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Abstract
Interpretable graph neural networks (XGNNs) are
widely adopted in various scientific applications
involving graph-structured data. Existing XGNNs
predominantly adopt the attention-based mecha-
nism to learn edge or node importance for ex-
tracting and making predictions with the inter-
pretable subgraph. However, the representational
properties and limitations of these methods re-
main inadequately explored. In this work, we
present a theoretical framework that formulates in-
terpretable subgraph learning with the multilinear
extension of the subgraph distribution, coined as
subgraph multilinear extension (SubMT). Extract-
ing the desired interpretable subgraph requires an
accurate approximation of SubMT, yet we find
that the existing XGNNs can have a huge gap in
fitting SubMT. Consequently, the SubMT approx-
imation failure will lead to the degenerated inter-
pretability of the extracted subgraphs. To mitigate
the issue, we design a new XGNN architecture
called Graph Multilinear neT (GMT), which is
provably more powerful in approximating SubMT.
We empirically validate our theoretical findings
on a number of graph classification benchmarks.
The results demonstrate that GMT outperforms the
state-of-the-art up to 10% in terms of both inter-
pretability and generalizability across 12 regular
and geometric graph benchmarks.

1. Introduction
Graph Neural Networks (GNNs) have been widely used in
scientific applications (Wang et al., 2023; Zhang et al., 2023)
such as Physics (Bapst et al., 2020), Chemistry (Gilmer et al.,
2017; Jumper et al., 2021), Quantum mechanics (Kochkov
et al., 2021), Materials (Schütt et al., 2017) and Cosmol-
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ogy (Villanueva-Domingo et al., 2021). In pursuit of scien-
tific discoveries, it often requires GNNs to be able to gener-
alize to unseen or Out-of-Distribution (OOD) graphs (Gui
et al., 2022; Ji et al., 2022; Zhang et al., 2023), and also
provide interpretations of the predictions that are crucial
for scientists to collect insights (Xie & Grossman, 2017;
Cranmer et al., 2020; Dai et al., 2021) and promote better
scientific practice (Murray & Rees, 2009; Wencel-Delord &
Glorius, 2013). Recently there has been a surge of interest
in developing intrinsically interpretable and generalizable
GNNs (XGNNs) (Yu et al., 2021; Miao et al., 2022; Wu
et al., 2022b; Chen et al., 2022b; Miao et al., 2023). In
contrast to post-hoc explanations (Ying et al., 2019; Yuan
et al., 2020a; Vu & Thai, 2020; Luo et al., 2020; Yuan et al.,
2021; Lin et al., 2021; 2022a) which are shown to be sub-
optimal in interpretation and sensitive to pre-trained GNNs
performance (Miao et al., 2022; 2023), XGNNs can provide
both reliable explanations and (OOD) generalizable predic-
tions under the proper guidance such as information bottle-
neck (Yu et al., 2021) and causality (Chen et al., 2022b).

Indeed, the faithful interpretation and the reliable gener-
alization are the two sides of the same coin for XGNNs.
Grounded in the causal assumptions of data generation pro-
cesses, XGNNs assume that there exists a causal subgraph
which holds a causal relation with the target label. Predic-
tions made solely based on the causal subgraph are generaliz-
able under various graph distribution shifts (Wu et al., 2022a;
Miao et al., 2022; Chen et al., 2022b). Therefore, XGNNs
typically adopt a two-step paradigm that first extracts a sub-
graph of the input graph and then predicts the label. To
circumvent the inherent discreteness of subgraphs, XGNNs
often learn the sampling probability for each edge or node
with the attention mechanism and extract the subgraph with
high attention scores (Miao et al., 2022). Predictions are
then made via a weighted message passing scheme with
the attention scores. Despite the success of the paradigm
in enhancing both interpretability and out-of-distribution
(OOD) generalization (Miao et al., 2022; 2023; Chen et al.,
2022b), there is limited theoretical understanding of the
representational properties and limitations of XGNNs, and
whether they can provide faithful interpretations.

Inspired by the close connection between interpretable sub-
graph learning and multilinear extension (Călinescu et al.,
2007), we present a framework to analyze the expressive-
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fc(Ĝc) = fc(E
Gc

g

∼G
[Gc])

≠ 
E
Gc

g

∼G
[fc(Gc)]

Cycle

House

= GMT

Figure 1. Illustration of Subgraph Multilinear Extension approximation failure. In a binary graph classification task, XGNNs need to
classify whether a graph contains a specific “house” or “cycle” motif into two steps: (a) Subgraph Extraction, a subgraph extractor
computes the sampling probability for each edge using the attention mechanism, which further determines the subgraph distribution: part
of the “house” or “grid” motif is sampled with a certain probability. The expected subgraph Ĝc to be sampled according to the subgraph
distribution is a “soft” subgraph, with each edge weighting the corresponding sampling probability. (b) Subgraph Classification, each
subgraph Gi

c corresponds to a respective label distribution P (Y |Gi
c) (e.g., when some key parts of the “house” motif are sampled, the

“house” label probability will be higher). The final label predictions are conditioned on the subgraph distributions, averaged upon each
P (Y |Gi

c) with the probability of Gi
c being sampled. The averaged label distribution leads to a prediction of “house” for the example.

Instead of averaging the subgraph conditional label predictions, previous methods directly take the expected “soft” subgraph as the input
to the subgraph classifier GNN fc, which can be biased and lead to an incorrect prediction of “cycle”.

ness and evaluate the faithfulness of XGNNs. In fact, the
subgraph learning in XGNNs naturally resembles the multi-
linear extension of the subgraph predictivity, which we term
as subgraph multilinear extension (SubMT). The extracted
interpretable subgraph is faithful if the associated prediction
is highly correlated with the sampling probability of the sub-
graph. However, as demonstrated in Fig. 1, we show that the
prevalent attention-based paradigm could fail to reliably ap-
proximate SubMT (Sec. 3.2). Consequently, the SubMT ap-
proximation failure will decrease the interpretability of the
subgraph for predicting the target label. More specifically,
we instantiate the issue via a causal framework and propose
a new interpretability measure called counterfactual fidelity,
i.e., the sensitivity of the prediction to small perturbations
to the extracted subgraphs (Sec. 4.2). Although faithful in-
terpretation should have a high counterfactual fidelity with
the prediction, we find that XGNNs implemented with the
prevalent paradigm only have a low counterfactual fidelity.

To bridge the gap, we propose a simple yet effective XGNN
architecture called Graph Multilinear neT (GMT). Motivated
by the SubMT formulation, GMT first performs random sub-
graph sampling onto the subgraph distribution to approxi-
mate SubMT, which is provably more powerful in approxi-
mating SubMT (Sec. 5). Then, we will train a new classifier
onto the trained subgraph extractor without random sub-

graph sampling, to obtain the final approximator of neural
SubMT. Our contributions can be summarized as follows:

• We propose the first theoretical framework through the
notion of SubMT for the expressivity of XGNNs (Sec. 3);

• We propose a new XGNN architecture GMT that is prov-
ably more powerful than previous XGNNs. The key differ-
entiator of GMT is a new paradigm to effectively approxi-
mate SubMT with random subgraph sampling (Sec. 5).

• We validate both our theory and the solution through ex-
tensive experiments with 12 regular and geometric graph
benchmarks. The results show that GMT significantly im-
proves the state-of-the-art up to 10% in both interpretabil-
ity and generalizability (Sec. 6). Our code is available at
https://github.com/LFhase/GMT.

2. Preliminaries and Related Work
We begin by introducing preliminary concepts of XGNNs
and leave more details to Appendix B.1, and also provide a
table of notations for key concepts in Appendix A.

Interpretable GNNs. Let G = (A,X) be a graph
with node set V = {v1, v2, ..., vn} and edge set E =
{e1, e2, ..., em}, where A ∈ {0, 1}n×n is the adjacency
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matrix and X ∈ Rn×d is the node feature matrix. In this
work, we focus on interpretable GNNs (or XGNNs) for the
graph classification task, while the results can be general-
ized to node-level tasks as well (Wu et al., 2020). Given
each sample from training data Dtr = (Gi, Y i), an inter-
pretable GNN f := fc ◦ g aims to identify a (causal) sub-
graph Gc ⊆ G via a subgraph extractor GNN g : G → Gc,
and then predicts the label via a subgraph classifier GNN
fc : Gc → Y , where G,Gc,Y are the spaces of graphs,
subgraphs, and the labels, respectively (Yu et al., 2021).
Although post-hoc explanation approaches also aim to find
an interpretable subgraph as the explanation for the model
prediction (Ying et al., 2019; Yuan et al., 2020a; Vu & Thai,
2020; Luo et al., 2020; Yuan et al., 2021; Lin et al., 2021;
2022a), they are shown to be suboptimal in interpretation
performance and sensitive to the performance of the pre-
trained GNNs (Miao et al., 2022). Therefore, this work
focuses on intrinsic interpretable GNNs (XGNNs).

A predominant approach to implement XGNNs is to in-
corporate the idea of information bottleneck (Tishby et al.,
1999), such that Gc keeps the minimal sufficient informa-
tion of G about Y (Yu et al., 2021; 2022; Miao et al., 2022;
2023; Yang et al., 2023), which can be formulated as

maxGc
I(Gc;Y )− λI(Gc;G), Gc ∼ g(G), (1)

where the maximizing I(Gc;Y ) endows the interpretabil-
ity of Gc while minimizing I(Gc;G) ensures Gc cap-
tures only the most necessary information, λ is a hyper-
paramter trade off between the two objectives. In addi-
tion to minimizing I(Gc;G), there are also alternative ap-
proaches that impose different constraints such as causal
invariance (Chen et al., 2022b; Li et al., 2022) or disen-
tanglement (Wu et al., 2022b; Sui et al., 2022; Liu et al.,
2022a; Fan et al., 2022) to identify the desired subgraphs.
When extracting the subgraph, XGNNs adopts the attention
mechanism to learn the sampling probability of each edge
or node, which avoids the complicated Monte Carlo tree
search used in other alternative implementations (Zhang
et al., 2022). Specifically, given node representation learned
by message passing Hi ∈ Rh for each node i, XGNNs
either learns a node attention αi ∈ R+ = σ(a(Hi)) via
the attention function a : Rh → R+, or the edge atten-
tion αe ∈ R+ = σ(a([Hu, Hv])) for each edge e = (u, v)
via the attention function a : R2h → R+, where σ(·) is a
sigmoid function. α = [α1, ..., αm]T essentially elicits a
subgraph distribution of the interpretable subgraph. In this
work, we focus on edge-centric subgraph sampling as it is
most widely used in XGNNs while our method can be easily
generalized to node-centric approaches.

Faithful interpretation and (OOD) generalization. The
faithfulness of interpretation is critical to all interpretable
and explainable methods (Ribeiro et al., 2016; Lipton, 2018;
Alvarez-Melis & Jaakkola, 2018; Jain & Wallace, 2019).

There are several metrics developed to measure the faith-
fulness of graph explanations, such as fidelity (Yuan et al.,
2020b; Amara et al., 2022), counterfactual robustness (Bajaj
et al., 2021; Prado-Romero et al., 2022; Ma et al., 2022),
and equivalence (Crabbé & van der Schaar, 2023), which
are however limited to post-hoc graph explanation methods.
In contrast, we develop the first faithfulness measure for
XGNNs in terms of counterfactual invariance.

In fact, the generalization ability and the faithfulness of the
interpretation are naturally intertwined in XGNNs. XGNNs
need to extract the underlying ground-truth subgraph in or-
der to make correct predictions on unseen graphs (Miao
et al., 2022). When distribution shifts are present during
testing, the underlying subgraph that has a causal relation-
ship with the target label (or causal subgraphs) naturally
becomes the ground-truth subgraph that needs to be learned
by XGNNs (Chen et al., 2022b).

Multilinear extension serves as a powerful tool for maxi-
mizing combinatorial functions, especially for submodular
set function maximization (Călinescu et al., 2007; Vondrak,
2008; Bian et al., 2019; Sahin et al., 2020; Karalias et al.,
2022). It is the expected value of a set function under the
fully factorized Bernoulli distribution, which is also one
typical objective for continuous submodular function maxi-
mization (Bian et al., 2020). Our work is the first to identify
subgraph multilinear extension as the factorized subgraph
distribution for interpretable subgraph learning.

3. On the Expressivity of Interpretable GNNs
In this section, we present our theoretical framework for
characterizing the expressivity of XGNNs. Since all of the
existing approaches need to maximize I(Gc;Y ) regardless
of the regularization on Gc, we focus on the modeling of
the subgraph distribution that maximizes I(Gc;Y ).

3.1. Subgraph multilinear extension

The need for maximizing I(Gc;Y ) originates from extract-
ing information in G to predict Y with fc,

maxfcI(G;Y ) = H(Y )−H(Y |G) (2)

which amounts to minfcH(Y |G) due to the irrelevance of
H(Y ) and fc. For each sample (G, Y ), XGNN then adopts
the subgraph extractor g to extract a subgraph Gc ∼ g(G),
and take Gc as the input of fc to predict Y . Then, Eq. 2 is
realized as follows1: let L(·) be the cross-entropy loss, then

ming,fcEG,Y

[
− logE

Gc
g∼G

Pfc(Y |Gc)
]

(3)

= E(G,Y )[L(EGc
g∼G

[fc(Gc)], Y )]. (4)

1With a bit of abuse of notations, we will omit the unnecessary
superscript of samples for the sake of clarity.

3



How Interpretable Are Interpretable Graph Neural Networks?

We leave more details about the deduction of Eq. 3 in Ap-
pendix B.2. Let α ∈ Rm

+ be the attention score elicited
from the subgraph extractor g, which defines the subgraph
distribution. Note that fc is a GNN defined only for dis-
crete graph-structured inputs. Considering fc(Gc) is a set
function with respect to node/edge index subsets of G (i.e.,
subgraphs Gc), and the parameterization of P (Gc|G) in
XGNNs (Miao et al., 2022), we resort to the multilinear
extension of fc(Gc) (Călinescu et al., 2007).

Definition 3.1 (Subgraph multilinear extension (SubMT)).
Given the attention score α ∈ [0, 1]m as sampling prob-
ability of Gc, XGNNs factorize P (Gc|G) as independent
Bernoulli distributions on edges:

P (Gc|G) =
∏
e∈Gc

αe

∏
e∈G/Gc

(1− αe),

which elicits the multilinear extension of fc(Gc) in Eq. 3:

Fc(α;G) :=
∑

Gc∈G

fc(Gc)
∏
e∈Gc

αe

∏
e∈G/Gc

(1− αe)

= E
Gc

g∼G
fc(Gc).

(5)

The parameterization of P (G) is widely employed in
XGNNs (Miao et al., 2022; Chen et al., 2022b), which
implicitly assumes the random graph data model (Erdos
& Rényi, 1984). Def. 3.1 can also be generalized to other
graph models with the corresponding parameterization of
P (G) (Snijders & Nowicki, 1997; Lovász & Szegedy, 2006).
When a XGNN approximates SubMT well, we have:

Definition 3.2 (ϵ-SubMT approximation). Let d(·, ·) be
a distribution distance metric, a XGNN f = fc ◦ g ϵ-
approximates SubMT (Def. 3.1), if there exists ϵ ∈ R+ such
that d(Pf (Y |G), P (Y |G)) ≤ ϵ where P (Y |G) ∈ R|Y|

is the ground truth conditional label distribution, and
Pf (Y |G) ∈ R|Y| is the predicted label distribution for
G via a XGNN f , i.e., Pf (Y |G) = E

Gc
g∼G

fc(Gc).

Def. 3.2 is a natural requirement for XGNN that approxi-
mates SubMT properly. With the definition of SubMT, we
can write the objective in Eq. 3 as the following:

E(G,Y )∼Dtr
[L(E

Gc
g∼G

fc(Gc), Y )]

= E(G,Y )∼Dtr
L(Fc(α;G), Y ),

(6)

from which it suffices to know that optimizing for g, fc in
Eq. 3 requires an accurate estimation of SubMT.

3.2. Issues of existing approaches

In general, evaluating SubMT requires O(2m) calls of
fc(Gc). Nonetheless, existing XGNNs introduce a soft sub-
graph Ĝc with the adjacency matrix as the attention matrix

Â where Âu,v = αe,∀e = (u,v) ∈ E, to solve Eq. 3 via
weighted message passing (Miao et al., 2022):2

E(G,Y )∼Dtr
[L(E

Gc
g∼G

fc(Gc), Y )]

= E(G,Y )∼Dtr
[L(fc(Ĝc), Y )],

(7)

From the edge-centric perspective, the introduction of Ĝc

seems to be natural at first glance, as:

Ĝc = E
Gc

g∼G
Gc. (8)

However, Eq. 7 holds only when fc is linear. In other words,
if Eq. 7 holds, we need the following to hold:

fc(Ĝc) = fc(E[Gc]) = EGc [fc(Gc)], (9)

where the last equality adheres to the equality of Eq. 7. Ob-
viously fc(·) is a non-linear function even with a linearized
GNN (Wu et al., 2019) with more than 1 layers:

fc(Ĝc) = ρ(ÂkXW ), (10)

where ρ is the pooling, k is the number of layers and
W ∈ Rh×h are the learnable weights. We prove the SubMT
approximation failure in Appendix D.2.

Proposition 3.3. An XGNN based on linear GNN with k >
1 cannot satisfy Eq. 9, thus cannot approximate SubMT.

When given more complicated GNNs, the approximation
error to SubMT can be even higher, as verified in Ap-
pendix F.6. For example, when k = 2 and |Y| = 1, Eq. 10 is
convex, and we have fc(E[A]) ≤ E[fc(A)] due to Jensen’s
inequality when fitting SubMT.

4. On the Generalization and Interpretability:
A Causal View

To understand the consequences of the SubMT approxima-
tion issue, we conduct a causal analysis of the interpretation
faithfulness in XGNNs. Without loss of generality, we will
focus on the edge-centric data generation and interpretation.

4.1. Causal model of interpretable GNNs

Data generation. We consider the same data model as
previous works (Bevilacqua et al., 2021; Miao et al., 2022;
Chen et al., 2022b), where the underlying causal subgraph
Gc and the spurious subgraph Gs will be assembled via
some underlying assembling process. As we focus on the
edge-centric view, our following discussion will focus on
the graph structures Ac and As of the subgraphs. Full details
of the structural causal model are deferred to Appendix C.1.

2With a little abuse of notation, we denote fc as a generalized
GNN that performs weighted message passing if the input graph is
a weighted graph.
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(b) Counterfactual fidelity on BA-2Motifs.
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(c) Counterfactual fidelity on Mutag.
Figure 2. Comparison of simulated SubMT and GSAT in terms of counterfactual faithfulness.

As shown in Fig. 2(a), there are latent causal and spurious
variables C and S that have the invariant and spurious corre-
lations with the label Y across training and test distributions,
respectively. C and S correspondingly control the genera-
tion of causal subgraph Gc, and the spurious subgraph Gs.
For example, when generating Ac and As, C and S will
specify the number of nodes in Ac and As and also the edge
sampling probability for edges in Ac and As.

Interpretation. Correspondingly, XGNNs use a subgraph
extractor to predict the causal and spurious subgraphs Ĝc

and Ĝs, respectively. The extraction aims to reverse the
generation and recover the structure of the underlying causal
subgraph Ac. We denote the XGNN architecture and the
hyperparameter settings as H . H takes A as inputs to learn
the edge sampling probability via the attention mechanism
and then obtain Âc. Once Âc is determined, Âs=A−Âc

is also obtained by taking the complementary part. Then,
the extracted causal and spurious subgraphs are obtained
with Ĝc = (X, Âc) and Ĝs = (X, Âs), respectively. The
classifier then uses Ĝc to make the prediction Ŷ .

4.2. Causal faithfulness of XGNNs

With the aforementioned causal model, we are able to spec-
ify the causal desiderata for faithful XGNNs. When a
XGNN fails to accurately approximate SubMT, the esti-
mated label conditional probability will have a huge gap
from the ground truth. The failure will bias the optimization
of the subgraph extractor g and lead to the degenerated in-
terpretability of Â. More concretely, the recovery of Â to
the underlying A will be worse, which further affects the
extraction of Gc and brings both worse interpretation and
(OOD) generalization performance. As a single measure
such as the interpretation or generalization may not fully
reflect the consequence or even exhibit conflicted informa-
tion3, we consider a direct notion that jointly consider the
interpretability and generalizabiliy to measure the causal
faithfulness of XGNNs, inspired by Jain & Wallace (2019).

3For example, in the experiments of Miao et al. (2022), higher
interpretation performance does not necessarily correlate with
higher generalization performance.

Definition 4.1 ((δ, ϵ)-counterfactual fidelity). Given a mean-
ingful minimal distance δ > 0, let d(·, ·) be a distribution
distance metric , if a XGNN f = fc ◦ g commits to the
ϵ−counterfactual fidelity, then there exist ϵ > 0 such that,
∀G, G̃ that d(P (Y |G), P (Y |G̃)) ≥ δ, the following holds:

d(Pf (Y |G̃), Pf (Y |G)) ≥ ϵδ.

Intuitively, if the extracted interpretable subgraph Ĝc is
faithful to the target label, then the predictions made based
on Ĝc are sensitive to any perturbations on Ĝc. Different
from counterfactual interpretability (Prado-Romero et al.,
2022; Guo et al., 2023) that seeks minimum modifications
to change the predictions, (δ, ϵ)-counterfactual fidelity mea-
sures how sensitive are the predictions to the changes of
the interpretable subgraphs. A higher fidelity implies better
interpretability and is also a natural behavior of a XGNN
that approximates SubMT well.

Proposition 4.2. If a XGNN f ϵ-approximates SubMT, f
satisfies (δ, 1− 2ϵ

δ )-counterfactual fidelity.

The proof is given in Appendix D.3. Intuitively, Proposi-
tion 4.2 implies that the counterfactual fidelity is an effective
measure for the approximation ability of SubMT.

Practical estimation of counterfactual fidelity. Since it is
hard to enumerate every possible G̃, to verify Def. 4.1, we
consider a random attention matrix Ã ∼ σ(N (µĤA

, σĤA
)),

where µĤA
and σĤA

are the mean and standard deviation

of the pre-attention matrix ĤA (The adjacency matrix with
the unnormalized attention). Each non-symmetric entry in
Ã is sampled independently following the factorization of
P (G). We randomly sample Ã by k times and obtain

cĜc
=

1

k

k∑
i=1

d(fc(Y |G̃i
c), fc(Y |Ĝc)), (11)

where G̃i
c = (X, Ãi

c) and d is total variation distance. We
compute cĜc

for the state-of-the-art XGNN GSAT (Miao
et al., 2022). Shown as in Fig. 2(b), 2(c), we plot the counter-
factual fidelity of GSAT on BA-2Motifs and Mutag datasets
against is 2 to 3 times lower than the simulated SubMT with
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10 and 100 sampling rounds. We provide a more detailed
discussion in Appendix C.2 and Appendix F.5.

5. Building Reliable XGNNs
The aforementioned gap motivates us to propose a new
XGNN architecture, called Graph Multilinear neT (GMT),
to provide both faithful interpretability and reliable (OOD)
generalizability. GMT have two variants, i.e., GMT-lin and
GMT-sam, motivated by resolving the failures in Sec. 3.2.

5.1. Linearized GMT

Recall that the main reason for the failure of Eq. 9 is because
of the non-linearity of the expectation to the k weighted mes-
sage passing with k > 1. If k can be reduced to 1, then the
linearity can be preserved to ensure a better approximation
of SubMT, which naturally motivates the following variant:

(GMT-lin) f l(Ĝc) = ρ(Â⊙Ak−1XW ), (12)

Compared to the previous weighted message passing
scheme with linearized GNN (Eq. 10), GMT-lin improves
the linearity by reducing the number of weighted mes-
sage passing rounds to 1. If ∃T ∈ R|Y|×|Y| such that
T · fc(Gc) = P (Y |Gc) (fc is linear), then,we can incorpo-
rate GMT-lin into Eq. 9 and have

f l(Ĝc) = T · f(Ĝc) = E[fc(Gc)],

due to the linearity of f l(Gc) with respect to Gc. During
training, T can be further absorbed into W , which implies
that GMT-lin is able to fit to SubMT. Empirically, we find
that the simple strategy of GMT-lin already yields better
interpretability than the state-of-the-art methods even with
non-linear GNNs in experiments.

5.2. GMT with random subgraph sampling

To generalize GMT to more general cases, inspired by
the SubMT formulation, we propose a random subgraph
sampling approach, that performs Markov Chain Monte
Carlo (MCMC) sampling to approximate SubMT. More con-
cretely, given the attention matrix Â, we perform t rounds of
random subgraph sampling from the subgraph distribution
elicited by Â (or equivalently Ĝc = (X, Â) as in SubMT
(Def. 3.1)), and obtain t i.i.d. random subgraph samples
{Gi

c}ti=1 for estimating SubMT as the following:

(GMT-sam) fs
c (Ĝc) =

1

t

t∑
i=1

fc(Y |Gi
c), (13)

where fc is the classifier taking discrete subgraphs as inputs.

Theorem 5.1. Given the attention matrix Â, and the distri-
bution distance metric d as the total variation distance,

let C = |Y|, for a GMT-sam with t i.i.d. samples of
Gi

c ∼ P (Gc|G), then, there exists ϵ ∈ R+ such that, with a
probability at least 1−e−tϵ2/4, GMT-sam ϵC

2 -approximates
SubMT and satisfies (δ, 1− ϵC

δ ) counterfactual fidelity.

The proof for Theorem 5.1 is given in Appendix D.4. In-
tuitively, with more random subgraph samples drawn from
P (Gc|G), GMT-sam obtains a more accurate estimation of
SubMT. However, it will incur more practical challenges
such as the a) gradient of discrete sampling and b) computa-
tional overhead. To overcome the challenges a) and b), we
incorporate the following two techniques.

Backpropagation of discrete sampling. To enable gradi-
ent backpropagation with the sampled subgraphs, we also
incorporate gradient estimation techniques such as Gumbel
softmax and straight-through estimator (Jang et al., 2017;
Maddison et al., 2017). Compared to the state-of-the-art
XGNN GSAT (Miao et al., 2022), this scheme brings two
additional benefits: (i) reduces the gradient biases in dis-
crete sampling with Gumbel softmax; (ii) avoids weighted
message passing and alleviates the input distribution gap to
the graph encoder when shared in both fc and g as in GSAT.

The number of sampling rounds. Although the estimation
of SubMT will be more accurate with the increased sam-
pling rounds, it unnecessarily brings improvements. First,
as shown in Fig. 3, the performance may be saturated with
moderately sufficient samplings. Besides, the performance
may degenerate as more sampling rounds can affect the
optimization, as discussed in Appendix E.2.

5.3. Learning neural subgraph multilinear extension

Although GMT trained with GMT-sam improve interpretabil-
ity, GMT-sam still requires multiple random subgraph sam-
pling to approximate SubMT and costs much additional
overhead. To this end, we propose to learn a neural SubMT
that only requires single sampling, based on the trained
subgraph extractor g with GMT-sam.

Learning the neural SubMT is essentially to approximate
the MCMC with a neural network, though it is inherently
challenging to approximate MCMC (Johndrow et al., 2020;
Papamarkou et al., 2022). Nevertheless, the feasibility of
neural SubMT learning is backed by the inherent causal sub-
graph assumption of (Chen et al., 2022b), once the causal
subgraph is correctly identified, simply learning the sta-
tistical correlation between the subgraph and the label is
sufficient to recover the causal relation.

Therefore, we propose to simply re-train a new classifier
GNN with the frozen subgraph extractor, to distill the knowl-
edge contained in Ĝc about Y . This scheme also brings ad-
ditional benefits over the originally trained classifier, which
avoid to learn all the available statistical correlations be-
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Table 1. Interpretation Performance (AUC) on regular graphs.Results with the mean-1*std larger than the best baselines are shadowed.

GNN METHOD BA-2MOTIFS MUTAG MNIST-75SP
SPURIOUS-MOTIF

b = 0.5 b = 0.7 b = 0.9

GIN

GNNEXPLAINER 67.35±3.29 61.98±5.45 59.01±2.04 62.62±1.35 62.25±3.61 58.86±1.93

PGEXPLAINER 84.59±9.09 60.91±17.10 69.34±4.32 69.54±5.64 72.33±9.18 72.34±2.91

GRAPHMASK 92.54±8.07 62.23±9.01 73.10±6.41 72.06±5.58 73.06±4.91 66.68±6.96

IB-SUBGRAPH 86.06±28.37 91.04±6.59 51.20±5.12 57.29±14.35 62.89±15.59 47.29±13.39

DIR 82.78±10.97 64.44±28.81 32.35±9.39 78.15±1.32 77.68±1.22 49.08±3.66

GIN
GSAT 98.85±0.47 99.35±0.95 80.47±1.86 74.49±4.46 72.95±6.40 65.25±4.42

GMT-LIN 98.36±0.56 99.86±0.09 82.98±1.49 76.06±6.39 76.50±5.63 80.57±2.59

GMT-SAM 99.62±0.11 99.87±0.11 86.50±1.80 85.50±2.40 84.67±2.38 73.49±5.33

PNA
GSAT 89.35±5.41 99.00±0.37 85.72±1.10 79.84±3.21 79.76±3.66 80.70±5.45

GMT-LIN 95.79±7.30 99.58±0.17 85.02±1.03 80.19±2.22 84.74±1.82 85.08±3.85

GMT-SAM 99.60±0.48 99.89±0.05 87.34±1.79 88.27±1.71 86.58±1.89 85.26±1.92

Table 2. Prediction Performance (Acc.) on regular graphs. The shadowed entries are the results with the mean-1*std larger than the mean
of the corresponding best baselines.

GNN METHOD MOLHIV (AUC) GRAPH-SST2 MNIST-75SP
SPURIOUS-MOTIF

b = 0.5 b = 0.7 b = 0.9

GIN
GIN 76.69±1.25 82.73±0.77 95.74±0.36 39.87±1.30 39.04±1.62 38.57±2.31

IB-SUBGRAPH 76.43±2.65 82.99±0.67 93.10±1.32 54.36±7.09 48.51±5.76 46.19±5.63

DIR 76.34±1.01 82.32±0.85 88.51±2.57 45.49±3.81 41.13±2.62 37.61±2.02

GIN
GSAT 76.12±0.91 83.14±0.96 96.20±1.48 47.45±5.87 43.57±2.43 45.39±5.02

GMT-LIN 76.87±1.12 83.19±1.28 96.01±0.25 47.69±4.93 53.11±4.12 46.22±4.18

GMT-SAM 77.22±0.93 83.62±0.50 96.50±0.19 60.09±2.40 54.34±4.04 55.83±5.68

PNA

PNA 78.91±1.04 79.87±1.02 87.20±5.61 68.15±2.39 66.35±3.34 61.40±3.56

GSAT 79.82±0.67 80.90±0.37 93.69±0.73 68.41±1.76 67.78±3.22 51.51±2.98

GMT-LIN 80.05±0.71 81.18±0.47 94.44±0.49 69.33±1.42 64.49±3.51 58.30±6.61

GMT-SAM 80.58±0.83 82.36±0.96 95.75±0.42 71.98±3.44 69.68±3.99 67.90±3.60

tween Gc and Y that can be spurious. More details and dis-
cussions on the implementations are given in Appendix E.

6. Experimental Evaluations
We conduct extensive experiments to evaluate GMT with
different backbones and on multiple benchmarks, and com-
pare both the interpretability and (OOD) generalizability
against the baselines. We will briefly introduce the datasets,
baselines, and setups, and leave more details in Appendix F.

6.1. Experimental settings

Datasets. We consider both the regular and geometric
graph classification benchmarks following the XGNN lit-
erature (Miao et al., 2022; 2023). For regular graphs, we
include BA-2MOTIFS (Luo et al., 2020), MUTAG (Deb-
nath et al., 1991), MNIST-75SP (Knyazev et al., 2019),
which are widely evaluated by post-hoc explanation ap-
proaches (Yuan et al., 2020b), as well as SPURIOUS-
MOTIF (Wu et al., 2022b), GRAPH-SST2 (Socher et al.,
2013; Yuan et al., 2020b) and OGBG-MOLHIV (Hu et al.,
2020) where there exist various graph distribution shifts.
For geometric graphs, we consider ACTSTRACK, TAU3MU,

SYNMOL and PLBIND curated by Miao et al. (2023).

Baselines. For post-hoc methods, we mainly adopt
the results from the previous works (Miao et al., 2022;
2023), including GNNExplainer (Ying et al., 2019),
PGExplainer (Luo et al., 2020), GraphMask (Schlichtkrull
et al., 2021) for regular graph benchmarks, and BernMask,
BernMask-P, that are modified from GNNExplainer and
PGExplainer, GradGeo (Shrikumar et al., 2017), and Grad-
Cam (Selvaraju et al., 2017) that are extended for geometric
data, as well as PointMask (Taghanaki et al., 2020) devel-
oped specifically for geometric data. For XGNNs, since we
focus on the interpretation performance, we mainly com-
pared with XGNNs that have the state-of-the-art interpreta-
tion abilities, i.e., GSAT (Miao et al., 2022) and LRI (Miao
et al., 2023), which also have excellent OOD generalizability
than other XGNNs (Gui et al., 2022). We also include two
representative XGNNs baselines, DIR (Wu et al., 2022b)
and IB-subgraph (Yu et al., 2021) for regular graphs.

Training and evaluation. We consider three backbones
GIN (Xu et al., 2019) and PNA (Corso et al., 2020) for reg-
ular graph data, EGNN (Satorras et al., 2021) for geometric
data. All methods adopted the identical graph encoder, and
optimization protocol for fair comparisons. We tune the
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Table 3. Interpretation performance on geometric graphs. Results with the mean-1*std larger than the best baselines are shadowed.
ACTSTRACK TAU3MU SYNMOL PLBIND

ROC AUC PREC@12 ROC AUC PREC@12 ROC AUC PREC@12 ROC AUC PREC@12

RANDOM 50 21 50 35 50 31 50 45
GRADGEO 69.31±0.89 33.54±1.23 78.04±0.57 64.18±1.25 76.38±4.96 64.72±3.75 58.11±2.91 64.78±4.73

BERNMASK 54.23±4.31 20.46±5.46 71.58±0.69 60.51±0.76 76.38±4.96 64.72±3.75 52.23±4.45 41.50±9.77

BERNMASK-P 22.87±3.33 11.29±5.46 70.72±5.10 55.50±6.26 87.06±7.12 77.11±7.58 51.98±4.66 59.20±5.48

POINTMASK 49.20±1.51 20.54±1.71 55.93±4.85 39.65±7.14 66.46±6.86 53.93±1.94 50.00±0.00 45.10±0.00

GRADGAM 75.19±1.91 75.94±2.16 76.18±2.62 62.05±2.16 60.31±4.95 52.35±11.02 48.61±2.34 55.10±10.57

LRI-BERNOULLI 74.38±4.33 81.42±1.52 78.23±1.11 65.64±2.44 89.22±3.58 68.76±7.35 54.87±1.89 72.12±2.60

GMT-LIN 77.45±1.69 81.81±1.57 79.17±0.82 68.94±1.08 96.17±1.44 86.33±6.16 59.70±1.10 70.62±3.59

GMT-SAM 75.61±1.86 81.96±1.35 78.28±1.34 65.69±2.61 93.93±3.59 83.20±4.74 60.03±1.02 72.56±2.27

Table 4. Prediction performance (AUC) on geometric graphs.
ACTSTRACK TAU3MU SYNMOL PLBIND

ERM 97.40±0.32 82.75±0.16 99.30±0.20 85.31±2.21

LRI-BERNOULLI 94.00±0.78 86.36±0.06 99.30±0.15 85.80±0.70

GMT-LIN 93.92±0.98 82.60±0.17 99.26±0.27 86.29±0.80

GMT-SAM 98.55±0.11 86.42±0.08 99.89±0.03 87.19±1.86

hyperparameters as recommended by previous works. More
details are given in Appendix F.2.

6.2. Experimental results and analysis

Interpretation performance. As shown in Table. 1, com-
pared to post-hoc methods (in the first row) and GSAT, both
GMT-lin and GMT-sam lead to non-trivial improvements
for interpretation performance. Especially, in challenging
Spurious-Motif datasets with distribution shifts, GMT-sam
brings improvements than GSAT up to 15% with GIN, and
up to 8% with PNA. In challenging realistic dataset MNIST-
75sp, GMT-sam also improves GSAT up to 6%.

Generalization performance. Table 2 illustrates the predic-
tion accuracy on regular graph datasets. We again observe
consistent improvements by GMT spanning from molecule
graphs to image-converted datasets. Despite distribution
shifts, GMT-sam still brings improvements up to 13% with
GIN, and up to 16% against GSAT in Spurious-Motif.

Results on geometric graphs. Tables 3 and 4 show the
interpretation and generalization performances of various
methods. Again, we observe consistent non-trivial improve-
ments of GMT-lin and GMT-sam in most cases than GSAT
and post-hoc methods. Interestingly, GMT-lin brings more
improvements than GMT-sam in terms of interpretation per-
formance despite its simplicity. In terms of generalization
performance, GMT-sam remains the best method. The re-
sults on geometric datasets further demonstrate the strong
generality of GMT across different tasks and backbones.

6.3. Ablation studies

In complementary to the interpretability and generalizability
study, we conduct further ablation studies to better under-
stand the results. Fig. 3(a) shows the counterfactual fidelity

Table 5. Comparison of prediction performances of GMT-sam and
GSAT with and without retraining on SPMotif datasets. “O” refers
to the originally trained classifier when training the subgraph ex-
tractor. “R” refers to the retrained classifier with a frozen subgraph
extractor that has been trained with the corresponding methods.

SPMOTIF 0.5 SPMOTIF 0.7 SPMOTIF 0.9

GSAT (GIN) O 47.45±5.87 43.57±2.43 45.39±5.02

R 46.54±3.90 45.09±4.48 47.76±4.50

GMT-SAM (GIN) O 46.85±4.57 48.82±2.87 46.77±2.93

R 60.09±5.57 54.34±4.04 55.83±5.68

GMT-SAM (PNA) O 60.02±3.97 61.67±3.16 52.98±2.55

R 71.98±3.44 69.68±3.99 67.90±3.60

of GSAT, GMT-lin, and GMT-sam in Spurious-Motif (SP-
motif) test sets. As shown in Fig. 3(a) that GSAT achieves
a lower counterfactual fidelity. In contrast, GMT-lin and
GMT-sam improve a higher counterfactual fidelity, which
explains the reason for the improved interpretability of GMT.

Hyperparameter sensitivity. We also examine the hyperpa-
rameter sensitivity of GMT-sam in SPMotif-0.5 dataset. As
shown in Fig. 3(b), 3(c), GMT-sam maintains strong robust-
ness against the hyperparameter choices. The interpretation
performance gets improved along with the sampling rounds,
while using too-large GIB information regularizer weights
will affect the optimization of GMT and the generalizability.

Effectiveness of classifier retraining for GMT-sam. As
discussed in Sec. 5.2, if the subgraph extractor extracts the
desired causal subgraph, training the subgraph classifier
with ERM could capture the desired correlations between
the causal subgraph and the target label (Chen et al., 2022b).

To understand the rationale of retraining in GMT-sam, we
conduct a comparison of the prediction performances of
GMT-sam to GSAT with and without retraining. As shown
in Table 5, with the classifier retraining, the prediction per-
formances of GMT-sam increase significantly, since the
subgraph extractor already gets rid of the spurious signals in
the original graphs, compared to GSAT. The effectiveness
of the retraining strategy also generalizes to PNA.

More detailed interpretation performance compari-
son. We conduct additional experiments with other post-
hoc explanation metrics including Precision and mask en-
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Table 6. More detailed comparion of interpretation performance (AUC) on regular graphs.

GNN METHOD
GIN PNA

SPMOTIF-0.5 SPMOTIF-0.7 SPMOTIF-0.9 SPMOTIF-0.5 SPMOTIF-0.7 SPMOTIF-0.9

GSAT

AUROC 74.49±4.46 72.95±6.40 72.95±6.40 79.84±3.21 79.76±3.66 80.70±5.45

PRECISION@5 46.69±2.26 42.96±7.42 35.34±4.71 56.11±1.80 58.95±0.99 51.83±2.32

AVG. PRECISION 28.43±9.51 24.83±11.07 17.08±5.71 35.12±5.00 39.73±7.17 40.20±4.86

MASK ENTROPY 4.70±0.21 4.71±0.13 4.70±0.17 4.70±0.03 4.72±0.09 4.71±0.07

GMT-SAM

AUROC 85.50±2.40 84.67±2.38 73.49±5.33 88.27±1.71 86.58±1.89 85.26±1.92

PRECISION@5 56.56±1.80 53.11±3.41 40.43±5.66 62.99±1.35 61.44±1.46 63.53±1.98

AVG. PRECISION 52.75±2.66 51.49±4.93 28.79±9.84 58.11±1.81 54.77±2.57 54.12±3.00

MASK ENTROPY 4.70±0.21 4.71±0.11 4.71±0.13 4.70±0.06 4.71±0.13 4.71±0.17

SPmotif-0.5 SPmotif-0.7 SPmotif-0.90
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(c) Generalization sensitivity.
Figure 3. Ablation studies.

tropies (Funke et al., 2023). The results are given in Table 6.
From the table, we can find that, both Precision@5 and
Average Precision align with the AUROC when reflecting
the interpretation performance, despite of the numerical
scale. While GSAT suffers from lower Precision scores,
GMT-sam demonstrates consistent and significant improve-
ments than GSAT across both Precision@5 and Average Pre-
cision scores. Meanwhile, both GSAT and GMT-sam have a
relatively high sparsity, due to the mutual information regu-
larization. Nevertheless, compared to GSAT, GMT-sam dis-
tributes the attention to more semantically meaningful edges
in the underlying causal subgraph. Therefore, GMT-sam
enjoys both high precision in terms of interpretability, and
better generalizability, under a high sparsity.

Results with XGNNs for node classification are also con-
ducted for which the details are left in Appendix F.7. Specif-
ically, we follow the experimental setup of a recent work
called SunnyGNN (Deng & Shen, 2024) to evaluate the
interpretation and prediction performances. Since ground
truth labels are not available, we mainly compare the coun-
terfactual fidelity (Def. 4.1) proposed in our work and suf-
ficiency fidelity (Deng & Shen, 2024). The scale of the
datasets ranges from Cora (Yang et al., 2016) with 2, 708
nodes with 10, 556 edges to Coauthor-Physics (Shchur et al.,
2018) with 34, 493 nodes and 495, 924 edges.

In Table 12 of Appendix F.7, we find that, compared to the
state-of-the-art XGNNs in node classification, GMT-sam
and GMT-lin achieve a competitive prediction perfor-
mance while bringing significant improvements in terms

of interpretation performance (including both sufficiency
fidelty (Deng & Shen, 2024) and counterfactual fidelity
(Def. 4.1), aligned with our discussion. We also note that in
some cases GMT-lin may underperform GSAT, highlight-
ing an interesting direction for future investigation.

More baseline results in PNA backbones are given in Ap-
pendix F.3, including two representative post-hoc methods
GNNExplainer and PGExplainer, and one representative
XGNN baseline DIR. The results show that most of the
baselines still significantly underperform GSAT and GMT.

Computational analysis is given in Appendix F.4. Al-
though GMT-sam takes a longer time for training, but the
absolute values are not high even for the largest dataset
MNIST-75sp. When compared to other intrinsic inter-
pretable methods, GMT-sam consumes a similar training
time of around 6 hours on MNIST-75sp as DIR. As for
inference, GMT-sam enjoys a similar latency as others.

7. Conclusions
We developed a theoretical framework for the expressivity
of XGNNs by formulating the subgraph learning with multi-
linear extension (SubMT). We found that existing attention-
based XGNNs fail to approximate SubMT, leading to un-
faithful interpretation and poor generalizability. Thus, we
propose a new architecture called GMT which is provably
more powerful in approximating SubMT. Extensive exper-
iments on both regular and geometric graphs verify the
superior interpretability and generalizability of GMT.
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Erdos, P. L. and Rényi, A. On the evolution of random
graphs. Transactions of the American Mathematical So-
ciety, 286:257–257, 1984. (Cited on page 4)

Fan, S., Wang, X., Mo, Y., Shi, C., and Tang, J. Debi-
asing graph neural networks via learning disentangled
causal substructure. In Advances in Neural Information
Processing Systems, 2022. (Cited on pages 3 and 19)

Fey, M. and Lenssen, J. E. Fast graph representation learning
with PyTorch Geometric. In ICLR Workshop on Represen-
tation Learning on Graphs and Manifolds, 2019. (Cited
on page 41)

Fountoulakis, K., Levi, A., Yang, S., Baranwal, A., and
Jagannath, A. Graph attention retrospective. Journal of
Machine Learning Research, 24(246):1–52, 2023. (Cited
on pages 20 and 31)

11



How Interpretable Are Interpretable Graph Neural Networks?

Funke, T., Khosla, M., Rathee, M., and Anand, A. Zorro:
Valid, sparse, and stable explanations in graph neural
networks. IEEE Transactions on Knowledge and Data
Engineering, 35(8):8687–8698, 2023. (Cited on pages 9
and 19)

Gardner, M., Grus, J., Neumann, M., Tafjord, O., Dasigi, P.,
Liu, N. F., Peters, M. E., Schmitz, M., and Zettlemoyer,
L. Allennlp: A deep semantic natural language process-
ing platform. arXiv preprint, arXiv:1803.07640, 2018.
(Cited on page 32)

Giles, C. L., Bollacker, K. D., and Lawrence, S. Citeseer:
An automatic citation indexing system. In Proceedings
of the 3rd ACM International Conference on Digital Li-
braries, pp. 89–98, 1998. (Cited on page 40)

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International Conference on Machine Learning,
pp. 1263–1272, 2017. (Cited on page 1)

Gui, S., Li, X., Wang, L., and Ji, S. GOOD: A graph out-
of-distribution benchmark. In Thirty-sixth Conference
on Neural Information Processing Systems Datasets and
Benchmarks Track, 2022. (Cited on pages 1 and 7)

Gui, S., Liu, M., Li, X., Luo, Y., and Ji, S. Joint learn-
ing of label and environment causal independence for
graph out-of-distribution generalization. arXiv preprint,
arXiv:2306.01103, 2023. (Cited on page 21)

Guo, Z., Xiao, T., Aggarwal, C., Liu, H., and Wang, S. Coun-
terfactual learning on graphs: A survey. arXiv preprint,
arXiv:2304.01391, 2023. (Cited on pages 5 and 20)

Holstein, B. The Theory of Almost Everything: The Stan-
dard Model, the Unsung Triumph of Modern Physics .
Physics Today, 59(7):49–50, 07 2006. (Cited on page
33)

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. In Advances in
Neural Information Processing Systems, 2020. (Cited on
pages 7, 32 and 34)

Huang, Q., Yamada, M., Tian, Y., Singh, D., and Chang, Y.
Graphlime: Local interpretable model explanations for
graph neural networks. IEEE Transactions on Knowledge
and Data Engineering, 35(7):6968–6972, 2023. (Cited
on page 20)

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International Conference on Machine Learning, pp.
448–456, 2015. (Cited on pages 29 and 34)

Jain, S. and Wallace, B. C. Attention is not explanation. In
Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pp. 3543–3556,
2019. (Cited on pages 3, 5 and 20)

Jang, E., Gu, S., and Poole, B. Categorical reparameteriza-
tion with gumbel-softmax. In International Conference
on Learning Representations, 2017. (Cited on pages 6
and 28)

Ji, Y., Zhang, L., Wu, J., Wu, B., Huang, L.-K., Xu, T.,
Rong, Y., Li, L., Ren, J., Xue, D., Lai, H., Xu, S., Feng,
J., Liu, W., Luo, P., Zhou, S., Huang, J., Zhao, P., and
Bian, Y. DrugOOD: Out-of-Distribution (OOD) Dataset
Curator and Benchmark for AI-aided Drug Discovery
– A Focus on Affinity Prediction Problems with Noise
Annotations. arXiv preprint, arXiv:2201.09637, 2022.
(Cited on pages 1 and 20)

Jin, W., Zhao, T., Ding, J., Liu, Y., Tang, J., and Shah, N.
Empowering graph representation learning with test-time
graph transformation. arXiv preprint, arXiv:2210.03561,
2022. (Cited on page 21)

Johndrow, J. E., Pillai, N. S., and Smith, A. No free lunch for
approximate mcmc. arXiv preprint, arXiv:2010.12514,
2020. (Cited on pages 6, 29 and 31)

Jumper, J. M., Evans, R., Pritzel, A., Green, T., Figurnov,
M., Ronneberger, O., Tunyasuvunakool, K., Bates, R.,
Zı́dek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl,
S. A. A., Ballard, A., Cowie, A., Romera-Paredes, B.,
Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S.,
Reiman, D. A., Clancy, E., Zielinski, M., Steinegger, M.,
Pacholska, M., Berghammer, T., Bodenstein, S., Silver,
D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli,
P., and Hassabis, D. Highly accurate protein structure
prediction with alphafold. Nature, 596:583 – 589, 2021.
(Cited on page 1)

Kamhoua, B. F., Zhang, L., Chen, Y., Yang, H., KAILI, M.,
Han, B., Li, B., and Cheng, J. Exact shape correspon-
dence via 2d graph convolution. In Advances in Neural
Information Processing Systems, 2022. (Cited on page
21)

Karalias, N., Robinson, J., Loukas, A., and Jegelka, S. Neu-
ral set function extensions: Learning with discrete func-
tions in high dimensions. In Advances in Neural Infor-
mation Processing Systems, 2022. (Cited on pages 3
and 21)

Karimi, A., Muandet, K., Kornblith, S., Schölkopf, B., and
Kim, B. On the relationship between explanation and
prediction: A causal view. In International Conference
on Machine Learning, pp. 15861–15883, 2023. (Cited
on page 20)

12



How Interpretable Are Interpretable Graph Neural Networks?

Karimi, M., Wu, D., Wang, Z., and Shen, Y. Deepaffinity:
Interpretable deep learning of compound-protein affin-
ity through unified recurrent and convolutional neural
networks. Bioinformatics, 2019. (Cited on page 34)

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015. (Cited on page 35)

Knyazev, B., Taylor, G. W., and Amer, M. R. Understanding
attention and generalization in graph neural networks. In
Advances in Neural Information Processing Systems, pp.
4204–4214, 2019. (Cited on pages 7, 32 and 34)

Kochkov, D., Pfaff, T., Sanchez-Gonzalez, A., Battaglia,
P. W., and Clark, B. K. Learning ground states of quan-
tum hamiltonians with graph networks. arXiv preprint,
arXiv:2110.06390, 2021. (Cited on page 1)

Laskowski, R. A. PDBsum: summaries and analyses of
PDB structures. Nucleic Acids Research, 29(1):221–222,
01 2001. (Cited on page 34)

Lee, S. Y., Bu, F., Yoo, J., and Shin, K. Towards deep atten-
tion in graph neural networks: Problems and remedies. In
International Conference on Machine Learning, volume
202, pp. 18774–18795, 2023. (Cited on pages 20 and 31)

Li, H., Zhang, Z., Wang, X., and Zhu, W. Learning invari-
ant graph representations for out-of-distribution general-
ization. In Advances in Neural Information Processing
Systems, 2022. (Cited on pages 3, 19 and 21)

Li, X., Gui, S., Luo, Y., and Ji, S. Graph structure and feature
extrapolation for out-of-distribution generalization. arXiv
preprint, arXiv:2306.08076, 2023. (Cited on page 21)

Lin, W., Lan, H., and Li, B. Generative causal explanations
for graph neural networks. In International Conference
on Machine Learning, volume 139, pp. 6666–6679, 2021.
(Cited on pages 1, 3 and 19)

Lin, W., Lan, H., Wang, H., and Li, B. Orphicx: A causality-
inspired latent variable model for interpreting graph neu-
ral networks. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13719–13728, 2022a.
(Cited on pages 1, 3 and 19)

Lin, Y., Zhu, S., Tan, L., and Cui, P. ZIN: When and
how to learn invariance without environment partition?
In Advances in Neural Information Processing Systems,
2022b. (Cited on page 34)

Lipton, Z. C. The mythos of model interpretability. Com-
mun. ACM, 61(10):36–43, 2018. (Cited on pages 3
and 20)

Liu, G., Zhao, T., Xu, J., Luo, T., and Jiang, M. Graph
rationalization with environment-based augmentations.
arXiv preprint arXiv:2206.02886, 2022a. (Cited on pages
3, 19 and 21)

Liu, M., Luo, Y., Uchino, K., Maruhashi, K., and Ji, S.
Generating 3d molecules for target protein binding. arXiv
preprint, arXiv:2204.09410, 2022b. (Cited on page 34)

Liu, Z., Su, M., Han, L., Liu, J., Yang, Q., Li, Y., and Wang,
R. Forging the basis for developing protein-ligand inter-
action scoring functions. Accounts of chemical research,
50 2:302–309, 2017. (Cited on page 34)

Lovász, L. and Szegedy, B. Limits of dense graph sequences.
Journal of Combinatorial Theory, Series B, 96(6):933–
957, 2006. (Cited on page 4)

Luo, D., Cheng, W., Xu, D., Yu, W., Zong, B., Chen, H.,
and Zhang, X. Parameterized explainer for graph neural
network. In Advances in Neural Information Processing
Systems, pp. 19620–19631, 2020. (Cited on pages 1, 3,
7, 19, 31, 32 and 34)

Ma, J., Guo, R., Mishra, S., Zhang, A., and Li, J. Clear:
Generative counterfactual explanations on graphs. In
Advances in Neural Information Processing Systems, pp.
25895–25907, 2022. (Cited on pages 3 and 20)

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete
distribution: A continuous relaxation of discrete random
variables. In International Conference on Learning Rep-
resentations, 2017. (Cited on pages 6 and 28)

Mahdavi, S., Swersky, K., Kipf, T., Hashemi, M., Thram-
poulidis, C., and Liao, R. Towards better out-of-
distribution generalization of neural algorithmic reason-
ing tasks. arXiv preprint arXiv:2211.00692, 2022. (Cited
on page 21)

McCloskey, K., Taly, A., Monti, F., Brenner, M. P., and Col-
well, L. J. Using attribution to decode binding mechanism
in neural network models for chemistry. Proceedings of
the National Academy of Sciences, 116:11624 – 11629,
2018. (Cited on pages 33 and 34)

Miao, S., Liu, M., and Li, P. Interpretable and generalizable
graph learning via stochastic attention mechanism. Inter-
national Conference on Machine Learning, 2022. (Cited
on pages 1, 3, 4, 5, 6, 7, 19, 20, 21, 22, 23, 32, 34 and 35)

Miao, S., Luo, Y., Liu, M., and Li, P. Interpretable geometric
deep learning via learnable randomness injection. In
International Conference on Learning Representations,
2023. (Cited on pages 1, 3, 7, 19, 21, 22, 32, 33, 34 and
35)

13



How Interpretable Are Interpretable Graph Neural Networks?

Murray, C. W. and Rees, D. C. The rise of fragment-based
drug discovery. Nature chemistry, 1 3:187–92, 2009.
(Cited on page 1)

Owen, G. Multilinear extensions of games. Management
Science, 18:64–79, 1972. (Cited on page 21)

Papamarkou, T., Hinkle, J., Young, M. T., and Womble, D.
Challenges in Markov chain Monte Carlo for Bayesian
neuralnetworks. Statistical Science, 37(3):425–442, 2022.
(Cited on pages 6 and 29)

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances in
Neural Information Processing Systems, pp. 8024–8035,
2019. (Cited on page 41)

Prado-Romero, M. A., Prenkaj, B., Stilo, G., and Giannotti,
F. A survey on graph counterfactual explanations: Defini-
tions, methods, evaluation, and research challenges. ACM
Computing Surveys, 2022. (Cited on pages 3, 5 and 20)

Ribeiro, M. T., Singh, S., and Guestrin, C. ”why should i
trust you?”: Explaining the predictions of any classifier.
In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pp. 1135–1144, 2016. (Cited on pages 3 and 20)

Rudin, C. Stop explaining black box machine learning
models for high stakes decisions and use interpretable
models instead. Nature Machine Intelligence, 1:206–215,
2018. (Cited on page 20)

Sahin, A., Bian, Y., Buhmann, J. M., and Krause, A. From
sets to multisets: Provable variational inference for prob-
abilistic integer submodular models. In International
Conference on Machine Learning, volume 119, pp. 8388–
8397, 2020. (Cited on pages 3 and 21)

Satorras, V. G., Hoogeboom, E., and Welling, M. E(n) equiv-
ariant graph neural networks. In International Conference
on Machine Learning, pp. 9323–9332, 2021. (Cited on
pages 7 and 34)

Schlichtkrull, M. S., Cao, N. D., and Titov, I. Interpret-
ing graph neural networks for NLP with differentiable
edge masking. In International Conference on Learning
Representations, 2021. (Cited on page 7)

Schulte, R., Bashkirov, V., Li, T., Liang, Z., Mueller, K.,
Heimann, J., Johnson, L., Keeney, B., Sadrozinski, H.-
W., Seiden, A., Williams, D., Zhang, L., Li, Z., Peggs,
S., Satogata, T., and Woody, C. Conceptual design of a
proton computed tomography system for applications in

proton radiation therapy. IEEE Transactions on Nuclear
Science, 51(3):866–872, 2004. (Cited on page 33)
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A. Notations
In the following, we list notations for key concepts that have appeared in this paper.

Table 7. Notations for key concepts involved in this paper.

G the graph space

Gc the space of subgraphs with respect to the graphs from G
Y the label space

ρ the pooling function of the GNN

d(·, ·) a distribution distance metric

L(·, ·) the loss function

G ∈ G a graph

G = (A,X) a graph with the adjacency matrix A ∈ {0, 1}n×n and node feature matrix X ∈ Rn×d

for brevity, we also use G and Y to denote the random variables as the graphs and labels

f = fc ◦ g a XGNN with a subgraph extractor g and a classifier fc

g a subgraph extractor g : G → Gc

fc a classifier GNN fc : Gc → Y
Gc the invariant subgraph with respect to G

Gs the spurious subgraph with respect to G

Âc, Â the weighted adjacency matrix for causal subgraph with entries Au,v = αe

as the sampling probability predicted by g

Âs the weighted adjacency matrix for spurious subgraph with entries Au,v = 1− αe

as the sampling probability predicted by g

Ĝc the estimated invariant subgraph produced by g

if the subgraph partitioning is conducted in an edge-centric view, then Ĝc = (X, Âc)

Ĝs the estimated spurious subgraph produced by tacking the complementary of Ĝc

if the subgraph partitioning is conducted in an edge-centric view, then Ĝs = (X, Âs)

I(Gc;Y ) mutual information between the extracted subgraph Gc and Y , specialized for maximizing I(G;Y )

P (Gc|G) ∈ R+ the probability for sampling Gc from G with the subgraph extractor g

P (Y |G) ∈ R|Y|
+ the label distribution of Y conditioned on G

Pf (Y |G) ∈ R|Y|
+ the predicted label distribution of Y conditioned on G

fc(Gc) ∈ R|Y|
+ the predicted label distribution of Y with fc by taking the input Gc.

If the input graph is a weighted graph, fc computes the label prediction with weighted message passing.
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B. More Details about the Background
We begin by introducing related works in Appendix B.1 and then more backgrounds about graph information bottleneck in
Appendix B.2, especially for how to obtain the formulas in the main text.

B.1. More related works

We give a more detailed background introduction of interpretable and generalizable GNNs (XGNNs) in this section.

Graph Neural Networks. We use G = (A,X) to denote a graph with n nodes and m edges. Within G, A ∈ {0, 1}n×n is
the adjacency matrix, and X ∈ Rn×d is the node feature matrix with a node feature dimension of d. This work focuses on the
task of graph classification. Specifically, we are given a set of N graphs {Gi}Ni=1 ⊆ G and their labels {Yi}Ni=1 ⊆ Y = Rc

from c classes. Then, we need to train a GNN ρ ◦ h with an encoder h : G → Rh that learns a meaningful representation hG

for each graph G to help predict their labels yG = ρ(hG) with a downstream classifier ρ : Rh → Y . The representation hG

is typically obtained by performing pooling with a READOUT function on the learned node representations:

hG = READOUT({h(K)
u |u ∈ V }), (14)

where the READOUT is a permutation invariant function (e.g., SUM, MEAN) (Xu et al., 2019), and h
(K)
u stands for the

node representation of u ∈ V at K-th layer that is obtained by neighbor aggregation:

h(K)
u = σ(WK · a({h(K−1)

v }|v ∈ N (u) ∪ {u})), (15)

where N (u) is the set of neighbors of node u, σ(·) is an activation function, e.g., ReLU, and a(·) is an aggregation function
over neighbors, e.g., MEAN.

Interpretable GNNs. Let G = (A,X) be a graph with node set V = {v1, v2, ..., vn} and edge set E = {e1, e2, ..., em},
where A ∈ {0, 1}n×n is the adjacency matrix and X ∈ Rn×d is the node feature matrix. In this work, we focus on
interpretable GNNs (or XGNNs) for the graph classification task, while the results can be generalized to node-level tasks as
well (Wu et al., 2020). Given each sample from training data Dtr = (Gi, Y i), an interpretable GNN f := h ◦ g aims to
identify a (causal) subgraph Gc ⊆ G via a subgraph extractor GNN g : G → Gc, and then predicts the label via a subgraph
classifier GNN fc : Gc → Y , where G,Gc,Y are the spaces of graphs, subgraphs, and the labels, respectively (Yu et al.,
2021). Although post-hoc explanation approaches also aim to find an interpretable subgraph as the explanation for the
model prediction (Ying et al., 2019; Yuan et al., 2020a; Vu & Thai, 2020; Luo et al., 2020; Yuan et al., 2021; Lin et al.,
2021; 2022a; Funke et al., 2023; Spinelli et al., 2024; Deng & Shen, 2024), they are shown to be suboptimal in interpretation
performance and sensitive to the performance of the pre-trained GNNs (Miao et al., 2022). Therefore, this work focuses on
intrinsic interpretable GNNs (XGNNs).

A predominant approach to implement XGNNs is to incorporate the idea of information bottleneck (Tishby et al., 1999),
such that Gc keeps the minimal sufficient information of G about Y (Yu et al., 2021; 2022; Miao et al., 2022; 2023; Yang
et al., 2023), which can be formulated as

max
Gc

I(Gc;Y )− λI(Gc;G), Gc ∼ g(G), (16)

where maximizing the mutual information between Gc and Y endows the interpretability of Gc while minimizing I(Gc;G)
ensures Gc captures only the most necessary information, λ is a hyperparamter trade off between the two objectives. In
addition to minimizing I(Gc;G), there are also alternative approaches that impose different constraints such as causal
invariance (Chen et al., 2022b; Li et al., 2022) or disentanglement (Wu et al., 2022b; Sui et al., 2022; Liu et al., 2022a; Fan
et al., 2022) to identify the desired subgraphs. When extracting the subgraph, XGNNs adopts the attention mechanism
to learn the sampling probability of each edge or node, which avoids the complicated Monte Carlo tree search used
in other alternative implementations (Zhang et al., 2022). Specifically, given node representation learned by message
passing Hi ∈ Rh for each node i, XGNNs either learns a node attention αi ∈ R+ = σ(a(Hi)) via the attention function
a : Rh → R+, or the edge attention αe ∈ R+ = σ(a([Hu, Hv])) for each edge e = (u, v) via the attention function
a : R2h → R+, where σ(·) is a sigmoid function. α = [α1, ..., αm]T essentially elicits a subgraph distribution of the
interpretable subgraph. In this work, we focus on edge attention-based subgraph distribution as it is most widely used in
XGNNs while our method can be easily generalized to node attention-based subgraph approaches as demonstrated in the
experiments with geometric learning datasets.
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Besides, Fountoulakis et al. (2023); Lee et al. (2023) find the failures of graph attention networks in properly propagating
messages with the attention mechanism. They differ from our work as they focus on node classification tasks.

Other interpretable GNNs. Spinelli et al. (2024) develop interpretable and efficient GNNs that leverage the attention
mechanism to fully and efficiently exploit the useful meta-paths in heterogeneous graphs. In our aforementioned preliminary
experiments, we have demonstrated the promising results of GMT in node classification tasks. Therefore, we believe it’s
a promising future direction to extend GMT to heterogeneous graphs based on the framework proposed in Spinelli et al.
(2024). Huang et al. (2023) incorporate Hilbert-Schmidt Independence Criterion Lasso to find interpretable features as local
explanations for the task of node classification. Different from Huang et al. (2023), we focus on finding subgraphs of the
inputs as interpretations.

Faithful interpretation and (OOD) generalization. The faithfulness of interpretation is critical to all interpretable and
explainable methods (Ribeiro et al., 2016; Lipton, 2018; Alvarez-Melis & Jaakkola, 2018; Rudin, 2018; Jain & Wallace,
2019; Karimi et al., 2023). Yet, there are many failure cases found especially when with attention mechanisms. For
example, Jain & Wallace (2019) reveals that in NLP, randomly shuffling or imposing adversarial noises will not affect
the predictions too much, highlighting a weak correlation between attention and prediction. Karimi et al. (2023) present
a causal analysis showing the hyperparameters and the architecture setup could be a cofounder that affects the causal
analysis. Chang et al. (2020) show interpretations will fail when distribution shifts are presented. Although the faithfulness
of explanation/interpretations has been widely a concern for Euclidean data, whether and how GNNs and XGNNs suffer
from the same issue is under-explored.

Talking about the progress in graph data, there are several metrics developed to measure the faithfulness of graph explanations,
such as fidelity (Yuan et al., 2020b; Amara et al., 2022), counterfactual robustness (Bajaj et al., 2021; Prado-Romero et al.,
2022; Ma et al., 2022), equivalence (Crabbé & van der Schaar, 2023), and robust fidelity (Zheng et al., 2024), which are
however limited to post-hoc graph explanation methods. In fact, post-hoc explanation methods are mostly developed to
adhere the faithfulness measures such as fidelity. However, as shown by Miao et al. (2022), the post-hoc methods are
suboptimal in finding the interpretable subgraph and sensitive to the pre-trained model, which highlights a drawback of the
existing faithfulness measure. In contrast, we develop the first faithfulness measure for XGNNs in terms of counterfactual
invariance.

Although Bajaj et al. (2021); Prado-Romero et al. (2022); Ma et al. (2022) also adopt the concept of counterfactual to
develop post-hoc explanation methods, they focus on finding the minimal perturbations that will change the predictions.
Counterfactual is also widely used to improve graph representation learning (Guo et al., 2023). In contrast, we adopt the
concept of counterfactual to measure the sensitivity of the XGNNs predictions to the predicted attention.
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Figure 4. Full SCMs on Graph Distribution Shifts (Chen et al., 2022b).

On the natural connection of XGNNs and OOD generalization on graphs. In the context of graph classification, the
generalization ability and the faithfulness of the interpretation are naturally intertwined in XGNNs. In many realistic graph
classification practices such as drug property prediction (Ji et al., 2022; Zhang et al., 2023), the property of a drug molecule
can naturally be represented by a subgraph, termed as causal subgraph. The causal subgraph, in return, holds a causal
relationship with the drug property. Therefore, it is natural to identify the underlying causal subgraph to provide OOD
generalizable predictions and interpretations.
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Typically, XGNNs need to extract the underlying ground truth subgraph in order to make correct predictions on unseen
test graphs (Miao et al., 2022). When distribution shifts are presented in the test data, it is critical to find the underlying
subgraph that has a causal relationship with the target label (or causal subgraphs) (Chang et al., 2020; Chen et al., 2022b).

We now briefly introduce the background of causal subgraph and OOD generalization. Specifically, we are given a set of
graph datasets D = {De}e collected from multiple environments Eall. Samples (Ge

i , Y
e
i ) ∈ De from the same environment

are considered as drawn independently from an identical distribution Pe. We consider the graph generation process proposed
by Chen et al. (2022b) that covers a broad case of graph distribution shifts. Fig. 4 shows the full graph generation process
considered in Chen et al. (2022b). The generation of the observed graph G and labels Y are controlled by a set of latent
causal variable C and spurious variable S, i.e.,

G := fgen(C, S).

C and S control the generation of G by controlling the underlying invariant subgraph Gc and spurious subgraph Gs,
respectively. Since S can be affected by the environment E, the correlation between Y , S and Gs can change arbitrarily
when the environment changes. C and S control the generation of the underlying invariant subgraph Gc and spurious
subgraph Gs, respectively. Since S can be affected by the environment E, the correlation between Y , S and Gs can change
arbitrarily when the environment changes. Besides, the latent interaction among C, S and Y can be further categorized
into Full Informative Invariant Features (FIIF) when Y ⊥⊥ S|C and Partially Informative Invariant Features (PIIF) when
Y ̸⊥⊥ S|C. Furthermore, PIIF and FIIF shifts can be mixed together and yield Mixed Informative Invariant Features (MIIF),
as shown in Fig. 4. We refer interested readers to Chen et al. (2022b) for a detailed introduction to the graph generation
process.

To tackle the OOD generalization challenge on graphs generated following in Fig. 4, the existing invariant graph learning
approaches generically aim to identify the underlying invariant subgraph Gc to predict the label Y (Wu et al., 2022a; Chen
et al., 2022b). Specifically, the goal of OOD generalization on graphs is to learn an invariant XGNN f := fc ◦ g, with the
following objective:

maxfc, g I(Ĝc;Y ), s.t. Ĝc ⊥⊥ E, Ĝc = g(G). (17)

Since E is not observed, many strategies are proposed to impose the independence of Ĝc and E. A common approach is to
augment the environment information. For example, based on the estimated invariant subgraphs Ĝc and spurious subgraphs
Ĝs, Wu et al. (2022b); Liu et al. (2022a); Wu et al. (2022a); Yu et al. (2023) propose to generate new environments, while
Li et al. (2022) propose to infer the underlying environment labels via clustering. Yang et al. (2022) propose a variational
framework to infer the environment labels. Gui et al. (2023) propose to learn causal independence between labels and
environments. Yu et al. (2021; 2022); Miao et al. (2022; 2023); Yang et al. (2023) adopt graph information bottleneck to
tackle FIIF graph shifts, and they cannot generalize to PIIF shifts. Chen et al. (2023a) show the pitfall of the environment
generation or augmentation methods for PIIF shifts, and propose to adopt an environment assistant to resolve the issues.
Nevertheless, since most of the existing works adopt the backbone of XGNNs, and XGNNs with information bottleneck is
the state-of-the-art method with both high interpretation performance and OOD generalization performance, the focus in
this work will be around tackling FIIF shifts with the principle of graph information bottleneck. More details are given in
the next section.

In addition to the aforementioned approaches, Yehudai et al. (2021); Bevilacqua et al. (2021); Zhou et al. (2022) study
the OOD generalization as an extrapolation from small graphs to larger graphs in the task of graph classification and link
prediction. In contrast, we study OOD generalization against various graph distribution shifts formulated in Fig. 4. Li
et al. (2023) propose an extrapolation strategy to improve OOD generalization on graphs. In addition to the standard OOD
generalization tasks studied in this paper, Xu et al. (2021); Mahdavi et al. (2022) study the OOD generalization in tasks of
algorithmic reasoning on graphs. Jin et al. (2022) study the test-time adaption in the graph regime. Kamhoua et al. (2022)
study the 3D shape matching under the presence of noises.

Multilinear extension. Multilinear extension serves as a powerful tool for maximizing combinatorial functions, especially
for submodular set function maximization (Owen, 1972; Călinescu et al., 2007; Vondrak, 2008; Calinescu et al., 2011;
Chekuri et al., 2014; 2015; Bian et al., 2019; Sahin et al., 2020; Bian et al., 2022; Karalias et al., 2022). For example,
Vondrak (2008); Calinescu et al. (2011) study the multilinear extension in the context of social welfare. Bian et al. (2022)
study the multilinear extension for cooperative games. It is the expected value of a set function under the fully factorized
i.i.d. Bernoulli distribution. The closest work to ours is Karalias et al. (2022) that builds neural set function extensions for
multiple discrete functions. Nevertheless, to the best of our knowledge, the notion of multilinear extensions for XGNNs is
yet underexplored. In contrast, in this work, we are the first to identify subgraph multilinear extension as the factorized
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subgraph distribution for interpretable subgraph learning.

B.2. Variational bounds and realization of the IB principle

We first introduce how to derive Eq. 3 in the main text, and then discuss how to implement the graph information bottleneck
regularization min I(Gc;G) following the state-of-the-art architecture GSAT (Miao et al., 2022; 2023).

Variational bounds for I(G;Y ). For the term I(G;Y ), notice that

I(G;Y ) = EG,Y

[
log

P (Y |G)

P (Y )

]
(18)

Since the true P (Y |G) is intractable, through XGNN modelling we introduce a variational approximation Pfc,g(Y |G).
Then,

I(G;Y ) = EG,Y

[
log

Pfc,g(Y |G)

P (Y )

]
+ EG,Y

[
log

P (Y |G)

Pfc,g(Y |G)

]
(19)

= EG,Y

[
log

Pfc,g(Y |G)

P (Y )

]
+DKL(P (Y |G)||Pfc,g(Y |G)) (20)

≥ EG,Y [logPfc,g(Y |G)] +H(Y ) (21)

Since the optimization does not involve H(Y ), we continue with EG,Y [logPfc,g(Y |G)],

EG,Y [logPfc,g(Y |G)] = EG,Y

[
log

∑
Gc

Pfc,g(Y,Gc|G)

]
(22)

= EG,Y

[
log

∑
Gc

Pfc,g(Y |G,Gc)Pfc,g(Gc|G)

]
(23)

= EG,Y

[
log

∑
Gc

Pfc(Y |Gc)Pg(Gc|G)

]
(24)

where Eq. 24 is due to the implementation of XGNNs. Eq. 24 can also be written with expectations:

EG,Y

[
log

∑
Gc

Pfc(Y |Gc)Pg(Gc|G)

]
= EG,Y

[
logEGc∼P(Gc|G)Pfc(Y |Gc)

]
.

Maximizing I(G;Y ) is equivalent to minimizing −I(G;Y ), and further minimizing EG,Y [− logPfc,g(Y |G)]. This achieves
to Eq. 3 in the main text, i.e.,

EG,Y

[
− logEGc∼P(Gc|G)Pfc(Y |Gc)

]
= E(G,Y )[L(EGc∼P(Gc|G)[fc(Gc)], Y )], (25)

with L as the cross entropy loss. α factorizes the sampling probability of the subgraphs as independent Bernoulli distributions
on edges e ∼ Bern(αe),∀e ∈ E:

P (Gc|G) =
∏
e∈Gc

αe

∏
e∈G/Gc

(1− αe).

Variational bounds for I(Gc;G). For the term I(Gc;G), since we factorize graph distribution as multiple independent
Bernoulli distributions on edges, we are able to calculate the KL divergence to upper bound I(Gc;G):

I(Gc;G) ≤ DKL(P (Gc|G)||Q(Gc)), (26)

where Q(Gc) is a variational approximation to P (Gc). DKL can be obtained via

DKL(P (Gc|G)||Q(Gc)) =
∑
e∈Gc

DKL(Bern(αe)||Bern(r)) + c(n, r), (27)
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where c(n, r) is a small constant, r is a hyperparameter to specify the prior for subgraph distributions. To minimize I(Gc;G)
is essentially to minimize DKL(Bern(αe)||Bern(r)). The KL divergence can be directly calculated as

DKL(Bern(αe)||Bern(r)) =
∑
e

αe log
αe

r
+ (1− αe) log

(1− αe)

(1− r)
. (28)

Miao et al. (2022) find the mutual information based regularization can effectively regularize the information contained
in Gc than previous implementations such as vanilla size constraints with the norm of attention scores or connectivity
constraints (Yu et al., 2021).

Besides, we would like to note that GSAT implementation provided by the author does not exactly equal to the mathematical
formulation, i.e., they directly take the unormalized attention to Eq. 28, as acknowledged by the authors 4. The reason for
using another form of information regularization is because the latter empirically performs better. Nevertheless, LRI adopts
the mathematically correct form and obtains better empirical performance. In our experiments, we adopt the mathematically
correct form for both regular and geometric learning tasks, in order to align with the theory. Empirically, we find the two
forms perform competitively well with the suggested hyperparemters and hence stick to the mathematically correct form.

C. On the Generalization and Interpretability: A Causal View
C.1. Structural Causal Model for XGNNs

We provide a detailed description and the full structural causal model of XGNNs in complementary to the causal analysis in
Sec. 4.

C

S

Y

Ac

As

A

P̂c

H

Ŷ

P̂s

Nc

Nc

Ps

Pc

Âc

Âs

Figure 5. Bernoulli Parameterized SCM for interpretable GNN

Data generation. We consider the same data model as previous works (Bevilacqua et al., 2021; Miao et al., 2022; Chen
et al., 2022b), where the underlying causal subgraph Gc and the spurious subgraph Gs will be assembled via some underlying
assembling process G = fg(Gc, Gs), as illustrated in Appendix B Fig. 4.

We focus on the FIIF distribution shifts (Fig. 4(b)) that can be resolved by graph information bottleneck (Miao et al., 2022;
Chen et al., 2022b). As shown in the figure, there are latent causal and spurious variables C and S that have an invariant
and spurious correlation with the label Y , respectively. C and S further control the generation of the graph structure of the
causal subgraph Gc, and the spurious subgraph Gs. Specifically, C and S will specify the number of nodes in Gc and Gs

as Nc and Ns. Then, C and S further control the underlying Bernoulli distributions on edges, by specifying the sampling
probability as Pc and Ps. With Nc and Pc (or Ns and Ps), Ac (or As) can be sampled and then assembled into the observed
graph structure A. As we focus on the edge-centric view, our discussion focuses on the graph structures Ac and As of the
subgraphs. Nevertheless, a similar generation model can also be developed for the node-centric view.

Interpretation. Correspondingly, XGNNs first uses a subgraph extractor to predict the causal and spurious subgraphs Ĝc

and Ĝs, respectively. The extraction aims to reverse the generation and recover the underlying Pc, by learning the P̂c via the
attention α. We denote the architecture and the hyperparameter settings as H . Once P̂c is determined, P̂s = 1− P̂c is also

4https://github.com/Graph-COM/GSAT/issues/10
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obtained by finding the complementary part. Then, the estimated causal and spurious subgraphs are sampled from P̂c and P̂s,
respectively. With the estimated causal subgraph Ĝc = (X, Âc), the classifier GNN c(·) will use it to make a prediction Ŷ .

C.2. Practical Estimation of Counterfactual Fidelity

Since it is prohibitively expensive to enumerate all possible G̃ and the distance δ to examine the counterfactual fidelity. We
instead consider an alternative notion that adopts random perturbation onto the learned attention score. Specifically, we
consider a random attention matrix Ã ∼ σ(N (µĤA

, σĤA
)), where µĤA

and σĤA
are the mean and standard deviation of

the pre-attention matrix ĤA (The adjacency matrix with the unnormalized attention). Since each non-symmetric entry in the
attention is generated independently, each non-symmetric entry in Ã is sampled independently following the factorization of
P (G). We randomly sample Ã by k times and calculate the following:

cĜc
=

1

k

k∑
i=1

d(fc(Y |G̃i
c), fc(Y |Ĝc)), (29)

where G̃i
c = (X, Ãi

c) and d is total variation distance. The detailed computation of the practical counterfactual fidelity is
provided in Algorithm 1.

Algorithm 1 Practical estimation of counterfactual fidelity.
1: Input: Training data Dtr; a trained XGNN f with subgraph extractor g, and classifier fc; sampling times es; batch size

b; total variation distance d(·);
2: // Minibatch sampling.
3: for j = 1 to |Dtr|/b do
4: Sample a batch of data {Gi, Y i}bi=1 from Dtr;
5: Obtain the pre-attention matrix ĤA;
6: Obtain the attention matrix Â = σ(ĤA);
7: Obtain the original prediction with fc based on the attention matrix Â as {ŷi}bi=1;
8: // Random noises injection.
9: for k = 1 to es do

10: Sample a random attention matrix Ã ∼ σ(N (µĤA
, σĤA

));
11: Obtain sampling attention {αi}bi=1;
12: Obtain the perturbed prediction with fc based on the attention matrix Ã as {ŷik}bi=1;
13: end for
14: Calculate {ci

Ĝc
}bi=1 with k groups of {ŷik}bi=1 and {ŷi}bi=1;

15: Obtain the averaged cj
Ĝc

within the batch;
16: end for
17: Obtain the averaged cĜc

within the training data;
18: Return estimated cĜc

;

Shown as in Fig. 6, 7, we plot the counterfactual fidelity of GSAT and the simulated SubMT with 10 and 100 sampling
rounds on BA-2Motifs and Mutag datasets. The SubMT is approximated via GMT-sam with different sampling rounds. It
can be found that GSAT achieves a counterfactual fidelity that is 2 to 3 times lower than the simulated SubMT via GMT-sam
with 10 and 100 sampling rounds. Moreover, in simple tasks such as BA-2Motifs and Mutag, using larger sampling rounds
like 100 does not necessarily bring more counterfactual fidelity. One reason can be using small sampling rounds to touch
the upper bounds of counterfactual fidelity measured in our work. We also provide a discussion on why the counterfactual
fidelity grows slowly at the initial epochs in BA-2Motif datasets in Appendix E.2. More counterfactual fidelty studies can be
found in Appendix F.5.

D. Theories and Proofs
D.1. Useful definitions

We give the relevant definitions here for ease of reference when reading our proofs.
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(a) SubMT on BA-2Motifs trainset.
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(b) SubMT on BA-2Motifs valset.
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(c) SubMT on BA-2Motifs test set.

Figure 6. Counterfactual fidelity on BA-2Motifs.
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(a) SubMT on Mutag trainset.
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(b) SubMT on Mutag validation set.
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(c) SubMT on Mutag test set.

Figure 7. Counterfactual fidelity on Mutag.

Definition D.1 (Subgraph multilinear extension (SubMT)). Given the attention α ∈ Rm
+ as edge sampling probability of

Gc, XGNNs factorize P (G) as independent Bernoulli distributions on edges:

P (Gc|G) =
∏
e∈Gc

αe

∏
e∈G/Gc

(1− αe),

which elicits the multilinear extension of fc(Gc) in Eq. 3 as:

Fc(α;G) :=
∑

Gc∈G

fc(Gc)
∏
e∈Gc

αe

∏
e∈G/Gc

(1− αe) = E
Gc

g∼G
fc(Gc). (30)

Definition D.2 (ϵ-SubMT approximation). Let d(·, ·) be a distribution distance metric, a XGNN f = fc ◦ g ϵ-approximates
SubMT (Def. 3.1), if there exists ϵ ∈ R+ such that d(Pf (Y |G), P (Y |G)) ≤ ϵ where P (Y |G) ∈ R|Y| is the ground
truth conditional label distribution, and Pf (Y |G) ∈ R|Y| is the predicted label distribution for G via a XGNN f , i.e.,
Pf (Y |G) = fc(EGc

g∼G
Gc).

Definition D.3 ((δ, ϵ)-counterfactual fidelity). Given a meaningful minimal distance δ > 0, let d(·, ·) be a distribution
distance metric , if a XGNN f = fc ◦ g commits to the ϵ−counterfactual fidelity, then there exist ϵ > 0 such that, ∀G, G̃
that d(P (Y |G), P (Y |G̃)) ≥ δ, the following holds:

d(Pf (Y |G̃), Pf (Y |G)) ≥ ϵδ.

D.2. Proof for Proposition 3.3

Proposition D.4. Consider a linearized GNN (Wu et al., 2019) with number of message passing layers k > 1, linear
activations and pooling,

fc(Gc) = ρ(ÂkXW ), (31)

if there exists 1 ≤ i, j ≤ n that 0 < Âi,j < 1, Eq. 9 can not hold, thus Eq. 31 can not approximate SubMT (Def. 3.1).
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Proof. To begin with, given a linear pooling function ρ, one could write the outcomes of fc(A) = ρ(AkXW ) as a
summation in Ak

i,jvi,j , with vi,j is the weight that accounting for the pooling as well as XW :

fc(A) =
∑
i

∑
jAi,jvi,j . (32)

Given the linearity of expectations, the comparison between E[fc(A)] and fc(E[A]) now turns into the comparison between
E[Ak

i,jvj ] and (E[Ai,j ])
kvj . Since Aij is drawn from the Bernoulli distribution, with the expectation as Âi,j , it suffices to

know that

E[Ak
i,jvj ] = 1kÂi,j + 0k(1− Âi,j) = Âi,j , (33)

while (E[Ai,j ])
k = Âk

i,j . Then, we know that E[fc(A)] ̸= fc(E[A]).

We also conduct empirical verifications with GSAT implemented in GIN and SGC with various layers in Appendix F.6.

D.3. Proof for Proposition 4.2

Proposition D.5. If a XGNN f ϵ-approximates SubMT (Def. D.2), then f also satisfies (δ, 1− 2ϵ
δ )-counterfactual fidelity

(Def. D.3).

Proof. Considering any two graphs G and G̃ that d(P (Y |G), P (Y |G̃) ≥ δ, since d is a distance metric, we have the
following inequality holds:

d(P (Y |G), Pf (Y |G̃)) ≤ d(Pf (Y |G), P (Y |G)) + d(Pf (Y |G), Pf (Y |G̃)), (34)

by the triangle inequality. Furthermore, we have

d(P (Y |G), Pf (Y |G̃))− d(Pf (Y |G), P (Y |G)) ≤ d(Pf (Y |G), Pf (Y |G̃)) (35)

As XGNN f that ϵ-approximates SubMT, we have the following by definition:

d(Pf (Y |G̃), P (Y |G̃)) ≤ ϵ, d(Pf (Y |G), P (Y |G)) ≤ ϵ.

Then, call the triangle inequality again, we have

d(P (Y |G), P (Y |G̃)) ≤ d(Pf (Y |G̃), P (Y |G)) + d(Pf (Y |G̃), P (Y |G̃))

d(P (Y |G), P (Y |G̃))− d(Pf (Y |G̃), P (Y |G̃)) ≤ d(Pf (Y |G̃), P (Y |G))

δ − d(Pf (Y |G̃), P (Y |G̃)) ≤ d(Pf (Y |G̃), P (Y |G))

δ − ϵ ≤ d(Pf (Y |G̃), P (Y |G)).

(36)

Combining the aforementioned three inequalities, we have

d(Pf (Y |G̃), P (Y |G))− d(Pf (Y |G), P (Y |G)) ≥ δ − 2ϵ,

Then, it suffices to know that
δ − 2ϵ ≤ d(Pf (Y |G), Pf (Y |G̃)). (37)

D.4. Proof for Theorem 5.1

Theorem D.6. Given the attention matrix Â, and the distribution distance metric d as the total variation distance, let
C = |Y|, for a GMT-sam with t i.i.d. samples of Gi

c ∼ P (Gc|G), then, there exists ϵ ∈ R+ such that, with a probability at
least 1− e−tϵ2/4, GMT-sam ϵC

2 -approximates SubMT (Def. D.2) and satisfies (δ, 1− ϵC
δ ) counterfactual fidelity (Def. D.3).
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Proof. Recall the SubMT objective:

Fc(α;G) :=
∑

Gc∈G

fc(Gc)
∏
e∈Gc

αe

∏
e∈G/Gc

(1− αe),

which is the expanded form of E[fc(Gc)], Gc ∼ P (Gc|Â). Then, denote M = max |fc(Gc)|, fc(Gc) can be considered
as a random variable within the range of [−M,M ]. Considering t random i.i.d. examples of {Gi

c}ti=1 drawn from
P (Gc|Â), and the predicted probability for each class, denoted as Yi = 1

M fc(G
i
c), we then have Yi ∈ [−1, 1] and∑t

i=1 E[Yi] =
t
M F (α;G). It allows us to adopt the Markov’s inequality and obtain the following Chernoff bound:

Pr(|
t∑

i=1

Yi −
t

M
F (α;G) > tϵ|) < e−t2ϵ2/4t = e−tϵ2/4.

Since by definition of GMT-sam, i.e.,

fs
c (Ĝc) =

1

t

t∑
i=1

fc(Y |Gi
c),

we have
t∑

i=1

Yi =
t

M

t∑
i=1

fc(G
i
c) =

t

M
fs
c (Ĝc),

the bound can be written as:

Pr(| t

M
fs
c (Ĝc)−

t

M
F (α;G) > tϵ|) < e−t2ϵ2/4t = e−tϵ2/4

Pr(|fs
c (Ĝc)− F (α;G) > ϵM |) < e−tϵ2/4

Pr(|fs
c (Ĝc)− F (α;G) ≤ ϵM |) ≥ 1− e−tϵ2/4.

(38)

In other words, with a probability at least 1− e−tϵ2/4, we have the following holds:

|fs
c (Ĝc)− Fc(α;G)]| ≤ ϵM. (39)

Since M is defined as the maximal probability for each class,

M = maxE[fcP (Y |Gc)],

it suffices to know that M ≤ 1. Therefore, it follows that

|fs
c (Ĝc)− Fc(α;G)]| ≤ ϵ,

for each class, which further implies that

|fs
c (Ĝc)− Fc(α;G)]| ≤ ϵ|Y| = ϵC,

which commits to the ϵC
2 SubMT approximation under the total variation distance. Then, using the results of Proposition 4.2,

we know GMT-sam also commits to the 1− ϵC
δ counterfactual fidelity.
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E. More Discussions on Practical Implementations of GMT
We provide more discussion in complementary to the description of Sec. 5 in the main text.

E.1. Algorithms of GMT

Training subgraph extractor with random subgraph sampling. We focus on discussing the implementation details of
GMT-sam since GMT-lin differs from GSAT only in the number of weighted message passing times. GMT-sam contains
two stages: i) subgraph extractor training, and ii) neural subgraph extension learning. The first stage aims to train the
subgraph extractor to extract the desired subgraphs, while the second stage aims to reduce the additional computation
overhead of the random subgraph sampling, and further better learn the correlations between the soft subgraphs and the
labels. The algorithm for stage i) is given in Algorithm 2 and for stage ii) is given in Algorithm 3, respectively.

Algorithm 2 Subgraph extractor training algorithm of Graph Multilinear neT (GMT).
1: Input: Training data Dtr; a XGNN f with subgraph extractor g, and classifier fc; subgraph sampling epochs es; length

of maximum subgraph learning epochs el; batch size b; loss function l(·); subgraph regularization o(·); subgraph
regularization weight γ;

2: Randomly initialize f ;
3: // Stage I: subgraph learning.
4: for j = 1 to el do
5: Sample a batch of data {Gi, Y i}bi=1 from Dtr;
6: Obtain sampling attention {αi}bi=1 via Eq. 40;
7: // MCMC subgraph sampling.
8: for k = 1 to es do
9: Obtain the sampling probability {βi}bi=1 via Eq. 41 using Gumbel-softmax;

10: Randomly sample subgraphs {Gi
c ∼ Ber(βi)}bi=1 via Eq. 42;

11: Obtain predictions as logits {ŷik}bi=1;
12: end for
13: Obtain simulated prediction {ŷi = 1

es

∑es
k=1 ŷ

i
k}bi=1;

14: Obtain prediction loss lp with l(·) and {ŷi}bi=1;
15: Obtain subgraph regularization loss lo with o(·) and {αi}bi=1;
16: Obtain the final loss lf = lp + η · lo;
17: Updated model via backpropagation with lf ;
18: end for
19: Return trained subgraph extraction model fc ◦ g;

For each input graph along with the label (G, Y ), the subgraph extractor g first propagates among G and obtains the node
representations Hi ∈ Rh for each node. Then, the (edge-centric) sampling attention is obtained as the following

αe = a([Hu, Hv]), (40)

for each edge e = (u, v) ∈ E, where a(·) is the attention function and can be simply implemented as a MLP. Note that
αe is slightly different from that in the main text, since we will discuss in detail the discrete sampling process in the
implementation.

To enable the gradient backpropagation along with the discrete sampling of subgraphs, we will adopt the Gumbel-softmax
trick and straight-through estimator (Jang et al., 2017; Maddison et al., 2017). With the attention from Eq. 40, the sampling
probability β is then obtained as follows

βe = σ((αe +D)/τ), (41)

where τ is the temperature, σ is the sigmoid function, and

D = logU − log(1− U),

with U ∼ Uniform(0, 1). To sample the discrete subgraph, we sample from the Bernoulli distributions on edges indepen-
dently

Ae ∼ Bern(βe)
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and obtain the discrete subgraph with each entry as

Ae = StopGrad(Ae − αe) + αe, (42)

which allows computing the gradients along with the subgraph sampling probability. Although the trick works empirically
well, the estimated gradients are approximated ones that have biases from the ground truth. It might be of independent
interest to analyze whether the random subgraph sampling in GMT-sam can also reduce the gradient estimator biases during
discrete sampling.

Algorithm 3 Subgraph classifier training algorithm of Graph Multilinear neT (GMT).
1: Input: Training data Dtr; trained XGNN f with subgraph extractor g, and classifier fc by Alg. 2; length of maxi-

mum subgraph classifier training epochs el; batch size b; loss function l(·); subgraph regularization o(·); subgraph
regularization weight γ;

2: Initialize fc; Keep g frozen;
3: // Stage II: subgraph classifier learning.
4: for j = 1 to el do
5: Sample a batch of data {Gi, Y i}bi=1 from Dtr;
6: Obtain sampling attention {αi}bi=1 via Eq. 40;
7: // Soft subgraph propagation.
8: Obtain edge sampling probability {βi = StopGrad(αi)}bi=1; // subgraph extractor frozen
9: Obtain prediction with subgraph {ŷi}bi=1 via weighted message passing with {βi}bi=1;

10: Obtain prediction loss lp with l(·) and {ŷi}bi=1;
11: Obtain final loss lf = lp;
12: Updated model via backpropagation with lf ;
13: end for
14: Return final model fc ◦ g;

Learning neural subgraph multilinear extension. When the subgraph extractor is trained, we then enter into stage two,
which focuses on extracting the learned subgraph information for better predicting the label with a single pass forward.
More concretely, although GMT trained with GMT-sam improves interpretability, GMT-sam still requires multiple random
subgraph sampling to approximate SubMT and costs much additional overhead. To this end, we propose to learn a neural
SubMT that only requires a single sampling, based on the trained subgraph extractor g by GMT-sam.

Learning the neural SubMT is essentially to approximate the MCMC with a neural network, though it is inherently
challenging to approximate MCMC (Johndrow et al., 2020; Papamarkou et al., 2022). Nevertheless, the feasibility of neural
SubMT learning is backed by the inherent causal subgraph assumption of (Chen et al., 2022b), once the causal subgraph is
correctly identified, simply learning the statistical correlation between the subgraph and the label is sufficient to recover the
causal relation.

Therefore, we propose to simply re-train a new classifier GNN with the frozen subgraph extractor, to distill the knowledge
contained in Ĝc about Y . The implementation is simply to stop the gradients of the subgraph extractor, while only optimizing
the classifier GNN with the predicted sampling probability. Note that it breaks the shared encoder structure of the GSAT,
which could avoid potential representation conflicts for a graph encoder shared by both the subgraph extractor and the
classifier. Under this consideration, we also enable the BatchNorm (Ioffe & Szegedy, 2015) in the subgraph extractor to
keep count of the running stats when training the new classifier.

Empirically, the weighted message passing can effectively capture the desired information from g and lead to a performance
boost. This scheme also brings additional benefits over the originally trained classifier, which focuses on providing the
gradient guidance for finding proper Gc instead of learning all the available statistical correlations between Gc and Y .

E.2. Discussions on GMT Implementations

With the overall algorithm training the subgraph extractor and the classifier, we then discuss in more detail the specific
implementation choices of GMT-sam.
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Transforming node-centric random subgraph sampling. In the task of geometric learning, the input graphs are initially
represented as point clouds. The graph structures are built upon the node features and geometric knowledge. Therefore, LRI
adopts the node-centric sampling and learns sampling probabilities for nodes when implementing the graph information
bottleneck. However, when sampling concrete subgraphs from a node-centric view, it will often lead to a too aggressive
sampling. Otherwise, one has to increase the sampling probability r of the variational distribution Q(Gc) in Eq. 28. To this
end, we transform the node-centric sampling to edge-centric sampling. Let αi denote the sampling probability for node i,
then the edge sampling probabilities can be obtained via:

βe = αu · αv, (43)

for each edge e = (u, v) ∈ E. It thus enables the subgraph sampling from the node-centric view. Empirically, in geometric
datasets, we observe a lower variance when transforming the node-centric sampling to edge-centric sampling.

Warmup of GMT-sam. We first explain the motivation of using warmup for GMT-sam. Although more sampling rounds
can improve the approximation precision of GMT-sam to SubMT, it would also affect the optimization of the interpretable
subgraph learning, in addition to the additional unnecessary computational overhead. For example, at the beginning of the
interpretable subgraph learning, the subgraph extractor will yield random probabilities like 0.5.

• First, a more accurate estimation based on random SubMT is unnecessary.

• Second, at such random probabilities, every subgraph gets a nearly equal chance of being sampled, and gets gradients
backpropagated. Since neural networks are universal approximators, the whole network can easily be misled by the
noises, which will slow down the learning speed of the meaningful subgraphs.

• Third, when spurious correlations exist between subgraphs and the labels, the learning process will be more easily
misled by the potential spurious correlations at the beginning of the subgraph learning.

More importantly, sampling multiple times can lead to trivial solutions with degenerated performance in the GSAT objective.
Specifically, the formulation of the mutual information regularizer in GSAT has a trivial solution where all αe directly
collapses to the given r. More formally, let αe = r in the following objective obviously lead to zero loss that appears to be a
Pareto optimal solution (Chen et al., 2023c) that can be selected as the output:

DKL(Bern(αe)||Bern(r)) =
∑
e

αe log
r

r
+ (1− r) log

(1− αe)

(1− r)
= 0.

The trivial solutions can occur to GMT more easily with more rounds of subgraph sampling, especially in too simple or too
complicated tasks.

To tackle the above problem, we propose two warmup strategies:

• Larger initial prior r of Q(Gc) in Eq. 28: GSAT achieves the objective of graph information bottleneck with a schedule
of r in Q(Gc) as 0.9, which could promote the random sampling probabilities to meaningful subgraph signals. As
the random subgraph sampling will slow the optimization, we can warm up the initial subgraph learning with a larger
initial r. In experiments, we try with r = 1.0 and r = 0.9, and find r = 1.0 can effectively warm up and speed up
the subgraph learning, which is especially meaningful for too simple tasks where XGNNs can easily overfit to, or
too hard tasks where XGNNs learns the meaningful subgraph signals in a quite slow speed. We can also use a larger
regularization penalty at the initial stage to speed up meaningful subgraph learning.

• Single subgraph sampling: As sampling too many subgraphs can bring many drawbacks such as overfitting and slow
learning, we propose warm up the initial subgraph learning with a single sampling during the first stage of r (i.e.,
when r still equals to the initial r in the schedule of GSAT). The single subgraph sampling also implicitly promotes
meaningful subgraph learning, as it encourages a higher chance even for a small difference in the sampling probability.

In addition to helping with the warmup of the interpretable subgraph, single subgraph sampling also has some additional
benefits and effectively tackles the trivial solution of GSAT objective. It also brings more variance between meaningful
subgraph learning and noisy subgraph learning, and we find using a single random subgraph learning is extremely helpful
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for simple tasks such as BA 2motifs in our experiments. The implicit variance of single random subgraph sampling also
brings additional benefits to maintaining high variance between the signal subgraph and noisy subgraph, which might be of
independent interest. It turns out that the variance in single subgraph learning can have an implicit regularization preventing
the trivial solution.

In experiments, we will use all of the warmup strategies together (i.e., a larger initial r, a larger penalty score, and single
subgraph sampling) when we observe a performance degeneration in the validation set. Otherwise, we will stick to the
original receipt. More details are given in Sec. F.2.

Single weighted message passing in GMT-lin. Although it has been shown that propagation with the attention only
once can effectively reduce the SubMT approximation error, it remains unknown which layer the attention should be applied.
Empirically, we examine the following three strategies:

• Weighted message passing on the first layer;

• Weighted message passing on the last layer;

• Single weighted message passing of all layers, and then average the logits;

We find applying weighted message passing to the first layer outperforms the other two strategies in experiments, and thus
we stick to the first layer weighted message passing scheme. Exploring the reasons behind the intriguing phenomenon will
be an interesting future extension.

Subgraph sampling for neural SubMT. Although the weighted message passing with α produced by the trained subgraph
extractor already achieves better performance, it may not maximally extract the full underlying information of the learned
subgraph and the labels, since the original function is a MCMC that is not easy to be fitted (Johndrow et al., 2020). Besides,
the weighted message passing itself may not be expressive enough due to the expressivity constraints of GNNs (Xu et al.,
2019), and also the limitations of the attention-based GNNs (Fountoulakis et al., 2023; Lee et al., 2023).

Therefore, we propose more subgraph sampling strategies along with alternative architecture of the new classifier, in order
to best fit the underlying MCMC function. Specifically, we consider the following aspects:

• Initialization: the graph encoder of the new classifier can be initialized from scratch and avoids overfitting, or initialized
from the random subgraph sampling trained models;

• Architecture: weighted message passing, or single weighted message passing as that of GMT-lin;

• Attention sampling: set the minimum p% attention scores directly to 0; set the maximum p% attention scores directly
to 1; set the maximum p% attention scores directly to 1 while set the minimum (1− p)% attention scores directly to 0;

We examine the aforementioned strategies and choose the one according to the validation performance in experiments. We
exhibit the detailed hyperparameter setup in Appendix F.2.

F. More Details about the Experiments
In this section, we provide more details about the experiments, including the dataset preparation, baseline implementations,
models and hyperparameters selection as well as the evaluation protocols.

F.1. Datasets

We provide more details about the motivation and construction method of the datasets that are used in our experiments.
Statistics of the regular graph datasets are presented in Table 8, and statistics of the geometric graph datasets are presented
in Table 9.

BA-2Motifs (Luo et al., 2020) is a synthetic dataset that adopts the Barabási–Albert (BA) graph data model to generate
subgraphs in specific shapes. Each graph contains a motif subgraph that is either a five-node cycle or a house. The class
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Table 8. Information about the datasets used in experiments. The number of nodes and edges are respectively taking average among all
graphs.

DATASETS # TRAINING # VALIDATION # TESTING # CLASSES # NODES # EDGES METRICS

BA-2MOTIFS 800 100 100 2 25 50.96 ACC
MUTAG 2, 360 591 1, 015 2 30.13 60.91 ACC
SUPRIOUS-MOTIF b = 0.5 9, 000 3, 000 6, 000 3 45.05 65.72 ACC
SUPRIOUS-MOTIF b = 0.7 9, 000 3, 000 6, 000 3 46.36 67.10 ACC
SUPRIOUS-MOTIF b = 0.9 9, 000 3, 000 6, 000 3 46.58 67.59 ACC
MNIST-75SP 20, 000 5, 000 10, 000 10 70.57 590.52 ACC
GRAPH-SST2 28, 327 3, 147 12, 305 2 10.20 18.40 ACC
OGBG-MOLHIV 32, 901 4, 113 4, 113 2 25.51 54.94 AUC

Table 9. Statistics of the four geometric datasets from Miao et al. (2023).
# Classes # Features in X # Dimensions in r # Samples Avg. # Points/Sample Avg. # Important Points/Sample Class Ratio Split Scheme Split Ratio

ActsTrack 2 0 3 3241 109.1 22.8 39/61 Random 70/15/15
Tau3Mu 2 1 2 129687 16.9 5.5 24/76 Random 70/15/15
SynMol 2 1 3 8663 21.9 6.6 18/82 Patterns 78/11/11
PLBind 2 3 3 10891 339.8 132.2 29/71 Time 92/6/2

labels are determined by the motif, and the motif itself serves as the interpretation of ground truth. The motif is then attached
to a large base graph.

Mutag (Debnath et al., 1991) is a typical molecular property prediction dataset. The nodes represent atoms and the edges
represent chemical bonds. The label of each graph is binary and is determined based on its mutagenic effect. Following Luo
et al. (2020); Miao et al. (2022), -NO2 and -NH2 in mutagen graphs are labeled as ground-truth explanations.

MNIST-sp (Knyazev et al., 2019) is a graph dataset converted from MNIST dataset via superpixel transformation. The
nodes of MNIST-75sp graphs are the superpixels and the edges are generated according to the spatial distance of nodes in
the original image. The ground truth explanations of MNIST-75sp are simply the non-zero pixels. As the original digits are
hand-written, the interpretation subgraphs could be in varying sizes.

Suprious-Motif datasets (Wu et al., 2022b) is a 3-class synthetic datasets based on BA-2Motifs (Ying et al., 2019; Luo
et al., 2020) with structural distribution shifts. The model needs to tell which one of three motifs (House, Cycle, Crane) the
graph contains. For each dataset, 3000 graphs are generated for each class at the training set, 1000 graphs for each class at
the validation set and testing set, respectively. During the construction of the training data, the motif and one of the three
base graphs (Tree, Ladder, Wheel) are artificially (spuriously) correlated with a probability of various biases, and equally
correlated with the other two. Specifically, given a predefined bias b, the probability of a specific motif (e.g., House) and a
specific base graph (Tree) will co-occur is b while for the others is (1− b)/2 (e.g., House-Ladder, House-Wheel). The test
data does not have spurious correlations with the base graphs, however, test data will use larger base graphs that contain
graph size distribution shifts. Following Miao et al. (2022), we select datasets with a bias of b = 0.5, b = 0.7, and b = 0.9.
The interpretation ground truth is therefore the motif itself.

Graph-SST2 (Socher et al., 2013; Yuan et al., 2020b) is converted from a sentiment analysis dataset in texts. Each sentence
in SST2 will be converted to a graph. In the converted graph, the nodes are the words and the edges are the relations between
different words. Bode features are generated using BERT (Devlin et al., 2019) and the edges are parsed by a Biaffine
parser (Gardner et al., 2018). Following previous works (Wu et al., 2022b; Miao et al., 2022; Chen et al., 2022b), our splits
are created according to the averaged degrees of each graph. Specifically, we assign the graphs as follows: Those that have
smaller or equal to 50-th percentile averaged degree are assigned to training, those that have averaged degree larger than
50-th percentile while smaller than 80-th percentile are assigned to the validation set, and the left are assigned to test set.
Since the original dataset does not have the ground truth interpretations, we report only the classification results.

OGBG-Molhiv (Hu et al., 2020) is also a molecular property prediction dataset. The nodes represent atoms and the edges
represent chemical bonds. The label of each graph is binary and is determined based on whether a molecule inhibits HIV
virus replication or not. The training, validation and test splits are constructed according to the scaffolds (Hu et al., 2020)
hence there also exist distribution shifts across different splits. Since the original dataset does not have the ground truth
interpretations, we report only the classification results.
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In what follows we continue to introduce the four geometric learning datasets. We refer interested readers to Miao et al.
(2023) for more details.

ActsTrack dataset (Miao et al., 2023):

• Background: ActsTrack involves a fundamental resource in High Energy Physics (HEP), employed for the purpose
of reconstructing various properties, including the kinematics, of charged particles based on a series of positional
measurements obtained from a tracking detector. Within the realm of HEP experimental data analysis, particle tracking
is an essential procedure, and it also finds application in medical contexts, such as proton therapy (Schulte et al., 2004).
ActsTrack is formulated differently by Miao et al. (2023) from traditional track reconstruction tasks: It requires predicting
the existence of a z → µµ decay and using the set of points from the µ ’s to verify model interpretation, which can be used
to reconstruct µ tracks.

• Construction: In the ActsTrack dataset, each data point corresponds to a detector hit left by a particle, and it is associated
with a 3D coordinate. Notably, the data points in ActsTrack lack any features in the X dimension, necessitating the use of
a placeholder feature with all values set to one during model training. Additionally, the dataset provides information about
the momenta of particles as measured by the detectors, which has the potential to be employed for assessing fine-grained
geometric patterns in the data; however, it is not utilized as part of the model training process. Given that, on average,
each particle generates approximately 12 hits, and a model can perform well by capturing the trajectory of any one of the
µ (muon) particles resulting from the decay, we report performance metrics in precision@12 following Miao et al. (2023).
The dataset was randomly split into training, validation, and test sets, maintaining a distribution ratio of 70% for training,
15% for validation, and 15% for testing.

Tau3Mu dataset (Miao et al., 2023):

• Background: Tau3Mu involves another application in High Energy Physics (HEP) dedicated to identifying a particularly
challenging signature – charged lepton flavor-violating decays, specifically τ → µµµ decay. This task involves the
analysis of simulated muon detector hits resulting from proton-proton collisions. It’s worth noting that such decays are
heavily suppressed within the framework of the Standard Model (SM) of particle physics (Holstein, 2006), making their
detection a strong indicator of physics phenomena beyond the Standard Model (Collaboration, 2020). Unfortunately,
τ → µµµ decay involves particles with extremely low momentum, rendering them technically impossible to trigger using
conventional human-engineered algorithms. Consequently, the online detection of these decays necessitates the utilization
of advanced models that explore the correlations between signal hits and background hits, particularly in the context of
the Large Hadron Collider. Our specific objective is twofold: to predict the occurrence of τ → µµµ decay and to employ
the detector hits generated by the µ (muon) particles to validate the model’s interpretations.

• Construction: Tau3Mu uses the data simulated via the PYTHIA generator (Bierlich et al., 2022). The interpretation
labels are using the signal sample with the background samples on a per-event basis (per point cloud) while preserving
the ground-truth labels. The hits originating from µ (muon) particles resulting from the τ → µµµ decay are designated
as ground-truth interpretation. The training data only include hits from the initial layer of detectors, ensuring that each
sample in the dataset contains a minimum of three detector hits. Each data point in the samples comprises measurements
of a local bending angle and a 2D coordinate within the pseudorapidity-azimuth (η − ϕ) space. Given that, in the most
favorable scenario, the model is required to capture hits from each µ particle, we report precision@3 following Miao et al.
(2023). Lastly, the dataset is randomly split into training, validation, and test sets, maintaining a distribution ratio of 70%
for training, 15% for validation, and 15% for testing.

SynMol dataset (Miao et al., 2023):

• Background: SynMol is a molecular property prediction task. While prior research efforts have explored model
interpretability within this domain (McCloskey et al., 2018), their emphasis has been primarily on examining chemical
bond graph representations of molecules, often overlooking the consideration of geometric attributes. In our present
study, we shift our attention towards 3D representations of molecules. Our specific objective is to predict a property
associated with two functional groups, namely carbonyl and unbranched alkane (as defined by McCloskey et al. (2018)),
and subsequently employ the atoms within these functional groups to validate our model’s interpretations.
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• Construction: SynMol is constructed based on ZINC (Lin et al., 2022b) following McCloskey et al. (2018) that creates
synthetic properties based on the existence of certain functional groups. The labeling criteria involve classifying a molecule
as a positive sample if it contains both an unbranched alkane and a carbonyl group. Conversely, molecules lacking this
combination are categorized as negative samples. Consequently, the atoms within branched alkanes and carbonyl groups
serve as the designated ground-truth interpretation. In addition to specifying a 3D coordinate, each data point within a
sample is also associated with a categorical feature signifying the type of atom it represents. While the combined total of
atoms in the two functional groups may be limited to just five, it is important to note that certain molecules may contain
multiple instances of such functional groups. Consequently, we report precision metric at precision@5 following Miao
et al. (2023). Finally, to mitigate dataset bias, the dataset is split into training, validation, and test sets using a distribution
strategy following McCloskey et al. (2018); Miao et al. (2023). This approach ensures a uniform distribution of molecules
containing or lacking either of these functional groups.

PLBind dataset (Miao et al., 2023):

• Background: PLBind is to predict protein-ligand binding affinities leveraging the 3D structural information of both
proteins and ligands. This task holds paramount significance in the field of drug discovery, as a high affinity between a
protein and a ligand is a critical criterion in the drug selection process (Wang & Zhang, 2017; Karimi et al., 2019). The
accurate prediction of these affinities using interpretable models serves as a valuable resource for rational drug design and
contributes to a deeper comprehension of the underlying biophysical mechanisms governing protein-ligand binding (Du
et al., 2016). Our specific mission is to forecast whether the affinity surpasses a predefined threshold, and we achieve this
by examining the amino acids situated within the binding site of the test protein to corroborate our model’s interpretations.

• Construction: PLBind is constructed protein-ligand complexes from PDBind (Liu et al., 2017). PDBind annotates binding
affinities for a subset of complexes in the Protein Data Bank (PDB) (Berman et al., 2000), therefore, a threshold on the
binding affinity between a pair of protein and ligand can be used to construct a binary classification task. The ground-truth
interpretation is then the part of the protein that are within 15A of the ligand to be the binding site (Liu et al., 2022b).
Besides, PLBind also includes all atomic contacts (hydrogen bond and hydrophobic contact) for every protein-ligand pair
from PDBsum (Laskowski, 2001), where the ground-truth interpretations are the corresponding amino acids in the protein.
Every amino acid in a protein is linked to a 3D coordinate, an amino acid type designation, the solvent-accessible surface
area (SASA), and the B-factor. Likewise, each atom within a ligand is associated with a 3D coordinate, an atom type
classification, and Gasteiger charges. The whole dataset is then partitioned into training, validation, and test sets, adopting
a division based on the year of discovery for the complexes, following Stárk et al. (2022).

F.2. Baselines and Evaluation Setup

During the experiments, we do not tune the hyperparameters exhaustively while following the common recipes for optimizing
GNNs, and also the recommendation setups by previous works. Details are as follows.

GNN encoder. For fair comparison, we use the same GNN architecture as graph encoders for all methods, following Miao
et al. (2022; 2023). For the backbone of GIN, we use 2-layer GIN (Xu et al., 2019) with Batch Normalization (Ioffe &
Szegedy, 2015) between layers, a hidden dimension of 64 and a dropout ratio of 0.3. For the backbone of PNA, we use
4-layer PNA (Corso et al., 2020) with Batch Normalization (Ioffe & Szegedy, 2015) between layers, a hidden dimension of
80 and a dropout ratio of 0.3. The PNA network does not use scalars, while using (mean, min, max, std aggregators. For
the backbone of EGNN (Satorras et al., 2021), we use 4-layer EGNN with Batch Normalization (Ioffe & Szegedy, 2015)
between layers, a hidden dimension of 64 and a dropout ratio of 0.2. The pooling functions are all sum pooling.

Dataset splits. We follow previous works (Luo et al., 2020; Miao et al., 2022) to split BA-2Motifs randomly into three sets as
(80%/10%/10%), Mutag randomly into 80%/20% as train and validation sets where the test data are the mutagen molecules
with -NO2 or -NH2. We use the default split for MNIST-75sp given by (Knyazev et al., 2019) with a smaller sampling size
following (Miao et al., 2022). We use the default splits for Graph-SST2 (Yuan et al., 2020b), Spurious-Motifs (Wu et al.,
2022b) and OGBG-Molhiv (Hu et al., 2020) datasets. For geometric datasets, we use the author provided default splits.

Baseline implementations. We use the author provided codes to implement the baselines GSAT (Miao et al., 2022)5

and LRI (Miao et al., 2023)6. We re-run GSAT and LRI under the same environment using the author-recommended

5https://github.com/Graph-COM/GSAT
6https://github.com/Graph-COM/LRI
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hyperparameters for a fair comparison. Specifically, BA-2Motif, Mutag and PLBind use r = 0.5, and all other datasets
use r = 0.7. The λ of information regularizer is set to be 1 for regular graphs, 0.01 for Tau3Mu, and 0.1 for ActsTrack,
SynMol and PLBind as recommended by the authors. r will initially be set to 0.9 and gradually decay to the tuned value.
We adopt a step decay, where r will decay 0.1 for every 10 epochs. As for the implementation of explanation methods, for
regular graphs, we directly adopt the results reported. For geometric graphs, we re-run the baselines to obtain the results, as
previous results are obtained according to the best validation interpretation performance that may mismatch the practical
scenario where the interpretation labels are usually not available.

Optimization and model selection. Following previous works, by default, we use Adam optimizer (Kingma & Ba, 2015)
with a learning rate of 1e − 3 and a batch size of 128 for all models at all datasets, except for Spurious-Motif with GIN
and PNA, Graph-SST2 with PNA that we will use a learning rate of 3e − 3. When GIN is used as the backbone model,
MNIST-75sp is trained for 200 epochs, and all other datasets are trained for 100 epochs, as we observe that 100 epochs are
sufficient for convergence at OGBG-Molhiv. When PNA is used, Mutag and Ba-2Motifs are trained for 50 epochs and all
other datasets are trained for 200 epochs. We report the performance of the epoch that achieves the best validation prediction
performance and use the models that achieve such best validation performance as the pre-trained models. All datasets use a
batch size of 128; except for MNIST-75sp with GIN, we use a batch size of 256 to speed up training due to its large size in
the graph setting.

The final model is selected according to the best validation classification performance. We report the mean and standard
deviation of 10 runs with random seeds from 0 to 9.

Implementations of GMT. For a fair comparison, GMT uses the same GNN architecture for GNN encoders as the baseline
methods. We search for the hyperparameters of r from [r0 − 0.1, r0, r0 + 0.1] according to the default r0 given by Miao
et al. (2022; 2023). We search the weights of graph information regularizers from [0.1, 0.5, 1, 2] for regular graphs and from
[0.01, 0.1, 1] for geometric datasets. To avoid trivial solutions of the subgraph extractor at the early stage, we search for
warm-up strategies mentioned in Appendix E.2. Besides, we also search for the decay epochs of the r scheduler to avoid
trivial solutions. We search for the sampling rounds from [1, 20, 40, 80, 100, 200] when the memory allows. In experiments,
we find GMT already achieves the state-of-the-art results in most of the set-ups without the warm-up. Only in BA-2Motifs
and MNIST-75sp with GIN, and in Tau3Mu with EGNN, GMT needs the warmups.

Table 10. Sensitivity to different subgraph decoding strategies.

Generalization Interpretation
Initialization Architecture Attention spmotif-0.5 spmotif-0.7 spmotif-0.9 spmotif-0.5 spmotif-0.7 spmotif-0.9

GSAT 47.45±5.87 43.57±3.05 45.39±5.02 74.49±4.46 72.95±6.40 65.25±4.42

new mul min0 60.09±5.57 54.34±4.04 55.83±5.68 85.50±2.40 84.67±2.38 73.49±5.33

old mul min0 58.83±7.22 55.04±4.73 55.77±5.97 85.52±2.41 84.65±2.42 73.49±5.33

new mul max1 44.49±2.65 49.77±2.31 50.22±2.79 85.50±2.39 84.66±2.37 73.50±5.31

old mul max1 45.91±2.86 49.11±3.04 50.30±2.07 85.49±2.39 84.64±2.39 73.50±5.35

old mul min0max1 51.21±6.46 50.91±6.50 53.13±4.46 85.52±2.41 84.66±2.43 73.49±5.34

new mul normal 47.69±5.72 44.12±5.44 40.69±4.84 84.69±2.40 80.08±5.37 73.48±5.34

old mul normal 45.36±2.65 44.25±5.41 43.43±5.44 83.52±3.41 80.07±5.35 73.49±5.36

new lin normal 43.54±5.02 47.59±4.78 46.53±3.27 85.47±2.39 80.07±5.37 73.52±5.34

old lin normal 46.18±3.03 46.42±5.63 49.00±3.34 83.51±3.39 80.09±5.34 73.46±5.35

To better extract the subgraph information, we also search for subgraph sampling strategies mentioned in Appendix E.2. Note
that the hyperparameter search and training of the classifier is independent of the hyperparameter search of the subgraph
extractor. One could select the best subgraph extractor and train the new classifier onto it. When training the classifier, we
search for the following 9 subgraph decoding strategies as shown in Table 10. Specifically,

• Initialization: ”new” refers to that the classifier is initialized from scratch; ”old” refers to that the classifier is initialized
from the subgraph extractor;

• Architecture: ”mul” refers to the default message passing architecture; ”lin” refers to the GMT-lin architecture;

• Attention: ”normal” refers to the default weighted message passing scheme; ”min0” refers to setting the minimum p%
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attention scores directly to 0; ”max0” refers to setting the maximum p% attention scores directly to 1; ”min0max1” refers
to setting the maximum p% attention scores directly to 1 while set the minimum (1− p)% attention scores directly to 0;

Table 10 demonstrates the generalization and interpretation performance of GMT-sam in spurious motif datasets (Wu et al.,
2022b), denoted as ”spmotif” with different levels of spurious correlations. It can be found that GMT-sam is generically
robust to the different choices of the decoding scheme and leads to improvements in terms of OOD generalizability and
interpretability.

F.3. More interpretation results

We additionally conduct experiments with post-hoc explanation methods based on the PNA backbone. Specifically, we
selected two representative post-hoc methods GNNExplainer and PGExplainer, and one representative intrinsic interpretable
baseline DIR. The results are given in the table below. It can be found that most of the baselines still significantly
underperform GSAT and GMT. One exception is that DIR obtains highly competitive (though unstable) interpretation results
in spurious motif datasets, nevertheless, the generalization performance of DIR remains highly degenerated (53.03±8.05 on
spmotif 0.9).

Table 11. More interpretation results of baselines using PNA
BA 2Motifs Mutag MNIST-75sp spmotif 0.5 spmotif 0.7 spmotif 0.9

GNNExp 54.14±3.30 73.10±7.44 53.91±2.67 59.40±3.88 56.20±6.30 57.39±5.95

PGE 48.80±14.58 76.02±7.37 56.61±3.38 59.46±1.57 59.65±1.19 60.57±0.85

DIR 72.33±23.87 87.57±27.87 43.12±10.07 85.90±2.24 83.13±4.26 85.10±4.15

GSAT 89.35±5.41 99.00±0.37 85.72±1.10 79.84±3.21 79.76±3.66 80.70±5.45

GMT-lin 95.79±7.30 99.58±0.17 85.02±1.03 80.19±2.22 84.74±1.82 85.08±3.85

GMT-sam 99.60±0.48 99.89±0.05 87.34±1.79 88.27±1.71 86.58±1.89 85.26±1.92

F.4. Computational analysis

We provide more discussion and analysis about the computational overhead required by GMT, when compared to GSAT.
As GMT-lin differs only in the number of weighted message passing rounds from GSAT, and has the same number of
total message passing rounds, hence GMT-lin and GSAT have the same time complexity as O(E) for each epoch, or for
inference. When comparing GMT-sam to GMT-lin and GSAT, During training, GMT-sam needs to process k rounds of
random subgraph sampling, resulting in O(k|E|) time complexity; During inference, GMT-sam with normal subgraph
decoding methods requires the same complexity as GMT-lin and GSAT, as O(|E|). When with special decoding strategy
such as setting part of the attention entries to 1 or 0, GMT-sam additionally needs to sort the attention weights, and requires
O(|E|+ |E| log |E|) time complexity.

BA 2Motifs MNIST-75sp ActsTrack
Training GIN PNA GIN PNA EGNN

GSAT 0.70±0.12 1.00±0.13 41.28±0.61 80.98±10.55 3.57±1.41

GMT-lin 0.68±0.12 1.02±0.15 41.12±0.69 81.11±10.44 3.69±0.93

GMT-sam 6.25±0.48 17.03±0.91 136.60±1.21 280.77±4.00 5.38±0.59

Inference

GSAT 0.07±0.05 0.11±0.12 18.69±0.35 24.40±2.06 0.84±0.38

GMT-lin 0.08±0.07 0.07±0.01 18.72±0.41 23.81±1.89 0.80±0.21

GMT-sam (normal) 0.05±0.01 0.12±0.01 18.72±0.35 18.01±1.47 0.50±0.13

GMT-sam (sort) 0.07±0.01 0.21±0.06 19.07±0.55 18.69±3.35 0.54±0.10

In the table above, we benchmarked the real training/inference time of GSAT, GMT-lin and GMT-sam in different datasets,
where each entry demonstrates the time in seconds for one epoch. We benchmark the latency of GSAT, GMT-lin and
GMT-sam based on GIN, PNA and EGNN on different scales of datasets. The sampling rounds of GMT-sam are set to 20
for PNA on MNIST-sp, 10 for EGNN, and 100 to other setups. From the table, it can be found that, although GMT-sam
takes longer time for training, but the absolute values are not high even for the largest dataset MNIST-sp. As for inference,
GMT-sam enjoys a similar latency as others, aligned with our discussion.
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F.5. More counterfactual fidelity studies

To better understand the results, we provide more counterfactual fidelity results in supplementary to Sec. 3.2 and Fig. 6
and 7.

Shown as in Fig. 8, 9, we plot the counterfactual fidelity results of GSAT and the simulated SubMT via GMT-sam with
10 and 100 on BA-2Motifs and Mutag datasets measured via KL divergence. Fig. 10, 11 show the counterfactual fidelity
results of GSAT and the simulated SubMT via GMT-sam with 10 and 100 on BA-2Motifs and Mutag datasets measured
via JSD divergence. It can be found that, the gap in counterfactual fidelity measured in KL divergence or JSD divergence
can be even larger between GSAT and SubMT, growing up to 10 times. These results can serve as strong evidence for the
degenerated interpretability caused by the failure of SubMT approximation.
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(b) SubMT on BA-2Motifs valset.
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(c) SubMT on BA-2Motifs test set.

Figure 8. Comparison of GSAT and the simulated SubMT in counterfactual fidelity on BA-2Motifs measured via KL divergence.
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(a) SubMT on Mutag trainset.
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(b) SubMT on Mutag validation set.
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(c) SubMT on Mutag test set.

Figure 9. Comparison of GSAT and the simulated SubMT in counterfactual fidelity on Mutag measured via KL divergence.
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(c) SubMT on BA-2Motifs test set.

Figure 10. Comparison of GSAT and the simulated SubMT in counterfactual fidelity on BA-2Motifs measured via JSD divergence.
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(b) SubMT on Mutag validation set.
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(c) SubMT on Mutag test set.

Figure 11. Comparison of GSAT and the simulated SubMT in counterfactual fidelity on Mutag measured via JSD divergence.
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(c) BA-2Motifs test set.

Figure 12. The GMT optimization issue in terms of Comparison of GSAT and the simulated SubMT in counterfactual fidelity on BA-
2Motifs.

Shown as in Fig. 12, 13, we plot the counterfactual fidelity results of GSAT and the simulated SubMT via GMT-sam with
10 and 100 on BA-2Motifs and Mutag datasets. Compared to previous results, the GMT-sam in Fig. 12, 13 does not use any
warmup strategies that may suffer from the optimization issue as discussed in Sec. E. It can be found that, at the begining of
the optimization, GMT-sam demonstrates increasing counterfactual fidelity. However, as the optimization keeps proceeding,
the counterfactual fidelity of GMT-sam will degenerate, because of fitting to the trivial solution of the GSAT objective.
Consequently, the interpretation results will degenerate too at the end of the optimization.
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(c) Mutag test set.

Figure 13. The GMT optimization issue in terms of Comparison of GSAT and the simulated SubMT in counterfactual fidelity on Mutag.
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F.6. SubMT approximation gap analysis
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(a) BA-2Motifs trainset.
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(b) BA-2Motifs valset.
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(c) BA-2Motifs test set.

Figure 14. The SubMT approximation gap of GSAT with SGC on BA-2Motifs.
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(a) BA-2Motifs trainset.
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(b) BA-2Motifs valset.
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(c) BA-2Motifs test set.

Figure 15. The SubMT approximation gap of GSAT with GIN on BA-2Motifs.
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(a) Mutag trainset.
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(b) Mutag validation set.
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(c) Mutag test set.

Figure 16. The SubMT approximation gap of GSAT with SGC on Mutag.
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Table 12. Results on node-level classification tasks.
CITESEER PUBMED COAUTHOR-CS COAUTHOR-PHYSICS

NUM NODES 2,708 3,327 19,717 18,333 34,493
NUM EDGES 10,556 9,228 88,651 163,788 495,924

SUNNYGNN PREDICTION ACC. (↑) 81.28±0.75 67.44±2.07 77.10±0.46 85.16±1.53 92.58±0.26

COUNTERFACTUAL FID. (↑) 1.25±0.34 0.59±0.21 1.83±0.17 6.72±1.58 9.13±0.92

SUFFICIENCY FID. (↑) 73.42±3.55 58.32±0.64 57.48±4.73 77.64±7.52 85.84±02.78

GSAT PREDICTION ACC. (↑) 81.14±0.51 68.18±1.23 77.42±0.25 85.30±0.65 92.68±0.50

COUNTERFACTUAL FID. (↑) 1.66±0.14 0.52±0.20 2.77±0.11 5.98±0.82 8.73±1.19

SUFFICIENCY FID. (↑) 71.54±2.82 61.06±4.63 56.12±4.71 77.64±7.04 85.88±2.63

GMT-LIN PREDICTION ACC. (↑) 81.52±0.75 68.56±1.11 77.42±0.21 85.66±0.60 92.54±0.45

COUNTERFACTUAL FID. (↑) 1.74±0.22 0.60±0.17 2.62±0.20 5.40±2.54 16.35±7.88

SUFFICIENCY FID. (↑) 71.96±3.51 59.04±1.64 54.88±5.07 70.86±8.63 70.4±18.99

GMT-SAM PREDICTION ACC. (↑) 80.76±0.97 68.02±0.66 76.92±0.21 84.22±1.00 92.58±0.35

COUNTERFACTUAL FID. (↑) 1.88±0.26 0.62±0.08 2.81±0.26 6.90±2.41 18.18±11.29

SUFFICIENCY FID. (↑) 72.66±3.00 60.00±1.45 61.76±1.53 78.60±5.67 85.96±3.52
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(b) Mutag validation set.
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(c) Mutag test set.

Figure 17. The SubMT approximation gap of GSAT with GIN on Mutag.

Fig. 14 and 15, Fig. 16 and 17 demonstrate the SubMT approximation gaps of GSAT implemented in GIN and SGC on
BA 2Motifs and Mutag respectively. To fully verify Proposition D.4, we range the number of layers of GIN and SGC from 1
to 5. It can be found that the results are well aligned with Proposition D.4. When the number of layers is 1, the SubMT
approximation gap is smallest, because of more “linearity” in the network. While along with the growing number of GNN
layers, the network becomes more “unlinear” such that the SubMT approximation gap will be larger.

F.7. XGNNs on node-level classification

We extend our studies to node-level classification, in order to verify our previous discussion that the results can also
generalize to node-level tasks if we convert the node-level tasks into graph classification based on the ego-graphs of the
respective central nodes.

Specifically, we follow the experimental setup of a recent work called SunnyGNN (Deng & Shen, 2024) to evaluate the
interpretation and prediction performances. Since ground truth labels are not available, we consider two interpretation
metrics:

• Counterfactual Fidelity proposed in our work: the higher the better.

• Sufficiency Fidelity modified from (Deng & Shen, 2024): the higher the better. Note that the original evaluation of
interpretation in (Deng & Shen, 2024) considers a post-hoc setting, and we modified it for the intrinsic interpretation
setting. Deng & Shen (2024) also proposes Necessity Fidelity, and we omit it as it is close to 0 for all methods.

For GMT-sam, we do not conduct retraining for clarity, which could further improve the prediction performance as
demonstrated in Table 5. In addition, we consider five datasets including Cora (Yang et al., 2016), Citeseer (Giles et al.,
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1998), Pubmed (Sen et al., 2008), Coauthor-CS and Coauthor-Physics (Shchur et al., 2018) from Microsoft Academic
Graph.7 The results on the node-level classification tasks are given in Table 12. From the table, we can find that, compared to
the state-of-the-art XGNNs in node classification, GMT-sam and GMT-lin achieve a competitive prediction performance
while bringing significant improvements in terms of interpretation performance, aligned with our discussion.

F.8. Software and Hardware

We implement our methods with PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey & Lenssen, 2019) 2.0.4. We
ran our experiments on Linux Servers installed with V100 graphics cards and CUDA 11.3.

F.9. Interpretation Visualization

To better understand the results, we provide visualizations of the learned interpretable subgraphs by GSAT and GMT-sam in
the Spurious-Motif datasets, as well as the learned interpretable subgraphs by GMT-sam in OGBG-Molhiv dataset.

The results on Spurious-Motif datasets are given in Fig. 18, 19,20 for b = 0.5, b = 0.7 and b = 0.9, respectively. The red
nodes are the ground-truth interpretable subgraphs. It can be found that GMT-sam indeed learns the interpretable subgraph
better than GSAT, which also explains the excellent OOD generalization ability of GMT-sam on Spurious Motif datasets.

7https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
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(a) Spurious-Motif class 0 under bias= 0.5 by GSAT.

(b) Spurious-Motif class 0 under bias= 0.5 by GMT-sam.

(c) Spurious-Motif class 1 under bias= 0.5 by GSAT.

(d) Spurious-Motif class 1 under bias= 0.5 by GMT-sam.

(e) Spurious-Motif class 2 under bias= 0.5 by GSAT.

(f) Spurious-Motif class 2 under bias= 0.5 by GMT-sam.

Figure 18. Learned interpretable subgraphs by GSAT and GMT-sam on Spurious-Motif b = 0.5.
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(a) Spurious-Motif class 0 under bias= 0.5 by GSAT.

(b) Spurious-Motif class 0 under bias= 0.5 by GMT-sam.

(c) Spurious-Motif class 1 under bias= 0.5 by GSAT.

(d) Spurious-Motif class 1 under bias= 0.5 by GMT-sam.

(e) Spurious-Motif class 2 under bias= 0.5 by GSAT.

(f) Spurious-Motif class 2 under bias= 0.5 by GMT-sam.

Figure 19. Learned interpretable subgraphs by GSAT and GMT-sam on Spurious-Motif b = 0.7.
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(a) Spurious-Motif class 0 under bias= 0.5 by GSAT.

(b) Spurious-Motif class 0 under bias= 0.5 by GMT-sam.

(c) Spurious-Motif class 1 under bias= 0.5 by GSAT.

(d) Spurious-Motif class 1 under bias= 0.5 by GMT-sam.

(e) Spurious-Motif class 2 under bias= 0.5 by GSAT.

(f) Spurious-Motif class 2 under bias= 0.5 by GMT-sam.

Figure 20. Learned interpretable subgraphs by GSAT and GMT-sam on Spurious-Motif b = 0.9.

In addition, we also provide the visualization of interpretable subgraphs learned by GMT-sam on OGBG-Molhiv, given in
Fig. 21.

(a) OGBG-Molhiv class 0 by GMT-sam.

(b) OGBG-Molhiv class 1 by GMT-sam.

Figure 21. Learned interpretable subgraphs by GMT-sam on OGBG-Molhiv.
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