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Abstract
Motivated by the growing research in natural
language-based task interfaces for robotic tasks,
we seek good vision-language representations spe-
cialized for control. We posit that such repre-
sentations should: (1) align the two modalities
to permit grounding language-based task speci-
fications in visual state-based task rewards, (2)
capture sequentiality and task-directed progress
in conjunction with cross-modality alignment,
and (3) permit extensive pre-training from large
generic datasets as well as fine-tuning on small
in-domain datasets. We achieve these desiderata
through Language-Image Value learning (LIV),
a unified objective for vision-language repre-
sentation and reward learning from action-free
videos with text annotations. We use LIV to
pre-train the first control-centric vision-language
representation from large human video datasets
such as EpicKitchen with no action informa-
tion. Then, with access to target domain data,
the very same objective consistently improves
this pre-trained LIV model as well as other
pre-existing vision-language representations for
language-conditioned control. On two simulated
robot domains that evaluate vision-language repre-
sentations and rewards, LIV pre-trained and fine-
tuned models consistently outperform the best
prior approaches, establishing the advantages of
joint vision-language representation and reward
learning within its unified, compact framework.

1. Introduction
We propose Language-Image Value Learning (LIV), a uni-
fied objective for joint vision-language representation and
reward learning. LIV can flexibly pre-train representations
on arbitrary video activity datasets with text annotations,
even including purely observational datasets of human ac-
tivity, for which there are several large and conveniently
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available options (Damen et al., 2018; Grauman et al., 2022;
Goyal et al., 2017). Afterwards, the very same objective can
be used to fine-tune those representations on small datasets
of in-domain robot data, to overcome domain gaps and
ground language in context-specific ways.

At a technical level, LIV builds on Value-Implicit Pre-
Training (VIP) (Ma et al., 2022b), an approach for learning
visual goal-conditioned value functions and representations
from videos, generalizing it to learn vision-language val-
ues and representations from language-aligned videos, as
described above. Interestingly, we show that a degener-
ate instantiation of LIV reduces to the well-known image-
text contrastive representation learning objective, as used in
CLIP (Radford et al., 2021).

We perform extensive experimental evaluations in two sim-
ulated household robotic manipulation settings. Our experi-
ments evaluate LIV vision-language representations not only
in their capacity as input state representations for language-
conditioned behavior cloning of task policies, but also to
directly ground language-based task specifications into vi-
sual state-based rewards for robot trajectory optimization,
thereby stress-testing alignment across modalities. Along
another axis of evaluation, we assess both the “generic”
representations pretrained on large human video datasets
as well as the specialized representations fine-tuned on in-
domain robot data. Our results comparing to several repre-
sentative recent works from the three distinct categories of
pre-training, fine-tuning, and reward learning, confirm the
advantages of the LIV objective for joint vision-language
representation and reward learning for control.

2. Problem Setting
In this section, we introduce our problem setting; in Ap-
pendix, we provide additional background on the VIP algo-
rithm as well as language-image contrastive learning.

Vision-Language Representation Pre-Training for Con-
trol. We assume access to a dataset of language-annotated
videos D = {vi := (oi1, ..., gi; li)}Ni=1, where each o ∈
O := RH×W×3 is a raw RGB image, gi the last frame of the
video, and li is the textual description of the transpired event
in vi. As the video dataset can be out-of-domain with respect
to our robot agent (e.g., human videos), we do not assume ac-
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Figure 1. Language-Image Value Learning (LIV) for vision-language reward and representation learning. Using the same objective for
pre-training (Left) and fine-tuning, LIV induces a cross-modal embedding with both temporal coherence and semantic alignment (Right).

cess to action labels. Datasets of this nature, such as human
daily activity videos (Damen et al., 2018; Miech et al., 2019;
Grauman et al., 2022), are readily available for research use.
A pre-training algorithm A ingests this training data and
outputs vision-language encoders (ϕ, ψ) := A(D), where
the vision encoder ϕ : RH×W×3 → K and the language
encoder ψ : L → K each map to the same K-dimensional
vision-language representation space.

Language-Conditioned Policy Learning using Pre-
Trained Representations. To evaluate vision-language
representations (ϕ, ψ), we learn policies for robot tasks
specified via language commands l. Each such task can
be formally instantiated as a Markov decision process
M(ϕ, ψ) := (S,A,R(ot, ot+1; l), T, γ, ψ(l)), where the
state space is the space of observation embeddings S =
ϕ(O), T the transition function, and γ the discount factor.
The parameters of (ϕ, ψ) are frozen during policy learning,
and a policy π : RK → A must output actions based on the
embedded observation and goal, a ∼ π([ϕ(o), ψ(l)]).

3. LIV: Language-Image Value Learning
3.1. Algorithm

We begin by extending the VIP framework to multi-modal
goal specifications. This is straightforward given the goal-
conditioned nature of Eq. (5), since we can simply replace
encoded image goal ϕ(g) with encoded text goal ψ(l) and
optimize for a multi-modal VIP objective:

L(ϕ, ψ) =
+ Ep(g)[(1− γ)Eµ0(o;g)[−S(ϕ(o);ϕ(g))]
+ logE(o,o′;g)∼D

[
exp

(
S(ϕ(o);ϕ(g)) + 1− γS(ϕ(o′);ϕ(g))

)]
]︸ ︷︷ ︸

VIP-I

+ Ep(l)[(1− γ)Eµ0(o;l) [−S(ϕ(o);ψ(l))]
+ logE(o,o′;l)∼D

[
exp

(
S(ϕ(o);ψ(l)) + 1− γS(ϕ(o′);ψ(l))

)]
]︸ ︷︷ ︸

VIP-L
(1)

As shown, this objective consists of two independent compo-
nents; VIP-I (Image) ensures the representation to encode a

goal-conditioned value function conditioned on image goal,
and likewise, VIP-L (Language) for language goal.

At first glance, the LIV objective does not appear to be
directly optimizing for semantic alignment between goals in
the two modalities, as the respective modality-specific VIP
objective is independently optimized. Without alignment,
semantically equivalent goals in the respective modality
may actually be distant in the representation space. This is
undesirable for reward specification, which requires visual
grounding of linguistic task descriptions. Intriguingly, in
the next section, we show that such semantic alignment is
in fact automatically achieved from optimizing Eq. (1).

3.2. Theoretical Analysis

Now, we show that by optimizing (1) with a simple aug-
mentation to the training videos, VIP naturally optimizes
semantic alignment. Specifically, if we were to consider a
degenerate distribution of videos, i.e., videos consisting of
solely static text-aligned frames v = ((o, o); l), we recover
a discounted variant of the InfoNCE objective from VIP-L:

Proposition 1. Let the video distribution consist of solely
degenerate videos of repeated frames that align with the
text annotation, D := {v := ((g, g; l))}. Then, the VIP-L
objective is equivalent to the InfoNCE objective up to a
constant:

LVIP-L(ϕ, ψ) = Ep(g,l)

[
− log e(1−γ)S(ϕ(g);ψ(l))

ED(g′)[e(1−γ)S(ϕ(g′);ψ(l))]

]
+ 1,

(2)
where p(g, l) is the distribution of goal frame and text pair.

The proof is in Appendix C. This result, though simple to
derive, has several important implications. First, note that
Eq. (2) is precisely what CLIP (Radford et al., 2021) opti-
mizes (Eq. (10), modulo the discount factor) by contrastively
learning similarity between matching image-text pairs. The
fact that this objective can be obtained by optimizing VIP-L
with a degenerate video distribution suggests that VIP-L
is a natural generalization of the InfoNCE objective to the
decision making setting, where the data is temporal. In prac-
tice, as we will show, this degenerate video distribution can
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be trivially obtained by augmenting any existing annotated
video in the dataset by repeating the last frame.

This finding also directly suggests a method for fine-tuning
pre-trained vision-language models for control: use LIV
on in-domain labeled videos such as text-annotated robot
demonstrations. Several concurrent works (Goyal et al.,
2022; Dong et al., 2022) have suggested that fine-tuning a
pre-trained model using the same objective (in particular,
using CLIP objective to fine-tune CLIP model) can be more
effective than fine-tuning using the downstream task objec-
tive. When working with CLIP-like pretrained embeddings
which are a popular vision-language representation choice,
it is then natural to fine-tune them for control with the LIV
objective, which is but a natural extension of CLIP that
exploits sequential, goal-directed video data.

As we show in our experiments, using the VIP objective
to fine-tune pre-trained CLIP models is far more effective
than using the CLIP objective. CLIP fine-tuning aligns the
last frame in the video to its text description but fails to
leverage earlier frames from the same video sequence. In
contrast, VIP fine-tuning makes full use of the dataset and
naturally balances between semantic alignment and tempo-
ral consistency that are both crucial for effective language-
conditioned control.

3.3. Implementation

Based on the analysis above, we see that, despite initial ap-
pearances, the LIV objective of Eq. (1) does in fact naturally
induce semantic alignment between visual and language
goals. In particular, LIV is implicitly optimizing for a path-
way that connects the two modalities via mutual information
maximization. Given this pathway that makes goals inter-
changeable across modalities, in practice, we elect to opti-
mize the VIP objective in just one modality in conjunction
with the vision-language InfoNCE objective in Eq. (2):

LLIV(ϕ, ψ) =
+ Ep(g)[(1− γ)Eµ0(o;g)[−S(ϕ(o);ϕ(g))]
+ logE(o,o′;g)∼D

[
exp

(
S(ϕ(o);ϕ(g)) + 1− γS(ϕ(o′);ϕ(g))

)]
]︸ ︷︷ ︸

VIP-I

+Ep(g,l)

[
− log e(1−γ)S(ϕ(g);ψ(l))

ED(g′) [e(1−γ)S(ϕ(g′);ψ(l))]

]
︸ ︷︷ ︸

InfoNCE

,

(3)
Pseudocode is presented in Algorithm 1. In each gradient
step, a minibatch of video sub-clip consisting of initial,
intermediate, and final frames are sampled along with the
corresponding text annotations. These samples are used to
estimate the VIP-I and InfoNCE losses, which then update
the vision-language architecture via back-propagation.

We have shown above that the LIV objective subsumes

(a) MetaWorld (b) FrankaKitchen

Environment Tasks Horizon Dataset Size Dataset Type

MetaWorld 6 20 1M Random
FrankaKitchen 5 50 12.5K Demos

Figure 2. Multi-Task Vision-Language Manipulation Benchmarks.

CLIP-style contrastive objectives. In implementing LIV, we
stay close to CLIP architecture and design choices to allow
fair comparison to pre-trained CLIP with ResNet50 (He
et al., 2016) vision backbone. Finally, we use a γ-weighted
cosine similarity metric for S(ϕ(·), ψ(·)) so it represents a
valid value function. See Appendix D for details.

4. Experiments
Our experiments aim to answer the following questions:

1. Does LIV enable effective vision-language pre-training
for control?

2. Can LIV successfully fine-tune pre-existing vision-
language models?

3. Can LIV perform language-conditioned reward specifi-
cation?

We evaluate LIV’s effectiveness for pre-training (Sec-
tion 4.1) and fine-tuning (Section 4.2) by using the re-
sulting representations as the vision-language backbone in
language-conditioned imitation learning (LCBC). To assess
LIV’s reward learning capability, we use its reward function
for model-based planning to solve language-specified tasks
(Section 4.3).

4.1. Pre-Training

LIV Pre-Training. We pre-train LIV on EpicK-
itchen (Damen et al., 2018), a large-scale dataset of narrated
videos of humans completing tasks in diverse household
kitchens; we call this pre-trained model LIV-EPIC. See
Appendix D for details.

Baselines. We compare against CLIP (Radford et al.,
2021), a state-of-art vision-language representation that has
seen wide adoption in various robotics tasks (Shridhar et al.,
2022a; Cui et al., 2022; Khandelwal et al., 2022; Tam et al.,
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Algorithm 1 Language-Image Value Learning (LIV)
1: Require: Offline text-annotated (human) videos D = {(oi1, ..., gi; li)}Ni=1, vision-language architecture (ϕ, ψ)
2: for number of training iterations do
3: Sample sub-trajectories {oit, ..., oik, oik+1, ..., g

i; li}Bi=1 ∼ D, t ∈ [1, hi − 1], t ≤ k < hi, ∀i
4: LVIP-I(ϕ) := 1−γ

B

∑B

i=1

[
−S(ϕ(oit);ϕ(gi))

]
+ log 1

B

∑B

i=1 exp
[
S(ϕ(oik);ϕ(gi)) + 1− γS(ϕ(oik+1);ϕ(gi))

]
5: LInfoNCE(ϕ, ψ) := 1−γ

B

∑B

i=1

[
− log e(1−γ)S(ϕ(gi);ψ(li))

1
B

∑B

j=1

[
e(1−γ)S(ϕ(gj);ψ(li))

]]
6: Update (ϕ, ψ) using SGD: ϕ← (ϕ, ψ)− α∇(LVIP-I(ϕ) + LInfoNCE(ϕ, ψ))
7: end for

Figure 3. Pre-Trained Representations for Language-
Conditioned Imitation Learning: LIV-EPIC achieves the highest
average success rates across two distinct benchmarks.

2022); as LIV is trained using the CLIP architecture, this
is the closest comparison. Besides the quantitative LCBC
results, we provide qualitative comparison to CLIP in Ap-
pendix H to study respective representation’s capability of
capturing image and language conditioned task progress
on unseen EpicKitchen videos, and we find LIV to vastly
outperform CLIP in that regard.

We also compare against R3M (Nair et al., 2022b) and
VIP (Ma et al., 2022b), two state-of-art pre-trained visual
representations. While unimodal, both are strong baselines;
they are pre-trained on ego-centric videos similar to EpicK-
itchen (Grauman et al., 2022) and employ the same vision
architecture ResNet50 as LIV. We adapt them to the vision-
language setting by coupling them with a pre-trained Dis-
tilBERT encoder (Sanh et al., 2019) to process language
input. We note that R3M does employ this very same model
for shaping its visual representation during training, making
DistilBERT a natural design choice. To assess the impor-
tance of language task-specification and how each method
utilizes its language embedding, we also evaluate policy
learning using One-Hot encoding for tasks.

Environments. The environments and associated tasks
are illustrated in Figure 2. See Appendix E for more details
on these tasks and datasets.

Results. Full results are reported in Figure 3 (full numeric
results in Appendix F). As shown, our pre-trained LIV-EPIC
model, without any in-domain fine-tuning, performs best

Figure 4. Comparison Between Language vs. One-Hot Task
Encoding: LIV benefits the most from using language task-
specification, resulting in near 45% gain in absolute success rates.

in both MetaWorld and FrankaKitchen. Furthermore, as
shown in Figure 4, LIV-EPIC consistently benefits from its
jointly trained language representation. In particular, on
both benchmarks, while LIV-EPIC and the strongest base-
lines (CLIP and VIP) all perform similarly with one-hot
encoding, LIV-EPIC realizes much greater gain when lan-
guage task-specification is used. In fact, using language task-
specification hurts all baselines on MetaWorld. We hypoth-
esize that this is due to the fact that the MetaWorld dataset
contains many episodes whose annotations are long descrip-
tions that consist of concatenation of shorter atomic instruc-
tions; for example, "close drawer turn faucet
right push black mug right" is a valid annota-
tion that contains 3 atonomic instructions. Therefore, the
language embeddings from pure language model (e.g, Dis-
tilBERT) or language model trained from image-text only
datasets (e.g., CLIP) may fail to disambiguate these instruc-
tions, leading to incorrect task aliasing that hampers policy
learning. In contrast, one-hot encoding treats every descrip-
tion as distinct and does not have this aliasing problem.
Together, these results highlight the challenges of adapting
pure image-text representations and uni-modal visual repre-
sentations to language-conditioned robotic control, thereby
affirming LIV’s unique effectiveness in vision-language pre-
training for language-conditioned visuomotor control.
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Figure 5. Fine-Tuning Comparisons: LIV fine-tuning yields sig-
nificantly higher performance improvement over its ablations.

Table 1. Fine-Tuning Vision-Language Representations: LIV
consistently improves the performance of pre-trained vision-
language models regardless of their initial capabilities, the sizes
and the qualities of the in-domain fine-tuning datasets.

MetaWorld

Model/Method Pre-Trained LIV CLIP VIP-I

Random 20.6 ± 1.0 27.8 ± 4.1 30.8 ± 2.2 30.6 ± 3.5

CLIP 19.4 ± 1.3 33.9 ± 7.5 16.4 ± 4.3 30.0 ± 2.2

LIV-EPIC 30.6 ± 5.0 35.8 ± 1.4 21.4 ± 5.7 20.3 ± 3.4

FrankaKitchen

Model/Method Pre-Trained LIV CLIP VIP-I

Random 17.7 ± 3.9 19.2 ± 3.8 17.1 ± 2.2 3.2 ± 0.7

CLIP 22 ± 3.5 26.8 ± 4.9 14.0 ± 6.8 14.8 ± 1.3

LIV-EPIC 29.3 ± 4.6 32.3 ± 5.8 15.1 ± 4.3 17.3 ± 6.6

4.2. Fine-Tuning

Next, we show that the LIV objective can also be used
to effectively fine-tune pre-trained vision-language models
for downstream policy learning. In particular, we show
that it is effective in adapting both pre-trained LIV-EPIC
and CLIP models from Section 4.1, despite their vastly
different training data and objectives. Specifically, we first
take the same in-domain task data as in Section 4.1 to fine-
tune the pre-trained representations using the LIV objective
(Algorithm 1). Then, as before, we freeze the fine-tuned
representations and train policies on top using LCBC.

Baselines. We consider using the CLIP InfoNCE objective
(Eq. (2)) as well as the VIP-I objective (Eq. (5)) for fine-
tuning. Note that these fine-tuning methods are ablations of
LIV that focus only on semantic alignment and temporal-
perception alignment, respectively. We also note that using
CLIP to fine-tune CLIP is the current state-of-art (Goyal
et al., 2022; Dong et al., 2022) on visual recognition tasks.
We also consider direct fine-tuning using LCBC as a base-
line. For an additional point of base model, we evaluate all
fine-tuning methods on a representation learned via LIV on
in-domain data from scratch (“Random”).

Results. The results are shown in Table 1. We see that
LIV fine-tuning is effective for all three model initializa-

(a) LIV Fine-Tuning (b) CLIP Fine-Tuning

Figure 6. Qualitative Analysis: LIV fine-tuning achieves both
temporal coherence and semantic alignment; in contrast, CLIP
fine-tuning over-aggressively aligns the goal frame-text pair that
damages representations of earlier frames.

tions, whereas the baseline ablations deliver mixed results.
In particular, CLIP fine-tuning degrades performance in all
cases except on the Random model in MetaWorld. This
sub-par performance of CLIP fine-tuning, in stark contrast
to concurrent works that have shown its effectiveness for
image classification, reveals a fundamental difference be-
tween fine-tuning for control (e.g., robotic manipulation)
and recognition (e.g., image classification). Robot demon-
stration data is typically scarce, and CLIP fine-tuning is
wasteful since it ignores all but the last few frames of each
demonstration. As such, CLIP fine-tuning is prone to over-
fitting and learning degenerate features that do map the
goal image frame and the language command to the same
embedding location but misrepresent other frames. This ob-
servation is supported by the relatively larger performance
drop-off of CLIP fine-tuning on FrankaKitchen, as the robot
dataset there is two orders of magnitude smaller than Meta-
World (12.5K vs. 1M).

This difference in dataset sizes also explains why VIP-I
fine-tuning is reasonable on MetaWorld but very poor on
FrankaKitchen, consistent with the findings in Ma et al.
(2022b). As such, we have demonstrated that both terms
in the LIV are indispensable for effective fine-tuning. LIV
is uniquely effective at fine-tuning vision-language mod-
els under varying pretraining objectives, pretrained model
qualities, and fine-tuning dataset sizes.

The final LIV fine-tuned models perform better when they
started from better pre-trained models, so that the best com-
bined system simply uses the LIV objective for both phases,
pretraining as well as fine-tuning.

Finally, we find that fine-tuning directly using LCBC ob-
jective fails in all cases with policy losses exploding to
infinity, despite our best efforts to stabilize training. Even
warm-starting the policy network with frozen representa-
tions does not stabilize training. This is consistent with
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Table 2. Planning with Learned Reward: LIV-EPIC is both the
strongest zero-shot and adapted reward model.

Model FrankaKitchen MetaWorld

LIV-EPIC 1.3 ± 0.8 29.7 ± 4.7

LIV-EPIC (LIV Fine-Tuned) 20.0 ± 4.5 55.2 ± 5.5

CLIP 0 ± 0.0 18.2 ± 4.4

CLIP (LIV Fine-Tuned) 15.2 ± 4.6 45.3 ± 2.5

CLIP (CLIP Fine-Tuned) 3.2 ± 0.9 30.7 ± 3.3

LOREL 9.6 ± 3.0 47.9 ± 3.2

LOREL (R3M Initialized) 16.8 ± 3.8 47.5 ± 12.7

R3M 8.8∗ ± 2.7 18.3 ± 7.7

R3M (R3M Fine-Tuned) 16.1 ± 4.2 43.9 ± 3.2

others’ findings that shallow architectures are more suited
for pure in-domain BC (Hansen et al., 2022); fine-tuning
large vision-language models with BC is challenging.

Qualitative Analysis. We visually compare the fine-tuned
LIV models via LIV and CLIP by overlaying the curves
of the negative similarity score (i.e., −S(ϕ(·), ψ(·))) com-
puted from all earlier frames to the goal frame and the goal
text-command on demonstration fine-tuning data. CLIP fine-
tuning (Fig. 6(b)), as intended, maps the goal frame and the
goal text to a near identical point in the representation space
as the two curves almost perfectly overlap. However, the
similarity scores of the intermediate frames exhibit highly
unsmooth trend and variance, indicating that the represen-
tation does not preserve temporal coherence. In contrast,
LIV (Fig. 6(a)) naturally preserves a structured represen-
tation, in which the visual and text similarity curves are
near-linear, monotonic, and converge to similar locations,
suggesting that the representation has successfully mapped
the goal frame and text to similar embeddings while pre-
serving the temporal coherence of all earlier frames. This
temporal consistency is crucial for effective representation
as it automatically prevents incorrect observation aliasing
and preserves feature scale across time for effective policy
learning (Ma et al., 2022b; Nair et al., 2022b).

4.3. Reward Learning

While LIV fine-tuning has delivered strong results on LCBC,
we recognize that a fundamental problem that in-domain
fine-tuning is able to resolve is that of language grounding,
which connects linguistic concepts to the visual attributes of
the policy learning domain. This capability of distinguish-
ing visual observations from the same domain based on an
language input is precisely what is required for language-
conditioned reward learning. Hence, we theorize that LIV’s
implicit value function that preserves both fine-grained se-
mantic and temporal structure in its representation makes the
ideal candidate for language-conditioned reward modeling.

Baselines. We compare to LOREL (Nair et al., 2022a), a
state-of-art language-conditioned reward learning method
that learns a classifier fθ(o0, ot, l) for whether the progres-
sion from o0 to ot completes task description l. In addi-
tion, we compare to R3M (Nair et al., 2022b), which in-
corporates a similar language-progression score function
trained via contrastive learning. As the original LOREL
does not leverage pre-trained visual representations, we also
consider a variant of LOREL initialized with R3M model
weights to improve its performance. Similarly, to circum-
vent the out-of-domain language grounding problem for
pre-trained R3M, we consider a variant where we fine-tune
the pre-trained R3M using the R3M objective on the same
in-domain data used for LIV fine-tuning.

Evaluations. We evaluate all reward models in a model-
based planning setup, in which a trajectory optimizer syn-
thesizes a sequence of actions to be executed in the true
environment based on scores from the utilized reward func-
tion. For all LIV models (pre-trained and fine-tuned), we
use the potential-based reward as in Ma et al. (2022b):

R(ot, ot+1; l) := S(ϕ(ot+1);ψ(l)) − S(ϕ(ot);ψ(l)) (4)

On the MetaWorld benchmark, we use the identical ex-
perimental setup as in Nair et al. (2022a), whereas on the
FrankaKitchen benchmark, we closely follow the experi-
mental protocol of Ma et al. (2022b). See Appendix G for
more details on our model-based planning experiments. The
aggregated success rate over all test instances are reported
by benchmark in Table 2.

Results. As shown, LIV fine-tuning significantly im-
proves the success rate over the base pre-trained LIV and
CLIP models, and the fine-tuned LIV-EPIC achieves the
best performance overall across both benchmarks. LOREL
and R3M models both perform adequately with the respec-
tive modifications we have introduced, but they still trail
behind LIV; likewise, CLIP’s performance, even with LIV
fine-tuning, is bottlenecked by the inferior performance of
the pre-trained CLIP model.

5. Conclusion
We have presented the Language-Image Value Learning
(LIV) algorithm. LIV is at once the first pre-training
objective for control-oriented vision-language representa-
tions, a fine-tuning objective for domain-specific language
grounding, and a language-conditioned task reward func-
tion. Trained on large generic human video datasets and
fine-tuned on small simulated robotics datasets, LIV outper-
forms state-of-the-art approaches in each of three distinct
evaluation settings. We will release pre-trained LIV models
and fine-tuning code.
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A. Related Work
Pre-trained Representations for Control. Our work is related to the literature on pre-training representations for
control (Shah & Kumar, 2021; Cui et al., 2022; Parisi et al., 2022; Nair et al., 2022b; Xiao et al., 2022; Ma et al., 2022b; Fan
et al., 2022). These works all seek to use pre-existing data, typically out-of-domain, to pre-train effective representations for
downstream unseen robotic tasks. While they all focus on unimodal vision-only representations, Nair et al. (2022b) uses a
language alignment loss (Nair et al., 2022a) with respect to a fixed language encoder (Sanh et al., 2019) to shape the visual
representation temporally; the learned representation itself is still uni-modal however. In this context, our work is the first to
propose a multi-modal vision-language representation pre-training objective for language-conditioned visual control.

On the algorithmic level, LIV builds on value-implicit pre-training (VIP) (Ma et al., 2022b), which casts visual representation
and reward learning as a goal-conditioned value function learning problem. LIV extends this approach to the multi-modal
vision-language setting and shows a surprising connection to CLIP-style InfoNCE contrastive learning (Oord et al., 2018;
Radford et al., 2021).

Fine-Tuning Pre-Trained Representations. Several recent works study how to adapt pre-trained representations for
downstream tasks (Kumar et al., 2022; Wortsman et al., 2022; Ilharco et al., 2022b; Lee et al., 2022; Kirichenko et al., 2022;
Goyal et al., 2022; Dong et al., 2022), motivated by the emergence of large pre-trained models (Radford et al., 2021; Brown
et al., 2020) capable of zero-shot transfer. This problem is not resolved even in the standard supervised learning setting
with various orthogonal approaches, such as fine-tuning only selective layers (Lee et al., 2022; Kirichenko et al., 2022)
and combining several fine-tuned model weights (Wortsman et al., 2022; Ilharco et al., 2022b;a). Most closely related to
our work are few concurrent works that find using the CLIP objective to fine-tune CLIP is more effective than alternative
fine-tuning approaches (Goyal et al., 2022; Dong et al., 2022). We similarly find LIV objective to be most effective when
fine-tuning LIV models and in fact more effective than CLIP fine-tuning for CLIP, demonstrating its full versatility.

Language-Conditioned Robotic Manipulation. There has been a surge of interest in language-conditioned vision-based
robotic manipulation systems (Lynch & Sermanet, 2020; Stepputtis et al., 2020; Ahn et al., 2022; Jang et al., 2022; Lynch
et al., 2022; Shridhar et al., 2022a; Brohan et al., 2022; Shridhar et al., 2022b; Guhur et al., 2022; Liu et al., 2022; Mees et al.,
2022b). While several works have considered policy learning on top of pre-trained vision-language representations (Shridhar
et al., 2022a; Liu et al., 2022; Mees et al., 2022a), they do not consider how a better representation can be learned in the first
place by leveraging large-scale out-of-domain text-annotated video data. As such, (1) how to pre-train new vision-language
representations for language-conditioned visuomotor control, and (2) whether doing so is in fact beneficial over existing
representations (e.g., CLIP) are open questions that our work first proposes to address.

On the axis of downstream policy learning algorithm, most existing works focus on language-conditioned behavior cloning
(LCBC) (Lynch & Sermanet, 2020; Stepputtis et al., 2020). This paradigm demands the expensive collection and text
labeling of demonstration data, which can take months to complete (Jang et al., 2022; Lynch et al., 2022; Brohan et al., 2022).
In contrast, while LIV is effective as a pre-trained representation for LCBC, it can also be used as a language-conditioned
visual reward model that supports autonomous skill acquisition via reinforcement learning (Goyal et al., 2021; Nair et al.,
2022a; Mahmoudieh et al., 2022). Our experiments show that LIV outperforms prior state-of-art language-conditioned
reward models (Nair et al., 2022a;b) in model-based planning settings.

B. Additional Background
Value Implicit Pre-Training (VIP). VIP (Ma et al., 2022b) learns the optimal goal-conditioned value function via the dual
goal-conditioned RL formulation (Ma et al., 2022a;c):

L(ϕ) = Ep(g)[(1− γ)Eµ0(o;g) [−S(ϕ(o);ϕ(g))]
+ logE(o,o′;g)∼D

[
exp

(
S(ϕ(o);ϕ(g)) + 1− γS(ϕ(o′);ϕ(g))

)]
],

(5)

where µ0(o; g) is the distribution of initial frame conditioned on the goal frame g and D(o, o′; g) is the goal-conditioned
distribution of two successive intermediate frames. In VIP, the value function is implicitly parameterized as a similarity
metric (e.g., L2 distance) in the embedding space V (o; g) := S(ϕ(o);ϕ(g)), making it both a representation learning and a
reward learning algorithm. Since it does not depend on actions, VIP can be pre-trained on large-scale human video datasets.
The resulting implicit value function serves the dual purposes of (1) reward specification, and (2) visual representation for
unseen robot tasks.
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C. Proof of Proposition 1
In this section, we provide a full proof of Proposition 1 in the main text. For ease of reading, we begin by reproducing the
proposition.
Proposition. Let the video distribution consist of solely degenerate videos of repeated frames that align with the text
annotation, D := {v := ((g, g; l))}. Then, the VIP-L objective is equivalent to the InfoNCE objective up to a constant:

LVIP-L(ϕ, ψ) = Ep(g,l)

[
− log e(1−γ)S(ϕ(g);ψ(l))

ED(g′)
[
e(1−γ)S(ϕ(g′);ψ(l))

]]
+ 1, (6)

where p(g, l) is the distribution of goal frame and text pair.

Proof. We begin with the VIP-L objective:

Ep(l)[(1 − γ)Eµ0(o;l) [−S(ϕ(o);ψ(l))] + logE(o,o′;l)∼D [exp (S(ϕ(o);ψ(l)) + 1 − γS(ϕ(o′);ψ(l)))]] (7)

We can massage this expression as follow:

Ep(l)[Eµ0(o;l) [−(1 − γ)S(ϕ(o);ψ(l))] + logE(o,o′;l)∼D [exp (1 + (1 − γ)S(ϕ(o);ψ(l)))]], (8)

assuming o = o′ in the log-sum-exp term.

Now, the joint distribution of language and initial-frame p(l)µ0(o; l) reduces to the marginal distribution of goal-frame and
text distribution p(g, l) when the videos are just concatenations of the goal frames. Similarly, The language-conditioned
distribution of successive intermediate frames D(o, o′; l) reduces to the marginal distribution of goal frames D(g′) in the
dataset. Plugging these substitution back into Equation (8) gives

Ep(g,l)

[
− log e(1−γ)S(ϕ(g);ψ(l))

ED(g′) [exp (1 + (1 − γ)S(ϕ(g′);ψ(l)))]

]
=Ep(g,l)

[
− log e(1−γ)S(ϕ(g);ψ(l))

ED(g′) [e · exp ((1 − γ)S(ϕ(g′);ψ(l)))]

]
=Ep(g,l)

[
− log e(1−γ)S(ϕ(g);ψ(l))

ED(g′) [exp ((1 − γ)S(ϕ(g′);ψ(l)))]

]
+ 1

=Ep(g,l)

[
− log e(1−γ)S(ϕ(g);ψ(l))

ED(g′)
[
e(1−γ)S(ϕ(g′);ψ(l))

]]
+ 1

(9)

InfoNCE A standard way to learn a vision-language representation is by aligning the modalities via contrastive learning.
Specifically, this semantic alignment is achieved by minimizing the InfoNCE objective (Oord et al., 2018):

LInfoNCE(ϕ, ψ) = Ep(o,l)

[
− log eS(ϕ(o);ψ(l))

ED(o′)
[
eS(ϕ(o′);ψ(l))

]]
, (10)

where S is a choice of similarity metric. Intuitively, this objective aims to attract the representations of matching image-text
pairs (o, l), while repelling mismatching pairs. Many state-of-art vision-language models (Radford et al., 2021; Jia et al.,
2021; Li et al., 2022) train with this InfoNCE objective at scale to deliver strong zero-shot performance on a myriad of
vision-language tasks.

D. LIV Model Details
We implement LIV using the open-sourced CLIP architecture1 without modifications; we use the modified ResNet50 (He
et al., 2016) from CLIP for the vision encoder, and the CLIP Transformer (Vaswani et al., 2017; Radford et al., 2019)

1https://github.com/openai/CLIP

https://github.com/openai/CLIP
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architecture for the language encoder. The training hyperparameters used during the pre-training and fine-tuning stages are
listed in Table 3. During pre-training, we also incorporate the VIP-L objective, which we find to produce better pre-trained
LIV models; we hypothesize that adding the explicit language-based VIP loss is instrumental in shaping the representation
with semantic structure early on. During the fine-tuning stage, the same set of fine-tuning hyperparameters is used for
fine-tuning CLIP as well as the ablation fine-tuning methods presented in Section 4.2.

Since LIV uses −1 as the constant fixed reward for all observations, the range of valid state value is [ −1
1−γ , 0]; however, cosine

similarity, as used in CLIP, has range of [−1, 1]. Thus, to be able to represent all possible values, we set S(ϕ(·), ψ(·)) :=
1

1−γCosineSimilarity(ϕ(·), ψ(·)). Coincidentally, with this choice of S, the InfoNCE objective in LIV reduces to
precisely the InfoNCE objective used in CLIP.

We pre-train LIV on EpicKitchen (Damen et al., 2018). We use the EPIC-KITCHENS-100 version of the data and
only utilize the RGB frames and text annotations from the dataset; the default frame rate in the raw dataset is used. The
pre-training takes place on a node of 8 NVIDIA V100 GPUs.

Table 3. VIP Architecture & Pre-Training Hyperparameters.

Pre-Training Fine-Tuning

Model Initialization CLIP {LIV-EPIC, CLIP, Random}
Optimizer Adam (Kingma & Ba, 2014) Adam
Gradient Steps 200000 10000
Batch Size 512 64
Learning Rate 0.00001 0.00001
Weight Recay 0.001 0.001
Discount Factor γ 0.98 {0.98, 0.96}
VIP-L objective Yes No

E. Environment Details
MetaWorld. The MetaWorld environment consists of a tabletop scene with a Sawyer robot that can interact with 4 objects,
including a drawer, faucet, and two mugs distinguished by color. The dataset is collected by running a random policy for
50000 episodes with episode length 20; each episode is labeled with procedurally generated language descriptions that it
achieves via computing pre-defined success criterion for each language-specified task. A single episode can solve many
distinct tasks. In that case, the labeled description will be a concatenation of all atomic instructions that the episode has solved.
The whole dataset contains 2311 unique descriptions, and the evaluation tests on 6 atomic instructions: close drawer,
open drawer, turn faucet right, turn faucet left, move black mug right, move the white
mug left.

FrankaKitchen The FrankaKitchen environment consists of a kitchen scene with a Franka robot that can interact with a
variety of common household kitchen objects. We use the same 5-task split that was evaluated in Nair et al. (2022b) for
visual imitation learning; the tasks as well as their language commands are listed in Table 4. For each task, we include 50
demonstrations, so the total size of the dataset is 250 episodes, where each episode is 50 environment steps long.

Table 4. FrankaKitchen Task Mapping

Environment ID Language Task

kitchen micro open-v3 open microwave
kitchen sdoor open-v3 slide cabinet
kitchen ldoor open-v3 open left door
kitchen knob1 on-v3 turn on stove
kitchen light on-v3 switch on light
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F. Language-Conditioned Imitation Learning
We present the LCBC imitation learning hyperparameters in Table 5. Because the dataset size in MetaWorld is significantly
larger, we use a larger MLP architecture with bigger batch size. For each distinct evaluation task, we rollout for 50 episodes
and record the success rate.

Table 5. LCBC Hyperparameters.

MetaWorld FrankaKitchen

MLP Architecture [1024, 1024, 1024] [256, 256]
Non-Linear Activation ReLU ReLU

Optimizer Adam Adam
Gradient Steps 200000 200000
Batch Size 4096 32
Learning Rate 0.001 0.001
Proprioception No Yes

F.1. Full Numeric Results

In Table 6, we present the full numeric results of our LCBC with pre-trained representations experiment.

G. Reward Learning
We describe our model-based planning experimental details. On MetaWorld, we use a cross-entropy Method (CEM) (Rubin-
stein & Kroese, 2004) planner to propose action sequences and employ the open-sourced SV2P (Babaeizadeh et al., 2017)
visual dynamics model trained on the demonstration data to rollout the action sequences for optimization. On FrankaKitchen,
as in Ma et al. (2022b), we use the ground-truth environment dynamics to for action rollouts and employ a model-path
predictive integral (MPPI) (Williams et al., 2017) planner. On FrankaKitchen, due to the exploration challenge, we also
warmstart the action search with a fixed open-loop sequence that brings the robot end-effector to the vicinity of the task
object but does not perform the full commanded task.

G.1. Hyperparameters

On MetaWorld, we use the open-sourced implementation of Cross-Entropy Method (CEM) on this environment released
by (Nair et al., 2022a). On FrankaKitchen, we follow the practice of Ma et al. (2022b) and use a publicly available
implementation of MPPI2 with the default hyperparameters.

G.2. Additional Results & Analysis

How does increasing planning budget affect model performance? To further assess the capability of the various learned
reward models, we repeat the model-based planning experiment on MetaWorld by increasing the CEM optimization iteration
from 1 to 3. The results are shown in Table 8. We see that almost all models that are trained or fine-tuned on the in-domain
data see performance increase with the fine-tuned LIV-EPIC standing as the best model. However, the pre-trained models
(LIV-EPIC, CLIP, R3M), with the exception of LIV-EPIC, see performance degradation, suggesting that their reward models
are in fact exploited by the stronger optimizer. Finally, we observe that LIV with 1 CEM iteration already performs as well
as LOREL with 3 CEM iterations, suggesting that LOREL is more prone to “false nagatives”, i.e. assigning low scores to
good trajectories. These results highlight both LIV’s ability for zero-shot and fine-tuning reward model.

Why does R3M work well zero-shot on FrankaKitchen? Interestingly, we find R3M to perform well zero-shot on
FrankaKitchen (Table 2, achieving ≈ 9% success rate without any in-domain fine-tuning. Upon investigating this outcome
however, we find that this result is an artifact of the specific way in which R3M was trained. In particular, R3M’s pre-trained
reward predictor has a bias for actions that induce visual change in the environment because it was pre-trained to output

2https://github.com/aravindr93/trajopt/blob/master/trajopt/algos/mppi.py

https://github.com/aravindr93/trajopt/blob/master/trajopt/algos/mppi.py
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Table 6. Pre-Trained Representations for Language-Conditioned Imitation Learning: LIV-EPIC achieves the highest average success
rates across two distinct benchmarks and makes most effective use of its language embedding.

model FrankaKitchen MetaWorld

LIV-EPIC 29.3 ± 4.6 30.6 ± 5.0
LIV-EPIC (One-Hot) 17.6 ± 5.0 26.1 ± 5.5

CLIP 22 ± 3.5 19.4 ± 1.3
CLIP (One-Hot) 14.8 ± 0.7 28.6 ± 1.3

VIP (BERT) 18.0 ± 6.9 24.2 ± 3.0
VIP (One-Hot) 15.6 ± 6.2 28.3 ± 0.8

R3M (BERT) 18.7 ± 11.0 12.7 ± 3.9
R3M (One-Hot) 11.5 ± 1.9 18.1 ± 5.5

Table 7. Model-Based Planning Hyperparameters.

MetaWorld FrankaKitchen

Planner CEM MPPI (Williams et al., 2017)
Planning Horizon 20 50
# Proposed Action Sequences 200 128
Optimization Iteration 1 1
Dynamics Model SV2P trained on in-domain dataset Ground truth simulation

higher scores for frames that are farther apart in time, which typically correlate with larger visual changes in the scene. To
confirm this, we repeat the same experiment on FrankaKitchen but this time with random language goals. The results are
shown in Table 9. We see that R3M’s performance remains surprisingly high, indicating that it does not depend at all on
the language-based task specification. In contrast, other models’ performance catastrophically decline. This indicates that
R3M’s language grounding is limited and often confuses completion of specific tasks with any indiscriminate visual changes
in the environment. This finding is further supported by R3M’s poor performance on the MetaWorld environment, in which
random actions are enough to move the objects and induce large visual changes, and task completion requires more directed
action, driven by more sophisticated language understanding. LIV-EPIC significantly outperforms R3M on MetaWorld and
is the best zero-shot reward model overall on this benchmark.

H. Representation Qualitative Results
In this section, we provide additional qualitative results on our pre-trained and fine-tuned models.

H.1. EpicKitchen (Real)

We first visualize pre-trained LIV-EPIC on representative seen and unseen EpicKitchen videos by plotting the embedding
curves with respect to the image (final frame of the video) and the text goal. In both seen and unseen splits, the three videos
have annotations open cabinet, open door, and open microwave, respectively. The results are in Figure 7 and
8. For comparison purpose, we include the results for the CLIP model in Figure 9 and 10.

H.2. FrankaKitchen (Sim)

In Figure 11, 12, 13, we present the embedding curves for LIV-EPIC, LIV-EPIC (LIV finetuned), LIV-EPIC (CLIP
finetuned) on the FrankaKitchen tasks. As shown, LIV-EPIC, wihtout any in-domain fine-tuning, is able to competently
capture visual progress but lacks language grounding to capture language goal progress. LIV fine-tuning is able to enable
language-conditioned progress while improving visual temporal alignment. CLIP fine-tuning over-aggressively aligns the
representations of the last frame and the text goal and collapses intermediate representations.
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Table 8. LIV models consistently improve with increased planning budget; in contrast, baselines report mixed results.

Model MetaWorld (CEM Iterations=1) MetaWorld (CEM Iterations=3)

LIV-EPIC 29.7 34
LIV-EPIC (LIV Fine-Tuned) 55.2 57.8

CLIP 18.2 14.7
CLIP (LIV Fine-Tuned) 45.3 44.4
CLIP (CLIP Fine-Tuned) 30.7 34.4

LOREL 47.9 55.4
LOREL (R3M Initialized) 47.5 50.6
R3M 18.3 18.1
R3M (R3M Fine-Tuned) 43.9 50.8

Table 9. Performance Comparison Between Correct and Random Language Goals.

Model Correct Goal Random Goal

LIV-EPIC 1.3 1.0
LIV-EPIC (LIV Fine-Tuned) 20.0 0.0

LOREL 9.6 0.0
LOREL (R3M Initialized) 16.8 0.0

R3M 8.8 12.1
R3M (R3M Fine-Tuned) 16.1 0.0
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Figure 7. Pre-trained LIV-EPIC image and language goal reward curves on (seen) EpicKitchen videos.

Figure 8. Pre-trained LIV-EPIC image and language goal reward curves on (unseen) EpicKitchen videos.
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Figure 9. CLIP image and language goal reward curves on (seen) EpicKitchen (videos).

Figure 10. CLIP image and language goal reward curves on (unseen) EpicKitchen videos.
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Figure 11. Pre-trained LIV-EPIC image and language goal reward curves on simulated FrankaKitchen tasks.
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Figure 12. LIV-EPIC (LIV fine-tuned) image and language goal reward curves on simulated FrankaKitchen tasks.
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Figure 13. LIV-EPIC (CLIP fine-tuned) image and language goal reward curves on simulated FrankaKitchen.
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