic information for
disease diagnosis (Zhu et al., 2023). Zong et al. (2024) em-
ploys GCL to optimize and constrain the learning process
of brain connections, leading to the reconstruction of the
brain network. Xu et al. (2024b) propose a novel contrastive
brain network transformer, Contrasformer, which aligns
brain region features across subjects via contrastive learn-
ing. Compared to the above methods, we combine invariant
learning with GCL, and specifically design an invariance-
aware augmentation strategy tailored to brain graph data.
This strategy ensures semantic consistency while enhancing
sample diversity and serves as a bridge between the GCL
and the invariant learning. Detailed comparisons can be
found in Appendix B.

2.2. Graph Invariant learning

Graph invariant learning is an approach to OOD general-
ization that aims to exploit the stable relationships between
features and labels across different distributions. According
to (Li et al., 2022a), such methods can be broadly cate-
gorized into two groups. The first category is invariance
optimization, which assumes part of the input captures in-
variant label relationships across environments, enabling
OOD generalization (Arjovsky et al., 2019). The second cat-
egory is explicit representation alignment, which improves
generalization by explicitly aligning graph representations
across multiple environments.

CIGA leveraged causal models to capture graph invariance,
ensuring OOD generalization by focusing on the most in-
formative subgraphs (Chen et al., 2022). GIL automatically
inferred environment labels and learned the invariant sub-
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graph in a mixture of latent environments (Li et al., 2022b).
Jia et al. propose a graph invariant learning method with
a mixup strategy to generate diverse environments for en-
hancing OOD generalization (Jia et al., 2024). Wu et al. in-
troduced a causal inference-based approach to train GNNs,
enhancing generalization without environment label knowl-
edge (Wu et al., 2024). BrainOOD enhances GNNs’ OOD
generalization in brain graph by leveraging an improved
graph information bottleneck (Xu et al., 2025). Unlike pre-
vious methods that rely on only a single graph invariance
learning strategy, our approach combines both invariance
optimization and explicit representation alignment through
jointly optimizing two invariance-driven objectives to more
effectively address the OOD problem.

3. Methodology
We first analyze multi-site brain data from a causal view,
then provide definitions for brain invariant subgraph and
good brain augmented samples, and then provide a concise
introduction to the implementation process of the CIA-GCL.

3.1. A Causal View on Multi-site Brain Dataset

To address the two problems with brain graph data men-
tioned in the introduction, we attempt to analyze them from
a causal perspective and propose the following assumptions.

Definition 3.1. (Brain Graph) A brain graph G = (V,E):
V = {vi}Ni=1 is the node set indicating brain regions and N
represents the number of ROIs. E = {eij}Ni,j=1 is the edge
set describing the connection relationship between ROIs.

In this paper, the k-th subject’s brain functional connection
network is described using Gk to describe. The generation
process of the Gk from the fMRI time series form is detailed
in Appendix E2. In other literature (Said et al., 2023), brain
graphs can also be referred to as brain functional networks.

Assumption 3.2. The brain graph G consists of Gc, which
has a causal relationship with the label Y by finv, and Gs,
which has no causal relationship with Y . Gs is generated
by the external environment factors E through fenv .

G = Gc ∪Gs, Y = finv(G
c), Gs = fenv(E).

The Gc refers to the localized brain structures that exhibit
differences between patients and the typically developing
control (TC). For example, (Doyle-Thomas et al., 2015)
found that consistent abnormalities in the default mode
network (DMN) were found across ASD patients. These
findings support the assumption that a causally relevant
subgraph (e.g., within DMN) exists and is shared across
subjects, even under distribution shifts.

The environment E consists of various factors, such as site

differences, individual differences, and the noise inherent
in the brain graph itself. Under different environmental
factors, the spurious variable Gs exhibits data with different
distributional variations. Since the graph G is composed of
Gc and Gs, and there exists a statistical dependency between
G and the label Y , the mixture of Gc and Gs may lead to
interference:

P (Y | G) = P (Y | Gc) + ∆Gs, ∆Gs ̸= 0.

where Gs can be regarded as an interfering factor. The
statistical dependency of Gs through G interferes with the
relationship between Gc and Y .

The distribution shift problem refers to the phenomenon
where subjects sharing the same underlying invariant sub-
structure Gc may still appear statistically different due to
the influence of Gs. Therefore, separating Gc and Gs in
the brain graph and only using Gc for disease diagnosis
can reduce brain graph complexity, for discriminative local
feature extraction, and mitigate data distribution shifts for
boosting model generalization.
Definition 3.3. (Brain Invariant Subgraph) Given a brain
graph G = (V,E) and under the Assumption 3.2, the brain
invariant subgraph Ginv = (V inv, Einv), where V inv ⊆ V ,
Einv ⊆ E satisfying:

a. Causal Relationship with Label Y : The invariant sub-
graph Ginv has a causal relationship with the label Y
Theorem 3.4. If the Ginv obtains the causal property, it
shares the maximum information with invariant subgraphs
from subjects with the same label:

Ginv
k = argmax

m∈{i|Yi=Yk,i̸=k}
I
(
Ginv

k ;Ginv
m

)
,

where m represents a subject selected from the set of other
subjects with the same label as k-th subject.

b. Invariance property: The Ginv captures the invariant
relations with Y across different environment e:

∀e, e′ ∈ supp(E), P e(Y | Ginv) = P e′
(Y | Ginv),

E is the set of possible environments in the study.
Theorem 3.5. If the Ginv satisfies the invariant property, it
follows that the Ginv maximizes the expected mutual infor-
mation with the Y across the environment set E :

Ginv ∈ argmaxEe∈E
[
I(Ginv;Y | e)

]
.

Detailed proofs are given in Appendix D. According to
our definition, under the Assumption 3.2, there exists a
Ginv with the semantic information of the G that not only
holds a causal relationship with the Y but also maintains
its predictive consistency across various environments, i.e.,
Ginv = Gc. A detailed description of the Ginv extraction
method, including its formulation and implementation, is
provided in Section 3.3.
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. Figure 1. The overall framework of the CIA-GCL. (a) an invariant subgraph extractor Φ(·) to partition the entire graph Gori into
invariant subgraph Ginv and spurious subgraph Gs (b) displays the invariance-aware graph augmentation process by mixed spurious
subgraph generation and using g(·) to extract graph-level feature. (c) The loss functions of CIA-GCL, w(·), represent the predictor. The
brown graph structure represents the training process, blue represents the testing process, and purple stands for the iterative feedback
process. The whole process of CIA-GCL can be summarized as Ŷ = f(G) = w ◦ g ◦ Φ(G).

3.2. Good Augmentation for Brain GCL

The literature (Wu et al., 2023) suggests that if the anchor
graph retains essential information from the input graph, it
ensures the stability of key information during contrastive
learning, avoiding random disruptions and loss of critical
features. Therefore, we apply Ginv as the anchor graph and
generate brain graph augmentations. We name this method
as the invariance-aware graph augmentation strategy.

Definition 3.6. (Good Brain Augmented Samples) Given a
brain invariant subgraph Ginv as the anchor view, we define
a good brain augmented sample for GCL can be obtained by
Ga = ζ(Ginv ⊕∆G), where ∆G representing additional
different information, ⊕ denotes a subgraph concatenation
operation, and the ζ function is a learnable operation dur-
ing the optimization process. Based on this definition, the
augmented view has the following three properties:

a. Retain local structures of the brain graph: The aug-
mented sample leverages the complete BOLD signals and
uses subgraphs as modules for augmentation to preserve the
local topological structure of the brain graph.

b. Label-perserving: The augmented view Ga maintains the
relationship with Y , i.e., P (Y | Ga) = P (Y | Ginv).

c. Provide Diversity: The augmented view introduces di-
verse information that complements the anchor view, en-
couraging the model to learn a richer representation, i.e.,
H(Ga) > H(Ginv), H(Ga1) ̸= H(Ga2).

According to Definition 3.3, a good brain augmented sample
preserves the local topological structure without randomly

changing nodes or edges and retains the critical relationship
with the Y . Furthermore, redundant information between
augmented samples should be minimized, while ensuring
they carry complementary and diverse information to en-
hance the robustness of graph contrastive learning.

3.3. Causal Decoupling for Invariant Subgraph
Extraction

Brain Node Features Representation. Before extracting
the invariant subgraph, we first process the brain graph data
to obtain the node features. Following the Edge-to-Edge
(E2E) and Edge-to-Graph (E2N) components proposed by
(Kawahara et al., 2017), we utilize the topological locality of
the structural brain graph to update node features. The node
features extraction module consists of three layers, the first
layer L1 is an E2E layer, which contains a cross-shape filter
with 16 output channels to update edge-level features eij
from combining the weights of edges that share nodes i and
j together, resulting in R16×n×n. L2 and L3 are both E2N
layers, which contain 1 × n or n × 1 convolution filter with
32 channels. The node features are extracted from the output
of L1 in both horizontal and vertical directions. Now, the
graph is renewed to G = (V,E,X, Ȧ), X ∈ Rn×d, where d
refers to the feature vectors. Ȧ is the sparse adjacency matrix
formed by selecting the top 5% values from E. Because
according to (Said et al., 2023), the setting of sparse graphs
enhances the model performance.

Learnable Invariant Subgraph Extractor. We obtain the
Ginv by performing edge deletion operations, as shown in
Eq. 1. Specifically, we define an edge mask matrix Minv,
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which follows a Bernoulli distribution, Minv ∈ {0, 1}n×n.
If Minv

ij = 1 , the corresponding edge eij is retained in
the invariant subgraph. The ◦ represents the element-wise
product. By applying Minv to the sparse adjacency matrix
Ȧ, we can obtain the Ginv:

Ginv =
(
V, Ȧ ◦Minv, X

)
, Minv ∼ Bern(ξij), (1)

ξij = σ
(
MLPs(xT

i · xj) + deg(i, j)
)
. (2)

Considering the importance of node degrees in brain graphs,
we divide the edge features into two components. The first
component is xT

i ·xj , where xi and xj are the node features
of the endpoints of the edge eij , followed by a linear layer.
The second component, deg(i, j) = Scale[0,1](deg(i)) +
Scale[0,1](deg(j)), is obtained by normalizing the degrees
of the endpoints using Min-Max scaling. The edge features
are processed through the σ(·) sigmoid function, resulting
in ξij , which represents the probability of eij being retained
in the brain invariant subgraph.

However, since Bernoulli sampling is discrete and non-
differentiable, directly sampling from Bern(ξij) blocks gra-
dient backpropagation, hindering the model in learning to
prune edges for the invariant subgraph during optimization.
To address this, we adopt the Gumbel-Softmax technology
to approximate the generation of the binary behavior of
Minv , which can be formulated as:

pij = GumbelSoftmax(ξij), (3)

tk = Quantile
(
{pij | i, j = 1, . . . , n}, r), (4)

Minv
k = 1(pij > tk). (5)

We first employ Gumbel-Softmax (Jang et al., 2022) to trans-
form the probability ξij into a binary concrete distribution
pij to approximate discrete selections, then determine the
binary matrix Minv

k through threshold selection.

To address the first problem in the introduction, we set a
maximum edge proportion r for the invariant subgraph to
ensure that the extracted subgraph remains compact. Ac-
cording to Eq. 4, we calculate the minimum threshold tk.
In Eq. 5, 1(·) denotes an indicator function, where an edge
is retained if pij > tk. Similarly, the spurious subgraph
Gs = (V, Ȧ◦(1−Minv), X), utilizes the unselected edges.

Decoupling Causal and Spurious Subgraph. We have
divided each subject’s brain graph G into an invariant sub-
graph Ginv and a spurious subgraph Gs. According to
Assumption 3.2, the Ginv has a causal relationship with
the label Y , while the Gs acts as a confounding factor, dis-
rupting the relationship between Ginv and Y . To mitigate
the interference of Gs , we propose the following causal
learning objective to disentangle the Ginv and Gs:

max
(
I(Ginv, Y )− I(Ginv, Gs)

)
. (6)

The first term, max I(Ginv, Y ), ensures that Ginv con-
tains as much causal information as possible, strengthening
the correlation between Ginv and Y . The second term,
min I(Ginv, Gs), reduces the correlation between the in-
variant subgraph and the spurious subgraph. This prevents
Gs from interfering with Ginv, preserving the causal rela-
tionship with the label Y . By optimizing this causal learning
objective, the model can better capture the discriminative
subgraph Ginv from confounded brain graph data, effec-
tively addressing problem 1 in the introduction.

3.4. Invariance-Aware Graph Augmentations

Mixed Spurious Subgraph Generation. To create good
augmented samples providing more diverse information
for the anchor graph Ginv , we generate mixed spurious sub-
graphs Gms. These subgraphs exhibit significant differences
from Ginv, ensuring that the brain augmented samples ob-
tained by combining Ginv and Gms satisfies the conditions
outlined in Definition 3.6.

Accounting for individual differences, we analyze each sub-
ject separately. For Gk, we first collect the Gs from the same
batch with different labels. Because compared to Ginv

k , spu-
rious subgraphs with different labels contain more diverse
and complex information. Then, the p values by Eq.3 of all
edges in the collected set Es

Yk
are used as parameters for

Gumbel-Softmax sampling to obtain qij , which represents
the probability of the edge eij being retained in Gms

k :

Es
Yk

=
{
e | e ∈ E(Gs

i ), G
s
i ∈ {Gs

i | Yi ̸= Yk}
}
, (7)

qij = GumbelSoftmax(pij), ∀eij ∈ Es
Yk

(8)

Then, we can construct the Gms
k :

Gms
k = (V ms

k , Ems
k )

=
(
V ms
k , {qij | i, j = 1, . . . , n}↓|E(Gs

k)|
)
, (9)

we sort all qij values in descending order and select the top
|E(Gs

k)| edges, |E(Gs
k)| equals the number of edges in Gs

k.

Graph Augmentations. For k-th subject, we use the
invariance-aware augmentation strategy to generate a pos-
itive sample set Gpos

k . Each sample is constructed by
centering around Ginv

k and augmenting it with additional
information-rich ∆G. Because combining different ∆G,
GE is a set of distribution-shifted graph views which are
used to minimize both the Lcon and Linv to perform two
types of graph invariant learning for OOD generalization.

Thus, the invariant subgraph extraction method and the
augmentation strategy are tightly coupled: the augmentation
relies on the quality of the extracted Ginv , and the learning
objectives under the augmentation reinforce the extraction
of robust, invariant substructures. And both subgraphs are
generated using Gumbel-Softmax sampling, enabling the
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learned subgraphs to be optimized end-to-end:

Gpos
k = {Ga1

k , Ga2

k }
= {Ginv

k ⊕Gs
k, Ginv

k ⊕Gms
k }. (10)

Notably, the original brain graph G, which is the Ga1

k al-
ready satisfies the conditions for a good augmented sample
in Definition 3.6. Through the causal learning objective in
Eq. 6, Ginv and Gs have been decoupled, ensuring that Gs

contains information distinct from Ginv .

So far, every subject has four types of graphs, namely in-
variant subgraph Ginv , spurious subgraph Gs, and two aug-
mented samples Ga1

k (which corresponds to the original
graph Gori) and Ga2

k . We define each subject’s graph struc-
ture as GE , where {GE , E ∈ (inv, s, a1, a2)}. GE , which in-
cludes invariant subgraphs that have deterministic and truly
predictive relations with the labels and other environmental
graphs. Next, we will use GE to strengthen the invariant
subgraph Ginv learning.

3.5. Loss function definition

The proposed model employs a composite loss function con-
sisting of causal loss, contrastive loss, and invariant loss,
optimized based on two invariance-driven objectives. The
first loss, Lcau, employs invariance optimization, a method
that assumes the existence of invariant substructures (Ginv)
in graph G to guide the model in internally discovering fea-
tures that are stable across samples. The losses Lcon and
Linv implement explicit representation alignment, enforc-
ing the model to align features from different environments
both in terms of predictive risk and feature space. This dual
approach allows us to both discover and enforce invariance
from different perspectives.

Causal Loss. We use causal loss Lcau to achieve the causal
decoupling object of Eq. 6, ensuring that Ginv maintains
its causal relationship with label Y . According to The-
orem 3.4, we jointly achieve maximizing I(Ginv, Y ) by
max I

(
Ginv

k ;Ginv
m

)
and minimizing the cross entropy loss

on Ginv. We treat Ginv with the same label as positive
samples: zinv = g(Ginv), where g(·) represents the en-
coder for learning the graph-level features. And minimize
I(Ginv, Gs) using an empirical distribution-based mutual
information estimation method:

Lcau : max I(Ginv
k ;Ginv

m ) + min I(Ginv, Gs)

= Ek∈I
−1

|P (k)|
∑

p∈P (k)

log
exp

(
zinv
k · zinv

p /τ
)∑

a∈A(k) exp
(
zinv
k · zinv

a /τ
)

+
∑
i,j

P (xi, yj) log
P (xi, yj)

P (xi)P (yj)
, (11)

where A(k) = S \ {k} include samples other than k in the
same batch, P (k) = {p ∈ A(k) : Yp = Yk} is the set of
indices of all positives in the batch and · represents cosine

similarity. The P (xi, yj) represents the joint probability dis-
tribution of Ginv and Gs. P (xi) and P (yj) are the marginal
probability distributions of Ginv and Gs , respectively.

Invariant Loss. For k-th subject, we treat Ginv
k ,Ga1

k , and
Ga2

k as graph data generated under different environments.
Because they mixed ∆G with different data distributions.
While there are significant distribution differences between
these graphs, a certain proportion of the data, Ginv

k , captures
the relationship with the Y across different environments.
We then achieve the invariant learning by minimizing the
risk of the predictor w(·), ensuring it makes the least risky
predictions across these three environments:

Linv : max Ee∈E
[
I(Ginv;Y | e)

]
= EGk∈G

∑
e∈É

R(f | e), f = w ◦ g ◦ Φ(Gk) (12)

where É∈(inv, a1, a2) and R(f | e) represents cross-
entropy loss. w(·) is the predictor with two fully connected
layers, g(·) represents the encoder that learns graph-level
features, while Φ(·) is the extractor for invariant subgraphs.

Contrastive Loss. In GCL, we use Ginv as the anchor
graph, and the graph in Gpos as the positive sample:

Lcon : max
g

I
(
g (Gpos) , g

(
Ginv

))
= Ek∈I E+∈(a1,a2) log

exp
(
zinv
k · z+

k /τ
)∑

b∈B(i) exp
(
zinv
k · zb

k/τ
)

+ ∥za1⊤ · za2∥2F , (13)

here, B(i) = E \ {inv} include samples other than Ginv.
And B(i) includes the Gs, which can be considered as a
negative sample of Ginv. We further min I(Ginv, Gs) by
maximizing the distance between zinv

k and zs
k , ensuring

the disentanglement of Ginv and Gs again. Let ∥ · ∥F
represent the Frobenius norm. We impose an orthogonality
loss to reduce redundancy between two augmented samples,
enhancing GCL’s feature diversity and informativeness.

Finally, the model completes iterative training by L =
λ1Lcon+λ2Lcau+Linv , combining the above three losses.
The pseudocode description is detailed in Appendix A, and
a comprehensive summary of key notations and their expla-
nations can be found in Appendix C.

4. Experiments
We primarily validate the method through three main aspects
in our experiments. Q1: Does the method effectively per-
form on multi-site brain datasets, and does it help mitigate
the OOD problem? Q2: Do the proposed brain invariant
subgraph and invariance-aware augmentation strategies lead
to improved model performance? Q3: Does the method cap-
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Dataset Method Accuracy (%) Precision (%) Recall (%) F1-score (%) bAcc (%) AUC (%) Avg (%)

ABIDE I

RF 62.02±4.72 63.28±5.33 63.02±3.79 63.01±3.53 62.00±4.81 66.60±5.96 62.79±0.48
SVM 65.12±2.93 65.49±4.15 60.81±5.01 62.93±3.44 65.03±2.93 70.83±4.79 62.67±6.75

BrainNetCNN 68.88±3.23 70.21±5.29 71.13±13.8 69.48±5.37 68.85±3.22 72.39±4.09 70.16±1.39
CIGA 66.96±1.64 69.55±2.42 57.84±6.20 62.92±3.43 66.75±1.69 67.53±2.81 65.26±4.22
GATE 71.67±2.95 71.93±4.92 74.68±6.08 72.99±2.55 71.42±3.03 73.04±4.62 72.62±1.21

Com-BrainTF 70.14±4.38 70.28±4.32 72.83±4.15 70.01±4.49 70.00±4.65 71.67±6.16 70.82±1.17
BrainGB 71.07±4.92 72.79±8.02 72.90±6.20 70.80±4.47 70.93 ±4.79 74.93±5.10 72.24±1.62

METAFormer 70.31±2.86 71.80±3.20 74.38±6.64 72.85±3.29 69.91±2.80 72.29±3.54 71.18±2.91
Contrasformer 68.90±2.33 67.68±3.96 70.91±6.04 68.70±2.74 68.86±2.23 70.68±2.64 69.29±1.24

BrainIB 69.97±2.82 71.07±4.19 70.70±4.61 70.74±2.90 69.63±3.15 73.44±4.35 70.92±1.34
CI-GNN 71.89±2.91 70.49±2.98 73.37±4.80 70.58±2.21 71.44±2.75 73.32±3.62 71.85±1.27

CIA-GCL 73.42±2.75 73.82±3.23 74.91±5.63 74.21±3.03 73.38±2.76 76.28±3.74 74.34±1.10

ABIDE II

RF 62.56±2.67 62.71±4.29 48.87±2.97 54.83±2.55 61.68±2.56 66.60±5.96 59.54±6.47
SVM 64.78±3.75 63.79±5.30 56.53±6.83 59.75±4.90 64.25±3.88 69.13±3.62 63.04±4.36

BrainNetCNN 67.75±2.72 69.74±5.70 56.92±9.87 61.87±5.57 67.21±2.72 69.59±3.89 65.51±5.08
CIGA 66.40±3.22 63.01±3.16 68.32±13.39 64.85±7.92 66.54±3.72 66.63±3.94 65.53±2.81
GATE 69.51±2.76 71.21±2.97 65.64±6.88 68.83±2.94 70.33±5.25 70.87±4.55 69.37±2.02

Com-BrainTF 68.91±2.29 69.12±1.95 62.92±9.42 68.34±2.87 68.80±6.50 70.40±4.72 68.08±2.62
BrainGB 69.23±3.33 67.37±4.61 65.97±6.45 66.34±3.89 69.01±3.28 71.33±4.12 68.21±2.03

METAFormer 69.10±3.17 68.34±3.91 64.00±7.66 65.89±4.41 69.04±3.21 70.88±4.36 67.88±2.49
Contrasformer 69.79±2.99 67.39±8.16 57.86±8.87 61.78±6.25 67.94±3.50 70.02±3.67 65.78±4.92

BrainIB 68.92±3.60 66.73±6.70 68.13±10.74 66.65±4.19 68.58±3.22 69.83±4.61 68.29±1.96
CI-GNN 70.04±2.62 70.22±3.59 69.56±5.28 68.85±3.60 69.93±3.39 69.13±4.82 69.62±0.54

CIA-GCL 72.09±2.47 72.67±3.49 64.39±9.14 68.94±4.74 71.45±2.71 72.58±2.41 70.51±3.25

ADHD200

RF 63.88±3.28 54.52±10.37 21.67±9.99 30.14±11.37 55.53±4.19 60.72±7.90 47.74±17.46
SVM 66.48±3.99 62.90±12.19 28.25±7.83 38.49±8.51 58.91±4.37 67.58±7.91 53.77±16.41

BrainNetCNN 70.71±4.15 61.69±5.90 59.30±12.29 59.90±7.94 68.47±5.21 70.02±6.20 65.01±5.27
CIGA 67.73±2.44 61.95±6.04 43.25±17.31 48.40±12.75 62.75±4.97 64.01±2.95 58.02±9.79
GATE 72.02±3.55 71.27±6.09 45.18±17.04 52.82±14.87 66.67±6.01 69.31±9.42 62.88±11.17

Com-BrainTF 71.78±4.50 70.38±4.33 56.71±17.17 68.28±7.69 68.77±6.89 69.75±6.96 67.61±5.48
BrainGB 71.91±2.89 71.51±9.69 45.56±9.96 54.62±6.65 66.01±3.49 71.63±6.30 63.54±11.02

METAFormer 70.27±2.54 73.00±7.87 44.09±10.01 54.66±9.45 62.63±4.83 69.13±4.65 62.29±11.09
Contrasformer 72.19±2.65 62.68±5.76 59.53±12.73 60.26±7.32 68.54±4.06 72.63±3.41 65.97±5.91

BrainIB 70.07±1.56 60.69±2.54 56.47±8.48 58.10±4.11 67.10±2.15 67.28±2.72 63.29±5.60
CI-GNN 71.03±3.05 61.32±5.08 53.44±10.84 66.93±4.26 67.93±4.26 71.95±2.97 65.43±6.97

CIA-GCL 75.21±2.57 79.40±10.59 58.75±11.73 69.80±8.87 69.93±4.01 73.51±4.01 71.10±7.03

Table 1. Classification results for ABIDE I, ABIDE II, ADHD200 on AAL atlas comparing with different methods (mean ± std%). Bold
denotes the best performance while Underline represents the second best performance. Avg (%) is the average of these 6 metrics.

Figure 2. Average classification performance of three datasets on AAL atlas.

ture local biomarkers and provide interpretability? Details
of the experimental configurations are in Appendix E.

4.1. Comparison with State-of-the-Art Methods (Q1)

4.1.1. OVERALL PERFORMANCE

We present the comparison results of three brain datasets
in Table 1. The results show that our method outperforms
the comparison method in seven metrics, highlighting the
superiority of CIA-GCL’s performance. All experimental
results are obtained based on 10-fold cross-validation. On
three datasets, our method outperforms other methods in
most metrics. The causal analysis-based CI-GNN and the
contrastive learning-based methods both performed well in
three datasets, demonstrating the feasibility of causal anal-

ysis and contrastive learning in brain graph analysis. Our
method performs poorly on the Recall index, indicating that
it tends to make conservative decisions. We also calculated
the average results for all methods across 3 datasets and
performed t-tests in Figure 2. It is evident that our method
outperforms the other methods in most of the metrics. And
the overall performance across the 3 datasets is statistically
significantly different from others, with significance levels
of p < 0.01(∗∗), and p < 0.001(∗ ∗ ∗).

4.1.2. GENERALIZATION ON MULTI-SITE DATASET

In section 4.1.1, we tested by mixing data from all sites. In
this summary, to verify whether the proposed method can
alleviate the OOD phenomenon, we followed the testing

7



Causal Invariance-aware Augmentation for Brain Graph Contrastive Learning

Dataset Method Accuracy (%) Precision (%) Recall (%) F1-score (%) bAcc (%) AUC (%) Avg (%)

ABIDE I

RF 63.58±4.83 63.06±5.81 59.95±3.03 61.26±1.57 63.23±3.87 67.80±3.65 63.15±2.67
SVM 64.92±3.95 63.58±6.03 64.05±3.73 63.62±2.67 64.66±3.15 68.00±2.88 64.81±1.66

BrainNetCNN 67.97±0.86 69.35±6.55 60.35±12.57 63.78±6.81 67.36±1.57 70.24±2.19 66.51±3.75
CIGA 65.51±1.97 64.32±4.19 63.17±2.06 63.65±1.54 65.35±1.78 66.74±3.40 64.79±1.33
GATE 67.76±1.74 64.60±3.55 66.86±4.93 65.63±3.53 66.93±2.75 69.16±1.74 66.82±1.59

Com-BrainTF 69.29±0.81 70.87±5.29 67.66±6.88 69.15±0.61 69.26±0.81 71.54±0.63 69.63±1.38
BrainGB 69.91±1.17 68.11±3.02 68.16±10.27 68.01±6.70 69.13±1.78 69.68±1.96 68.83±0.85

METAFormer 70.13±3.40 69.60±1.56 72.26±8.13 67.88±4.34 69.47±3.78 71.13±5.15 70.08±1.50
Contrasformer 70.50±2.83 73.14±6.80 67.19±5.60 70.73±4.41 70.78±2.95 69.54±4.11 70.31±1.93

BrainIB 64.92±1.34 61.27±1.42 66.06±9.45 63.89±8.98 63.32±2.88 61.59±1.17 63.51±1.86
CI-GNN 69.94±1.98 72.97±2.62 64.96±2.57 69.93±0.95 70.06±2.93 71.31±2.86 69.86±2.68

CIA-GCL 72.03±0.90 74.12±3.57 69.92±3.31 71.86±1.51 72.08±1.65 74.26±3.43 72.38±1.62

ABIDE II

RF 60.44±5.27 68.10±12.47 56.18±11.66 60.20±3.71 62.42±1.30 66.28±1.77 62.27±4.35
SVM 62.58±4.21 68.49±15.29 67.07±15.39 65.47±3.12 65.20±1.50 67.60±4.71 66.07±2.12

BrainNetCNN 67.20±4.18 67.36±8.87 73.31±11.96 70.22±10.28 63.65±2.18 68.19±3.01 68.32±3.24
CIGA 68.11±3.20 71.61±9.12 62.60±13.97 67.36±10.32 66.45±2.81 67.72±3.62 67.31±2.90
GATE 67.83±2.15 60.60±9.88 66.53±14.11 62.26±6.10 63.26±3.52 65.70±2.21 64.36±2.76

Com-BrainTF 69.34±3.24 67.09±1.67 69.60±19.07 64.94±4.02 64.79±4.40 67.10±0.85 67.14±2.06
BrainGB 69.68±4.45 71.89±9.45 70.53±12.90 70.93±10.19 67.36±0.92 68.39±1.79 69.79±1.68

METAFormer 66.18±2.33 64.32±6.68 73.60±11.12 67.97±2.23 66.48±2.38 67.01±0.18 67.59±3.17
Contrasformer 69.81±2.05 70.18±3.36 68.98±10.25 69.25±6.43 65.47±4.54 66.99±0.95 68.45±1.82

BrainIB 68.46±3.13 72.14±8.44 64.89±16.37 68.02±12.17 65.99±2.01 65.60±2.45 67.50±2.67
CI-GNN 68.14±2.35 66.28±2.43 62.63±8.61 63.89±3.68 66.81±2.50 67.32±2.82 65.85±2.13

CIA-GCL 71.51±2.94 70.83±4.63 77.87±15.94 73.97±9.73 66.52±5.24 68.81±5.72 71.59±3.98

ADHD200

RF 60.35±6.83 41.03±15.54 7.02±4.80 11.34±7.46 49.44±3.71 49.58±7.05 36.46±22.04
SVM 63.00±4.95 55.93±19.57 8.53±3.90 14.56±6.37 51.90±2.64 62.03±2.74 42.66±24.51

BrainNetCNN 67.96±2.22 61.77±7.54 38.75±24.33 44.62±16.99 61.51±5.86 63.79±4.45 56.40±11.77
CIGA 67.27±1.75 69.78±4.47 21.24±14.06 30.71±17.30 57.70±4.55 59.60±7.98 51.05±20.16
GATE 67.50±1.58 62.36±14.01 30.3±17.12 42.93±14.14 60.66±3.41 62.86±5.44 54.44±14.54

Com-BrainTF 69.02±0.32 69.04±0.94 31.51±15.03 60.11±5.45 61.51±5.86 65.28±3.11 59.41±14.16
BrainGB 68.29±1.23 66.31±4.17 32.52±13.95 45.84±10.84 61.98±4.94 63.92±1.14 56.48±14.20

METAFormer 67.22±2.01 71.16±12.90 39.90±0.22 43.76±10.57 59.21±0.98 63.58±3.88 57.38±13.02
Contrasformer 68.05±1.35 60.37±5.54 43.10±16.63 48.33±11.32 62.75±3.87 68.15±4.18 58.46±10.45

BrainIB 68.43±1.93 58.76±4.27 33.44±9.67 42.27±9.18 60.18±3.80 64.03±3.76 54.52±13.62
CI-GNN 68.57±1.25 58.58±5.50 49.33±1.27 50.23±3.75 64.08±1.23 64.57±2.48 59.23±7.98

CIA-GCL 71.32±1.05 64.77±3.28 51.17±9.23 56.09±5.89 66.63±5.92 68.97±2.35 63.16±7.85

Table 2. Classification results for different methods on the three target domains from three brain datasets on AAL atlas (mean ± std%).
Bold denotes the best performance while Underline represents the second best performance. Avg (%) is the average of these 6 metrics.

Figure 3. Accuracy sensitivity of hyper-parameters r, λ1, λ2.

approach used in (Qiu et al., 2024) The test and train sets
consist of data from different sites, similar to the validation
methods in domain generalization problems. We randomly
selected one site’s data as the test set (target domain) and
used the remaining sites as the train set (source domain).
For each dataset, we randomly selected three target domains
for experimentation and averaged the results for comparison.
Details on the site data selection can be found in Appendix
E4. We present the comparison results in Table 2. Under
this experimental design, the performance of most methods
degrades, indicating the heterogeneity of multi-site brain
data. But on three datasets, our method still performed the
best on most metrics. In the ADHD200 dataset, due to the
imbalance in the number of patients and the TC group, the
Recall index is relatively low.

4.2. Ablation Studies and Parameter Analysis (Q2)

In the ablation setting where only ERM loss is used, we
remove the augmentation strategy in module g(·), and the
invariant subgraph extraction method does not constrain the
extraction process to satisfy the theoretical properties. This
model is optimized solely via the cross-entropy between
the invariant subgraph features and labels. By adding Lcau

and Linv one by one, we introduce constraints that force
the extracted subgraph to satisfy the properties defined in
our framework, allowing us to validate the effectiveness of
the brain invariant subgraph extraction method through two
invariance-driven objectives. When adding Lcon, we incor-
porate the augmentation strategy in g(·), which enables us to
assess the impact of the proposed invariance-aware augmen-
tation strategy. The results based on 10-fold cross-validation
are presented in Table 3. It proves that, through the optimiza-
tion of the three losses, the model can effectively learn the
invariant subgraphs under various data distribution shifts.

We conduct experiments on ABIDE I to examine the sensi-
tivity to hyperparameters. We select three critical parame-
ters of the model, including the maximum edge ratio r, the
coefficient of losses λ1, and λ2. The results are shown in
Fig. 3. For r, a too-small r may result in performance degra-
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Dataset ERM Lcau Lcon Linv Accuracy(%) Precision(%) Recall(%) F1-score(%) bAcc(%) AUC(%) Avg(%)

ABIDE I

✓ 71.13±4.01 71.72±4.01 73.20±10.93 71.89±5.34 71.14±3.95 72.20±4.01 71.88±0.77
✓ ✓ 72.17±4.10 73.42±6.66 73.77±11.10 72.44±5.10 72.06±4.07 72.41±4.71 72.71±0.70
✓ ✓ ✓ 72.63±2.66 73.91±4.05 72.9±10.02 72.89±4.53 72.63±2.55 73.02±2.83 73.01±0.47
✓ ✓ ✓ ✓ 73.42±2.75 73.82±3.23 74.91±5.63 74.21±3.03 73.38±2.76 76.28±3.74 74.34±1.10

ABIDE II

✓ 70.07±2.21 68.89±5.37 67.12±10.15 67.32±3.71 69.91±2.18 70.38±4.62 68.95±1.43
✓ ✓ 69.87±3.00 70.49±5.40 62.32±13.42 65.06±6.78 69.29±3.42 69.14±4.01 67.70±3.25
✓ ✓ ✓ 71.41±2.48 69.47±4.29 70.99±10.44 69.15±4.54 71.32±2.78 71.83±5.21 69.96±1.11
✓ ✓ ✓ ✓ 72.09±2.47 72.67±3.49 64.39±9.14 68.94±4.74 71.45±2.71 72.58±2.41 70.51±3.25

ADHD200

✓ 72.96±2.71 76.07±11.03 44.41±13.21 54.26±9.26 68.07±3.74 70.54±6.89 64.39±12.35
✓ ✓ 74.02±4.17 69.54±7.44 57.14±11.59 61.93±7.84 70.67±5.14 72.26±6.55 67.59±6.59
✓ ✓ ✓ 74.26±2.36 68.16±5.50 61.76±11.82 63.88±5.82 71.80±3.53 73.33±4.53 68.87±5.16
✓ ✓ ✓ ✓ 75.21±2.57 79.40±10.59 58.75±11.73 69.80±8.87 69.93±4.01 73.51±4.01 71.10±7.03

Table 3. Ablation experiment of three loss functions for three brain datasets on AAL atlas (mean ± std%). Bold denotes the best
performance while Underline represents the second best performance. Avg(%) is the average of these 6 metrics.

Figure 4. Illustration of the original adjacency matrix, learned edge
weight, and invariant subgraph of patients and TC groups.

dation due to the extracted Ginv being too small and having
too little available information. Meanwhile, if r is too large,
Ginv may contain a lot of redundant information, leading
to a decrease in performance. The optimal hyperparameters
were fixed across three datasets to ensure consistency.

4.3. Capability in capturing local brain biomarkers (Q3)

We conducted an interpretability analysis on the invariant
subgraphs and important ROIs. The extracted Ginv are con-
sidered as the local biomarkers identified by the model. 1)
shows the original adjacency matrix in the Figure. 4. The
elements in 2) are pij in Ȧ, which represents the possibility
of edge selection in Ginv obtained through Eq. 3. 3) is the
adjacency matrix of the Ginv after edge selection. They
only selected the top 5% values from the matrix to present
clearly. We can see that the 2) learned after optimization
can effectively capture the obvious features in the original
adjacency matrix, while also exploring other new features.
After selection, the 3) edges select retains the most discrim-
inative features, making it clearer to distinguish the patients.
The red box in the middle belongs to the occipital region. It
can be seen that the intensity of ASD in this area is higher
than TC, which is consistent with (Keehn et al., 2008).

In the analysis of important brain regions, we obtain the
ROIs by the invariant subgraph. The detailed calculation
process can be found in Appendix F1 and the ROIs of the
AAL atlas are shown in Figure 5. On the AAL atlas, the
top 10 brain regions mainly focus on temporal and occipital
regions. Among them, Temporal Mid (MTG.R, MTG.L)
belongs to the middle temporal gyrus, which is pointed out

PHG.L

CAL.L

MTG.L

PAL.L

AMYG.L

PHG.R

CUN.L

MTG.R

CAL.R

ITG.R

Figure 5. Top 10 important ROIs of ABIDE I on AAL atlas.

as one of the key regions in the “social brain” network, and
they are more vulnerable in people with ASD than in TC (Xu
et al., 2020). The study found that lower ParaHippocampal
(PHG.R, PHG.L) activity in individuals with ASD, com-
pared to TD individuals, likely reflects their proficiency in
scene recognition and spatial navigation, requiring fewer
cognitive resources (Mouga et al., 2022). For the visualiza-
tion and analysis of important brain regions on the other two
datasets, please refer to Appendix F2.

5. Conclusions
In this article, to address the two issues in handling brain
graph data, we combine invariant learning in the field of
out-of-distribution generalization with contrastive learning.
We propose the CIA-GCL with a novel invariance-aware
augmentation strategy that embeds a causal disentanglement
method to find brain invariant subgraphs for disease diag-
nosis. The experiments on real-world brain disease datasets
show the effectiveness and generalization of our method
and demonstrate the potential of out-of-distribution gener-
alization techniques for processing brain datasets with data
distribution shifts. However, this method still has shortcom-
ings. In the generation of ∆G in the augmented samples,
we regard different labels as the changing environment, with
data distribution differences being too simple and rough. In
the future, we aim to introduce more techniques from the
field of OOD generalization into brain graph analysis.
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Impact Statement
This study delves into brain graph analysis, which is an
important tool for revealing the complex structure and func-
tion of complex neural networks. As an AI application with
significant societal benefits, our model aids in the early de-
tection of neurological disorders and advances neuroscience
research. By drawing and analyzing the interconnections
between different brain regions, this analysis helps with the
initial diagnosis of brain diseases and the localization of
biomarkers in brain diseases, providing new avenues for
personalized medical strategies and interventions. However,
there are also issues of inaccurate diagnosis and a lack of
universality and generalizability in cross-populations and
cross-sites. This type of research needs to be combined with
the professional knowledge and experience of healthcare
professionals, who can provide valuable insights into the
clinical context and ensure that the model is suitable for
different patient populations.
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A. Algorithm Pseudocode

Algorithm 1 CIA-GCL for Brain Graph analysis
Input: brain graph G, labels Y
Output: brain invariant graph Ginv

1: for number of training iterations do
2: Sample mini training batch
3: \\Invariant Subgraphs Extract:
4: Calculate the probabilities of edges in Ginv by Eq. (3)
5: Select the reserved edge mask Minv based on the threshold t by Eq.(4)(5)
6: Obtain the invariant graph Ginv and the spurious graph Gs by Eq.(1)
7: for each subject Gk do
8: \\Augmented Samples Generation:
9: Select Gs

i with Yi ̸= Yk

10: Obtain the mixed spurious subgraph Gmsk by Eqs.(8)(9)
11: Combine Ginv

k and ∆G to get Gpos
k by Eq.(10)

12: end for
13: \\Gradient-based optimization via backpropagation:
14: Calculate the causal loss Lcau by Eq.(11)
15: Calculate the invariant loss Linv supervised loss by Eq.(12)
16: Calculate the contrastive loss Lcon supervised loss by Eq.(13)
17: Update the model by minimizing the combination of the above three losses
18: end for
19: return brain invariant graph Ginv

B. Graph Augmentation Methods Comparison
Since some models do not have names, we use the first author’s last name and the year as substitutes. For example,
Wang2022 refers to (Wang et al., 2022), Xu2024 refers to (Xu et al., 2024a), and Song2024 refers to (Zong et al., 2024). We
present the comparison results in Table 4.

Property Wang2022 GATE CMV-CGCN A-GCL PTGB Xu2024 Contrasformer Zong2024 CIA-GCL
Label-preserve ✓ ✓ ✓ ✓ ✓ ✓ ✓

All time series ✓ ✓ ✓ ✓ ✓ ✓ ✓

Learnble ✓ ✓ ✓ ✓ ✓

Diversity ✓ ✓

Invariant-aware ✓

Table 4. Graph augmentation method comparison for brain graph analysis based on graph contrastive learning.

The ”property” in the table refers to the conditions satisfied during the generation of augmented samples. ”Label preserve”
indicates whether the effect of labels was considered during the contrastive process, whether it was between groups in
contrastive learning, or through simultaneous cross-entropy loss optimization. ”All time series” highlights the use of the
complete time-length BOLD signal in the augmentation process, as opposed to generating samples through techniques such
as sliding windows. ”Learnable” indicates that the augmented samples are automatically refined during optimization, with
the model learning to modify nodes and edges. ”Diversity” indicates whether multiple augmented samples were constructed
for the same anchor graph for contrastive optimization in graph contrastive learning. ”Invariant-aware” refers to whether
important local information, specifically the invariant semantic details, is intentionally preserved in the brain graph during
the augmentation process, avoiding arbitrary node and edge modifications.
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C. Summary of Notations
The key symbols used in this paper and their corresponding descriptions are summarized in Table 5.

Symbol Meaning

G Brain graph data set

Y Subject’s label

E , É Environment set

V The set of nodes in the graph

E The set of edges in the graph

G,Gori Original brain graph data

Gc, Ginv Invariant subgraph

Gs, Gms Spurious subgraph, mixed spurious subgraph

Ga, Ga1 , Ga2 Brain Augmented graph

n Number of brain regions

d Node feature dimensions in brain graph

p, q The probability of an edge being selected

M Brain graph mask

k The k-th subject

z Graph-level features

A Adjacency matrix of a graph

e Environment

e An edge in the graph

r Maximum edge ratio to select

λ1, λ2 Hyperparameters in loss functions

I(, ) Invariant subgraph extractor

Φ(·) Trade-off hyper-parameters

g(·) Graph Encoder

w(·) Predictor

Table 5. Notations and their descriptions.

D. Detailed Proofs
D.1. Proof of Theorem 3.4

Under the Definition 3.3, Theorem 3.4 indicates that if the Ginv obtains the Ginv → Y property, it shares the maximum
information with invariant subgraphs from subjects with the same label:

Ginv
k ∈ argmax

m∈{i|Yi=Yk,i̸=k}
I
(
Ginv

k ;Ginv
m

)
, (14)

where m represents a subject selected from the set of other subjects with the same label. Theorem 3.4 essentially shows that
the estimated graph Ginv obtained through Eq. 14. can produce the most informative and stable predictions about Y . We
can get the optimal Ginv through comparative learning between groups in Eq. 11, namely, the mutual information between
Ginv obtained from each training environment sample is minimized:
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Proof.

maxI
(
Ginv

k ;Ginv
m

)
, m ∈ {i | Yi = Yk, i ̸= k}

= I(Ginv
k , E = ek;G

inv
m , E = em | Y )

= H(Ginv
k , E = ek | Y )−H(Ginv

k , E = ek | Ginv
k , E = em, Y )

= H(Ginv
k ∪Ginv

k | E = ek, Y )−H(Ginv
k , Ginv

k , E = ek | Ginv
m , E = em)

= H(Ginvg

k | E = ek, Y ) +H(Ginvs

k | Ginv
k , E = ek, Y )

−
{
H(Ginvs

k | Ginv
m , E = em, Y,Ginvs

k , E = ek)

+H(Ginvc

k , E = ek | Ginv
m , E = em, Y )

}
(15)

where Gk = Ginvc

k ∪Ginvs
k , because there might be some subset Ginvs

k ⊆ Gs
k from the underlying Gs

k that entail the same
information about label, i.e., I(Ginvc

k ∪Gs;Y ) = I(Ginv
k ;Y ). And when Ginv

k = Ginv∗
k , we have the entropy change as:

∆I(Ginv
k , E = ek;G

inv
m , E = em|Y )

= ∆H(Ginv
k , E = ek|Y )−∆H(Ginv

k , E = ek|Ginv
m , E = em, Y )

=
{
H(Ginvs

k |Ginvc
k , E = ek, Y )−H(Ginvl

k |Ginvc

k , E = ek, Y )
}

−
{
H(Ginvl

k |Ginvc
m , Ginvs

m , E = em, Y,Ginvc
k , E = ek)

− H(Ginvs

k |Ginvc
m , Ginvs

m , E = em, Y,Ginvc

k , E = ek)
}

= −H(Ginvl

k |Ginvc
k , E = ek, Y ) +H(Ginvl

k |Ginvc
m , Ginvs

m , E = em, Ginvc

k , Y, E = ek) (16)

where Ginvl

k = Ginv∗
k − Ginvc

k , since additionally conditioning on Ginvs

k in H(H(Ginvl
k |Ginvc

m , Ginvs
m , E =

em, Ginvc

k , Y, E = ek) can not lead to new information about Ginvc

k , we have:

H(Ginvl

k |Ginvc
m , Ginvs

m , E = em, Ginvc
k , Y, E = ek) = H(Ginvl

k |Ginvc
m , E = em, Ginvc

k , Y, E = ek), G
p
s , Y, E = ê)

< H(Ginvl

k |Ginvc
k , E = ek, Y ) (17)

which follows that:
∆I(Ginv

k , E = ek;G
inv
m , E = em|Y ) < 0

D.2. Proof of Theorem 3.5

Under the Definition 3.3, Theorem 3.5 indicates that If the Ginv satisfies the invariant property, it follows that the Ginv

maximizes the expected mutual information with the Y across the environment set E :

Ginv
k ∈ argmaxEe∈E

[
I(Ginv

k ;Y | e)
]
, (18)

where I(·; ·) is the mutual information between the label and the generated subgraph. This is a sufficient condition for the
subgraph to be considered an Ginv . We can obtain the optimal Ginv under distribution shifts, i.e., the solution to handle the
first characteristic of brain graph data mentioned in the introduction:

minEGk∈G
∑
e∈é

R(f | e), f = w ◦ g ◦ Φ(Gk) = Ginv
k (19)

Proof. Under the Assumption 3.2, the graph G is composed of spurious subgraph Gs and invariant subgraph Ginv , where
Gs is the complement of Ginv. Further denote f̂ = argminw,g w ◦ g ◦ Φ∗(G). To show that the subgraph extracted
according to f̂ is the optimal brain invariant subgraph Ginv, our proof strategy is to show that ∀e ∈ supp(E), for any
possible subgraph Ǵ, R(Ǵ|E) ≤ R(Ginv|E) and therefore supe∈supp(E) R(Ǵ|E) ≤ supe∈supp(E) R(Ginv|E). To show the
inequality, we have:

R(Ǵ|E) = EG,Y [ℓ(f(G), Y )] =
∑
G,Y

P e(G, Y )ℓ(f(G), Y )
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=
∑
Gs

P e(Gs)
∑

Φ(G),Y

P e(Φ(G))ℓ(w∗(g∗(Φ∗(G)))), Y )

=
∑

Φ(G),Y

P e(Φ(G), Y )ℓ(w∗(g∗(Φ∗(G)))), Y )

≤
∑

Φ(G),Y

P e(Φ(G), Y )ℓ(w(g(Φ∗(G)))), Y )

=
∑
Gs

P e(Gs)
∑

Φ(G),Y

P e(Φ(G))ℓ(w(g(Φ∗(G)))), Y )

=
∑
Gs,Y

P e(Gs, Y )ℓ(Gs) = EG,Y [ℓ(f(G), Y )] = R(Ginv|E). (20)

E. Data Preparation
E.1. Data preprocessing

Then we utilized the Data Processing Assistant for Resting-State fMRI (DPARSF)1 A program to process the raw fMRI
data. Specifically, we first removed the first five time points for fMRI and performed slice timing corrections. Then, we
completed head motion correction by eliminating data from subjects with head movement exceeding 2mm horizontally
and head rotational movement exceeding 2 degrees. Finally, we conducted image registration, smoothing, and filtering in
sequence. The next step is brain parcellation, which is the process of dividing the brain into smaller regions or packages
guided by a specific brain atlas. In this paper, we select the AAL atlas (tzo, 2002) with 90 brain regions and 26 cerebellar
brain regions. This step allows for the analysis of functional connectivity within and between these parcels. After brain
parcellation, for each atlas, the mean time series, namely the blood oxygen level-dependent (BOLD) signal in each region, is
calculated by averaging the time series of all the voxels. This gives a representative measure of the average neural activity in
each specific brain region, allowing for subsequent analysis of connectivity.

E.2. Brain graph generation

Each person’s fMRI image is segmented into multiple ROIs using a designated brain atlas. In each ROI, the mean time
series is calculated, and every person has n× t dimensions of time series data, where n represents the number of ROIs and t
represents the time length. We then temporally normalize all subjects’ signals to zero mean and unit variance. In this paper,
each subject’s brain functional connection network uses a graph structure G to describe the interconnections between brain
regions. And the eij is calculated by the Pearson correlation coefficient between time-series signals of i-th ROI and j-th
ROI, and the value represents the connection strength.

E.3. Datasets

We validate our approach on three real-world brain disease datasets. The three rs-fMRI datasets are Autism Brain Imaging
Data Exchange (ABIDE) I, ABIDE II, and ADHD200, which are publicly available MRI datasets collected from different
international imaging sites. The demographic statistics of these datasets are provided in Table 5.

• ABIDE I: ABIDE I2 (and others, 2014) is a common dataset to evaluate the effectiveness of the Autism Spectrum
Disorder (ASD) brain network classification tasks, which anonymously collected and shared fMRI and phenotype
data for a total of 1035 subjects from 17 different sites around the world, including 505 subjects with ASD and 530
typical controls (TC). We used two brain segmentation atlases to divide the brain into smaller regions and obtained two
datasets of ABIDE I. The first atlas is AAL (tzo, 2002), which contains 90 brain regions and 26 cerebellar brain regions
and is often used in brain disease analysis.

1http://rfmri.org/DPARSF/
2https://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html
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• ABIDE II: ABIDE I3 was created to advance scientific discovery regarding the brain connectome in autism spectrum
disorder (ASD). To date, it has aggregated over 1000 additional datasets with enhanced phenotypic characterization,
particularly focusing on core ASD symptoms and related features. Currently, ABIDE II includes 19 sites, consisting of
ten charter institutions and seven new members, collectively contributing 1114 datasets from 521 individuals with ASD
and 593 controls.

• ADHD200: ADHD2004 dataset, collected from 8 independent imaging sites, consists of 491 datasets from typically
developing individuals and 285 from children and adolescents with ADHD (ages 7-21 years). The accompanying
phenotypic data includes diagnostic status, ADHD symptom dimensions, age, sex, intelligence quotient (IQ), and
lifetime medication history.

Dataset Subgroup Number Gender (M/F) Age (mean±std.)

ABIDE I
ASD 505 443/62 17.06±8.52
TC 530 435/95 16.78±7.43

ABIDE II
ASD 483 410/73 15.09±9.24
TC 556 382/174 15.27±9.51

ADHD200
ADHD 319 253/66 11.98±3.01

TC 528 280/248 12.45±3.41

Table 6. The demographic statistics of the three brain datasets.

E.4. Selection of target domain data in Section 4.1.2.

Dataset ABIDE I ABIDE II ADHD200

information Site ASD TC Site ASD TC Site ADHD TC

Target1 MAX MUN 75 100 NYU 1NYU 2 73 30 Peking 1 48 88

Target2 UCLA 1,UCLA 2 54 44 BNI 1,IP 1 51 62 OHSUPeking 2 41 60

Target3 SBL,SDSU,STANFORD 49 57 TCD 1,UCD 1,UCLA 1 55 51 KKI,NeurolMAGE 60 106

Table 7. The demographic statistics of the datasets used in Section 4.1.2.

The data information of the target domain for testing the generalization ability of the model is in Section 4.1.2. summary is
shown in Table 6. The target corresponds to the test set in the generalization verification experiment, and then we use the
data of all the remaining sites as the training set. Since the data of a single site is relatively small, we also chose data from 2
or 3 sites as the target domain. Then we take the average of the experimental results of these three target domains. The data
shown in the ASD (ADHD) and TC columns in the table are the number of samples in the test set.

E.5. Model Setup

The model uses Adam optimizer with lr=4e-5, batchsize=32, and max epochs=300. In the subgraph selection section, r=0.25.
In the summary of contrastive loss, τ1 and τ2 are both set to 0.01. In L = λ1Lcon + λ2Lcau + Linv formula, the two types
of losses:λ1,λ2 = {1,0.5}. We employ ten-fold cross-validation to get a dependable and stable model, and the ratio of the
training set, validation set, and test set is 8:1:1. Finally, we take the average of the ten-fold results for model comparison.
All the experiments are conducted on a server equipped with NVIDIA GeForce RTX 3090 alongside the computational
prowess of an AMD Ryzen 9 5950X 16-Core Processor CPU.

E.6. Baselines

We provide detailed descriptions of baselines in our experiments as follows:

• Traditional machine learning methods: The traditional methods include support vector machine (SVM) classifier and a
random forest (RF) classifier, which were all implemented using the scikit-learn library (Pedregosa et al., 2011). We

3https://fcon_1000.projects.nitrc.org/indi/abide/abide_II.html
4https://fcon_1000.projects.nitrc.org/indi/adhd200/
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directly calculate the Pearson correlation coefficient on the time series to obtain the FC network, and then flatten it and
concatenate it into a vector, which is fed to RF or SVM.

• BrainCNN (Kawahara et al., 2017): This method utilizes innovative graph-based convolutional filters to predict
neurodevelopmental outcomes from brain networks. The learning rate is set to 1× 10−3, and the batch size is 32.

• GATE (Peng et al., 2023): This approach used sliding windows to build positive samples from fMRI images and applied
semi-supervised learning for node classification. All hyperparameters are configured as per the original implementation.

• CIGA (Chen et al., 2022): We use the CIGAv2 model. Because CIGAv2 performs better than CIGAv1 in the experiment.
We set the coefficient of I(Ĝs;Y ) to 1. The learning rate is set to 1× 10−3, and the batch size is 64.

• BrainGB (Cui et al., 2023): This approach proposed a standard pipeline including node feature construction, message
passing, and graph pooling for brain graph analysis. The learning rate is set to 1× 10−3, and the batch size is 32.

• Com-BrainTF (Bannadabhavi et al., 2023): This hierarchical transformer model incorporates intra- and inter-community
features of brain ROIs. For the ABIDE I, ϕ is set to 0.03, and the learning rate is 1× 10−3. For the ABIDE II atlas,
ϕ is set to 0.0005. For the ADHD200 atlas, ϕ is set to 0.0005. and the learning rate is 1× 10−4. The pretraining is
conducted over 50 epochs with a batch size of 32.

• METAFormer (Mahler et al., 2023): This approach is a transformer-based framework that integrates multi-atlas
functional connectivity representations and self-supervised pretraining via masked input reconstruction. We only used
the AAL atlas data for training.

• Contrasformer (Xu et al., 2024b): Contrasformer applies contrastive learning to brain networks by aligning ROI-level
representations across subjects using identity-aware cross-attention. All other hyperparameters are consistent with the
original implementation.

• BrainIB (Zheng et al., 2024b): BrainIB is a graph neural network framework that utilizes the information bottle-
neck principle to analyze fMRI data, aiming to resolve issues related to overfitting and generalization. All other
hyperparameters are consistent with the original implementation.

• CI-GNN (Zheng et al., 2024a): This approach proposed a Granger causality-inspired network that identifies causally
relevant subgraphs for disease diagnosis. The learning rate is set to 1× 10−3, and the batch size is 32.

E.7. Evaluation Indicators

We used six common metrics to evaluate the performance of the model, including accuracy (Acc), recall (Rec), precision
(Pre), F1-score (F1), and balanced accuracy (bAcc). They can be calculated by:

Acc =
TP + TN

TP + FP + TN + FN
, (21)

Rec =
TP

TP + FN
, (22)

Pre =
TP

TP + FP
, (23)

F1 = 2× Pre×Rec

Pre+Rec
, (24)

bAcc =
1

2
× (

TP

TP + FN
+

TN

FP + TN
), (25)

where TP, FP, TN, and FN are the number of true positive subjects, false positive subjects, true negative subjects, and false
negative subjects, respectively. In addition, we also utilize the area under curve (AUC) to evaluate the expected performance.
It refers specifically to the area under the ROC curve in this paper, which takes the false positive rate (FPR) as abscissa and
the true positive rate (TPR) as ordinate. They can be calculated by:

FPR =
FP

FP + TN
, TPR =

TP

TP + FN
. (26)
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F. Extra Experiments
F.1. Calculation process and ROI’s scores of ABIDE I dataset

In the analysis of important brain regions, we first obtain the invariant subgraph of each person. Based on this, we acquire
the important brain regions of each person, namely the points in the invariant subgraphs. Specifically, we use the adjacency
matrix of the invariant subgraph and add it separately by row and column. Then we take the average of these two results as
the importance score for each ROI. Sort these scores in descending order to obtain the top 10 important brain regions. The
detailed information on the important brain regions of the ABIDE I dataset on the AAL atlas is shown in Table 7.

No. Label ROI Abbreviation Score

1 44 Calcarine R CAL.R 2.0311
2 43 Calcarine L CAL.L 1.9218
3 86 Temporal Mid R MTG.R 1.885
4 75 Pallidum L PAL.L 1.8457
5 41 Amygdala L AMYG.L 1.8336
6 40 ParaHippocampal R PHG.R 1.7985
7 39 ParaHippocampal L PHG.L 1.772
8 90 Temporal Inf R ITG.R 1.7571
9 85 Temporal Mid L MTG.L 1.6722

10 45 Cuneus L CUN.L 1.6647

Table 8. Details on top 10 important ROIs of ABIDE I dataset on AAL atlas.

”No.” represents the descending sorting order, ”Label” is the default order of ROI in the AAL atlas, and ”Score” indicates
scientific counting after the calculation process in A4 (Calculation on the Important ROIs).

F.2. More Visualization Results

F.2.1. IMPORTANT ROI ANALYSIS OF ABIDE II DATASET

Figure 6. Top 10 important ROIs of ABIDE II on AAL atlas.
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No. Label ROI Abbreviation Score
1 43 Calcarine L CAL.L 2.9844
2 44 Calcarine R CAL.R 2.9699
3 45 Cuneus L CUN.L 2.9299
4 42 Amygdala R AMYG.R 2.5436
5 50 Occipital Sup R SOG.R 2.3723
6 51 Occipital Mid L MOG.L 2.2975
7 41 Amygdala L AMYG.L 2.2292
8 90 Temporal Inf R ITG.R 2.1846
9 2 Precentral R PreCG.R 2.1511
10 89 Temporal Inf L ITG.L 2.1249

Table 9. Details on top 10 important ROIs of ABIDE II on AAL atlas

F.2.2. IMPORTANT ROI ANALYSIS OF ADHD200 DATASET

Figure 7. Top 10 important ROIs of ADHD200 on AAL atlas.

No. Label ROI Abbreviation Score
1 48 Lingual R LING.R 2.7251
2 47 Lingual L LING.L 2.6500
3 81 Temporal Sup L STG.L 2.6270
4 44 Calcarine R CAL.R 2.6033
5 43 Calcarine L CAL.L 2.601
6 49 Occipital Sup L SOG.L 2.5678
7 46 Cuneus R CUN.R 2.5666
8 82 Temporal Sup R STG.R 2.4937
9 51 Occipital Mid L MOG.L 2.4241
10 45 Cuneus L CUN.L 2.3938

Table 10. Details on top 10 important ROIs of ADHD200 on AAL atlas.
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