
Improved Algorithms for Overlapping and Robust
Clustering of Edge-Colored Hypergraphs: An

LP-Based Combinatorial Approach

Changyeol Lee∗
Department of Computer Science and Engineering

Yonsei University
Seoul, South Korea

777john@yonsei.ac.kr

Yongho Shin∗

Institute of Computer Science
University of Wrocław

Wrocław, Poland
yongho@cs.uni.wroc.pl

Hyung-Chan An†

Department of Computer Science and Engineering
Yonsei University

Seoul, South Korea
hyung-chan.an@yonsei.ac.kr

Abstract

Clustering is a fundamental task in both machine learning and data mining. Among
various methods, edge-colored clustering (ECC) has emerged as a useful approach
for handling categorical data. Given a hypergraph with (hyper)edges labeled by
colors, ECC aims to assign vertex colors to minimize the number of edges where
the vertex color differs from the edge’s color. However, traditional ECC has
inherent limitations, as it enforces a nonoverlapping and exhaustive clustering. To
tackle these limitations, three versions of ECC have been studied: LOCAL ECC
and GLOBAL ECC, which allow overlapping clusters, and ROBUST ECC, which
accounts for vertex outliers. For these problems, both linear programming (LP)
rounding algorithms and greedy combinatorial algorithms have been proposed.
While these LP-rounding algorithms provide high-quality solutions, they demand
substantial computation time; the greedy algorithms, on the other hand, run very
fast but often compromise solution quality. In this paper, we present a family of
algorithms that combines the strengths of LP with the computational efficiency of
combinatorial algorithms. Both experimental and theoretical analyses show that our
algorithms efficiently produce high-quality solutions for all three problems: LOCAL,
GLOBAL, and ROBUST ECC. We complement our algorithmic contributions with
complexity-theoretic inapproximability results and integrality gap bounds, which
suggest that significant theoretical improvements are unlikely. Our results also
answer two open questions previously raised in the literature.

1 Introduction

Clustering is a fundamental task in both machine learning and data mining [24, 35, 25]. Edge-colored
clustering (ECC), in particular, is a useful model when interactions between the items to be clustered
are represented as categorical data [8, 4]. To provide intuition, let us consider the following simple,
illustrative example from prior work [34, 4, 37, 51, 48, 19, 20]: given a set of food ingredients,

∗Equal contributions.
†Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

recipes that use them, and a (noisy) labeling of these recipes indicating their cuisine (e.g., Italian
or Indian), can we group the food ingredients by their cuisine? To address this question, we can
begin by considering a hypergraph whose vertices correspond to ingredients, (hyper)edges represent
recipes, and edge colors correspond to cuisines. We can then find a labeling of the ingredients such
that, in most recipes, all ingredient labels match the recipe’s label. This is precisely what ECC does:
given an edge-colored hypergraph, the goal is to assign colors to its vertices so that the number of
edges where vertex colors differ from the edge color is minimized. Intuitively, this problem offers an
approach for clustering vertices when edge labels are noisy.

However, ECC has an inherent limitation in that it insists on assigning exactly one color to every
vertex, enforcing a nonoverlapping and exhaustive clustering. In the above illustrative example, food
ingredients are often shared across geographically neighboring cuisines, indicating that overlapping
clustering may be preferable. Moreover, some ingredients, such as salt, commonly appear in nearly
all cuisines and may be considered outliers that should ideally be excluded from the clustering
process. To address these limitations, three generalizations of ECC, namely, LOCAL ECC, GLOBAL
ECC, and ROBUST ECC, have been proposed [19]. Among them, LOCAL ECC and GLOBAL ECC
allows overlapping clustering: in LOCAL ECC, a local budget blocal that specifies the maximum
number of colors each vertex can receive is given as an input parameter, thereby allowing clusters to
overlap. In GLOBAL ECC, vertices may be assigned multiple colors, but with the total number of
extra assignments constrained by a global budget bglobal given as input. On the other hand, ROBUST
ECC enhances robustness against vertex outliers by allowing up to brobust vertices to be deleted from
the hypergraph. This budget brobust is also specified as part of the input. (Alternatively, this can be
viewed as designating those vertices as “wildcards” that can be treated as any color.)

While LOCAL ECC, GLOBAL ECC, and ROBUST ECC are useful extensions of ECC that effec-
tively address its limitations, these problems are unfortunately NP-hard, making exact solutions
computationally intractable. This directly follows from the NP-hardness of ECC [8], a common
special case of all three problems. This computational intractability naturally motivates the study of
approximation algorithms for these problems. Recall that an algorithm is called a ρ-approximation
algorithm if it runs in polynomial time and guarantees a solution within a factor of ρ relative to the
optimum.

In this paper, we present a new family of algorithms for overlapping and robust clustering of edge-
colored hypergraphs that is linear programming-based (LP-based) yet also combinatorial. Previously,
combinatorial algorithms and (non-combinatorial) LP-based algorithms have been proposed for
these problems. For LOCAL ECC, Crane et al. [19] gave a greedy combinatorial r-approximation
algorithm, where r is the rank of the hypergraph. Their computational evaluation demonstrated that
this algorithm runs remarkably faster than their own LP-rounding algorithm, at the expense of a
trade-off in solution quality. The theoretical analysis [19] of the LP-rounding algorithm successfully
obtains an approximation ratio that does not depend on r: they showed that their algorithm is a
(blocal + 1)-approximation algorithm. They state it as an open question whether there exists an
O(1)-approximation algorithm for LOCAL ECC. For ROBUST ECC as well, Crane et al. gave
a greedy r-approximation algorithm; however, their LP-rounding algorithm in this case does not
guarantee solution feasibility. According to their computational evaluation, solutions produced by the
LP-rounding algorithm were of very high quality but violated the budget constraint, which is reflected
in the theoretical result: their algorithm is a bicriteria (2+ ϵ, 2+ 4

ϵ)-approximation algorithm for any
positive ϵ, i.e., an algorithm that produces an (2 + ϵ)-approximation solution but violates the budget
constraint by a multiplicative factor of at most 2 + 4

ϵ . Finally for GLOBAL ECC, Crane et al. gave
similar results: a greedy r-approximation algorithm and a bicriteria (bglobal + 3 + ϵ, 1 +

bglobal+2
ϵ)-

approximation algorithm for any positive ϵ, where the latter, empirically, was slow but produced
solutions of high quality. Since their bicriteria approximation ratio is not (O(1), O(1)) for GLOBAL
ECC, Crane et al. left it another open question whether bicriteria (O(1), O(1))-approximation is
possible for GLOBAL ECC.

The primal-dual method is an algorithmic approach that constructs combinatorial algorithms based
on LP, allowing one to combine the strengths of both worlds [29, 30]. Our algorithms are designed
using the primal-dual method. We analyze its performance both experimentally and theoretically.
For LOCAL ECC, our approach yields a combinatorial (blocal + 1)-approximation algorithm, which
is the same approximation ratio as Crane et al.’s LP-rounding algorithm; however, our algorithm is
combinatorial and runs in linear time. The experiments confirmed that, compared to the previous
combinatorial algorithm, our algorithm brings improvement in both computation time and solution

2

quality. We complement this algorithmic result by showing inapproximability results that match
our approximation ratio; this answers one of Crane et al.’s open questions. For ROBUST ECC and
GLOBAL ECC, our results give a true (non-bicriteria) approximation algorithm, avoiding the need
for bicriteria approximation.3 Our true approximation algorithm for ROBUST ECC, with the ratio
of 2(brobust + 1), was enabled by our new LP relaxation: the integrality gap of the relaxation used
by previous results is +∞ [19], whereas our LP has an integrality gap of O(brobust). In fact, we
show that our gap is Θ(brobust), suggesting that our ratio may be asymptotically the best one can
achieve based on this relaxation. For GLOBAL ECC, our true approximation algorithm has the ratio
of 2(bglobal + 1), and our bicriteria approximation algorithm has the ratio of (2 + ϵ, 1 + 2

ϵ). This
affirmatively answers another open question of Crane et al.: bicriteria (O(1), O(1))-approximation
for GLOBAL ECC is indeed possible. We also show that our relaxation has the integrality gap of
Θ(bglobal).

Below, we summarize which contributions of our work are presented in which sections of the paper.

- In Section 3.1, we present our algorithm for LOCAL ECC; its performance is analyzed both
experimentally (Section 4.2) and theoretically (Section 3.1 and Appendix A.1). We also present
the inapproximability result (Theorems 3.3 and 3.4) that answers Crane et al.’s open question [19],
whose technical proof is deferred to Appendix A.3.

- In Section 3.2, we present our true approximation algorithm for ROBUST ECC based on a new
stronger LP formulation. Our algorithm’s performance is analyzed both experimentally (Section 4.3)
and theoretically (Section 3.2 and Appendix B.2), including an integrality gap lower bound
(Section 3.2; note that an upper bound is implied by the proof of Theorem 3.5).

- In Section 3.2 and Appendix C.2, we present our true approximation algorithm for GLOBAL ECC,
whose performance is analyzed both experimentally (Section 4.3) and theoretically (Appendix C.3).
This algorithm extends to the bicriteria setting (Section 3.2 and Appendix C.5), answering another
open question of Crane et al. [19].

We note that LP-rounding algorithms based on our relaxations can match the ratios of our combi-
natorial true approximation algorithms. However, we omit them from this paper, as they offer no
improvement in performance guarantees while requiring significantly more computation time to solve
LPs.

Related work. ECC has been used for a variety of tasks including categorical community detection,
temporal community detection [4], and diverse and experienced group discovery [5]; recently, it
has also been applied to fair and balanced clustering [20]. Angel et al. [8] initiated the study
of clustering edge-colored graphs (not hypergraphs). After showing its NP-hardness, they gave
the first approximation algorithm for the (maximization) problem, with the approximation ratio
of e−2. Subsequent studies [1, 3, 2] improved this ratio, and recently, Crane et al. [20] achieved
154
405 -approximation. Veldt [48] showed its APX-hardness.

Given the emerging importance of clustering data with higher-order interactions [12, 40], Amburg et
al. [4] addressed clustering on edge-colored hypergraphs for the first time, and gave 2-approximation
algorithms. Veldt [48] presented a combinatorial 2-approximation algorithm along with a UGC-
hardness ruling out any constant smaller than 2.

As was highlighted by previous studies [6, 4, 48], ECC is closely related to correlation clustering
problems [9], which has been extensively studied in machine learning and data mining [52, 11, 43, 50].
They share the common feature of taking (hyper)edges representing similarity between vertices as
input, and thus both have been applied to similar sets of taks such as community detection [49, 4].
However, correlation clustering differs from ECC in that it treats the absence of an edge as an
indication of dissimilarity, whereas ECC interprets it merely as a lack of information. Chromatic
correlation clustering, which introduces categorical edges to correlation clustering, is another closely
related problem to ECC [15, 6, 37, 51]. Interestingly, unlike correlation clustering which was studied
on hypergraphs and received significant interest [36, 26, 28], it appears that the chromatic hypergraph
correlation clustering has never been studied to the best of our knowledge. We note that this may be an

3If, in some contexts, a bicriteria approximation algorithm is acceptable for use, we could instead use a true
approximation algorithm with a relaxed budget. Thus, once a true approximation algorithm becomes available,
the need for bicriteria approximation algorithms is reduced. However, our algorithms can also be analyzed in the
bicriteria setting for both GLOBAL ECC and ROBUST ECC. See Appendices C.5 and B.3.

3

interesting future direction of research. Other variants of correlation clustering, including overlapping
variants [16, 7, 39, 17], and robust variants [22, 32] have been studied. We refer interested readers to
the book by Bonchi, García-Soriano, and Gullo [14] and references therein.

2 Problem definitions

In this section, we formally define the problems considered in this paper. First, we describe the part
of the input that is common to all three problems. We are given a hypergraph H = (V,E) and a set
C of colors as input. Since H is a hypergraph, we have E ⊆ 2V . Each edge e ∈ E is associated with
a color ce ∈ C.

Given a node coloring σ : V → C, we say an edge e ∈ E is a mistake if there exists a node v ∈ e
whose assigned color σ(v) differs from ce, i.e., ce ̸= σ(v). Otherwise, we say that e is satisfied. In
LOCAL ECC and GLOBAL ECC, a node coloring σ : V → 2C assigns (possibly) a multiple number
of colors to each node. In these problems, we say e ∈ E is a mistake if there exists a node v ∈ e
whose assigned color does not include ce, i.e., ce /∈ σ(v).
Definition 2.1. In LOCAL ECC, in addition to H , C, and {ce}e∈E , a local budget blocal ∈ Z≥1 is
given as input. The goal is to find a node coloring σ : V → 2C such that |σ(v)| ≤ blocal for all v to
minimize the number of mistakes.
Definition 2.2. In GLOBAL ECC, in addition to H , C, and {ce}e∈E , a global budget bglobal ∈ Z≥0

is given as input. The goal is to find a node coloring σ : V → 2C such that |σ(v)| ≥ 1 for all v and∑
v∈V |σ(v)| ≤ |V |+ bglobal, to minimize the number of mistakes.

Definition 2.3. In ROBUST ECC, in addition to H , C, and {ce}e∈E , a node-removal budget
brobust ∈ Z≥0 is given as input. The goal is to remove at most brobust nodes from the hypergraph and
find a node coloring σ : (V \ VR)→ C to minimize the number of mistakes, where VR denotes the
set of removed nodes.

Recall that removing a node from H makes the node disappear from all the incident edges.

In Section 3, our algorithms will be presented for slightly generalized versions of the problems. We
introduce edge weights we ∈ Q≥0 so that we minimize the total weight, not number, of mistakes. In
LOCAL ECC, instead of blocal that uniformly applies to all nodes, we will let each node v specify its
own budget bv . Note that it suffices to solve these generalizations.

We conclude this section by introducing notation to be used throughout this paper. For F ⊆ E, let
χ(F) := {ce | e ∈ F} be the set of colors of the edges in F . For v ∈ V , let δ(v) be the set of edges
that are incident with v; dv := |δ(v)| is the degree of v. Let δc(v) be the set of edges in δ(v) whose
color is c, i.e., δc(v) := {e ∈ δ(v) | ce = c}.

3 Proposed algorithms

3.1 Local ECC

In this section, we informally present our approximation algorithm for LOCAL ECC. Although
we will discuss all the necessary technical details here, we will still present a formal analysis in
Appendix A for the completeness’ sake.

Following are an LP relaxation (left) and its dual (right). Intuitively, xv,c = 1 indicates that node v is
colored with c and xv,c = 0 otherwise; ye = 1 if e is a mistake and ye = 0 otherwise.

min
∑

e∈E weye max
∑

e∈E,v∈e βe,v −
∑

v∈V bvαv

s.t.
∑

c∈C xv,c ≤ bv, ∀v ∈ V, s.t.
∑

e∈δc(v)
βe,v ≤ αv, ∀v ∈ V, c ∈ C,

xv,ce + ye ≥ 1, ∀e ∈ E, v ∈ e,
∑

v∈e βe,v ≤ we, ∀e ∈ E,

xv,c ≥ 0, ∀v ∈ V, c ∈ C, αv ≥ 0, ∀v ∈ V,

ye ≥ 0, ∀e ∈ E. βe,v ≥ 0, ∀e ∈ E, v ∈ e.

As a primal-dual algorithm, our algorithm maintains a dual solution (α, β), which changes throughout
the execution of the algorithm but remains feasible at all times. The algorithm constructs the “primal”

4

solution partially guided by the complementary slackness: namely, it allows an edge e to be a
mistake only if the corresponding dual constraint

∑
v∈e βe,v ≤ we is tight, i.e.,

∑
v∈e βe,v =

we. This is useful since the cost of the algorithm’s output can then be written as
∑

e∈Em
we =∑

e∈Em

∑
v∈e βe,v ≤

∑
e∈E

∑
v∈e βe,v, where Em is the set of mistakes in the output. Let Bv :=∑

e∈δ(v) βe,v , and the algorithm’s output cost is no greater than
∑

v∈V Bv at termination.

In order to maintain dual feasibility, the algorithm begins with a trivial dual feasible solution
(α, β) = (0,0) and only increases dual variables, never decreasing them. The first set of constraints
will never be violated because whenever we increase

∑
e∈δc(v)

βe,v , we will increase αv by the same
amount. The second set of constraints will never be violated simply because we will stop increasing
all βe,v for v ∈ e once edge e becomes tight.

We are now ready to present the algorithm. To better convey the intuition, we will describe the
algorithm as if it is a “continuous” process that continuously increases a set of variables as time
progresses. In this process over time perspective (see, e.g., [31]), a primal-dual algorithm starts with
an initial (usually all-zero) dual solution at time 0, and the algorithm specifies the increase rate at
which each dual variable increases. The dual variables continue to increase at the specified rates until
an event of interest—typically, a dual constraint becomes tight—occurs. At that point, the algorithm
pauses the progression of time to handle the event and recompute the increase rates. Once updated,
time proceeds again. In Appendix A.5, we also provide a discretized version of the algorithm, making
all implementation details explicit.

Consider the following algorithm. It maintains a set L of all those edges that are not tight. We
call these edges loose. One point that requires additional explanation in this pseudocode is that it
increases a sum of variables

∑
e∈δc(v)∩L βe,v at unit rate, rather than a single variable. This should

be interpreted as increasing the variables in the summation in an arbitrary way, provided that their
total increase rate is 1 and that no variable is ever decreased. The algorithm’s analysis holds for any
such choice of the increase rates of individual variables as long as their total is 1.

Algorithm 1 Proposed algorithm for LOCAL ECC

α← 0; β ← 0
L← {e ∈ E | we > 0}
for v ∈ V do

while |χ(δ(v) ∩ L)| > bv do
increase αv and

∑
e∈δc(v)∩L βe,v for each c ∈ χ(δ(v) ∩ L) at unit rate, until there exists e

such that
∑

u∈e βe,u = we

if ∃e
∑

u∈e βe,u = we then remove all such edges from L
σ(v)← χ(δ(v) ∩ L)

return σ

This algorithm can be implemented as a usual discrete algorithm using the standard technique for
emulating “continuous” algorithms by discretizing them. Once the increase rates are determined, the
discretized algorithm computes, for each edge, after how much time the edge would become tight
if we continuously and indefinitely increased the dual variables, and selects the minimum among
them. That is the amount of time the emulated algorithm runs before getting paused. The discretized
algorithm then handles the event, recomputes the increase rates, and repeat. See Appendix A.5.

It is easy to see that Algorithm 1 returns a feasible solution: we assign χ(δ(v) ∩ L) to v only after
ensuring |χ(δ(v)∩L)| ≤ bv . The analysis can focus on bounding the final value of

∑
v∈V Bv: recall

that it was an upper bound on the algorithm’s output cost. We will compare
∑

v∈V Bv against the
dual objective value, which is a lower bound on the true optimum from the LP duality.

Both
∑

v∈V Bv and the dual objective value change throughout the algorithm’s execution. At the
beginning, both are zeroes because (α, β) = (0,0). How do they change over the execution? In each
iteration of the while loop, the algorithm increases αv at unit rate and Bv at rate |χ(δ(v)∩L)|, where
v is the vertex being considered at the moment. (Note that Bv =

∑
c∈χ(δ(v)∩L)

∑
e∈δc(v)∩L βe,v +∑

e∈δ(v)\L βe,v.) That is, at any given moment of the algorithm’s execution, the rate by which∑
u∈V Bu gets increased is |χ(δ(v) ∩ L)| > bv, and the increase rate of the dual objective is

5

|χ(δ(v) ∩ L)| − bv. Note that the ratio between these two rates is |χ(δ(v)∩L)|
|χ(δ(v)∩L)|−bv

≤ bv + 1 since
|χ(δ(v) ∩ L)| > bv. Since the upper bound on the algorithm’s output and the lower bound on the
true optimum were initially both zeroes and the ratio between their increase rate is no greater than
bv + 1 at all times, the overall approximation ratio is bmax + 1 where bmax := maxv∈V bv . Note that
bmax = blocal under the original definition of LOCAL ECC.

Theorem 3.1. Algorithm 1 is a (blocal + 1)-approximation algorithm for LOCAL ECC.

Algorithm 1 can be implemented to run in linear time (see Lemma A.3 in Appendix A.1).

Our algorithm harnesses the full “power” of the LP relaxation, in that its approximation ratio matches
the integrality gap of the relaxation. We defer the proof of Theorem 3.2 to Appendix A.2.

Theorem 3.2. There is a sequence of instances of LOCAL ECC such that the ratio between a
fractional solution and an optimal integral solution converges to blocal + 1.

In fact, our inapproximability results further show that our approximation ratio is essentially the best
possible. We note that these results answer one of the open questions raised by Crane et al. [19],
namely, whether an O(1)-approximation algorithm is possible for LOCAL ECC.

Theorem 3.3. For any constant ϵ > 0, it is UGC-hard to approximate LOCAL ECC within a factor
of blocal + 1− ϵ.

If one prefers a milder complexity-theoretic assumption, we show the following theorem as well.

Theorem 3.4. For any blocal ≥ 2 and any constant ϵ > 0, there does not exist a (blocal − ϵ)-
approximation algorithm for LOCAL ECC unless P = NP.

The proofs of Theorems 3.3 and 3.4 are deferred to Appendix A.3.

Final remarks. Since our algorithm considers the nodes one by one and operates locally, Algorithm 1
immediately works as an online algorithm, in which vertices are revealed to the algorithm in an
online manner.4 In Appendix A.4, we also show that the algorithm can be analyzed in the bicriteria
setting, yielding a (1 + ϵ, 1 + 1

blocal
⌈ blocalϵ ⌉ −

1
blocal

)-approximation for ϵ ∈ (0, blocal]. Finally, we note
that Algorithm 1 does not specify the order in which the for loop processes the vertices, which may
leave room for optimization in practice. However, our empirical evaluation indicated that such room
was rather limited.

3.2 Robust ECC and Global ECC

In this section, we summarize our algorithmic results for ROBUST ECC and GLOBAL ECC. Both
problems involve global constraints, and as a result, their LP formulations (and the proposed algo-
rithms) become quite similar. As such, in the interest of space, we will sketch our algorithm only
for ROBUST ECC in this section. The only real difference between the two algorithms is in the
constraints of the dual LPs.

Following are an LP relaxation (left) and its dual (right) used by the algorithm for ROBUST ECC,
where zv = 1 indicates that the node v is removed from the hypergraph.

min
∑

e∈E weye max
∑

e∈E,v∈e βe,v −
∑

v∈V αv − λbrobust

s.t. zv +
∑

c∈C xv,c ≤ 1, ∀v ∈ V, s.t.
∑

e∈δc(v)
βe,v ≤ αv, ∀v ∈ V, c ∈ C,

zv + xv,ce + ye ≥ 1, ∀e ∈ E, v ∈ e,
∑

v∈e βe,v ≤ we, ∀e ∈ E,∑
v∈V zv ≤ brobust,

∑
e∈δ(v) βe,v − αv ≤ λ, ∀v ∈ V,

xv,c ≥ 0, ∀v ∈ V, c ∈ C, βe,v ≥ 0, ∀e ∈ E, v ∈ e,

ye ≥ 0, ∀e ∈ E, λ ≥ 0.

zv ≥ 0, ∀v ∈ V.

4There are several ways to describe the online setting, but a simple (albeit slightly weak) formulation is as
follows: initially, the algorithm is given only the number of hyperedges. Then, at each timestep, when a new
vertex v arrives, the algorithm is informed of which hyperedges are incident to v. At that point of time, the
algorithm is required to irrevocably color v.

6

We note that the only difference between our LP and Crane et al.’s [19] lies in the constraint
zv +

∑
e∈C xv,c ≤ 1. (The two LPs use opposite senses for the binary variable x, but this is not an

inherent difference.) This difference, which does not change the value of optimal integral solutions,
turns out to be enough to reduce the integrality gap of our relaxation. See Theorem 3.5.

Let us now sketch the algorithm for ROBUST ECC we propose. The algorithm maintains a dual
feasible solution (α, β, λ), initially set as (0,0, 0). The set L will be kept as the set of loose edges;
R ⊆ V is the set of nodes with at least two incident loose edges of distinct colors. Intuitively, R is
the set of nodes we will remove from the hypergraph. The algorithm therefore continues its execution
until |R| ≤ brobust holds. When increasing the dual variables, the algorithm increases variables
associated with all vertices in R at the same time, unlike Algorithm 1 which handles one node at a
time. The following two properties will hold:

(i) The algorithm increases λ and
∑

e∈δ(v)∩L βe,v − αv for each v ∈ R at the same rate.

(ii) For each v ∈ R, the algorithm increases αv and
∑

e∈δc(v)∩L βe,v for each c ∈ χ(δ(v) ∩ L) at
the same rate. In general, the increase rate of αv1 may be different from that of αv2 for v1 ̸= v2.

These properties can be ensured as follows: the increase rate of λ is set as 1. For each v ∈ R, we
increase αv and

∑
e∈δc(v)∩L βe,v for each c ∈ χ(δ(v) ∩ L) at rate 1

|χ(δ(v)∩L)|−1 .

Once |R| becomes less than or equal to brobust, the algorithm removes R from the hypergraph and
assigns every node v ∈ V \ R the (only) color in χ(δ(v) ∩ L). If χ(δ(v) ∩ L) = ∅, an arbitrary
color can be assigned without affecting the theoretical guarantee on solution quality; in practical
implementation, we could employ heuristics for marginal improvement. In the interest of space, the
full pseudocodes are deferred to Appendices B.1 and B.4.

We prove the following theorems in Appendices B.2 and C.3.
Theorem 3.5. Algorithm 3 is a 2(brobust + 1)-approximation algorithm for ROBUST ECC.

Theorem 3.6. Algorithm 5 is a 2(bglobal + 1)-approximation algorithm for GLOBAL ECC.

Both algorithms can be implemented to run in O(|E|
∑

v∈V dv) time (see Lemma C.3).

The LP relaxation of Crane et al. [19] for ROBUST ECC has infinite integrality gap, whereas the
integrality gap of our LP is O(brobust), following from the proof of Theorem 3.5. This makes it
possible to obtain a true (non-bicriteria) approximation algorithm based on our LP. In fact, the
following theorems show that our LP for ROBUST ECC (and GLOBAL ECC) has an integrality gap
of Θ(brobust) (and Θ(bglobal)), respectively. The proof of Theorem 3.8 is deferred to Appendix C.4.
Theorem 3.7. The integrality gap of our LP for ROBUST ECC is at least brobust + 1.

Proof. Consider a hypergraph H = (V = {v1, · · · , vbrobust+1}, E = {e1, e2}) where e1 = e2 = V ,
we1 = we2 = 1, and ce1 ̸= ce2 . Any integral solution incurs at least 1 since at least one node should
remain in the hypergraph and at least one edge cannot be satisfied. However, consider the solution
given by zv = brobust

brobust+1 , xv,ce1
= xv,ce2

= 1
2(brobust+1) for all v ∈ V and ye1 = ye2 = 1

2(brobust+1) .
This solution is feasible and the cost is 1

brobust+1 .

Theorem 3.8. The integrality gap of the LP for GLOBAL ECC is at least bglobal + 1.

Final remarks. Our algorithms can be analyzed in the bicriteria setting as well, yielding a bicriteria
(2 + ϵ, 1 + 1

b ⌈
2b
ϵ ⌉ −

1
b)-approximation algorithm for all ϵ ∈ (0, 2b], where b = brobust for ROBUST

ECC and b = bglobal for GLOBAL ECC. This improves the best bicriteria approximation ratios
previously known; furthermore, it affirmatively answers one of the open questions of Crane et al. [19],
namely, whether there exists a bicriteria (O(1), O(1))-approximation algorithm for GLOBAL ECC.
See Appendices B.3 and C.5.

4 Experiments

In this section, we analyze the performance of the proposed family of algorithms through experiments.
We describe the setup in Section 4.1. We evaluate and discuss the performance of our algorithm for
LOCAL ECC in Section 4.2. In Section 4.3, we address ROBUST and GLOBAL ECC.

7

Table 1: Statistics of the benchmark datasets.

Datasets |V | |E| |C| r d̄ ∆χ d̄χ ρ

Brain 638 21,180 2 2 66.4 2 1.92 0.91
MAG-10 80,198 51,889 10 25 2.3 9 1.26 0.18
Cooking 6,714 39,774 20 65 63.8 20 4.35 0.61
DAWN 2,109 87,104 10 22 162.7 10 3.72 0.74
Walmart 88,837 65,898 44 25 5.1 40 2.65 0.52
Trivago 207,974 247,362 55 85 3.6 32 1.55 0.23

4.1 Setup

Our experiments used the same benchmark as Crane et al. [19], which contains six datasets. See
Appendix D for further description of the individual datasets. We remark that these datasets have
been used as a benchmark to experimentally evaluate ECC also in other prior work [4, 48]. Table 1
summarizes some statistics of the datasets: the number of nodes |V |, number of edges |E|, number
of colors |C|, rank r := maxe∈E |e|, average degree d̄ :=

∑
v∈V dv/|V |, maximum color-degree

∆χ := maxv∈V |χ(δ(v))|, average color-degree d̄χ :=
∑

v∈V |χ(δ(v))|/|V |, and the ratio ρ of
vertices whose color degree is at least 2, i.e., ρ := |{v ∈ V | |χ(δ(v))| ≥ 2}|/|V |.
All experiments were performed on a machine with Intel Core i9-9900K CPU and 64GB of RAM.
In our experiments, we used the original code of Crane et al. [47, 19] as the implementation of
the previous algorithms. Since their code was written in Julia, we implemented our algorithms
also in Julia to ensure a fair comparison. When running the original codes for the LP-rounding
algorithms, we used Gurobi-12.0 as the LP solver. Gurobi was the solver of choice in previous
work [47, 19, 48, 4], and it is widely recognized for its excellent speed [41, 42].

Our experiments focus on two aspects of the algorithms’ performance: solution quality and running
time. To compare solution quality, we will use relative error estimate, a normalized, estimated error
of the algorithm’s output cost (or quality) compared to the optimum. Since the problems are NP-hard,
it is hard to compute the exact error compared to the optimum; as such, Crane et al. [19] used the
optimal solution to their LP relaxation in lieu of the true optimum, giving an overestimate of the
error. We followed this approach, but we used our LP relaxation instead since we can prove that our
relaxation always yields a better estimate of the true optimum. To normalize the estimated error, we
divide it by the estimated optimum: that is, the relative error estimate is defined as (A−L)/L, where
A denotes the algorithm’s output cost and L is the LP optimum.5

Crane et al.’s experiment [19] used blocal ∈ {1, 2, 3, 4, 5, 8, 16, 32} for LOCAL ECC, brobust/|V | ∈
{0, .01, .05, .1, .15, .2, .25} for ROBUST ECC, and bglobal/|V | ∈ {0, .5, 1, 1.5, 2, 2.5, 3, 3.5, 4} for
GLOBAL ECC. While these choices were carefully made to help avoid trivial instances, we decided
to extend their choice for GLOBAL ECC. To explain what trivial instances are, suppose that blocal
is greater than the maximum color-degree ∆χ in an instance of LOCAL ECC. The problem then
becomes trivial, since the local budget allows assigning each vertex all the colors of its incident edges.
We call an instance of LOCAL ECC trivial if blocal ≥ ∆χ; similarly, ROBUST ECC instances are
trivial if brobust ≥ ρ|V |, and GLOBAL ECC instances are trivial if bglobal ≥ |V |(d̄χ − 1). For LOCAL
ECC and ROBUST ECC, Crane et al.’s choice of budgets ensure that most instances are nontrivial:
each data set has 0, 1, or at most 2 trivial instances, possibly with the exception of at most one dataset.
However, for GLOBAL ECC, only 44 instances out of 78 in the original benchmark are nontrivial, so
we decided to additionally test bglobal/|V | ∈ {.1, .2, .3, .4}. As a result, we tested thirteen different
budgets in total for each dataset for GLOBAL ECC.

4.2 Local ECC

We measured the solution quality and running time of the proposed algorithm in comparison with the
greedy combinatorial algorithm and the LP-rounding algorithm of Crane et al. [19].

5When L = 0, we define the relative error estimate as 0. Note that L = 0 implies A = 0 since our LP has a
bounded integrality gap.

8

Proposed Greedy [19] LP-Rounding [19]

1 5 8 16 32
blocal

10−3

10−2

10−1

100

Brain

1 5 8 16 32
blocal

10−1

100

101

MAG-10

1 5 8 16 32
blocal

10−2

10−1

100

101

102
Cooking

1 5 8 16 32
blocal

10−2

10−1

100

DAWN

1 5 8 16 32
blocal

10−1

100

101

102

Walmart

1 5 8 16 32
blocal

100

101

102

103
Trivago

(a) Running times (in seconds, log scale)

1 5 8 16 32
blocal

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125
Brain

1 5 8 16 32
blocal

0.00

0.05

0.10

0.15

0.20
MAG-10

1 5 8 16 32
blocal

0.0

0.2

0.4

0.6

0.8

Cooking

1 5 8 16 32
blocal

0.0

0.2

0.4

0.6
DAWN

1 5 8 16 32
blocal

0.0

0.1

0.2

0.3

0.4

Walmart

1 5 8 16 32
blocal

0.0

0.1

0.2

0.3

Trivago

(b) Relative error estimates

Figure 1: (a) Running times (in seconds, log scale) and (b) relative error estimates of the LOCAL
ECC algorithms. Empty square markers denote trivial instances.

Figure 1(a) depicts the running times, and Table 2 (in Appendix E) lists their average for each dataset.
Figure 1(a) shows that our proposed algorithm was the fastest in most instances. It is not surprising
that our algorithm, with the overall average running time of 0.121sec, was much faster than the
LP-rounding algorithm whose overall average running time was 146.470sec, since our algorithm is
combinatorial. This gap was no smaller even when we consider only nontrivial instances: the overall
average running times were 0.142sec (proposed) and 180.367sec (LP-rounding). Remarkable was
that the proposed algorithm was faster than the greedy algorithm, too. In fact, on average, it was
more than twice as fast as the greedy algorithm in most datasets except for Brain. Such gap in the
running times became more outstanding in larger datasets: for Trivago, our proposed algorithm was
11 times faster than the greedy algorithm and 2,100 times faster than the LP-rounding algorithm.

Figure 1(b) shows the relative error estimates of the algorithms’ outputs. We note that, except for
Brain and MAG-10, the relative error estimate of our algorithm (and of the greedy algorithm) tends to
increase as blocal increases, and then at some point starts decreasing. This appears to be the result of
the fact that the problem becomes more complex as blocal initially increases, but when blocal becomes
too large, the problem becomes easy again. It can be seen from Figure 1(b) that our proposed
algorithm outperformed the greedy algorithm in all cases. The overall average relative error estimate
of our proposed algorithm was 0.141, which is less than half of the greedy algorithm’s average of
0.297. The LP-rounding algorithm output near-optimal solutions in every case.

Overall, these experimental results demonstrate that the proposed family of algorithms is scalable,
and produces solutions of good quality. As was noted by Veldt [48] and observed in this section,
LP-rounding approach does not scale well due to its time consumption, even though it produces near-
optimal solutions when it is given sufficient amount of time. Compared to the greedy combinatorial
algorithm, our proposed algorithm output better solutions in smaller amount of time in most cases.
This suggests that the proposed algorithm can provide improvement upon the greedy algorithm.

4.3 Robust ECC and Global ECC

We present the experimental results of both problems together in this section, starting with ROBUST
ECC. We measured the performance of our proposed algorithm in addition to the greedy combinato-
rial algorithm and the LP-rounding algorithm of Crane et al. [19]. However, as their LP-rounding
algorithm is a bicriteria approximation algorithm that possibly violates the budget brobust, we cannot
directly compare their solution quality with the proposed algorithm. In fact, the LP-rounding algo-
rithm turned out to output “superoptimal” solutions violating brobust in most cases of the experiment.

9

The bicriteria approximation ratio was chosen as (6, 3), which is the same choice as in Crane et al.’s
experiment [19].6

Comparing the average running times of each dataset reveals that the proposed algorithm ran much
faster than the LP-rounding algorithm for most datasets, except for DAWN. The proposed algorithm
was slower than the greedy algorithm for all datasets; however, it tended to produce solutions of much
better quality than the greedy algorithm. The relative error estimate of the proposed algorithm was
strictly better than that of the greedy algorithm in all nontrivial instances; the overall average relative
error estimate of the proposed algorithm was 0.042, six times better than the greedy algorithm’s
average of 0.272. We also note that the relative error estimate of our algorithm stayed relatively
even regardless of the budget, while that of the greedy algorithm fluctuated as brobust changed in
some datasets, such as MAG-10 and Trivago. Due to space constraints, a detailed table and a figure
presenting the experimental results have been deferred to Appendix E.

For GLOBAL ECC, the bicriteria approximation ratio of the LP-rounding algorithm was chosen as
(2bglobal + 5, 2), which again is the same choice as in Crane et al.’s experiment. For GLOBAL ECC,
the bicriteria approximation algorithm did not violate the budget for any instances of the benchmark.
This may be due to the fact that their LP relaxation for GLOBAL ECC has a bounded integrality gap,
unlike their LP for ROBUST ECC.7

The experimental results for Global ECC exhibited similar trends to those for Robust ECC. The
relative error estimate of the proposed algorithm was strictly better than that of the greedy algorithm
in all nontrivial instances. The average relative error estimate on nontrivial instances was 0.039 for the
proposed algorithm, while that of the greedy algorithm was 0.912—more than 23 times higher. We
also note that the relative error estimate of the greedy algorithm rapidly increased as bglobal increased.
While the proposed algorithm was on average slower than the greedy algorithm for all datasets, it
was much faster than the LP-rounding algorithm in all datasets except for DAWN. A detailed table
and a figure presenting the experimental results have been again deferred to Appendix E due to the
space constraints.

The above results together indicate that our proposed algorithms for ROBUST ECC and GLOBAL
ECC are likely to be preferable when a high-quality solution is desired possibly at the expense of a
small increase in computation time.

5 Conclusion and discussion
In this paper, we presented a new family of algorithms for overlapping and robust clustering of
edge-colored hypergraphs. Experimental results demonstrated that our algorithm improves upon the
previous combinatorial algorithm for LOCAL ECC in both computation time and solution quality;
compared to LP-rounding, it achieves significantly faster computation, with a slight trade-off in
solution quality. For ROBUST ECC and GLOBAL ECC, our approach delivers improved solution
quality with a slight increase in computation time compared to the previous combinatorial algorithms,
while strictly satisfying the budget constraint. On the theoretical side, our analyses show that
we achieve true (blocal + 1)-, 2(brobust + 1)-, 2(bglobal + 1)-approximation for LOCAL, ROBUST,
and GLOBAL ECC, respectively. We also provide inapproximability results for LOCAL ECC and
integrality gap results for all three problems, suggesting that significant theoretical improvements are
unlikely. These results lead to answers to two open questions posed in the literature [19].

There remain a few promising directions for future research. Although our combinatorial algorithm
runs significantly faster than LP-rounding algorithms, its running time is still superlinear for ROBUST
ECC and GLOBAL ECC. Can we optimize the dual update steps of our algorithms to obtain a
linear-time algorithm for these two problems? Also, while our work focused on giving a better
algorithm for ECC, it would be also interesting to explore additional applications of ECC, e.g., to the
clustering tasks solved via correlation clustering. Given that k-PARTIAL VERTEX COVER admits a 2-
approximation algorithm [27], another interesting question is if we can obtain an O(1)-approximation
algorithm for ROBUST ECC as well.

6As a side remark, when we reran the proposed algorithm with the budget tripled to enable a comparison
with the LP-rounding (6, 3)-approximation algorithm, the number of mistakes made by the proposed algorithm
was, on average, as small as 57.2% of that made by the bicriteria algorithm.

7When we reran the proposed algorithm with the budget doubled, the number of mistakes made by the pro-
posed algorithm was, on average, as small as 68.9% of that made by the bicriteria (2bglobal +5, 2)-approximation
algorithm.

10

Acknowledgments and Disclosure of Funding

We thank the anonymous reviewers for their helpful comments. Supported by NCN grant number
2020/39/B/ST6/01641. This work was partly supported by Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. RS-
2021-II212068, Artificial Intelligence Innovation Hub). This work was partly supported by an IITP
grant funded by the Korean Government (MSIT) (No. RS-2020-II201361, Artificial Intelligence
Graduate School Program (Yonsei University)). This work was supported by the National Research
Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (RS-2025-00563707). Part
of this research was conducted while Y. Shin was at Yonsei University.

References
[1] Alexander Ageev and Alexander Kononov. Improved approximations for the max k-colored

clustering problem. In Proceedings of the International Workshop on Approximation and Online
Algorithms (WAOA), pages 1–10. Springer, 2014.

[2] Alexander Ageev and Alexander Kononov. A 0.3622-Approximation Algorithm for the Max-
imum k-Edge-Colored Clustering Problem. In International Conference on Mathematical
Optimization Theory and Operations Research (MOTOR), pages 3–15. Springer, 2020.

[3] Yousef M Alhamdan and Alexander Kononov. Approximability and inapproximability for
maximum k-edge-colored clustering problem. In Computer Science–Theory and Applications:
14th International Computer Science Symposium in Russia (CSR), pages 1–12. Springer, 2019.

[4] Ilya Amburg, Nate Veldt, and Austin Benson. Clustering in graphs and hypergraphs with
categorical edge labels. In Proceedings of The Web Conference (WWW), pages 706–717, 2020.

[5] Ilya Amburg, Nate Veldt, and Austin R Benson. Diverse and experienced group discovery via
hypergraph clustering. In Proceedings of the 2022 SIAM International Conference on Data
Mining (SDM), pages 145–153. SIAM, 2022.

[6] Yael Anava, Noa Avigdor-Elgrabli, and Iftah Gamzu. Improved theoretical and practical
guarantees for chromatic correlation clustering. In Proceedings of the 24th International
Conference on World Wide Web (WWW), pages 55–65, 2015.

[7] Carlos E Andrade, Mauricio GC Resende, Howard J Karloff, and Flávio K Miyazawa. Evolu-
tionary algorithms for overlapping correlation clustering. In Proceedings of the 2014 Annual
Conference on Genetic and Evolutionary Computation (GECCO), pages 405–412, 2014.

[8] Eric Angel, Evripidis Bampis, A Kononov, Dimitris Paparas, Emmanouil Pountourakis, and
Vassilis Zissimopoulos. Clustering on k-edge-colored graphs. Discrete Applied Mathematics,
211:15–22, 2016.

[9] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine Learning,
56:89–113, 2004.

[10] Nikhil Bansal and Subhash Khot. Inapproximability of hypergraph vertex cover and appli-
cations to scheduling problems. In International Colloquium on Automata, Languages, and
Programming (ICALP), pages 250–261. Springer, 2010.

[11] Thorsten Beier, Thorben Kroeger, Jorg H Kappes, Ullrich Kothe, and Fred A Hamprecht. Cut,
glue & cut: A fast, approximate solver for multicut partitioning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 73–80, 2014.

[12] Austin R Benson, David F Gleich, and Jure Leskovec. Higher-order organization of complex
networks. Science, 353(6295):163–166, 2016.

[13] Manuel Blum, Robert W Floyd, Vaughan Pratt, Ronald L Rivest, and Robert E Tarjan. Linear
time bounds for median computations. In Proceedings of the 4th Annual ACM Symposium on
Theory of Computing (STOC), pages 119–124, 1972.

11

[14] Francesco Bonchi, David García-Soriano, and Francesco Gullo. Correlation Clustering. Morgan
& Claypool Publishers, 2022.

[15] Francesco Bonchi, Aristides Gionis, Francesco Gullo, Charalampos E Tsourakakis, and Antti
Ukkonen. Chromatic correlation clustering. ACM Transactions on Knowledge Discovery from
Data (TKDD), 9(4):1–24, 2015.

[16] Francesco Bonchi, Aristides Gionis, and Antti Ukkonen. Overlapping correlation clustering. In
2011 IEEE 11th International Conference on Data Mining (ICDM), pages 51–60, 2011.

[17] Guilherme Oliveira Chagas, Luiz Antonio Nogueira Lorena, and Rafael Duarte Coelho dos
Santos. A hybrid heuristic for the overlapping cluster editing problem. Applied Soft Computing,
81:105482, 2019.

[18] Philip S Chodrow, Nate Veldt, and Austin R Benson. Hypergraph clustering: from blockmodels
to modularity. Science Advances, 2021.

[19] Alex Crane, Brian Lavallee, Blair D Sullivan, and Nate Veldt. Overlapping and robust edge-
colored clustering in hypergraphs. In Proceedings of the 17th ACM International Conference
on Web Search and Data Mining (WSDM), pages 143–151, 2024.

[20] Alex Crane, Thomas Stanley, Blair D. Sullivan, and Nate Veldt. Edge-colored clustering in
hypergraphs: Beyond minimizing unsatisfied edges. In Forty-second International Conference
on Machine Learning (ICML), 2025.

[21] Nicolas A Crossley, Andrea Mechelli, Petra E Vértes, Toby T Winton-Brown, Ameera X
Patel, Cedric E Ginestet, Philip McGuire, and Edward T Bullmore. Cognitive relevance of the
community structure of the human brain functional coactivation network. Proceedings of the
National Academy of Sciences, 110(28):11583–11588, 2013.

[22] Devvrit, Ravishankar Krishnaswamy, and Nived Rajaraman. Robust Correlation Clustering. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019), volume 145, pages 33:1–33:18, 2019.

[23] Irit Dinur, Venkatesan Guruswami, Subhash Khot, and Oded Regev. A new multilayered PCP
and the hardness of hypergraph vertex cover. SIAM Journal on Computing, 34(5):1129–1146,
2005.

[24] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining (KDD), page 226–231,
1996.

[25] Absalom E Ezugwu, Abiodun M Ikotun, Olaide O Oyelade, Laith Abualigah, Jeffery O
Agushaka, Christopher I Eke, and Andronicus A Akinyelu. A comprehensive survey of
clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges,
and future research prospects. Engineering Applications of Artificial Intelligence, 110:104743,
2022.

[26] Takuro Fukunaga. Lp-based pivoting algorithm for higher-order correlation clustering. Journal
of Combinatorial Optimization, 37:1312–1326, 2019.

[27] Rajiv Gandhi, Samir Khuller, and Aravind Srinivasan. Approximation algorithms for partial
covering problems. Journal of Algorithms, 53(1):55–84, 2004.

[28] David F Gleich, Nate Veldt, and Anthony Wirth. Correlation clustering generalized. In 29th
International Symposium on Algorithms and Computation (ISAAC), 2018.

[29] Michel X Goemans and David P Williamson. A general approximation technique for constrained
forest problems. SIAM Journal on Computing, 24(2):296–317, 1995.

[30] Michel X. Goemans and David P. Williamson. The primal-dual method for approximation
algorithms and its application to network design problems. In Dorit S. Hochbaum, editor,
Approximation Algorithms for NP-hard Problems. 1996.

12

[31] Fabrizio Grandoni, Jochen Könemann, Alessandro Panconesi, and Mauro Sozio. A primal-dual
bicriteria distributed algorithm for capacitated vertex cover. SIAM Journal on Computing,
38(3):825–840, 2008.

[32] Sai Ji, Gaidi Li, Dongmei Zhang, and Xianzhao Zhang. Approximation algorithms for the ca-
pacitated correlation clustering problem with penalties. Journal of Combinatorial Optimization,
45(1), January 2023.

[33] jprenci, Walmart Competition Admin, and Will Cukierski. Walmart Re-
cruiting: Trip Type Classification. https://kaggle.com/competitions/
walmart-recruiting-trip-type-classification, 2015.

[34] Wendy Kan. What’s Cooking? https://kaggle.com/competitions/whats-cooking,
2015. Kaggle.

[35] Alboukadel Kassambara. Practical guide to cluster analysis in R: Unsupervised machine
learning, volume 1. Sthda, 2017.

[36] Sungwoong Kim, Sebastian Nowozin, Pushmeet Kohli, and Chang Yoo. Higher-order correla-
tion clustering for image segmentation. Advances in Neural Information Processing Systems
(NIPS), 24, 2011.

[37] Nicolas Klodt, Lars Seifert, Arthur Zahn, Katrin Casel, Davis Issac, and Tobias Friedrich. A
color-blind 3-approximation for chromatic correlation clustering and improved heuristics. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining
(KDD), pages 882–891, 2021.

[38] Peter Knees, Yashar Deldjoo, Farshad Bakhshandegan Moghaddam, Jens Adamczak, Gerard-
Paul Leyson, and Philipp Monreal. Recsys challenge 2019: Session-based hotel recommenda-
tions. In Proceedings of the 13th ACM Conference on Recommender Systems, pages 570–571,
2019.

[39] Pan Li, Hoang Dau, Gregory Puleo, and Olgica Milenkovic. Motif clustering and overlapping
clustering for social network analysis. In Proceedings of the IEEE Conference on Computer
Communications (INFOCOM), pages 1–9. IEEE, 2017.

[40] Pan Li and Olgica Milenkovic. Inhomogeneous hypergraph clustering with applications. Ad-
vances in neural information processing systems (NeurIPS), 30, 2017.

[41] Hans D. Mittelmann. Latest benchmark results. In INFORMS Annual Conference, Phoenix,
AZ, USA, 2018.

[42] Hans D. Mittelmann. Latest progress in optimization software. In INFORMS Annual Meeting,
Phoenix, AZ, USA, 2023.

[43] Divya Pandove, Shivani Goel, and Rinkle Rani. Correlation clustering methodologies and their
fundamental results. Expert Systems, 35(1):e12229, 2018.

[44] Mikail Rubinov and Olaf Sporns. Complex network measures of brain connectivity: uses and
interpretations. Neuroimage, 52(3):1059–1069, 2010.

[45] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June Hsu, and Kuansan
Wang. An overview of Microsoft Academic Service (MAS) and Applications. In Proceedings
of the 24th International Conference on World Wide Web (WWW) Companion, pages 243–246,
2015.

[46] Substance Abuse and Mental Health Services Administration. Drug Abuse Warn-
ing Network (DAWN). https://www.samhsa.gov/data/data-we-collect/
dawn-drug-abuse-warning-network, 2011.

[47] TheoryInPractice. Github repository for “Overlapping and Robust Edge-Colored Clus-
tering in Hypergraphs" (Crane et al. [19]). https://github.com/TheoryInPractice/
overlapping-ecc, 2024.

13

https://kaggle.com/competitions/walmart-recruiting-trip-type-classification
https://kaggle.com/competitions/walmart-recruiting-trip-type-classification
https://kaggle.com/competitions/whats-cooking
https://www.samhsa.gov/data/data-we-collect/dawn-drug-abuse-warning-network
https://www.samhsa.gov/data/data-we-collect/dawn-drug-abuse-warning-network
https://github.com/TheoryInPractice/overlapping-ecc
https://github.com/TheoryInPractice/overlapping-ecc

[48] Nate Veldt. Optimal LP rounding and linear-time approximation algorithms for clustering
edge-colored hypergraphs. In International Conference on Machine Learning (ICML), pages
34924–34951. PMLR, 2023.

[49] Nate Veldt, David F Gleich, and Anthony Wirth. A correlation clustering framework for
community detection. In Proceedings of the 2018 World Wide Web Conference (WWW), pages
439–448, 2018.

[50] Dewan F Wahid and Elkafi Hassini. A literature review on correlation clustering: cross-
disciplinary taxonomy with bibliometric analysis. In Operations Research Forum, volume 3,
page 47. Springer, 2022.

[51] Qing Xiu, Kai Han, Jing Tang, Shuang Cui, and He Huang. Chromatic correlation clustering,
revisited. Advances in Neural Information Processing Systems (NeurIPS), 35:26147–26159,
2022.

[52] Julian Yarkony, Alexander Ihler, and Charless C Fowlkes. Fast planar correlation clustering
for image segmentation. In Computer Vision: 12th European Conference on Computer Vision
(ECCV), pages 568–581. Springer, 2012.

A Technical details and proofs for Local ECC deferred from Section 3.1

A.1 Formal proof of Theorem 3.1

Lemma A.1. Algorithm 1 satisfies the following:

(a) At any moment, (α, β) is feasible to the dual LP.

(b) At any moment, for all v ∈ V , αv ≤ 1
bv+1

∑
e∈δ(v) βe,v .

(c) At termination, every mistake e under σ is tight, i.e., not loose.

Proof. Properties (a) and (b) were shown in Section 3.1; let us show Property (c). Let e be an
arbitrary loose edge, and suppose towards contradiction that ce /∈ σ(v) for some v ∈ e. Observe that,
once an edge becomes tight, the algorithm never makes it loose again. Therefore, e was loose at the
end of the iteration for v of the for loop. Then δ(v) ∩ L contained e and therefore ce ∈ χ(δ(v) ∩ L),
leading to contradiction.

Let ALG be the total weight of mistakes in the output of Algorithm 1 and OPT be the weight of an
optimal solution.

Lemma A.2. We have ALG ≤ (bmax + 1) · OPT.

Proof. By Properties (a) and (b) of Lemma A.1, we have

OPT ≥
∑
e∈E

∑
v∈e

βe,v −
∑
v∈V

bvαv =
∑
v∈V

(∑
e∈δ(v)

βe,v − bvαv

)
≥

∑
v∈V

(1

bv + 1

∑
e∈δ(v)

βe,v

)
,

where the first inequality is due to the (weak) LP duality. On the other hand, we have

ALG ≤
∑

e∈E\L

we =
∑

e∈E\L

∑
v∈e

βe,v ≤
∑
e∈E

∑
v∈e

βe,v =
∑
v∈V

∑
e∈δ(v)

βe,v,

where the first inequality is due to Property (c). The two inequalities together completes the proof.

Now we need to show that the algorithm runs in polynomial time. In fact, the algorithm can be
implemented to run in linear time. Recall that the size of H is

∑
v∈V dv .

Lemma A.3. Algorithm 1 can be implemented to run in O(
∑

v∈V dv) time.

14

Proof. For each edge, let us maintain the “level” ℓe :=
∑

u∈e βe,u. Consider an iteration for
node v ∈ V . By enumerating δ(v), we can compute, for every color c ∈ χ(δ(v)), the “slack”
slack(c) :=

∑
e∈δc(v)

(we − ℓe). Let c⋆ be the color c ∈ χ(δ(v)) that has the (bv + 1)-st largest
slack. Let s⋆ := slack(c⋆). Note that we can identify c⋆ in O(dv) time using the algorithm of
Blum et al. [13]. Once we found c⋆, for every color c ∈ χ(δ(v)), we increase

∑
e∈δc(v)

βe,v by
min{slack(c), s⋆} while maintaining the dual feasibility, i.e., for each edge e ∈ E,

∑
v∈e βe,v ≤ we

must be satisfied at the end. We then update {ℓe}e∈δc(v) accordingly. Note that a single iteration can
be implemented to run in O(dv), completing the proof.

Theorem 3.1. Algorithm 1 is a (blocal + 1)-approximation algorithm for LOCAL ECC.

Proof. Immediate from Lemmas A.2 and A.3.

A.2 Proof of Theorem 3.2

Theorem 3.2. There is a sequence of instances of LOCAL ECC such that the ratio between a
fractional solution and an optimal integral solution converges to blocal + 1.

Proof. Consider a hypergraph H = (V,E) where |E| is sufficiently large and |V | =
(|E|
blocal+1

)
. All

edge weights are 1. In the hypergraph, each node is uniquely labeled by a subset S of E such that
|S| = blocal + 1. Let vS denote the node whose label is S. For each vS ∈ V , the set of edges that are
incident to vS is S. The colors of edges are distinct, i.e., ce ̸= ce′ for all e ̸= e′ ∈ E.

We claim that, in any integral solution, the number of satisfied edges (i.e., edges that are not mistakes)
does not exceed blocal. Suppose toward contradiction that there is a color assignment where at least
blocal+1 edges are satisfied. Let S be any subset of the satisfied edges of size exactly blocal+1. Since
the colors are all distinct, node vS must be colored with (at least) blocal + 1 colors, contradicting
the budget constraint. Therefore, the total number of mistakes of any integral solution is at least
|E| − blocal.

Now consider the following fractional solution. Let xvS ,ce has value blocal
blocal+1 if e ∈ S, otherwise 0.

Let ye = 1
blocal+1 for all e ∈ E. Observe that the constructed solution is feasible to the LP and its cost

is |E|
blocal+1 . The integrality gap is at least

|E| − blocal
|E|

blocal+1

=
(|E| − blocal)(blocal + 1)

|E|
= blocal + 1− blocal(blocal + 1)

|E|
,

which converges to blocal + 1 as |E| tends to infinity.

A.3 Proof of Theorems 3.3 and 3.4

Theorem 3.3. For any constant ϵ > 0, it is UGC-hard to approximate LOCAL ECC within a factor
of blocal + 1− ϵ.

Theorem 3.4. For any blocal ≥ 2 and any constant ϵ > 0, there does not exist a (blocal − ϵ)-
approximation algorithm for LOCAL ECC unless P = NP.

We say a hypergraph H = (V,E) is k-uniform if, for all e ∈ E, |e| = k. Given a k-uniform
hypergraph H = (V,E), Ek-VERTEX-COVER asks to find a minimum-size subset S ⊆ V of vertices,
called a vertex cover, such that every hyperedge e ∈ E intersects S, i.e., e ∩ S ̸= ∅ for each e ∈ E.
Bansal and Khot [10] showed the following theorem.

Theorem A.4 (Bansal and Khot [10]). For any k ≥ 2 and any constant ϵ > 0, there does not exists a
(k − ϵ)-approximation algorithm for Ek-VERTEX-COVER assuming the Unique Game Conjecture.

Dinur, Guruswami, Khot, and Regev [23] showed the following theorem.

Theorem A.5 (Dinur et al. [23]). For any k ≥ 3 and any constant ϵ > 0, there does not exists a
(k − 1− ϵ)-approximation algorithm for Ek-VERTEX-COVER unless P = NP.

15

Due to Theorems A.4 and A.5, it suffices to present an approximation-preserving reduction from
Ek-VERTEX-COVER to LOCAL ECC with blocal := k − 1.

Proof of Theorems 3.3 and 3.4. Given a k-uniform hypergraph H = (W,F) as an input to Ek-
VERTEX-COVER, let H ′ := (V,E) be a hypergraph defined as follows:

• V := {vf | f ∈ F} and

• E := {ew | w ∈W} where ew := {vf | f ∋ w}.

Let C := {cw | w ∈W} be a set of |W | number of distinct colors. Let us then consider the input to
LOCAL ECC where H ′ is given as the hypergraph, the color of ew is cw for every ew ∈ E, and the
budget blocal is set to k − 1.

For any vertex cover S ⊆W in H , let σS be the node coloring defined as follows: for every vf ∈ V ,
σS(vf) := {cw | w ∈ f \ S}. Note that, for every w ∈ W \ S, ew is satisfied by σS . Moreover,
since |f | = k and f ∩ S ̸= ∅, we can see that |σS(vf)| ≤ k − 1 = blocal. This shows σS is indeed a
feasible node coloring whose number of mistakes is at most |S|. We can therefore deduce that the
minimum size of a vertex cover in the original input is at least the minimum number of mistakes in
the reduced input.

For the other direction, let us now consider a feasible node coloring σ. Observe that, for any vf ∈ V ,
at least one edge in δ(vf) must be a mistake since |δ(vf)| = |f | = k = blocal + 1 and the colors of
E are distinct. This implies that, for every f ∈ F , there exists a vertex w ∈ W such that ew ∈ E
is a mistake due to σ in the reduced input. This shows that, given a feasible node coloring σ to the
reduced input, we can construct in polynomial time a feasible vertex cover in the original input whose
size is the same as the number of mistakes due to σ. Together with the above argument that the
minimum number of mistakes in the reduced input is at most the minimum size of a vertex cover in
the original input, this implies an approximation-preserving reduction from Ek-VERTEX-COVER to
LOCAL ECC.

A.4 Bicriteria algorithm for Local ECC

Theorem A.6. For any ϵ ∈ (0, blocal], there exists a (1 + ϵ, 1 + 1
blocal
⌈ blocalϵ ⌉ −

1
blocal

)-approximation
algorithm for LOCAL ECC.

Proof. Let τ := ⌈ blocalϵ ⌉−1. Consider the algorithm where the condition of while loop of Algorithm 1
is replaced by |χ(δ(v) ∩ L)| > blocal + τ . Let σ be the assignment output by the modified algorithm.
Observe first that the number of colors assigned to each v is at most blocal + τ = blocal · (1 +
1

blocal
⌈ blocalϵ ⌉ −

1
blocal

). Observe that Properties (a) and (c) of Lemma A.1 still hold. Moreover, instead
of Property (b), it is easy to show a stronger property that, at any moment, for all v ∈ V ,

αv ≤
1

blocal + τ + 1

∑
e∈δ(v)

βe,v. (1)

We therefore have

ALG ≤
∑
v∈V

∑
e∈δ(v)

βe,v ≤
∑
v∈V

blocal + τ + 1

τ + 1

 ∑
e∈δ(v)

βe,v − blocalαv


=

∑
v∈V

(
1 +

blocal
τ + 1

) ∑
e∈δ(v)

βe,v − blocalαv


≤ (1 + ϵ)

∑
v∈V

 ∑
e∈δ(v)

βe,v − blocalαv

 ≤ (1 + ϵ)OPT,

where the first inequality follows from Property (c), the second from Equation (1), and the last from
Property (a).

Note that 1 + 1
blocal
⌈ blocalϵ ⌉ −

1
blocal

< 1 + 1
ϵ .

16

A.5 Discretized version of Algorithm 1

Algorithm 2 is a discretized version of Algorithm 1. Note that the proof Lemma A.3 is based on this
discretized version.

Algorithm 2 Discretized primal-dual algorithm for LOCAL ECC

ℓe ← 0 for all e ∈ E
L← {e ∈ E | we > 0}
for v ∈ V do

if |χ(δ(v) ∩ L)| > bv then
slack(c)← 0 for all c ∈ χ(δ(v) ∩ L)
for e ∈ δ(v) ∩ L do
slack(ce)← slack(ce) + (we − ℓe)

let s⋆ be the (bv + 1)-st largest value in the (multi)set {slack(c)}c∈χ(δ(v)∩L)

for c ∈ χ(δ(v) ∩ L) do
ℓe ← ℓe +

min{slack(c),s⋆}
slack(c) (we − ℓe) for all e ∈ δc(v) ∩ L

if slack(c) ≤ s⋆ then
L← L \ δc(v)

σ(v)← χ(δ(v) ∩ L)
return σ

B Technical details and proofs for Robust ECC deferred from Section 3.2

B.1 Proposed algorithm for Robust ECC

In Section 3.2, we sketched our algorithm for ROBUST ECC. We present its pseudocode below.

Algorithm 3 Proposed algorithm for ROBUST ECC

α← 0; β ← 0; λ← 0
L← {e ∈ E | we > 0}
R← {v ∈ V | |χ(δ(v) ∩ L)| ≥ 2}
while |R| > brobust do

increase λ and αv and βe,v for v ∈ R and e ∈ δ(v) ∩ L in a way that the increase rate of λ and
that of

∑
e∈δ(v)∩L βe,v − αv for each v ∈ R are uniform and, for each v ∈ R, the increase rate

of αv and that of
∑

e∈δc(v)∩L βe,v for each c ∈ χ(δ(v) ∩ L) are uniform, until there exists e
such that

∑
u∈e βe,u = we

if ∃e
∑

u∈e βe,u = we then remove all such edges from L
if ∃v |χ(δ(v) ∩ L)| ≤ 1 then remove all such nodes from R

remove R from the hypergraph
for v /∈ R do

if |χ(δ(v) ∩ L)| = 1 then
σ(v)← c where c ∈ χ(δ(v) ∩ L)

else
σ(v)← c where c is an arbitrary color

return σ

B.2 Proof of Theorem 3.5

We have the following key lemma. Let us prove only Property (a), since Properties (b) and (c) can be
seen from the same argument as the one for Lemma A.1.

Lemma B.1. Algorithm 3 satisfies the following:

(a) At any moment, (α, β, λ) is feasible to the dual LP.

17

(b) At any moment, for all v ∈ V , αv ≤ 1
2

∑
e∈δ(v) βe,v .

(c) At termination, every mistake e under σ is tight.

Proof of Property (a). Recall the two properties of the algorithm. Observe that the first set of dual
constraints remain feasible due to Property (ii); the second set of constraints are satisfied since the
algorithm stops increasing dual variables as soon as it discovers a tight edge; the third set of dual
constraints are kept feasible due to Property (i).

Let ALG be the total weight of mistakes in the output of Algorithm 3 and OPT be the weight of an
optimal solution.

Lemma B.2. We have ALG ≤ (2brobust + 2) · OPT.

Proof. Observe that, if |R| ≤ brobust from the very beginning of the algorithm, the algorithm
immediately terminates and incurs no weight. Let us thus assume that |R| > brobust at the beginning.

Consider the timepoint when the algorithm terminates. Let R0 denote the value of R at termination.
Let R′ := {v ∈ V |

∑
e∈δ(v) βe,v − αv = λ}. We claim that R0 ⊊ R′ and |R′| > brobust. (Proof.

Right before the algorithm terminates, it removes some nodes from R. Consider the moment right
before this removal. At this moment, every node v in R satisfies

∑
e∈δ(v) βe,v−αv = λ and therefore

is in R′. Note that R contains more than brobust vertices at this moment, since otherwise the algorithm
would have terminated earlier. Note that R0 is the set resulting from the removal.) Let R′′ be any set
such that R0 ⊆ R′′ ⊊ R′ with |R′′| = brobust, and let w denote an arbitrary node in R′ \R′′. We can
then bound OPT from below as follows:

OPT ≥
∑
e∈E

∑
v∈e

βe,v −
∑
v∈V

αv − λbrobust =
∑
e∈E

∑
v∈e

βe,v −
∑
v∈V

αv −
∑
v∈R′′

(∑
e∈δ(v)

βe,v − αv

)
=

∑
v∈V \R′′

(∑
e∈δ(v)

βe,v − αv

)
(2)

≥ 1

2

∑
v∈V \R′′

∑
e∈δ(v)

βe,v, (3)

where the first inequality is due to Property (a) and the second inequality is due to Property (b).
Moreover, since w ∈ R′ \R′′ and |R′′| = brobust, we can find another lower bound on OPT from (2):

OPT ≥
∑

v∈V \R′′

(∑
e∈δ(v)

βe,v − αv

)
≥

∑
e∈δ(w)

βe,w − αw =
1

brobust

∑
v∈R′′

(∑
e∈δ(v)

βe,v − αv

)
≥ 1

2brobust

∑
v∈R′′

∑
e∈δ(v)

βe,v, (4)

where the equality follows from the fact that w ∈ R′ and the last inequality is again due to Property (b).
Therefore, by Property (c), we have

ALG ≤
∑
v∈V

∑
e∈δ(v)

βe,v =
∑
v∈R′′

∑
e∈δ(v)

βe,v +
∑

v∈V \R′′

∑
e∈δ(v)

βe,v ≤ (2brobust + 2) · OPT, (5)

where the last inequality follows from (3) and (4). Note that, if brobust = 0, (5) immediately follows
from (3) without (4).

Lemma C.3 in Appendix C.3 shows that Algorithm 3 can be implemented to run in O(|E|
∑

v∈V dv)
time.

Theorem 3.5. Algorithm 3 is a 2(brobust + 1)-approximation algorithm for ROBUST ECC.

Proof. Immediate from Lemmas B.2 and C.3.

18

B.3 Bicriteria algorithm for Robust ECC

Theorem B.3. Suppose that b ≥ 1. For any ϵ ∈ (0, 2brobust], there exists a (2+ϵ, 1+ 1
brobust
⌈ 2brobustϵ ⌉−

1
brobust

)-approximation algorithm for ROBUST ECC.

Proof. Let τ := ⌈ 2brobustϵ ⌉ − 1. Consider the algorithm where the condition of the while loop in
Algorithm 3 is replaced by |R| > brobust + τ . It is clear that the number of removals is at most
brobust + τ = brobust · (1 + 1

brobust
⌈ 2brobustϵ ⌉ − 1

brobust
). Note also that the modified algorithm satisfies all

the properties of Lemma B.1.

We basically follow the proof of Lemma B.2. Let R0 be the set of nodes that are removed from the
hypergraph H . Observe that |R0| ≤ brobust + τ from the construction. Let σ be the color assignment
of V \R0 output by the algorithm and let Em be the set of mistakes under σ. We have∑

e∈Em

we ≤
∑
v∈V

∑
e∈δ(v)

βe,v ≤ 2
∑
v∈V

 ∑
e∈δ(v)

βe,v − αv

, (6)

where the first inequality follows from Property (c) and the second from Property (b). Let R′ := {v ∈
V |

∑
e∈δ(v) βe,v − αv = λ}. Observe that R0 ⊊ R′ and |R′| > brobust + τ . Let R′′ be a subset of

R′ such that R ⊆ R′′ with |R′′| = brobust + τ . We then have

OPT ≥
∑
e∈E

∑
v∈e

βe,v −
∑
v∈V

αv − λbrobust

=
∑
v∈V

 ∑
e∈δ(v)

βe,v − αv

− brobust
brobust + τ

∑
v∈R′′

 ∑
e∈δ(v)

βe,v − αv

 (7)

=
∑

v∈V \R′′

 ∑
e∈δ(v)

βe,v − αv

+
τ

brobust + τ

∑
v∈R′′

 ∑
e∈δ(v)

βe,v − αv

. (8)

Let w denote any node in R′ \R′′. We give a lower bound on the first term of (8) as follows:∑
v∈V \R′′

 ∑
e∈δ(v)

βe,v − αv

 ≥ ∑
e∈δ(w)

βe,w − αw =
1

brobust + τ

∑
v∈R′′

 ∑
e∈δ(v)

βe,v − αv

. (9)

Therefore by plugging (9) into (8), we have

OPT ≥ τ + 1

brobust + τ

∑
v∈R′′

 ∑
e∈δ(v)

βe,v − αv

. (10)

We then have∑
v∈V

 ∑
e∈δ(v)

βe,v − αv


=

∑
v∈V

 ∑
e∈δ(v)

βe,v − αv

− brobust
brobust + τ

∑
v∈R′′

 ∑
e∈δ(v)

βe,v − αv


+

brobust
brobust + τ

∑
v∈R′′

 ∑
e∈δ(v)

βe,v − αv


≤

(
1 +

brobust
τ + 1

)
OPT ≤

(
1 +

ϵ

2

)
OPT,

where the first inequality follows from (7) and (10). Combining this inequality with (6) proves the
theorem.

Recall that Crane et al. [19] gave an LP-rounding bicriteria (2 + ϵ, 2 + 4
ϵ)-approximation algorithm

for ROBUST ECC for ϵ > 0. Note that this algorithm provides an better performance guarantee.

19

B.4 Discretized version of Algorithm 3

Algorithm 4 is a discretized version of Algorithm 3. Note that the proof Lemma C.3 is based on this
discretized version.

Algorithm 4 Discretized primal-dual algorithm for ROBUST ECC

ℓe ← 0 for all e ∈ E
L← {e ∈ E | we > 0}
R← {v ∈ V | |χ(δ(v) ∩ L)| ≥ 2}
while |R| > brobust do
rate(e)← 0 for all e ∈ L
for v ∈ R do

for c ∈ χ(δ(v) ∩ L) do
rate(e)← rate(e) + 1

|χ(δ(v)∩L)|−1 ·
1

|δc(v)∩L| for all e ∈ δc(v) ∩ L

ttighten(e)← we−ℓe
rate(e) for all e ∈ L

t⋆ ← mine∈L ttighten(e)
for e ∈ L do
ℓe ← ℓe + t⋆ · rate(e)
if ℓe = we then

L← L \ {e}
remove all v ∈ e from R such that |χ(δ(v) ∩ L)| ≤ 1

remove R from the hypergraph
for v /∈ R do

if |χ(δ(v) ∩ L)| = 1 then
σ(v)← c where c ∈ χ(δ(v) ∩ L)

else
σ(v)← c where c is an arbitrary color

return σ

C Technical details and proofs for Global ECC deferred from Section 3.2

C.1 Primal and dual LP

Following is the LP relaxation, where zv ∈ Z≥0 indicates the number of additional colors budget
assigned to v, i.e., zv + 1 number of colors is assigned to v.

min
∑

e∈E weye

s.t.
∑

c∈C xv,c ≤ zv + 1, ∀v ∈ V,

xv,ce + ye ≥ 1, ∀e ∈ E, v ∈ e,∑
v∈V zv ≤ bglobal,

xv,c ≥ 0, ∀v ∈ V, c ∈ C,

ye ≥ 0, ∀e ∈ E,

zv ≥ 0, ∀v ∈ V.

Following is the dual of this LP.

max
∑

e∈E,v∈e βe,v −
∑

v∈V αv − λbglobal

s.t.
∑

e∈δc(v)
βe,v ≤ αv, ∀v ∈ V, c ∈ C,∑

v∈e βe,v ≤ we, ∀e ∈ E,

αv ≤ λ, ∀v ∈ V,

αv ≥ 0, ∀v ∈ V,

βe,v ≥ 0, ∀e ∈ E, v ∈ e,

λ ≥ 0.

20

C.2 Proposed algorithm for Global ECC

Let us now present our algorithm. Similarly, we consider the problem where each edge has an
associated weight we.

The algorithm shares many similarity with the algorithm for ROBUST ECC. It maintains a dual
feasible solution (α, β, λ), starting from (0,0, 0), the set L of loose edges, and the set R of nodes
with at least two incident loose edges of distinct colors. It also simultaneously increases λ and (α, β)
associated with the nodes in R. Intuitively, R is the set of nodes that we will assign (possibly) more
than one color.

As the dual formulation differs, the way the algorithm increases the dual solution slightly varies. The
following properties will hold:

(i) λ and αv for each v ∈ R increas at the same rate.
(ii) For all v ∈ R, αv and

∑
e∈δc(v)∩L βe,v for each c ∈ χ(δ(v) ∩ L) increase at the same rate.

Observe that these properties can be easily ensured.

The algorithm increases the dual solution until
∑

v∈R(|χ(δ(v) ∩ L)| − 1) becomes at most bglobal,
and once the algorithm reaches this point, it assigns every node v ∈ V the color in χ(δ(v) ∩ L). It is
clear that the returned node coloring is feasible. As before, if χ(δ(v) ∩ L) = ∅, an arbitrary color
can be assigned without affecting the theoretical guarantee; in practical implementation, we could
employ heuristics for marginal improvement. See Algorithm 5 for a detailed pseudocode. The full
discretized version of the algorithm is presented in Appendix C.6.

Algorithm 5 Proposed algorithm for GLOBAL ECC

α← 0; β ← 0; λ← 0
L← {e ∈ E | we > 0}
R← {v ∈ V | |χ(δ(v) ∩ L)| ≥ 2}
while

∑
v∈R(|χ(δ(v) ∩ L)| − 1) > bglobal do

increase λ and αv and βe,v for v ∈ R and e ∈ δ(v) ∩ L in a way that the increase rate of λ
and that of αv for each v ∈ R are uniform and, for each v ∈ R, the increase rate of αv and
that of

∑
e∈δc(v)∩L βe,v for each c ∈ χ(δ(v) ∩ L) are uniform, until there exists e such that∑

u∈e βe,u = we

if ∃e
∑

u∈e βe,u = we then remove all such edges from L
if ∃v |χ(δ(v) ∩ L)| ≤ 1 then remove all such nodes from R

for v ∈ V do
if |χ(δ(v) ∩ L)| ≥ 1 then
σ(v)← χ(δ(v) ∩ L)

else
σ(v)← {c} where c is an arbitrary color

return σ

C.3 Proof of Theorem 3.6

We have the following key lemma. Let us prove only Property (a), since Properties (b) through (d)
can be seen from the same argument as the one for Lemma A.1.
Lemma C.1. Algorithm 5 satisfies the following:

(a) At any moment, (α, β, λ) is feasible to the dual LP.

(b) At any moment, for all v ∈ V , αv ≤ 1
2

∑
e∈δ(v) βe,v .

(c) At any moment, for all v ∈ R, αv ≤ 1
|χ(δ(v)∩L)|

∑
e∈δ(v) βe,v .

(d) At termination, every mistake e under σ is tight.

Proof of Property (a). Recall the two properties of the algorithm. Observe that the first set of dual
constraints remain feasible due to Property (ii); the second set of constraints are satisfied since the

21

algorithm stops increasing dual variables as soon as it discovers a tight edge; the third set of dual
constraints are kept feasible due to Property (i).

Given L ⊆ E, let κL(v) := |χ(δ(v) ∩ L)| for v ∈ V . Let budgetL(S) :=
∑

v∈R(κL(v) − 1) for
S ⊆ V . Let ALG be the total weight of mistakes in the output of Algorithm 5 and OPT be the weight
of an optimal solution.
Lemma C.2. We have ALG ≤ (2bglobal + 2) · OPT.

Proof. Observe that, if budgetL(R) ≤ bglobal from the very beginning of the algorithm, the algorithm
immediately terminates and incurs no weight. Let us thus assume that budgetL(R) > bglobal at the
beginning.

Consider the last iteration of while loop of the algorithm. In this iteration, the algorithm removes
some edges from L (and possibly removes some vertices). Consider the moment right before the
removal of edges. Let R′ and L′, respectively, denote the value of R and L at this moment. Let
b′ := budgetL′(R′). Note that b′ > bglobal, since otherwise the algorithm would have terminated
earlier. Moreover, at this moment–or at the termination–we have αv = λ, for every v ∈ R′.

We then bound OPT from below as follows:

OPT ≥
∑
e∈E

∑
v∈e

βe,v −
∑
v∈V

αv − λbglobal =
∑
v∈V

 ∑
e∈δ(v)

βe,v − αv

− bglobal
b′

∑
v∈R′

(κL′(v)− 1)αv

=
∑

v∈V \R′

 ∑
e∈δ(v)

βe,v − αv

+
∑
v∈R′

 ∑
e∈δ(v)

βe,v −
(
1 +

bglobal
b′

(κL′(v)− 1)

)
αv


≥

∑
v∈V \R′

1

2

∑
e∈δ(v)

βe,v

+
∑
v∈R′

(
1− 1

κL′(v)

(
1 +

bglobal
b′

(κL′(v)− 1)

)) ∑
e∈δ(v)

βe,v


=

∑
v∈V \R′

1

2

∑
e∈δ(v)

βe,v

+
∑
v∈R′

(
1− 1

κL′(v)

)(
1− bglobal

b′

) ∑
e∈δ(v)

βe,v


≥

∑
v∈V \R′

1

2

∑
e∈δ(v)

βe,v

+
∑
v∈R′

1

2

(
1− bglobal

b′

) ∑
e∈δ(v)

βe,v


≥ 1

2

(
1− bglobal

b′

)∑
v∈V

∑
e∈δ(v)

βe,v (11)

where the first inequality is due to Property (a), the first equality comes from λ = αv for every
v ∈ R′, the second inequality is due to Property (b) and (c), and the second to last inequality comes
from κL′(v) ≥ 2 for every v ∈ R′. Therefore, by Property (d), we have

ALG ≤
∑
v∈V

∑
e∈δ(v)

βe,v ≤ (2bglobal + 2) · OPT,

where the last inequality comes from b′ ≥ bglobal + 1, which implies 1 − bglobal
b′ ≥ 1 − bglobal

bglobal+1 =
1

bglobal+1 .

Lemma C.3. Both Algorithm 3 and Algorithm 5 can be implemented to run in O(|E|
∑

v∈V dv)
time.

Proof. It suffices to show that we can decide in O(
∑

v∈V dv) time which edge becomes tight, as
well as the increment of the dual variables. By iterating each node v and its incident edges δ(v), we
can compute the increase rates of αv and {βe,v}e∈δ(v). From this, we can obtain the increase rate
of the “level” ℓe :=

∑
u∈e βe,u for each e ∈ L. Let rate(e) denote this increase rate. As e ∈ L will

become tight in ttighten(e) :=
we−

∑
u∈e βe,u

rate(e) time, we can determine the edge that will become tight
the earliest. We can also compute the increment of the dual variables accordingly.

22

Theorem 3.6. Algorithm 5 is a 2(bglobal + 1)-approximation algorithm for GLOBAL ECC.

Proof. Immediate from Lemmas C.2 and C.3.

We note that our approach yields a true (non-bicriteria) approximation algorithm. This shows that the
LP, which is equivalent to that of Crane et al. [19], has an integrality gap of O(bglobal).

C.4 Proof of Theorem 3.8

Theorem 3.8. The integrality gap of the LP for GLOBAL ECC is at least bglobal + 1.

Proof. We construct an instance similar to the one used in the proof of Theorem 3.7. Consider a
hypergraph H = (V = {v1, · · · , vbglobal+1}, E = {e1, e2}) where e1 = e2 = V , we1 = we2 = 1,
and ce1 ̸= ce2 . Any integral solution incurs at least 1 since at least one node is assigned one color
and at least one edge cannot be satisfied. However, consider the solution given by zv =

bglobal
bglobal+1 ,

xv,ce1
= xv,ce2

=
2bglobal+1
2(bglobal+1) for all v ∈ V and ye1 = ye2 = 1

2(bglobal+1) . This solution is feasible and
the cost is 1

bglobal+1 .

C.5 Bicriteria algorithm for GLOBAL ECC

Theorem C.4. Suppose that b ≥ 1. For any ϵ ∈ (0, 2bglobal], there exists a (2+ ϵ, 1+ 1
bglobal
⌈ 2bglobalϵ ⌉−

1
bglobal

)-approximation algorithm for GLOBAL ECC.

Proof. Let τ := ⌈ 2bglobalϵ ⌉ − 1. Consider the algorithm where the condition of the while loop in
Algorithm 5 is replaced by

∑
v∈R(|χ(δ(v) ∩ L)| − 1) > bglobal + τ . It is clear that∑

v∈V

max{|σ(v)| − 1, 0} ≤ bglobal + τ = bglobal ·
(
1 +

1

b

⌈
2bglobal

ϵ

⌉
− 1

bglobal

)
.

Note also that the modified algorithm satisfies all the properties of Lemma C.1.

We basically follow the proof of Lemma C.2. With the same definition of R′ and L′, we have
b′ := budgetL′(R′) > bglobal + τ . Note that 1− bglobal

b′ ≥ 1− bglobal
bglobal+τ+1 = τ+1

bglobal+τ+1 . Together with
equation (11),

ALG ≤
∑
v∈V

∑
e∈δ(v)

βe,v ≤ (2 +
2bglobal
τ + 1

) · OPT ≤ (2 + ϵ) · OPT,

where the last inequality comes from τ ≥ 2bglobal
ϵ − 1.

Recall that Crane et al. [19] gave an LP-rounding bicriteria (bglobal+3+ϵ, 1+
bglobal+2

ϵ)-approximation
algorithm for GLOBAL ECC for ϵ > 0. Both approximation factor and violation factor of Crane et
al.’s algorithm are linear in bglobal. They raised an open question whether we can give a bicriteria
approximation algorithm for GLOBAL ECC with both factor being constant (or give a hardness
result). Observe 1 + 1

b ⌈
2bglobal

ϵ ⌉ − 1
bglobal

< 1 + 2
ϵ . Our bicriteria algorithm satisfies the condition,

answering the open question of Crane et al. [19].

23

C.6 Discretized version of Algorithm 5

Algorithm 6 is a discretized version of Algorithm 5. Note that the proof Lemma C.3 is based on this
discretized version.

Algorithm 6 Discretized primal-dual algorithm for GLOBAL ECC

ℓe ← 0 for all e ∈ E
L← {e ∈ E | we > 0}
R← {v ∈ V | |χ(δ(v) ∩ L)| ≥ 2}
while

∑
v∈R(|χ(δ(v) ∩ L)| − 1) > bglobal do

rate(e)← 0 for all e ∈ L
for v ∈ R do

for c ∈ χ(δ(v) ∩ L) do
rate(e)← rate(e) + 1

|δc(v)∩L| for all e ∈ δc(v) ∩ L

ttighten(e)← we−ℓe
rate(e) for all e ∈ L

t⋆ ← mine∈L ttighten(e)
for e ∈ L do
ℓe ← ℓe + t⋆ · rate(e)
if ℓe = we then

L← L \ {e}
remove all v ∈ e from R such that |χ(δ(v) ∩ L)| ≤ 1

σ(v)← χ(δ(v) ∩ L) for all v ∈ V
return σ

D Dataset description

The benchmark data of Crane et al. [19] contains six datasets. Cooking [34, 4], described in Section 1,
is a hypergraph whose nodes correspond to food ingredients, edges represent recipes, and edge colors
indicate cuisines. Brain [44, 21] contains the relation between brain regions: there are two types of
relations, coactivation and connectivity, encoded by colors. The nodes corresponds to brain regions,
and colored edges represent relations between them. In MAG-10 [45, 4], each node corresponds
to a researcher, and an edge indicates the author set of a published paper. Its color represents the
publication venue (e.g., NeurIPS). DAWN [46, 4] is a dataset on the relation between drug use and
emergency room (ER) visit disposition such as “discharged”, “surgery”, and “transferred”. Each
node corresponds to a drug, an edge corresponds to the combination of drugs taken by an ER patient,
and colors represent the visit disposition. In Walmart [33, 4], each node represents a product, an
edge indicates a set of products purchased together, and colors are “trip type” labels determined by
Walmart. Lastly in Trivago [38, 18], nodes are vacation rental properties and an edge represents the
set of rental properties clicked during a single browsing session of a single user. Colors correspond to
the countries where the browsing sessions happen.

E Tables and figures deferred from Section 4

Table 2: Average running times of each dataset (in seconds): LOCAL ECC. Values in parentheses are
averages excluding trivial instances.

Proposed Greedy LP-rounding

Brain 0.023 (0.120) 0.007 (0.028) 0.743 (3.739)
MAG-10 0.142 (0.134) 0.587 (0.554) 10.413 (10.677)
Cooking 0.032 (0.035) 0.099 (0.103) 39.702 (44.916)
DAWN 0.016 (0.019) 0.040 (0.040) 3.948 (4.658)
Walmart 0.190 (0.190) 1.443 (1.443) 145.427 (145.427)
Trivago 0.323 (0.313) 3.709 (3.608) 678.585 (677.036)

24

Table 3: Average running times of each dataset (in seconds): ROBUST ECC. Values in parentheses
are averages excluding trivial instances.

Proposed Greedy LP-rounding

Brain 1.345 (1.345) 0.005 (0.005) 2.007 (2.007)
MAG-10 11.056 (15.303) 0.666 (0.588) 15.871 (17.660)
Cooking 42.571 (42.571) 0.118 (0.118) 220.107 (220.107)
DAWN 39.905 (39.905) 0.048 (0.048) 16.464 (16.464)
Walmart 243.881 (243.881) 1.995 (1.995) 3766.539 (3766.539)
Trivago 195.337 (227.799) 5.210 (5.144) 705.323 (709.378)

Proposed Greedy [19] LP-Rounding [19]

.01 .05 .1 .15 .2 .25
brobust/|V|

10−2

10−1

100

Brain

.01 .05 .1 .15 .2 .25
brobust/|V|

100

101

MAG-10

.01 .05 .1 .15 .2 .25
brobust/|V|

10−1

100

101

102

Cooking

.01 .05 .1 .15 .2 .25
brobust/|V|

10−1

100

101

102
DAWN

.01 .05 .1 .15 .2 .25
brobust/|V|

101

102

103

Walmart

.01 .05 .1 .15 .2 .25
brobust/|V|

100

101

102

103
Trivago

(a) Running times (in seconds, log scale)

.01 .05 .1 .15 .2 .25
brobust/|V|

−0.6

−0.4

−0.2

0.0

Brain

.01 .05 .1 .15 .2 .25
brobust/|V|

−1.0

−0.5

0.0

0.5

1.0

MAG-10

.01 .05 .1 .15 .2 .25
brobust/|V|

−0.2

0.0

0.2
Cooking

.01 .05 .1 .15 .2 .25
brobust/|V|

−0.4

−0.2

0.0

0.2
DAWN

.01 .05 .1 .15 .2 .25
brobust/|V|

−0.50

−0.25

0.00

0.25

0.50

0.75
Walmart

.01 .05 .1 .15 .2 .25
brobust/|V|

−1

0

1

2

Trivago

(b) Relative error estimates

Figure 2: (a) Running times (in seconds, log scale) and (b) relative error estimates of the ROBUST
ECC algorithms. Empty square markers denote trivial instances.

25

Table 4: Average running times of each dataset (in seconds): GLOBAL ECC. Values in parentheses
are averages excluding trivial instances.

Proposed Greedy LP-rounding

Brain 0.415 (0.885) 0.008 (0.012) 1.849 (3.381)
MAG-10 3.143 (12.541) 0.787 (0.625) 12.194 (14.418)
Cooking 26.755 (31.609) 0.171 (0.177) 75.953 (88.883)
DAWN 20.345 (26.443) 0.054 (0.052) 7.944 (9.263)
Walmart 117.046 (189.895) 2.310 (2.247) 511.011 (754.344)
Trivago 50.162 (107.449) 7.234 (6.795) 684.776 (662.595)

Proposed Greedy [19] LP-Rounding [19]

0 .5 1 2 3 4
bglobal/|V|

10−2

10−1

100

101
Brain

0 .5 1 2 3 4
bglobal/|V|

10−1

100

101

MAG-10

0 .5 1 2 3 4
bglobal/|V|

10−1

100

101

102

Cooking

0 .5 1 2 3 4
bglobal/|V|

10−1

100

101

102
DAWN

0 .5 1 2 3 4
bglobal/|V|

100

101

102

103

Walmart

0 .5 1 2 3 4
bglobal/|V|

100

101

102

103
Trivago

(a) Running times (in seconds, log scale)

0 .5 1 2 3 4
bglobal/|V|

0.00

0.01

0.02

Brain

0 .5 1 2 3 4
bglobal/|V|

0.0

0.5

1.0

MAG-10

0 .5 1 2 3 4
bglobal/|V|

0.0

0.5

1.0

1.5

Cooking

0 .5 1 2 3 4
bglobal/|V|

0.0

0.5

1.0

DAWN

0 .5 1 2 3 4
bglobal/|V|

0

2

4

6

8
Walmart

0 .5 1 2 3 4
bglobal/|V|

0

2

4

6

8
Trivago

(b) Relative error estimates

Figure 3: (a) Running times (in seconds, log scale) and (b) relative error estimates of the GLOBAL
ECC algorithms. Empty square markers denote trivial instances.

26

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract provides a high-level overview of our contributions, and the
introduction (Section 1) elaborates them.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Scalability and computational efficiency of the proposed algorithms are heavily
discussed throughout the paper, including Sections 4.2 and 4.3 and Appendices A, B, and C,
as they are one of the key contributions of this paper. Other limitations and possible future
directions of research related to them are also discussed in Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

27

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Theorems are stated in Section 3; some proofs are sketched in Section 3.1, and
the full proofs are presented in Appendices A, B, and C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed description of the algorithms are presented in Section 3.1 and Ap-
pendices A.5, B.1, B.4, C.2, and C.6, and the experimental setting and details can be found
in Sections 4.1, 4.2, and 4.3. Moreover, the code is available as a supplemental material,
and the data used by the experiments are publicly available [47]. One also needs to obtain a
license for Gurobi LP solver; academic licenses are available.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

28

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code is available as a supplemental material. The data used by the
experiments are publicly available [47].
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All experimental setting and details can be found in Sections 4.1, 4.2, and 4.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Neither the proposed algorithms nor the data used in the experiments involve
any randomness in their execution or preparation. Due to this deterministic nature of the
experiments, statistical errors do not need to be reported; however, the guideline explicitly
states that NA means that the paper does not include experiments at all, which does not

29

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

apply to this paper. Although not directly related to statistical errors, we do report the
approximation errors of the algorithms as a relative error estimate—a normalized, estimated
error of the algorithms’ output (see Section 4.1 for its definition).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the information on the experiment setup in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

30

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper presents foundational research which is generic and does not
directly lead to any societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly credited the original owners of the code and data used in this
paper [47, 4, 44, 21, 45, 34, 46, 33, 38, 18]. We also obtained a valid academic license of
Gurobi and used it.

31

Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

32

paperswithcode.com/datasets

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

33

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Problem definitions
	Proposed algorithms
	Local ECC
	Robust ECC and Global ECC

	Experiments
	Setup
	Local ECC
	Robust ECC and Global ECC

	Conclusion and discussion
	Technical details and proofs for Local ECC deferred from Section 3.1
	Formal proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorems 3.3 and 3.4
	Bicriteria algorithm for Local ECC
	Discretized version of Algorithm 1

	Technical details and proofs for Robust ECC deferred from Section 3.2
	Proposed algorithm for Robust ECC
	Proof of Theorem 3.5
	Bicriteria algorithm for Robust ECC
	Discretized version of Algorithm 3

	Technical details and proofs for Global ECC deferred from Section 3.2
	Primal and dual LP
	Proposed algorithm for Global ECC
	Proof of Theorem 3.6
	Proof of Theorem 3.8
	Bicriteria algorithm for Global ECC
	Discretized version of Algorithm 5

	Dataset description
	Tables and figures deferred from Section 4

